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SCPSN: Spectral Clustering-based Pyramid Super-resolution
Network for Hyperspectral Images

Anonymous Authors

ABSTRACT
Single hyperspectral image super-resolution aims to reconstruct
a high-resolution hyperspectral image (HRHSI) from an observed
low resolution hyperspectral image (LRHSI). Most current meth-
ods combine CNN and Transformer structures to directly extract
features of all channels in LRHSI for image reconstruction, but
they do not consider the interference of redundant information
in adjacent bands, resulting in spectral and spatial distortions in
the reconstruction results and an increase in model computational
complexity. To address this issue, this paper proposes a spectral
clustering-based pyramid super-resolution network (SCPSN) to
progressively reconstruct HRHSI at different scales. In each image
reconstruction layer, a clustering super-resolution block (CSRB)
consisting of spectral clustering block (SCB), patch non local at-
tention block (PNAB), and dynamic fusion block (DFB) is designed
to achieve the reconstruction of detail features. Specifically, for
the high correlation between adjacent spectral bands in LRHSI, a
SCB is first constructed to achieve clustering of spectral channels
and filtering of hyperchannels. This can reduce the interference of
redundant spectral information and the computational complexity
of the model. Then, by utilizing the non-local similarity of features
within the channel, a patch non-local attention block (PNAB) is con-
structed to enhance the features of hyperchannels. Next, a dynamic
fusion block (DFB) is designed to reconstruct the features of all
channels in LRHSI by establishing correlations between enhanced
hyperchannels and other channels. Finally, the reconstructed chan-
nels are upsampled and added to the corresponding channels to
obtain the reconstructed HRHSI. Extensive experiments validate
that the performance of SCPSN is superior to that of some other
state-of-the-art (SOTA) HSSR methods in terms of visual effects
and quantitative metrics. In addition, our model does not require
training on large-scale datasets compared to other methods. The
dataset and code will be released on GitHub.

CCS CONCEPTS
• Computing methodologies→ Hyperspectral imaging.

KEYWORDS
Hyperspectral image super-resolution, Spectral clustering, Non-
local feature similarity
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1 INTRODUCTION
Image super-resolution (SR) technology [27] aims to improve the
spatial resolution and visual quality of low resolution (LR) images.
It is a fundamental research area within computer vision, and has
been widely applied in various fields, such as remote sensing [4],
agricultural monitoring [26], and medical diagnosis [22]. In the
field of remote sensing, due to the limitations of the imaging en-
vironment of satellite sensors, the captured hyperspectral images
(HSIs) usually have rich spectral information but relatively low
spatial resolution. Many researchers attempt to use SR technology
to reconstruct more spatial texture features in order to improve the
spatial resolution of HSI. At present, HSI-SR reconstruction meth-
ods are mainly divided into two categories: traditional SR methods
and deep learning-based SR methods.

The traditional SR methods mainly include regularization-based
methods [11, 33], non-negative matrix factorization-based meth-
ods [13] and sparse representation-based methods [8, 32]. These
methods rely on manually defined prior information in solving
HR images, and improper selection of prior knowledge can lead to
serious texture loss in the reconstruction results. In addition, this
type of method is time-consuming and difficult to meet the real-
time processing requirements in practical applications [7, 23, 36].
In recent years, due to the powerful feature representation abil-
ity of convolutional neural networks(CNNs), deep learning-based
methods have attracted the attention of researchers. Based on the
characteristics of hyperspectral images, some deep networks based
on 3D convolution have been proposed. For example, Mei et al.
[23] proposed a 3D-FCNN that uses 3D convolution to learn the
spatial context of adjacent pixels and the spectral correlation of
adjacent bands. Li et al. [14] proposed a hybrid convolutional net-
work (MCNet), which utilizes hybrid 2D/3D convolution to explore
more spatial features of HSI. Fu et al. [6]proposed a bidirectional
3D quasi-recurrent neural network with arbitrary number of bands.
Although 3D convolution can learn contextual relationships of fea-
tures in both spatial and channel dimensions, it requires learning a
large number of parameters and a significant amount of memory.
With the development of deep network structures, the residual
structures and attention mechanisms [10, 12, 16, 18] have also been
introduced into HSI-SR networks. On this basis, considering the
characteristic of HSI, Liu et al. [18] proposed a spectral grouping
and attention-driven residual dense network (SGARDN) that uses
group convolution to extract spatial features within and between
groups composed of highly similar spectral bands, while avoiding
spectral confusion caused by normal convolution. CNN based SR
methods perform well in extracting local spectral features, but they
ignore long-range spatial spectral correlation, resulting in spatial
and spectral distortion in reconstructed HR images.

Later, the Transformer structure was proposed and introduced
into computer vision tasks, demonstrating good performance in
capturing long-distance features. For example, inspired by ViT [5]

https://doi.org/10.1145/nnnnnnn.nnnnnnn
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Figure 1: Visualization of spectral correlation coefficient ma-
trix of a HSI

in advanced visual tasks, Chen et al. [1] introduced Transformer
into SR, but it has the problem of high computational complexity.
To reduce the computational complexity of the model, Liang et
al. [17] introduced SwinTransformer [21] into the SR task, divid-
ing the image into small windows of size 8x8 to participate in the
computation of multi-head attention. Transformer based networks
need to be trained on large datasets, and the training samples in
existing hyperspectral datasets are limited. Therefore, Transformer
based HSI-SR methods have only been studied by a small number
of researchers. Zhang et al. [34] introduced the spectral correlation
coefficient (SCC) of the spectrum to replace the original attention
matrix in the Transformer structure, in order to reduce the computa-
tional complexity of the model. However, this method does not fully
utilize spatial information. Liu et al. [20] employs a combination of
3-D convolutions and transformer block to extract complementary
spatial and spectral features. Although the Transformer structure
is effective in exploring long-range feature dependencies in spatial
dimensions, it is not conducive to local feature extraction. Addition-
ally, it has high hardware memory requirements and computational
complexity.

At present, most deep learning based HSI-SR methods improve
the model’s feature extraction and representation capabilities by
improving the network structure, lacking consideration for the
spectral characteristics of HSI. Due to the high spectral correlation
between adjacent channels in HSI, as shown in Figure 1, the inter-
ference of redundant information can cause spectral distortion in
the reconstructed image. Therefore, this paper constructs an SR
framework based on hyperchannel filtering, as shown in Figure
2(b). In addition, each band in HSI reflects spectral information of
similar substances, and the features within the channel have non
local similarity characteristics. The non local self-similarity of fea-
tures has been proven to be an effective prior for image restoration
[3, 9]. This prior has been successfully introduced into network
construction [31] and has been applied in many image restoration
tasks [19, 24, 35]. Based on the above analysis, we proposed a spec-
tral clustering-based pyramid super-resolution network (SCPSN),
which gradually achieves image reconstruction by constructing
image reconstruction layers at different scales. In each image re-
construction layers, a clustering super-resolution block (CSRB) and
a residual block are constructed to generate the reconstructed HR
image of the current layer. CSRB consists of spectral clustering

(a) mainstream SR framework methods

(b) SR framework based on hyperchannel filtering

Figure 2: Structure of different SR framework

block (SCB), patch non local attention block (PNAB), and dynamic
fusion block (DFB), and is designed to achieve the reconstruction
of detail features. In CSRB, SCB is constructed to achieve clustering
of spectral channels and filtering of hyperchannels, in order to
reduce the interference of redundant spectral information and the
computational complexity of the model. PNAB is proposed to re-
construct hyperchannels with more detail features by utilizing the
non-local similarity of features within the channel. DFB is designed
to integrate each channel in LRHSI with highly correlated channels
in hyperchannels to reconstruct all channels of LRHSI. Qualitative
and quantitative experiments conducted on three hyperspectral
datasets have demonstrated that our method outperforms some
state-of-the-art (SOAT) methods. The main contributions of this
paper are as follows.

• We propose a SCPSN that includes multiply image recon-
struction layers to progressively reconstruct HRHSI with
rich textures at different scales.

• Based on high correlation between adjacent channels, an SCB
is constructed to select hyperchannels with rich information
from all channels of LRHSI, which can effectively reduce the
computational complexity and number of parameters of the
model.

• Considering the non-local similarity of features within the
channel, a PNAB is constructed to enhance the features of hy-
perchannels by learning feature correlations between image
patches.

• A DFB is designed to reconstruct the detail features for each
spectral band by a channel dynamic filtering block and a
feature fusion block, which dynamically select highly corre-
lated hyperchannels and fuse them with each spectral band
in LRHSI.

2 PROPOSED METHOD
In this section, to reconstruct more detail features of LRHS images,
we proposed a SCPSN, as shown in Figure 3, which adopts a pyramid
structure to gradually reconstruct images of different scales. Each
scale layer of this structure contains a CSRB and a residual block
(RB) to achieve the reconstruction of HR image at the current scale.
CSRB consisting of a SCB, a PNAB, and a DFB is designed to achieve
the reconstruction of detail features. RB is used to integrate the
reconstructed features, and these features are combined with the
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Figure 3: Overview of the proposed SCPSN at SR×4

input LR image to obtain the reconstructed HR image through a
residual structure. Below, we provide a detailed introduction to the
specific structures of SCB, NAB and DFB.

2.1 Spectral Clustering Block(SCB)
Hyperspectral images typically consist of hundreds of spectral
bands, providing rich spectral information, but with relatively low
spatial resolution. However, due to the strong correlation between
adjacent spectral bands, there is a large amount of redundant infor-
mation. Directly processing all spectral bands in the SR task will
increase the computational complexity of the model. In addition,
due to the influence of imaging environment, there is a large amount
of invalid information in some bands, which can also interfere with
feature reconstruction. Therefore, we propose a SCB, as shown in
Figure 3, which clusters the bands of HSI by calculating the corre-
lation between adjacent bands, and selects spectral hyperchannels
with rich information to provide detail features for future feature
reconstruction. The selection of spectral hyperchannels greatly re-
duces the number of spectral bands involved in calculations, thus
reducing the computational complexity of the model. The structure
of SCB is described as follows.

Given an input HSI 𝐼𝐿𝑅 ∈ R𝐻×𝑊 ×𝐶 . First, 𝐼𝐿𝑅 is flattened into
a matrix 𝐹𝑓 ∈ R𝐻𝑊 ×𝐶 . Then, the matrix 𝐹𝑓 is normalized, and the
Pearson correlation coefficients of 𝐹𝑓 are calculated through prod-
uct operation to generate the spectral correlation matrix𝑀 ∈ R𝐶×𝐶
where the i-th row of M represents the similarity between the i-th
spectral band and other spectral bands in the input image of SCB.
M can be obtained by the following equation

𝑀 =

(
𝐹𝑓 − 𝐹𝑓

) (
𝐹𝑓 − 𝐹𝑓

)𝑇


(𝐹𝑓 − 𝐹𝑓 )


 · 


(𝐹𝑓 − 𝐹𝑓 )


 (1)

where 𝐹𝑓 represents the mean of 𝐹𝑓 , T represents the transpose
operation of the matrix, and ∥·∥ represents the L1 norm.

Subsequently, the K-means algorithm is adopted to divide the
spectral channels into K clusters based on the spectral correlation

matrix. K is a hyperparameter manually set based on experience.
Finally, for each cluster, the average Euclidean distance (AED) be-
tween each band and other bands is calculated, indicating its simi-
larity to all bands in the cluster. The band with the minimum AED
represents the spectral hyperchannel of the cluster, so that K hy-
perchannels are filtered out from K clusters , named 𝐼𝑘

𝑆𝐶𝐵
, which

are used to reconstruct detail features. The above process can be
defined as the following equation

𝐼𝑘𝑆𝐶𝐵 = Min𝑘 (𝐸𝑑𝑘 (𝐾𝑀 (𝑀, 𝐼𝐿𝑅))) , 𝑘 = 1, . . . , 𝐾 (2)

where𝐾𝑀 (·) represents the K-means algorithm, 𝐸𝑑𝑘 (·) represents
the calculation of AED between each band and other bands in the
k-th cluster, and𝑀𝑖𝑛𝑘 (·) represents the operation of obtaining the
minimum value of AEDs in the k-th cluster.

2.2 Patch Non-local Attention Block(PNAB)
Although the obtained K hyperchannels have richer information
compared to other channels, their spatial resolution is still relatively
low. Each channel in HSI reflects spectral information of a narrow
spectral band, and there are similar texture structures at different
positions in its spatial dimension. Therefore, the spatial features in
each channel have the characteristic of non-local similarity. The
non-local similarity of images has been proven to be an effective
prior in the field of image restoration. The self-attention mecha-
nism in Transformer and early non-local operation can capture
long-distance dependencies of data through global operations, but
the calculation of data autocorrelation in the self-attention mech-
anism can reduce the computational complexity of the algorithm
compared to the calculation of Euclidean distance in non-local oper-
ations. Therefore, this paper constructs a patch non-local attention
block (PNAB) based on the transformer architecture to enhance the
features in K channels, as shown in Figure 4. The specific operation
is as follows.

Firstly, the cutting and unfolding operations are performed on
the K hyperchannels. Specifically, the K hyperchannels are cut into
two types of 7 × 7 patches using stride sizes of 4 and 1, which are
represented as 𝐻 (·) and 𝐺 (·) . The cutting blocks are unfolded
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Figure 4: The structure of PNAB.

and arranged into two block sequences. Here, using different stride
sizes can capture richer boundary features while reducing blocking
artifacts.

Then, based on the idea of transformer, we construct a non-local
attention block by introducing self-attention of patches to learn
feature correlations between patches. And these patches need to be
transformed into three token sequences through the linear mapping
layers. The operation of non-local attention block can be defined
as:

𝐹en = Softmax
©­­«
𝐹𝐶

(
𝑈𝐹𝑑

(
𝐻

(
𝐼𝑘
𝑆𝐶𝐵

)))
· 𝐹𝐶

(
𝑈𝐹𝑑

(
G
(
𝐼𝑘
𝑆𝐶𝐵

)))𝑇√︁
𝑑𝑘

ª®®¬ ·
𝐹𝐶

(
𝑈𝐹𝑑

(
G
(
𝐼𝑘𝑆𝐶𝐵

))) 1
𝑧

(3)

where𝑈𝐹𝑑 (·) and 𝐹𝐶 (·) represent the unfolding operation and lin-
ear mapping layer (i.e., fully connected layer) respectively. 𝑑𝑘 is the
dimension of the input vector and 𝑆𝑜 𝑓 𝑡𝑚𝑎𝑥 (·) is normalized expo-
nential function. 𝑧 represents the normalization constant calculated
by 𝑧 = 𝜙

(
𝐼𝑘
𝑆𝐶𝐵

)
, 𝜙 (·) stands for standard deviation calculation

process. 𝐹𝑒𝑛 represents the enhanced feature patches.
Finally, the enhanced feature blocks are integrated into feature

maps of size𝐻 ×𝑊 through a folding operation which is the inverse
process of the unfolding operation with a stride size of 4 , and the
overlapping areas are processed by directly taking the average
value. These feature maps are added with the K hyperchannels
through a residual operation to achieve feature enhancement of
hyperchannels. This operation can be represented by the following
equation

𝐼
𝑘_𝑒𝑛
𝑆𝐶𝐵

= 𝐼𝑘𝑆𝐶𝐵 + 𝐹𝑑 (𝐹𝑒𝑛) , 𝑘 = 1, . . . , 𝐾 (4)

where 𝐹𝑑 (·) represents the folding operation, and 𝐼𝑘_𝑒𝑛
𝑆𝐶𝐵

represents
the enhanced hyperchannels.

2.3 Dynamic Fusion Block(DFB)
To reconstruct detail features of all channels at the current scale,
DFB consisting of a channel dynamic filtering block and a feature
fusion block is designed by establishing correlations between en-
hanced hyperchannels and other channels. The specific execution
process of DFB is described below and shown in figure 5.

Firstly, the channel dynamic filtering block is constructed to dy-
namically select channels with higher correlation with each channel
𝐼 𝑖
𝐿𝑅

in LRHSI from K hyperchannels for later feature reconstruc-
tion. Specifically, the values in the hyperchannels and LRHSI are
normalized and expanded to obtain the corresponding matrices
𝐼
𝑘_𝑒𝑛
𝑆𝐶𝐵

∈ R𝐻𝑊 ×𝐾 and 𝐼𝐿𝑅 ∈ R𝐶×𝐻𝑊 , and the point multiplication
is performed on them to obtain the correlation coefficient matrix
𝑀𝐶 ∈ R𝐶×𝐾 . 𝑀𝑖

𝐶
represents the correlation coefficients between

the i-th channel in LRHSI and the K-th hyperchannel. According
to the experiment, we found that the number of values with high
correlation coefficients in 𝑀𝑖

𝐶
is usually less than K/2. Therefore,

for the convenience of calculation, the top K/2 channels with the
highest numerical ranking inM i

C are dynamically selected and sent
together with 𝐼 𝑖

𝐿𝑅
into the feature fusion block to reconstruct the

i-th channel in LR-HSI. The above operation can be represented by
the following equation

𝑀𝑐 = Flatten
(
𝐼
𝑘_𝑒𝑛
𝑆𝐶𝐵

)
· Flatten (𝐼𝐿𝑅)𝑇 (5)

𝐼 𝑖𝑐 = Filtrate
(
𝑀𝑐 , 𝐼

𝑘−𝑒𝑛
𝑆𝐶𝐵

)
, 𝑖 = 1, . . . ,𝐶 (6)

𝐼 𝑖𝐺 = Concate
(
𝐼 𝑖𝐿𝑅, 𝐼

𝑖
𝐶

)
, 𝑖 = 1, . . . ,𝐶 (7)

where Filtrate represents the selection operation that includes sort-
ing of correlation coefficients and dynamic channel filtering, and 𝐼 𝑖

𝐶
represents the selected hyperchannels with high correlation with
the i-th channel 𝐼 𝑖

𝐿𝑅
in LRHSI. and 𝐼 𝑖

𝐺
represents the i-th group of

channels containg 𝐼 𝑖
𝐿𝑅

and 𝐼 𝑖
𝐶
.

Then, a channel reconstruction block is constructed to recon-
struct each channel of the LR image. Specifically, each group of
channels (𝐼 𝑖

𝐺
, i = 1, . . . , C) are fused together through the con-

volutional layers and a LeakyRelu activation function to obtain
𝐹 𝑖𝑟𝑒 ∈ R𝐻×𝑊 ×1. In addition, the hyperchannels in each group are
used to enhance the fused features through a Maxpooling opera-
tion and a Sigmoid function. The process of channel reconstruction
block can be represented by the following equation

𝐹 𝑖𝑟𝑒 = Conv3×3
(
ReLu

(
Conv3×3

(
𝐼 𝑖𝐺

)))
, 𝑖 = 1, . . . ,𝐶 (8)

𝐶𝑖𝑆𝑅 = 𝐹 𝑖𝑟𝑒 · Sig
(
𝑀𝑝

(
𝐼 𝑖𝐶

))
+ 𝐹 𝑖𝑟𝑒 , 𝑖 = 1, . . . ,𝐶 (9)

where 𝐶𝑖
𝑆𝑅

represents the reconstructed i-th channel.
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Figure 5: The structure of DFB. Dynamic Filtering represents the operation of dynamically selecting the most relevant k/2
Hyperchannels.

Finally, all reconstructed channels pass through a RB, a upsam-
pling operation and a residual structure to obtain the reconstructed
HR image at the current scale, which can be represented as:

𝐼
𝑆𝑖
𝑆𝑅

= 𝑈𝑝

(
𝑅𝐵

(
𝐹 𝑖𝑟𝑒

))
+𝑈𝑝

(
𝐼 𝑖𝐿𝑅

)
, 𝑖 = 1, . . . ,𝐶 (10)

𝐼
𝑆𝑖
𝑆𝑅

denotes the reconstructed HR image at the s-th (s=2,4,8) scale.

2.4 Loss function
To generate reconstructed HR images with rich spatial informa-
tion and spectral fidelity, a joint loss function is defined to train
SCPSN. This function consists of four parts: reconstruction loss
L𝑟𝑒𝑐 , spectral fidelity lossL𝑠𝑝𝑒 , and multi-scale reconstruction loss
L𝑠𝑟𝑒𝑐 , which are defined as follows:

Ltotal = L𝑟𝑒𝑐 + 𝛼LSAM + 𝛽L𝑠rec (11)

Where 𝛼 = 1/D (LSAM/L𝑟𝑒𝑐 ) and 𝛽 = 1/D
(
L𝑠𝑟𝑒𝑐/L𝑟𝑒𝑐

)
are adap-

tive hyperparameters, and 𝐷 (·) means gradient calculation that is
not required for back propagation.

Extensive work has demonstrated the positive role of 𝑙1 and
𝑙2 losses in SR tasks [32]. However, L1 loss has been proven to
perform better as a reconstruction loss than L2 loss. Therefore,
L1 loss is used to calculate the pixel-level difference between the
reconstructed HRHSI 𝐼𝑆𝑅 and the corresponding ground-truth (GT)
image 𝐼𝐺𝑇 , which can be expressed as:

L𝑟𝑒𝑐 =
1
𝑁

𝑁∑︁
𝑛=1



𝐼𝑛GT − 𝐼𝑛SR




1 (12)

N is the number of images in a training batch, and ∥·∥1 denotes the
L1 norm.

To ensure spectral fidelity of the reconstructed HRHSI, a SAM
loss is defined to measure the spectral similarity between 𝐼𝑆𝑅 and
𝐼𝐺𝑇 , and the smaller its value, the more similar the spectra of the

two images are. SAM loss can be expressed as:

LSAM (Θ) = 1
𝑁

𝑁∑︁
𝑛=1

1
𝜋

arccos
©­­«

𝐼𝑛GT · 𝐼𝑛SR


𝐼𝑛GT





2
·



𝐼𝑛SR





2

ª®®¬ (13)

where 𝑎𝑟𝑐𝑐𝑜𝑠 (·) denotes the inverse cosine function and ∥·∥2 de-
notes the L2 norm.

To quickly converge the network and ensure the generation of
high-quality reconstructed images at each scale, the multi-scale
reconstruction loss is defined and represented as:

L𝑆𝑟𝑒𝑐 =
log2 𝑠∑︁
𝑛=1

L𝑛𝑟𝑒𝑐 (14)

where 𝑠 (2, 4, 𝑜𝑟 8) denotes the scale factor.

3 EXPERIMENTS AND RESULTS
3.1 Dataset and Experimental Setup
In this section, to verify the performance of the proposed SCPSN,
we conducted a large number of experiments on three HSI syn-
thetic datasets including Pavia Center [25], Botswana [29] and the
University of Pavia [25]. All datasets are processed following the
Wald protocol [30], and HRHSIs are blurred using a Gaussian blur
kernel of size 8×8 and downsampled to generate the corresponding
LRHSIs.

Pavia University dataset: The Pavia University dataset is the
raw data of this hyperspectral image obtained by sampling the
University of Pavia and its surrounding areas in Italy using the
Reflection Optical System Imaging Spectroradiometer (ROSIS). The
sampling range of this spectral imager is 430 ∼ 860 nm, with a total
of 102 spectral segments. The spatial resolution is 1.3 m and the
image size is 610×340 pixels. We divide the hyperspectral image
into 45 non-overlapping cubic blocks of size 64×64×102 to obtain
the reference images (i.e., GTs) in Pavia University dataset. 33 cube
blocks are randomly selected for training, while the remaining 12
blocks are used for testing.
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Table 1: Quantitative comparison of different methods on Pavia University and Botswana datasets. The best results are
highlighted in bold.

Method Pavia University Botswana

SSIM↑ CC↑ SAM↓ RMSE↓ ERGAS↓ PSNR↑ SSIM↑ CC↑ SAM↓ RMSE↓ ERGAS↓ PSNR↑

Bicubic 0.8876 0.9457 4.0108 0.0273 4.0879 31.8355 0.9005 0.9075 1.8687 0.019 2.1869 40.0174
DHP 0.9331 0.9641 3.9832 0.0206 3.2418 34.1417 0.9333 0.9339 1.7135 0.0149 1.8493 41.7317

MCNet 0.9348 0.9641 3.5852 0.021 3.2026 34.1387 0.9305 0.9364 1.584 0.0154 1.7622 41.8825
ERCSR ×2 0.9459 0.9706 3.3074 0.019 2.8932 35.0298 0.93 0.9255 1.6867 0.0166 1.9199 41.1373

MSDformer 0.9492 0.9722 3.3072 0.0182 2.8404 35.2939 0.9348 0.9368 1.6412 0.0148 1.8582 41.7145
ESSA 0.9493 0.9728 3.3788 0.018 2.8009 35.4185 0.9353 0.9374 1.6571 0.0147 1.7788 41.93
Ours 0.9534 0.9751 3.0463 0.0172 2.6857 35.7657 0.9371 0.9444 1.499 0.0143 1.5826 42.5988

Bicubic 0.6827 0.8247 6.1923 0.0499 7.1626 26.6125 0.7846 0.7496 2.8237 0.0301 3.69 35.8657
DHP 0.8001 0.8988 5.818 0.0377 5.5415 28.9206 0.8196 0.8033 2.7133 0.026 3.5472 36.5655

MCNet 0.793 0.9014 5.088 0.0369 5.3129 29.235 0.8211 0.7992 2.595 0.027 3.5115 36.4421
ERCSR ×4 0.7931 0.9032 5.2234 0.0366 5.2576 29.3096 0.8111 0.8142 2.6505 0.0268 3.2308 36.8997

MSDformer 0.8119 0.9099 5.0071 0.0353 5.1488 29.5453 0.8206 0.7917 2.672 0.0271 3.394 36.5454
ESSA 0.8314 0.9167 4.7383 0.0341 4.9621 29.879 0.8281 0.8366 2.4944 0.0248 3.0039 37.5031
Ours 0.8471 0.9266 4.2945 0.0317 4.6213 30.5044 0.8306 0.8449 2.3189 0.0243 2.8759 37.798

Bicubic 0.5133 0.585 9.5789 0.0708 10.2254 23.6209 0.7193 0.5525 3.5515 0.0386 4.8633 33.6759
DHP 0.5864 0.7029 8.6927 0.0618 9.0307 24.7284 0.724 0.6426 3.4746 0.0357 4.8313 34.1217

MCNet 0.585 0.7183 8.2405 0.06 8.7215 25.0765 0.7291 0.6153 3.4378 0.0366 4.8036 33.8576
ERCSR ×8 0.5695 0.7047 8.3029 0.061 8.8925 24.9007 0.7148 0.5772 3.4962 0.0377 4.8226 33.8045

MSDformer 0.5846 0.7178 8.3847 0.0597 8.7354 25.0648 0.7383 0.651 3.4251 0.0354 4.6757 34.1404
ESSA 0.5902 0.7222 8.368 0.0596 8.6734 25.0831 0.7389 0.6392 3.4387 0.0355 4.5252 34.2975
Ours 0.6122 0.7365 7.618 0.0577 8.4441 25.3352 0.7421 0.7073 3.112 0.0334 4.131 35.135

(a) bicubic (b) DHP (c) MCNet (d) ERCSR

(e) MSDformer (f) ESSA (g) SCPSN (h) GT

Figure 6: Visual comparison of SR x4 of an image from the
Pavia University dataset

Botswana dataset: Botswana scenes were acquired by the Hype-
rion sensor on NASA’s Earth Observation 1 (EO-1) satellite. The
original Botswana HSI consists of 242 spectral bands ranging from
400 to 2500 nm with a spectral resolution of 10 nm. The spatial size
of the original Botswana image is 1496×256 pixels. We removed un-
calibrated and noisy bands from the original image to obtain an HSI
with 145 bands, and it is further divided into 92 non-overlapping
cubic blocks of size 64×64×145 to obtain the reference images (i.e.,

GTs) in Botswana dataset. 69 cube blocks are randomly selected for
training, while the remaining 23 blocks are used for testing.

Pavia Centre dataset: The Pavia Centre Dataset is a hyperspectral
dataset acquired by the ROSIS sensor during a flight campaign over
Pavia in northern Italy. Thirteen noisy bands were discarded from
the original HSI, resulting in an HSI with 102 bands from 430 nm to
860 nm. In addition, the rectangular area of 1096 × 381 pixels with
no information in the center of the original HSI was also discarded,
and the resulting “two-part” image of size 1096 × 715 × 102 was
used for experiments, and divided into 187 non-overlapping cubic
blocks of size 64×64×102 to obtain the reference images (i.e., GT)
in Pavia Center dataset. 138 cube blocks are randomly selected for
training, while the remaining 49 blocks are used for testing.

To display the experimental results for subjective comparison,
three bands from HSIs are selected to form RGB images. The 10th,
30th and 60th bands are selected as RGB channels for the Pavia
University dataset, the 10th, 35th and 61th bands are selected as
RGB channels for the Botswana dataset, and the 10th, 30th and 60th
bands are selected as RGB channels for the Pavia Centre dataset.
For a fair comparison, all DL-based methods were retrained using
Python 3.9.13 and PyTorch 1.13.1 On Ubuntu 20.04 system with
NVIDIA GeForce GTX A6000. The proposed SCPSN is trained for
1000 epochs using the Adam optimizer. The initial learning rate
is set to 0.001, and inference is performed every five rounds of
training. When the loss of the verification set no longer decreases
for five consecutive rounds, the learning rate is attenuated by half.
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Table 2: Quantitative comparison of different methods on
the Pavia Centre dataset. The best results are highlighted in
bold.

Method Pavia Centre
SSIM↑ CC↑ SAM↓ RMSE↓ ERGAS↓ PSNR↑

Bicubic

×2

0.9010 0.9446 4.7695 0.0240 4.6193 34.0790
DHP 0.9509 0.9605 4.3986 0.0164 3.5156 36.9808
MCNet 0.9454 0.9619 4.2348 0.0179 3.5927 36.5016
ERCSR 0.9516 0.9661 4.1091 0.0168 3.3461 37.1148

MSDformer 0.9541 0.9633 4.2080 0.0162 3.3908 37.2392
ESSA 0.9555 0.9646 4.1269 0.0156 3.3007 37.5543
Ours 0.9578 0.9679 3.9015 0.0153 3.1983 37.7238

Bicubic

×4

0.6987 0.8194 7.0668 0.0450 8.2805 28.8448
DHP 0.8149 0.8831 6.4407 0.0348 6.6482 30.6850

MCNet 0.7946 0.8813 6.4178 0.0354 6.6225 30.8185
ERCSR 0.8008 0.8836 6.4497 0.0348 6.5168 30.9526

MSDformer 0.8046 0.8827 6.4899 0.0347 6.5763 30.8406
ESSA 0.8307 0.8958 6.0923 0.0325 6.1593 31.4355
Ours 0.8339 0.8989 5.6875 0.0322 6.0688 31.5756

Bicubic

×8

0.5369 0.6008 9.5930 0.0643 11.7798 25.8229
DHP 0.6178 0.7097 9.5091 0.0548 10.9616 26.6353

MCNet 0.6078 0.7246 8.8605 0.0541 10.0555 27.1181
ERCSR 0.5846 0.6979 8.9714 0.0560 10.5264 26.7494

MSDformer 0.6097 0.7145 8.8060 0.0547 10.2657 26.9689
ESSA 0.6278 0.7269 8.5905 0.0538 10.0458 27.0852
Ours 0.6359 0.7396 8.2716 0.0528 9.8175 27.3280

(a) bicubic (b) DHP (c) MCNet (d) ERCSR

(e) MSDformer (f) ESSA (g) SCPSN (h) GT

Figure 7: Visual comparison of SR x8 of an image from the
Pavia Center dataset

It is worth emphasizing that our network training takes very little
time, only about 2 hours.

3.2 Comparison with state-of-the-art methods
To evaluate the efficacy of the proposed SCPSN, we subjectively
and objectively compare it with several state-of-the-art (SOTA)
methods, including DHP [28], MCNet [14], ERCSR [15],MSDformer
[2], and ESSA [34]. The metrics used for objective evaluation in-
clude correlation coefficient (CC), spectral angle mapping (SAM),
structural similarity (SSIM), root mean square error (RMSE), erreur
relative globale adimensionnelle de synthese (ERGAS), and peak
Signal-to-noise ratio (PSNR), which has been widely used in HSSR
tasks to evaluate the quality of spectral and spatial information.
The symbol ↑ indicates that the higher the value, the better the

(a) bicubic (b) DHP (c) MCNet (d) ERCSR

(e) MSDformer (f) ESSA (g) SCPSN (h) GT

Figure 8: Classification experiments on Pavia university
dataset.

performance of the method, while ↓ indicates that the lower the
value, the better the results. All comparative experiments are per-
formed on three commonly used datasets. The experimental results
are shown in Table 1 and Table 2. From the table, it can be seen that
the proposed SCPSN outperforms other methods in all metrics for
the three scale factors, which also proves the effectiveness of our
model. Compared with the suboptimal results on three datasets, our
method achieves an increase of approximately 0.25dB, 0.84dB, and
0.21dB in PSNR values under an scale factor of 8. Especially, ERGAS
can objectively reflect the spatial quality of HSIs, while SAM can
measure the degree of spectral distortion. Compared with other
methods, the proposed network achieved better ERGAS and SAM
values. Therefore, the SCPSN can generate better HRHSI images
with spectral and spatial fidelity.

Figure 6, shows the visualization results of SR×4 obtained by dif-
ferent methods on Pavia University dataset. From the figure, it can
be clearly observed that our results have clearer edges and colors
closer to the GT image, indicating that our method reconstructs
more spatial details and spectral information. Figure 7 shows the vi-
sualization results of SR×8 obtained by different methods on Pavia
Centre dataset. Even with a relatively large amplification factor, our
method can still reconstruct clear edges and spectral information
closer to the GT image. This further demonstrates that the proposed
SCPSN has better performance.

3.3 Ablation study
To verify the effectiveness of the proposed network, we conducted
several ablation experiments on the main components of the net-
work, such as SCB, the number of clusters in SCB, DFB, hyperpa-
rameter settings, and the computational complexity of the model.
All experiments are conducted on the Pavia Center dataset with a
scale factor of ×4.
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Table 3: Ablation study for SCB.

Method SAM↓ PSNR↑ Params(M) FLOPs(G)
W/O SCB 5.6972 31.5584 40.14 41.09
W/ SCB 5.6875 31.5756 3.81 6.37

Table 4: The impact of the number of clusters in SCB.

Number SAM↓ PSNR↑ Params(M) FLOPs(G)
4 5.7440 31.4503 2.90 5.47
8 5.7084 31.5366 3.09 5.66
16 5.6875 31.5756 3.81 6.37
32 5.7162 31.4422 6.66 9.13

Table 5: Ablation study for DFB.

Method SAM↓ ERGAS↓ PSNR↑
W/O DFB 5.7743 6.1359 31.4664
W/ DFB 5.6875 6.0688 31.5756

Ablation study on the effectiveness of SCB. We conducted ex-
periments on CSRB with and without SCB in each layer of SCPSN.
As shown in Table 3, the experimental results indicate that SCB
significantly reduces the number of parameters and computational
complexity of the model, but does not reduce the performance of
the network.

Ablation study on the impact of the number of clusters in SCB
on model performance. We conducted experiments on the number
of clusters in SCB, selecting 4, 8, 16, and 32, respectively. The exper-
imental results are shown in Table 4. According to the experiments,
the network performance is optimal when the number of clusters
is 16.

Ablation study on the effectiveness of DFB. An ablation exper-
iment was designed for DFB by replacing it with a convolutional
block containing a 3×3 convolution, ReLu function, and a 3×3 con-
volution. The experimental results are shown in Table 5. As can be
seen from the table, the indicators of the models using DFB have
been significantly improved.

Ablation study on the hyperparamrters. Table 6 presents the
results obtained by manually and Adaptively setting hyperparame-
ters in the loss function. We manually set the hyperparameters 𝛼
and 𝛽 to 0.001. The results obtained by directly using the defined
adaptive hyperparameter calculation method are better than the
results obtained by manually adjusting the hyperparameters. This
also indicates that the hyperparameter calculation method in this
paper is effective.

Ablation study on the computational complexity of the model.
Table 7 lists the number of parameters and FLOPs of all compared
deep learning-based models. Except for DHP, our model has much
less computational complexity than other comparative models. Al-
though DHP requires less computation than our model, we can see
in Tables 1 and 2 that all the metrics obtained by our model are far
superior to those of DHP.

Table 6: Ablation study for hyperparameters in the loss func-
tion.

Method SAM↓ ERGAS↓ PSNR↑
Manual ×2 3.9490 3.2144 37.6988
Adaptive 3.9015 3.1983 37.7238
Manual ×4 6.0220 6.2612 31.3210
Adaptive 5.6875 6.0688 31.5756
Manual ×8 8.7427 9.9880 27.1591
Adaptive 8.2716 9.8175 27.3280

Table 7: Comparison of Params and FLOPs of different meth-
ods.

Method Params(M) FLOPs(G)
DHP 8.58 4.65
MCNet 2.17 230.51
ERCSR 1.59 229.3

MSDformer 32.99 24.07
ESSA 11.52 50.19
Ours 3.81 6.37

3.4 Classification Experiments
To evaluate the effectiveness of the proposed SCPSN in object classi-
fication applications, classification experiments were conducted us-
ing reconstructed HRHSI images from the Pavia university dataset.
We employ the iterative self-organizing data analysis techniques
algorithm (ISODATA) to evaluate the results from different SRmeth-
ods, which is a classical unsupervised semantic segmentation for
satellite images. We set the number of the classified category to
5 and the maximum iteration to 10. The visualization results are
shown in Figure 8. From the enlarged area, we can observe that the
classification result on our result is closest to that on GT, indicat-
ing that our method can reconstruct HRHSIs with more accurate
texture and spectral information.

4 CONCLUSION
This paper proposes a novel network called SCPSN for single-HSI-
SR task. In each layer of SCPSN, a SCRB containing SCB, PNAB,
and DFB is constructed to reconstruct the HRHSI of the current
layer. First, based on the characteristics of HSI, a SCB is designed
to utilized the idea of spectral clustering to achieve the filtering of
hyperchannels, in order to reduce the computational complexity of
the model. Then, considering the non-local similarity of features
within the channel, a PNAB is constructed to achieve the reconstruc-
tion and enhancement of hyperchannel features. Finally, a DFB is
designed to reconstruct all spectral bands in LRHSI by establishing
correlations between enhanced hyperchannels and other channels.
Extensive experiments conducted onmultiple satellite datasets have
demonstrated the effectiveness and good generalization ability of
the proposed network. In addition, our model has the advantages
of fewer parameters and lower computational complexity, and does
not need to be trained on large datasets.
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