SCPSN: Spectral Clustering-based Pyramid Super-resolution Network for Hyperspectral Images

Anonymous Authors

ABSTRACT

Single hyperspectral image super-resolution aims to reconstruct a high-resolution hyperspectral image (HRHSI) from an observed low resolution hyperspectral image (LRHSI). Most current methods combine CNN and Transformer structures to directly extract features of all channels in LRHSI for image reconstruction, but they do not consider the interference of redundant information in adjacent bands, resulting in spectral and spatial distortions in the reconstruction results and an increase in model computational complexity. To address this issue, this paper proposes a spectral clustering-based pyramid super-resolution network (SCPSN) to progressively reconstruct HRHSI at different scales. In each image reconstruction layer, a clustering super-resolution block (CSRB) consisting of spectral clustering block (SCB), patch non local attention block (PNAB), and dynamic fusion block (DFB) is designed to achieve the reconstruction of detail features. Specifically, for the high correlation between adjacent spectral bands in LRHSI, a SCB is first constructed to achieve clustering of spectral channels and filtering of hyperchannels. This can reduce the interference of redundant spectral information and the computational complexity of the model. Then, by utilizing the non-local similarity of features within the channel, a patch non-local attention block (PNAB) is constructed to enhance the features of hyperchannels. Next, a dynamic fusion block (DFB) is designed to reconstruct the features of all channels in LRHSI by establishing correlations between enhanced hyperchannels and other channels. Finally, the reconstructed channels are upsampled and added to the corresponding channels to obtain the reconstructed HRHSI. Extensive experiments validate that the performance of SCPSN is superior to that of some other state-of-the-art (SOTA) HSSR methods in terms of visual effects and quantitative metrics. In addition, our model does not require training on large-scale datasets compared to other methods. The dataset and code will be released on GitHub.

CCS CONCEPTS

• Computing methodologies → Hyperspectral imaging.

KEYWORDS

Hyperspectral image super-resolution, Spectral clustering, Nonlocal feature similarity

author(s) must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission

56 57 58

54

55

1 INTRODUCTION

Image super-resolution (SR) technology [27] aims to improve the spatial resolution and visual quality of low resolution (LR) images. It is a fundamental research area within computer vision, and has been widely applied in various fields, such as remote sensing [4], agricultural monitoring [26], and medical diagnosis [22]. In the field of remote sensing, due to the limitations of the imaging environment of satellite sensors, the captured hyperspectral images (HSIs) usually have rich spectral information but relatively low spatial resolution. Many researchers attempt to use SR technology to reconstruct more spatial texture features in order to improve the spatial resolution of HSI. At present, HSI-SR reconstruction methods are mainly divided into two categories: traditional SR methods and deep learning-based SR methods.

The traditional SR methods mainly include regularization-based methods [11, 33], non-negative matrix factorization-based methods [13] and sparse representation-based methods [8, 32]. These methods rely on manually defined prior information in solving HR images, and improper selection of prior knowledge can lead to serious texture loss in the reconstruction results. In addition, this type of method is time-consuming and difficult to meet the realtime processing requirements in practical applications [7, 23, 36]. In recent years, due to the powerful feature representation ability of convolutional neural networks(CNNs), deep learning-based methods have attracted the attention of researchers. Based on the characteristics of hyperspectral images, some deep networks based on 3D convolution have been proposed. For example, Mei et al. [23] proposed a 3D-FCNN that uses 3D convolution to learn the spatial context of adjacent pixels and the spectral correlation of adjacent bands. Li et al. [14] proposed a hybrid convolutional network (MCNet), which utilizes hybrid 2D/3D convolution to explore more spatial features of HSI. Fu et al. [6]proposed a bidirectional 3D quasi-recurrent neural network with arbitrary number of bands. Although 3D convolution can learn contextual relationships of features in both spatial and channel dimensions, it requires learning a large number of parameters and a significant amount of memory. With the development of deep network structures, the residual structures and attention mechanisms [10, 12, 16, 18] have also been introduced into HSI-SR networks. On this basis, considering the characteristic of HSI, Liu et al. [18] proposed a spectral grouping and attention-driven residual dense network (SGARDN) that uses group convolution to extract spatial features within and between groups composed of highly similar spectral bands, while avoiding spectral confusion caused by normal convolution. CNN based SR methods perform well in extracting local spectral features, but they ignore long-range spatial spectral correlation, resulting in spatial and spectral distortion in reconstructed HR images.

Later, the Transformer structure was proposed and introduced into computer vision tasks, demonstrating good performance in capturing long-distance features. For example, inspired by ViT [5] 59

60

61 62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

87

88

89

90

91

92

93

94

95

96

97

98

99

100

101

102

103

104

105

106

107

108

109

110

111

Unpublished working draft. Not for distribution.

and/or a fee. Request permissions from permissions@acm.org.

ACM MM, 2024, Meldourne, Australia

Solution rights licensed to ACM.

https://doi.org/10.1145/mm

ACM MM, 2024, Melbourne, Australia

117

118

119

120

121

123

124

125

126

128

129

130

131

132

174

Figure 1: Visualization of spectral correlation coefficient matrix of a HSI

in advanced visual tasks, Chen et al. [1] introduced Transformer 133 into SR, but it has the problem of high computational complexity. 134 135 To reduce the computational complexity of the model, Liang et al. [17] introduced SwinTransformer [21] into the SR task, divid-136 ing the image into small windows of size 8x8 to participate in the 137 138 computation of multi-head attention. Transformer based networks 139 need to be trained on large datasets, and the training samples in existing hyperspectral datasets are limited. Therefore, Transformer 140 based HSI-SR methods have only been studied by a small number 141 of researchers. Zhang et al. [34] introduced the spectral correlation 142 coefficient (SCC) of the spectrum to replace the original attention 143 matrix in the Transformer structure, in order to reduce the computa-144 tional complexity of the model. However, this method does not fully 145 utilize spatial information. Liu et al. [20] employs a combination of 146 3-D convolutions and transformer block to extract complementary 147 148 spatial and spectral features. Although the Transformer structure is effective in exploring long-range feature dependencies in spatial 149 dimensions, it is not conducive to local feature extraction. Addition-150 151 ally, it has high hardware memory requirements and computational complexity.

At present, most deep learning based HSI-SR methods improve 153 the model's feature extraction and representation capabilities by 154 155 improving the network structure, lacking consideration for the spectral characteristics of HSI. Due to the high spectral correlation 156 between adjacent channels in HSI, as shown in Figure 1, the inter-157 ference of redundant information can cause spectral distortion in 158 159 the reconstructed image. Therefore, this paper constructs an SR framework based on hyperchannel filtering, as shown in Figure 160 161 2(b). In addition, each band in HSI reflects spectral information of 162 similar substances, and the features within the channel have non local similarity characteristics. The non local self-similarity of fea-163 164 tures has been proven to be an effective prior for image restoration 165 [3, 9]. This prior has been successfully introduced into network construction [31] and has been applied in many image restoration 166 tasks [19, 24, 35]. Based on the above analysis, we proposed a spec-167 tral clustering-based pyramid super-resolution network (SCPSN), 168 which gradually achieves image reconstruction by constructing 169 image reconstruction layers at different scales. In each image re-170 construction layers, a clustering super-resolution block (CSRB) and 171 172 a residual block are constructed to generate the reconstructed HR 173 image of the current layer. CSRB consists of spectral clustering

Figure 2: Structure of different SR framework

block (SCB), patch non local attention block (PNAB), and dynamic fusion block (DFB), and is designed to achieve the reconstruction of detail features. In CSRB, SCB is constructed to achieve clustering of spectral channels and filtering of hyperchannels, in order to reduce the interference of redundant spectral information and the computational complexity of the model. PNAB is proposed to reconstruct hyperchannels with more detail features by utilizing the non-local similarity of features within the channel. DFB is designed to integrate each channel in LRHSI with highly correlated channels in hyperchannels to reconstruct all channels of LRHSI. Qualitative and quantitative experiments conducted on three hyperspectral datasets have demonstrated that our method outperforms some state-of-the-art (SOAT) methods. The main contributions of this paper are as follows.

- We propose a SCPSN that includes multiply image reconstruction layers to progressively reconstruct HRHSI with rich textures at different scales.
- Based on high correlation between adjacent channels, an SCB is constructed to select hyperchannels with rich information from all channels of LRHSI, which can effectively reduce the computational complexity and number of parameters of the model.
- Considering the non-local similarity of features within the channel, a PNAB is constructed to enhance the features of hyperchannels by learning feature correlations between image patches.
- A DFB is designed to reconstruct the detail features for each spectral band by a channel dynamic filtering block and a feature fusion block, which dynamically select highly correlated hyperchannels and fuse them with each spectral band in LRHSI.

2 PROPOSED METHOD

In this section, to reconstruct more detail features of LRHS images, we proposed a SCPSN, as shown in Figure 3, which adopts a pyramid structure to gradually reconstruct images of different scales. Each scale layer of this structure contains a CSRB and a residual block (RB) to achieve the reconstruction of HR image at the current scale. CSRB consisting of a SCB, a PNAB, and a DFB is designed to achieve the reconstruction of detail features. RB is used to integrate the reconstructed features, and these features are combined with the

Anonymous Authors

Figure 3: Overview of the proposed SCPSN at SR×4

input LR image to obtain the reconstructed HR image through a residual structure. Below, we provide a detailed introduction to the specific structures of SCB, NAB and DFB.

2.1 Spectral Clustering Block(SCB)

Hyperspectral images typically consist of hundreds of spectral bands, providing rich spectral information, but with relatively low spatial resolution. However, due to the strong correlation between adjacent spectral bands, there is a large amount of redundant information. Directly processing all spectral bands in the SR task will increase the computational complexity of the model. In addition, due to the influence of imaging environment, there is a large amount of invalid information in some bands, which can also interfere with feature reconstruction. Therefore, we propose a SCB, as shown in Figure 3, which clusters the bands of HSI by calculating the correlation between adjacent bands, and selects spectral hyperchannels with rich information to provide detail features for future feature reconstruction. The selection of spectral hyperchannels greatly reduces the number of spectral bands involved in calculations, thus reducing the computational complexity of the model. The structure of SCB is described as follows.

Given an input HSI $I_{LR} \in \mathbb{R}^{H \times W \times C}$. First, I_{LR} is flattened into a matrix $F_f \in \mathbb{R}^{HW \times C}$. Then, the matrix F_f is normalized, and the Pearson correlation coefficients of F_f are calculated through product operation to generate the spectral correlation matrix $M \in \mathbb{R}^{C \times C}$ where the *i*-th row of M represents the similarity between the *i*-th spectral band and other spectral bands in the input image of SCB. M can be obtained by the following equation

$$M = \frac{\left(F_f - \bar{F}_f\right) \left(F_f - \bar{F}_f\right)^T}{\left\| \left(F_f - \bar{F}_f\right) \right\| \cdot \left\| \left(F_f - \bar{F}_f\right) \right\|}$$
(1)

where \overline{F}_f represents the mean of F_f , *T* represents the transpose operation of the matrix, and $\|\cdot\|$ represents the L1 norm.

Subsequently, the K-means algorithm is adopted to divide the spectral channels into *K* clusters based on the spectral correlation

matrix. *K* is a hyperparameter manually set based on experience. Finally, for each cluster, the average Euclidean distance (AED) between each band and other bands is calculated, indicating its similarity to all bands in the cluster. The band with the minimum AED represents the spectral hyperchannel of the cluster, so that *K* hyperchannels are filtered out from *K* clusters, named I_{SCB}^k , which are used to reconstruct detail features. The above process can be defined as the following equation

$$I_{SCB}^{k} = Min_{k} \left(Ed_{k} \left(KM \left(M, I_{LR} \right) \right) \right), k = 1, \dots, K$$
(2)

where $KM(\cdot)$ represents the K-means algorithm, $Ed_k(\cdot)$ represents the calculation of AED between each band and other bands in the *k*-th cluster, and $Min_k(\cdot)$ represents the operation of obtaining the minimum value of AEDs in the *k*-th cluster.

2.2 Patch Non-local Attention Block(PNAB)

Although the obtained K hyperchannels have richer information compared to other channels, their spatial resolution is still relatively low. Each channel in HSI reflects spectral information of a narrow spectral band, and there are similar texture structures at different positions in its spatial dimension. Therefore, the spatial features in each channel have the characteristic of non-local similarity. The non-local similarity of images has been proven to be an effective prior in the field of image restoration. The self-attention mechanism in Transformer and early non-local operation can capture long-distance dependencies of data through global operations, but the calculation of data autocorrelation in the self-attention mechanism can reduce the computational complexity of the algorithm compared to the calculation of Euclidean distance in non-local operations. Therefore, this paper constructs a patch non-local attention block (PNAB) based on the transformer architecture to enhance the features in K channels, as shown in Figure 4. The specific operation is as follows.

Firstly, the cutting and unfolding operations are performed on the K hyperchannels. Specifically, the K hyperchannels are cut into two types of 7 × 7 patches using stride sizes of 4 and 1, which are represented as $H(\cdot)$ and $G(\cdot)$. The cutting blocks are unfolded

408

409

410

411

412

413

414

415

416

417

418

419

420

421

422

423

424

425

426

427

428

429

430

431

432

433

434

435

436

437

438

439

440

441

442

443

444

445

446

447

448

449

450

451

452

453

454

455

456

457

458

459

460

461

462

463

464

406

Figure 4: The structure of PNAB.

and arranged into two block sequences. Here, using different stride sizes can capture richer boundary features while reducing blocking artifacts.

Then, based on the idea of transformer, we construct a non-local attention block by introducing self-attention of patches to learn feature correlations between patches. And these patches need to be transformed into three token sequences through the linear mapping layers. The operation of non-local attention block can be defined as:

$$F_{\text{en}} = \text{Softmax} \left(\frac{FC\left(UFd\left(H\left(I_{SCB}^{k}\right)\right)\right) \cdot FC\left(UFd\left(G\left(I_{SCB}^{k}\right)\right)\right)^{T}}{\sqrt{d_{k}}} \right).$$
$$FC\left(UFd\left(G\left(I_{SCB}^{k}\right)\right)\right) \frac{1}{z}$$
(3)

where $UFd(\cdot)$ and $FC(\cdot)$ represent the unfolding operation and linear mapping layer (i.e., fully connected layer) respectively. d_k is the dimension of the input vector and $Softmax(\cdot)$ is normalized exponential function. z represents the normalization constant calculated by $z = \phi\left(I_{SCB}^k\right), \phi(\cdot)$ stands for standard deviation calculation process. F_{en} represents the enhanced feature patches.

Finally, the enhanced feature blocks are integrated into feature maps of size $H \times W$ through a folding operation which is the inverse process of the unfolding operation with a stride size of 4, and the overlapping areas are processed by directly taking the average value. These feature maps are added with the *K* hyperchannels through a residual operation to achieve feature enhancement of hyperchannels. This operation can be represented by the following equation

$$I_{SCB}^{k_en} = I_{SCB}^{k} + Fd(F_{en}), k = 1, \dots, K$$

$$\tag{4}$$

where $Fd(\cdot)$ represents the folding operation, and $I_{SCB}^{k_en}$ represents the enhanced hyperchannels.

2.3 Dynamic Fusion Block(DFB)

To reconstruct detail features of all channels at the current scale,
DFB consisting of a channel dynamic filtering block and a feature
fusion block is designed by establishing correlations between enhanced hyperchannels and other channels. The specific execution
process of DFB is described below and shown in figure 5.

Firstly, the channel dynamic filtering block is constructed to dynamically select channels with higher correlation with each channel I_{LR}^i in LRHSI from K hyperchannels for later feature reconstruction. Specifically, the values in the hyperchannels and LRHSI are normalized and expanded to obtain the corresponding matrices $I_{S\overline{CB}}^{k_en} \in \mathbb{R}^{HW \times K}$ and $I_{LR} \in \mathbb{R}^{C \times HW}$, and the point multiplication is performed on them to obtain the correlation coefficient matrix $M_C \in \mathbb{R}^{C \times K}$. M_C^i represents the correlation coefficients between the *i-th* channel in LRHSI and the K-th hyperchannel. According to the experiment, we found that the number of values with high correlation coefficients in M_C^i is usually less than K/2. Therefore, for the convenience of calculation, the top K/2 channels with the highest numerical ranking in M_C^i are dynamically selected and sent together with I_{LR}^i into the feature fusion block to reconstruct the *i-th* channel in LR-HSI. The above operation can be represented by the following equation

$$M_c = \text{Flatten} \left(I_{SCB}^{k_en} \right) \cdot \text{Flatten} \left(I_{LR} \right)^T$$
(5)

$$I_c^i = \text{Filtrate}\left(M_c, I_{SCB}^{k-en}\right), i = 1, \dots, C$$
(6)

$$I_G^i = \text{Concate}\left(I_{LR}^i, I_C^i\right), i = 1, \dots, C$$
(7)

where Filtrate represents the selection operation that includes sorting of correlation coefficients and dynamic channel filtering, and I_C^i represents the selected hyperchannels with high correlation with the *i*-th channel I_{LR}^i in LRHSI. and I_G^i represents the *i*-th group of channels containg I_{LR}^i and I_C^i .

Then, a channel reconstruction block is constructed to reconstruct each channel of the LR image. Specifically, each group of channels (I_G^i , i = 1, ..., C) are fused together through the convolutional layers and a LeakyRelu activation function to obtain $F_{re}^i \in \mathbb{R}^{H \times W \times 1}$. In addition, the hyperchannels in each group are used to enhance the fused features through a Maxpooling operation and a Sigmoid function. The process of channel reconstruction block can be represented by the following equation

$$F_{re}^{i} = \operatorname{Conv}_{3\times 3}\left(\operatorname{ReLu}\left(\operatorname{Conv}_{3\times 3}\left(l_{G}^{i}\right)\right)\right), i = 1, \dots, C \qquad (8)$$

$$C_{SR}^{i} = F_{re}^{i} \cdot \operatorname{Sig}\left(Mp\left(I_{C}^{i}\right)\right) + F_{re}^{i}, i = 1, \dots, C$$
(9)

where C_{SR}^{i} represents the reconstructed *i*-th channel.

Figure 5: The structure of DFB. Dynamic Filtering represents the operation of dynamically selecting the most relevant k/2 Hyperchannels.

Finally, all reconstructed channels pass through a RB, a upsampling operation and a residual structure to obtain the reconstructed HR image at the current scale, which can be represented as:

$$I_{SR}^{S_i} = Up\left(RB\left(F_{re}^i\right)\right) + Up\left(I_{LR}^i\right), i = 1, \dots, C$$
(10)

 $I_{SR}^{S_i}$ denotes the reconstructed HR image at the *s*-th (s=2,4,8) scale.

2.4 Loss function

To generate reconstructed HR images with rich spatial information and spectral fidelity, a joint loss function is defined to train SCPSN. This function consists of four parts: reconstruction loss \mathcal{L}_{rec} , spectral fidelity loss \mathcal{L}_{spe} , and multi-scale reconstruction loss \mathcal{L}_{rec}^{s} , which are defined as follows:

$$\mathcal{L}_{\text{total}} = \mathcal{L}_{rec} + \alpha \mathcal{L}_{\text{SAM}} + \beta \mathcal{L}_{\text{rec}}^s \tag{11}$$

Where $\alpha = 1/D \left(\mathcal{L}_{SAM} / \mathcal{L}_{rec} \right)$ and $\beta = 1/D \left(\mathcal{L}_{rec}^{s} / \mathcal{L}_{rec} \right)$ are adaptive hyperparameters, and $D(\cdot)$ means gradient calculation that is not required for back propagation.

Extensive work has demonstrated the positive role of l_1 and l_2 losses in SR tasks [32]. However, L1 loss has been proven to perform better as a reconstruction loss than L2 loss. Therefore, L1 loss is used to calculate the pixel-level difference between the reconstructed HRHSI I_{SR} and the corresponding ground-truth (GT) image I_{GT} , which can be expressed as:

$$\mathcal{L}_{rec} = \frac{1}{N} \sum_{n=1}^{N} \left\| I_{\text{GT}}^n - I_{\text{SR}}^n \right\|_1$$
(12)

N is the number of images in a training batch, and $\|\cdot\|_1$ denotes the L1 norm.

To ensure spectral fidelity of the reconstructed HRHSI, a SAM loss is defined to measure the spectral similarity between I_{SR} and I_{GT} , and the smaller its value, the more similar the spectra of the

two images are. SAM loss can be expressed as:

$$\mathcal{L}_{\text{SAM}}(\Theta) = \frac{1}{N} \sum_{n=1}^{N} \frac{1}{\pi} \arccos\left(\frac{I_{\text{GT}}^n \cdot I_{\text{SR}}^n}{\left\|I_{\text{GT}}^n\right\|_2 \cdot \left\|I_{\text{SR}}^n\right\|_2}\right)$$
(13)

where $\arccos(\cdot)$ denotes the inverse cosine function and $\|\cdot\|_2$ denotes the L2 norm.

To quickly converge the network and ensure the generation of high-quality reconstructed images at each scale, the multi-scale reconstruction loss is defined and represented as:

$$\mathcal{L}_{rec}^{S} = \sum_{n=1}^{\log_2 s} \mathcal{L}_{rec}^{n} \tag{14}$$

where s (2, 4, or 8) denotes the scale factor.

3 EXPERIMENTS AND RESULTS

3.1 Dataset and Experimental Setup

In this section, to verify the performance of the proposed SCPSN, we conducted a large number of experiments on three HSI synthetic datasets including Pavia Center [25], Botswana [29] and the University of Pavia [25]. All datasets are processed following the Wald protocol [30], and HRHSIs are blurred using a Gaussian blur kernel of size 8×8 and downsampled to generate the corresponding LRHSIs.

Pavia University dataset: The Pavia University dataset is the raw data of this hyperspectral image obtained by sampling the University of Pavia and its surrounding areas in Italy using the Reflection Optical System Imaging Spectroradiometer (ROSIS). The sampling range of this spectral imager is $430 \sim 860$ nm, with a total of 102 spectral segments. The spatial resolution is 1.3 m and the image size is 610×340 pixels. We divide the hyperspectral image into 45 non-overlapping cubic blocks of size $64 \times 64 \times 102$ to obtain the reference images (i.e., GTs) in Pavia University dataset. 33 cube blocks are randomly selected for training, while the remaining 12 blocks are used for testing.

Anonymous Authors

Table 1: Quantitative comparison of different methods on Pavia University and Botswana datasets. The best results are highlighted in bold.

Method		Pavia University					Botswana						
		SSIM↑	CC↑	SAM↓	RMSE↓	ERGAS↓	PSNR↑	SSIM↑	CC↑	SAM↓	RMSE↓	ERGAS↓	PSNR↑
Bicubic		0.8876	0.9457	4.0108	0.0273	4.0879	31.8355	0.9005	0.9075	1.8687	0.019	2.1869	40.0174
DHP		0.9331	0.9641	3.9832	0.0206	3.2418	34.1417	0.9333	0.9339	1.7135	0.0149	1.8493	41.7317
MCNet		0.9348	0.9641	3.5852	0.021	3.2026	34.1387	0.9305	0.9364	1.584	0.0154	1.7622	41.8825
ERCSR	$\times 2$	0.9459	0.9706	3.3074	0.019	2.8932	35.0298	0.93	0.9255	1.6867	0.0166	1.9199	41.1373
ASDformer		0.9492	0.9722	3.3072	0.0182	2.8404	35.2939	0.9348	0.9368	1.6412	0.0148	1.8582	41.7145
ESSA		0.9493	0.9728	3.3788	0.018	2.8009	35.4185	0.9353	0.9374	1.6571	0.0147	1.7788	41.93
Ours		0.9534	0.9751	3.0463	0.0172	2.6857	35.7657	0.9371	0.9444	1.499	0.0143	1.5826	42.598
Bicubic		0.6827	0.8247	6.1923	0.0499	7.1626	26.6125	0.7846	0.7496	2.8237	0.0301	3.69	35.8657
DHP		0.8001	0.8988	5.818	0.0377	5.5415	28.9206	0.8196	0.8033	2.7133	0.026	3.5472	36.5655
MCNet		0.793	0.9014	5.088	0.0369	5.3129	29.235	0.8211	0.7992	2.595	0.027	3.5115	36.4421
ERCSR	$\times 4$	0.7931	0.9032	5.2234	0.0366	5.2576	29.3096	0.8111	0.8142	2.6505	0.0268	3.2308	36.8997
ASDformer		0.8119	0.9099	5.0071	0.0353	5.1488	29.5453	0.8206	0.7917	2.672	0.0271	3.394	36.5454
ESSA		0.8314	0.9167	4.7383	0.0341	4.9621	29.879	0.8281	0.8366	2.4944	0.0248	3.0039	37.5031
Ours		0.8471	0.9266	4.2945	0.0317	4.6213	30.5044	0.8306	0.8449	2.3189	0.0243	2.8759	37.798
Bicubic		0.5133	0.585	9.5789	0.0708	10.2254	23.6209	0.7193	0.5525	3.5515	0.0386	4.8633	33.6759
DHP		0.5864	0.7029	8.6927	0.0618	9.0307	24.7284	0.724	0.6426	3.4746	0.0357	4.8313	34.1217
MCNet		0.585	0.7183	8.2405	0.06	8.7215	25.0765	0.7291	0.6153	3.4378	0.0366	4.8036	33.8576
ERCSR	×8	0.5695	0.7047	8.3029	0.061	8.8925	24.9007	0.7148	0.5772	3.4962	0.0377	4.8226	33.8045
ASDformer		0.5846	0.7178	8.3847	0.0597	8.7354	25.0648	0.7383	0.651	3.4251	0.0354	4.6757	34.1404
ESSA		0.5902	0.7222	8.368	0.0596	8.6734	25.0831	0.7389	0.6392	3.4387	0.0355	4.5252	34.2975
Ours		0.6122	0.7365	7.618	0.0577	8.4441	25.3352	0.7421	0.7073	3.112	0.0334	4.131	35.135

Figure 6: Visual comparison of SR x4 of an image from the Pavia University dataset

Botswana dataset: Botswana scenes were acquired by the Hyperion sensor on NASA's Earth Observation 1 (EO-1) satellite. The original Botswana HSI consists of 242 spectral bands ranging from 400 to 2500 nm with a spectral resolution of 10 nm. The spatial size of the original Botswana image is 1496×256 pixels. We removed uncalibrated and noisy bands from the original image to obtain an HSI with 145 bands, and it is further divided into 92 non-overlapping cubic blocks of size 64×64×145 to obtain the reference images (i.e., GTs) in Botswana dataset. 69 cube blocks are randomly selected for training, while the remaining 23 blocks are used for testing.

Pavia Centre dataset: The Pavia Centre Dataset is a hyperspectral dataset acquired by the ROSIS sensor during a flight campaign over Pavia in northern Italy. Thirteen noisy bands were discarded from the original HSI, resulting in an HSI with 102 bands from 430 nm to 860 nm. In addition, the rectangular area of 1096×381 pixels with no information in the center of the original HSI was also discarded, and the resulting "two-part" image of size $1096 \times 715 \times 102$ was used for experiments, and divided into 187 non-overlapping cubic blocks of size $64 \times 64 \times 102$ to obtain the reference images (i.e., GT) in Pavia Center dataset. 138 cube blocks are randomly selected for training, while the remaining 49 blocks are used for testing.

To display the experimental results for subjective comparison, three bands from HSIs are selected to form RGB images. The 10th, 30th and 60th bands are selected as RGB channels for the Pavia University dataset, the 10th, 35th and 61th bands are selected as RGB channels for the Botswana dataset, and the 10th, 30th and 60th bands are selected as RGB channels for the Pavia Centre dataset. For a fair comparison, all DL-based methods were retrained using Python 3.9.13 and PyTorch 1.13.1 On Ubuntu 20.04 system with NVIDIA GeForce GTX A6000. The proposed SCPSN is trained for 1000 epochs using the Adam optimizer. The initial learning rate is set to 0.001, and inference is performed every five rounds of training. When the loss of the verification set no longer decreases for five consecutive rounds, the learning rate is attenuated by half.

SCPSN: Spectral Clustering-based Pyramid Super-resolution Network for Hyperspectral Images

ACM MM, 2024, Melbourne, Australia

Table 2: Quantitative comparison of different methods on the Pavia Centre dataset. The best results are highlighted in bold.

Mathad				Pavi	a Centre		
Method		SSIM↑	CC↑	SAM↓	RMSE↓	ERGAS↓	PSNR↑
Bicubic		0.9010	0.9446	4.7695	0.0240	4.6193	34.0790
DHP		0.9509	0.9605	4.3986	0.0164	3.5156	36.9808
MCNet		0.9454	0.9619	4.2348	0.0179	3.5927	36.5016
ERCSR	×2	0.9516	0.9661	4.1091	0.0168	3.3461	37.1148
MSDformer		0.9541	0.9633	4.2080	0.0162	3.3908	37.2392
ESSA		0.9555	0.9646	4.1269	0.0156	3.3007	37.5543
Ours		0.9578	0.9679	3.9015	0.0153	3.1983	37.7238
Bicubic		0.6987	0.8194	7.0668	0.0450	8.2805	28.8448
DHP		0.8149	0.8831	6.4407	0.0348	6.6482	30.6850
MCNet		0.7946	0.8813	6.4178	0.0354	6.6225	30.8185
ERCSR	$\times 4$	0.8008	0.8836	6.4497	0.0348	6.5168	30.9526
MSDformer		0.8046	0.8827	6.4899	0.0347	6.5763	30.8406
ESSA		0.8307	0.8958	6.0923	0.0325	6.1593	31.4355
Ours		0.8339	0.8989	5.6875	0.0322	6.0688	31.5756
Bicubic		0.5369	0.6008	9.5930	0.0643	11.7798	25.8229
DHP		0.6178	0.7097	9.5091	0.0548	10.9616	26.6353
MCNet		0.6078	0.7246	8.8605	0.0541	10.0555	27.1181
ERCSR	×8	0.5846	0.6979	8.9714	0.0560	10.5264	26.7494
MSDformer		0.6097	0.7145	8.8060	0.0547	10.2657	26.9689
ESSA		0.6278	0.7269	8.5905	0.0538	10.0458	27.0852
Ours		0.6359	0.7396	8.2716	0.0528	9.8175	27.3280

Figure 7: Visual comparison of SR x8 of an image from the Pavia Center dataset

It is worth emphasizing that our network training takes very little time, only about 2 hours.

3.2 Comparison with state-of-the-art methods

To evaluate the efficacy of the proposed SCPSN, we subjectively and objectively compare it with several state-of-the-art (SOTA) methods, including DHP [28], MCNet [14], ERCSR [15],MSDformer [2], and ESSA [34]. The metrics used for objective evaluation include correlation coefficient (CC), spectral angle mapping (SAM), structural similarity (SSIM), root mean square error (RMSE), erreur relative globale adimensionnelle de synthese (ERGAS), and peak Signal-to-noise ratio (PSNR), which has been widely used in HSSR tasks to evaluate the quality of spectral and spatial information. The symbol ↑ indicates that the higher the value, the better the

Figure 8: Classification experiments on Pavia university dataset.

performance of the method, while \downarrow indicates that the lower the value, the better the results. All comparative experiments are performed on three commonly used datasets. The experimental results are shown in Table 1 and Table 2. From the table, it can be seen that the proposed SCPSN outperforms other methods in all metrics for the three scale factors, which also proves the effectiveness of our model. Compared with the suboptimal results on three datasets, our method achieves an increase of approximately 0.25dB, 0.84dB, and 0.21dB in PSNR values under an scale factor of 8. Especially, ERGAS can objectively reflect the spatial quality of HSIs, while SAM can measure the degree of spectral distortion. Compared with other methods, the proposed network achieved better ERGAS and SAM values. Therefore, the SCPSN can generate better HRHSI images with spectral and spatial fidelity.

Figure 6, shows the visualization results of SR×4 obtained by different methods on Pavia University dataset. From the figure, it can be clearly observed that our results have clearer edges and colors closer to the GT image, indicating that our method reconstructs more spatial details and spectral information. Figure 7 shows the visualization results of SR×8 obtained by different methods on Pavia Centre dataset. Even with a relatively large amplification factor, our method can still reconstruct clear edges and spectral information closer to the GT image. This further demonstrates that the proposed SCPSN has better performance.

3.3 Ablation study

To verify the effectiveness of the proposed network, we conducted several ablation experiments on the main components of the network, such as SCB, the number of clusters in SCB, DFB, hyperparameter settings, and the computational complexity of the model. All experiments are conducted on the Pavia Center dataset with a scale factor of \times 4.

Table 3: Ablation study for SCB.

Method	SAM↓	PSNR↑	Params(M)	FLOPs(G)
W/O SCB	5.6972	31.5584	40.14	41.09
W/ SCB	5.6875	31.5756	3.81	6.37
Table 4: T	he impact	of the nu	mber of clust	ers in SCB.
T able 4: T Number	he impact SAM↓	t of the nu	mber of clust Params(M)	ers in SCB. FLOPs(G)
Table 4: The second sec	he impact SAM↓ 5.7440	e of the nu PSNR↑ 31.4503	mber of clust Params(M) 2.90	ers in SCB. FLOPs(G) 5.47

31.5756

31.4422

Table 5: Ablation study for DFB.

3.81

6.66

6.37

9.13

Method	SAM↓	ERGAS↓	PSNR↑
W/O DFB	5.7743	6.1359	31.4664
W/ DFB	5.6875	6.0688	31.5756

Ablation study on the effectiveness of SCB. We conducted experiments on CSRB with and without SCB in each layer of SCPSN. As shown in Table 3, the experimental results indicate that SCB significantly reduces the number of parameters and computational complexity of the model, but does not reduce the performance of the network.

Ablation study on the impact of the number of clusters in SCB on model performance. We conducted experiments on the number of clusters in SCB, selecting 4, 8, 16, and 32, respectively. The experimental results are shown in Table 4. According to the experiments, the network performance is optimal when the number of clusters is 16.

Ablation study on the effectiveness of DFB. An ablation experiment was designed for DFB by replacing it with a convolutional block containing a 3×3 convolution, ReLu function, and a 3×3 convolution. The experimental results are shown in Table 5. As can be seen from the table, the indicators of the models using DFB have been significantly improved.

Ablation study on the hyperparamrters. Table 6 presents the results obtained by manually and Adaptively setting hyperparameters in the loss function. We manually set the hyperparameters α and β to 0.001. The results obtained by directly using the defined adaptive hyperparameter calculation method are better than the results obtained by manually adjusting the hyperparameters. This also indicates that the hyperparameter calculation method in this paper is effective.

Ablation study on the computational complexity of the model. Table 7 lists the number of parameters and FLOPs of all compared deep learning-based models. Except for DHP, our model has much less computational complexity than other comparative models. Although DHP requires less computation than our model, we can see in Tables 1 and 2 that all the metrics obtained by our model are far superior to those of DHP. Anonymous Authors

Table 6: Ablation study for hyperparameters in the loss function.

Method		SAM↓	ERGAS↓	PSNR↑
Manual	×2	3.9490	3.2144	37.6988
Adaptive		3.9015	3.1983	37.7238
Manual	~ 1	6.0220	6.2612	31.3210
Adaptive	^4	5.6875	6.0688	31.5756
Manual	~ 9	8.7427	9.9880	27.1591
Adaptive	^0	8.2716	9.8175	27.3280

 Table 7: Comparison of Params and FLOPs of different methods.

Method	Params(M)	FLOPs(G)
DHP	8.58	4.65
MCNet	2.17	230.51
ERCSR	1.59	229.3
MSDformer	32.99	24.07
ESSA	11.52	50.19
Ours	3.81	6.37

3.4 Classification Experiments

To evaluate the effectiveness of the proposed SCPSN in object classification applications, classification experiments were conducted using reconstructed HRHSI images from the Pavia university dataset. We employ the iterative self-organizing data analysis techniques algorithm (ISODATA) to evaluate the results from different SR methods, which is a classical unsupervised semantic segmentation for satellite images. We set the number of the classified category to 5 and the maximum iteration to 10. The visualization results are shown in Figure 8. From the enlarged area, we can observe that the classification result on our result is closest to that on GT, indicating that our method can reconstruct HRHSIs with more accurate texture and spectral information.

4 CONCLUSION

This paper proposes a novel network called SCPSN for single-HSI-SR task. In each layer of SCPSN, a SCRB containing SCB, PNAB, and DFB is constructed to reconstruct the HRHSI of the current layer. First, based on the characteristics of HSI, a SCB is designed to utilized the idea of spectral clustering to achieve the filtering of hyperchannels, in order to reduce the computational complexity of the model. Then, considering the non-local similarity of features within the channel, a PNAB is constructed to achieve the reconstruction and enhancement of hyperchannel features. Finally, a DFB is designed to reconstruct all spectral bands in LRHSI by establishing correlations between enhanced hyperchannels and other channels. Extensive experiments conducted on multiple satellite datasets have demonstrated the effectiveness and good generalization ability of the proposed network. In addition, our model has the advantages of fewer parameters and lower computational complexity, and does not need to be trained on large datasets.

5.6875

5.7162

SCPSN: Spectral Clustering-based Pyramid Super-resolution Network for Hyperspectral Images

REFERENCES

929

930

931

932

933

934

935

936

937

938

939

940

941

942

943

944

945

946

947

948

949

950

951

952

953

954

955

956

957

958

959

960

961

962

963

964

965

966

967

968

969

970

971

972

973

974

975

976

977

978

979

980

981

982

983

984

985

986

- Hanting Chen, Yunhe Wang, Tianyu Guo, Chang Xu, Yiping Deng, Zhenhua Liu, Siwei Ma, Chunjing Xu, Chao Xu, and Wen Gao. 2021. Pre-trained image processing transformer. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition. 12299–12310.
- [2] Shi Chen, Lefei Zhang, and Liangpei Zhang. 2023. MSDformer: Multi-scale Deformable Transformer for Hyperspectral Image Super-Resolution. *IEEE Trans*actions on Geoscience and Remote Sensing (2023).
- [3] Cristovao Cruz, Alessandro Foi, Vladimir Katkovnik, and Karen Egiazarian. 2018. Nonlocality-reinforced convolutional neural networks for image denoising. *IEEE Signal Processing Letters* 25, 8 (2018), 1216–1220.
- [4] Egor V Dmitriev, VV Kozoderov, AO Dementyev, and AN Safonova. 2018. Combining classifiers in the problem of thematic processing of hyperspectral aerospace images. Optoelectronics, Instrumentation and Data Processing 54 (2018), 213–221.
- [5] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, et al. 2020. An image is worth 16x16 words: Transformers for image recognition at scale. arXiv preprint arXiv:2010.11929 (2020).
- [6] Ying Fu, Zhiyuan Liang, and Shaodi You. 2021. Bidirectional 3D quasi-recurrent neural network for hyperspectral image super-resolution. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing* 14 (2021), 2674–2688.
- [7] Lianru Gao, Jiaxin Li, Ke Zheng, and Xiuping Jia. 2023. Enhanced autoencoders with attention-embedded degradation learning for unsupervised hyperspectral image super-resolution. *IEEE Transactions on Geoscience and Remote Sensing* (2023).
- [8] Alexandros Gkillas, Dimitris Ampeliotis, and Kostas Berberidis. 2023. Connections between deep equilibrium and sparse representation models with application to hyperspectral image denoising. *IEEE Transactions on Image Processing* 32 (2023), 1513–1528.
- [9] Yu Guo, Axel Davy, Gabriele Facciolo, Jean-Michel Morel, and Qiyu Jin. 2021. Fast, nonlocal and neural: A lightweight high quality solution to image denoising. *IEEE Signal Processing Letters* 28 (2021), 1515–1519.
- [10] Juan Mario Haut, Ruben Fernandez-Beltran, Mercedes E Paoletti, Javier Plaza, and Antonio Plaza. 2019. Remote sensing image superresolution using deep residual channel attention. *IEEE Transactions on Geoscience and Remote Sensing* 57, 11 (2019), 9277–9289.
- [11] Tao Huang, Weisheng Dong, Jinjian Wu, Leida Li, Xin Li, and Guangming Shi. 2022. Deep hyperspectral image fusion network with iterative spatio-spectral regularization. *IEEE Transactions on Computational Imaging* 8 (2022), 201–214.
- [12] Junjun Jiang, He Sun, Xianming Liu, and Jiayi Ma. 2020. Learning spatial-spectral prior for super-resolution of hyperspectral imagery. *IEEE Transactions on Computational Imaging* 6 (2020), 1082–1096.
- [13] Abdolraheem Khader, Jingxiang Yang, and Liang Xiao. 2022. NMF-DuNet: Nonnegative matrix factorization inspired deep unrolling networks for hyperspectral and multispectral image fusion. *IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing* 15 (2022), 5704–5720.
- [14] Qiang Li, Qi Wang, and Xuelong Li. 2020. Mixed 2D/3D convolutional network for hyperspectral image super-resolution. *Remote sensing* 12, 10 (2020), 1660.
- [15] Qiang Li, Qi Wang, and Xuelong Li. 2021. Exploring the relationship between 2D/3D convolution for hyperspectral image super-resolution. *IEEE Transactions* on Geoscience and Remote Sensing 59, 10 (2021), 8693–8703.
- [16] Yong Li, Lei Zhang, Chen Dingl, Wei Wei, and Yanning Zhang. 2018. Single hyperspectral image super-resolution with grouped deep recursive residual network. In 2018 IEEE Fourth International Conference on Multimedia Big Data (BigMM). IEEE, 1–4.
- [17] Jingyun Liang, Jiezhang Cao, Guolei Sun, Kai Zhang, Luc Van Gool, and Radu Timofte. 2021. Swinir: Image restoration using swin transformer. In Proceedings of the IEEE/CVF international conference on computer vision. 1833–1844.
- [18] Denghong Liu, Jie Li, and Qiangqiang Yuan. 2021. A spectral grouping and attention-driven residual dense network for hyperspectral image superresolution. *IEEE Transactions on Geoscience and Remote Sensing* 59, 9 (2021), 7711–7725.
- [19] Ding Liu, Bihan Wen, Yuchen Fan, Chen Change Loy, and Thomas S Huang. 2018. Non-local recurrent network for image restoration. Advances in neural information processing systems 31 (2018).
- [20] Yaoting Liu, Jianwen Hu, Xudong Kang, Jing Luo, and Shaosheng Fan. 2022. Interactformer: Interactive transformer and CNN for hyperspectral image superresolution. *IEEE Transactions on Geoscience and Remote Sensing* 60 (2022), 1–15.
- [21] Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. 2021. Swin transformer: Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF international conference on computer vision. 10012–10022.
- [22] Zhi Liu, Hongjun Wang, and Qingli Li. 2011. Tongue tumor detection in medical hyperspectral images. Sensors 12, 1 (2011), 162–174.
- [23] Shaohui Mei, Xin Yuan, Jingyu Ji, Yifan Zhang, Shuai Wan, and Qian Du. 2017. Hyperspectral image spatial super-resolution via 3D full convolutional neural network. *Remote Sensing* 9, 11 (2017), 1139.

- [24] Chong Mou, Jian Zhang, and Zhuoyuan Wu. 2021. Dynamic attentive graph learning for image restoration. In Proceedings of the IEEE/CVF international conference on computer vision. 4328–4337.
- [25] Antonio Plaza, Jon Atli Benediktsson, Joseph W Boardman, Jason Brazile, Lorenzo Bruzzone, Gustavo Camps-Valls, Jocelyn Chanussot, Mathieu Fauvel, Paolo Gamba, Anthony Gualtieri, et al. 2009. Recent advances in techniques for hyperspectral image processing. *Remote sensing of environment* 113 (2009), S110–S122.
- [26] Anand S Sahadevan. 2021. Extraction of spatial-spectral homogeneous patches and fractional abundances for field-scale agriculture monitoring using airborne hyperspectral images. *Computers and Electronics in Agriculture* 188 (2021), 106325.
- [27] Anugya Shukla, Suresh Merugu, and Kamal Jain. 2020. A technical review on image super-resolution techniques. Advances in Cybernetics, Cognition, and Machine Learning for Communication Technologies (2020), 543–565.
- [28] Oleksii Sidorov and Jon Yngve Hardeberg. 2019. Deep hyperspectral prior: Singleimage denoising, inpainting, super-resolution. In Proceedings of the IEEE/CVF International Conference on Computer Vision Workshops. 0–0.
- [29] Stephen G Ungar, Jay S Pearlman, Jeffrey A Mendenhall, and Dennis Reuter. 2003. Overview of the earth observing one (EO-1) mission. IEEE Transactions on Geoscience and Remote Sensing 41, 6 (2003), 1149–1159.
- [30] Lucien Wald, Thierry Ranchin, and Marc Mangolini. 1997. Fusion of satellite images of different spatial resolutions: Assessing the quality of resulting images. *Photogrammetric engineering and remote sensing* 63, 6 (1997), 691–699.
- [31] Xiaolong Wang, Ross Girshick, Abhinav Gupta, and Kaiming He. 2018. Non-local neural networks. In Proceedings of the IEEE conference on computer vision and pattern recognition. 7794–7803.
- [32] Yang Xu, Zebin Wu, Jocelyn Chanussot, and Zhihui Wei. 2019. Nonlocal patch tensor sparse representation for hyperspectral image super-resolution. *IEEE Transactions on Image Processing* 28, 6 (2019), 3034–3047.
- [33] Zhiyuan Zha, Bihan Wen, Xin Yuan, Jiachao Zhang, Jiantao Zhou, Yilong Lu, and Ce Zhu. 2023. Non-Local Structured Sparsity Regularization Modeling for Hyperspectral Image Denoising. *IEEE Transactions on Geoscience and Remote Sensing* (2023).
- [34] Mingjin Zhang, Chi Zhang, Qiming Zhang, Jie Guo, Xinbo Gao, and Jing Zhang. 2023. Essaformer: Efficient transformer for hyperspectral image super-resolution. In Proceedings of the IEEE/CVF International Conference on Computer Vision. 23073– 23084.
- [35] Yulun Zhang, Kunpeng Li, Kai Li, Bineng Zhong, and Yun Fu. 2019. Residual nonlocal attention networks for image restoration. arXiv preprint arXiv:1903.10082 (2019).
- [36] Ke Zheng, Lianru Gao, Wenzhi Liao, Danfeng Hong, Bing Zhang, Ximin Cui, and Jocelyn Chanussot. 2020. Coupled convolutional neural network with adaptive response function learning for unsupervised hyperspectral super resolution. *IEEE Transactions on Geoscience and Remote Sensing* 59, 3 (2020), 2487–2502.

987

988

989

990

991

992

993

994