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Abstract

Mixture of Vision Encoders (MoVE) has emerged as a powerful approach to enhance the
fine-grained visual understanding of multimodal large language models (MLLMS), improving
their ability to handle tasks such as complex optical character recognition and scene under-
standing. Despite these advances, effectively combining diverse encoders and their visual
tokens, while also scaling to high-resolution inputs, remains an open challenge. In this work,
we conduct a systematic study of fusion designs for MoVE-based MLLMs, highlighting prin-
ciples for token-level integration across complementary encoders. Our study shows that a
lightweight recipe consisting of post-adaptation fusion with independent projectors, tile-level
sequence interleaving, and dynamic tiling with global context delivers strong performance on
diverse benchmarks. We integrate these principles into a simple and effective architecture
that we call LEO. Extensive evaluation on 11 vision—language benchmarks demonstrates
that LEO achieves better results on the majority of tasks compared to existing MoVE-based
approaches. Furthermore, LEO adapts effectively to the specialized domain of autonomous
driving without altering its architecture or training recipe, achieving competitive perfor-
mance against established baselines and thereby highlighting its ability to generalize. The
code is available at [link will be inserted in final version].

1 Introduction

Multimodal large language models (MLLMs) (Li et al., 2023a; |Alayrac et al., 2022; [Liu et al., |2024c; |Gao
et al.||2023)) have recently achieved strong performance by aligning vision encoders with large language models
(LLMs) through multi-stage training on large-scale image—text datasets. This alignment allows visual tokens
from pretrained vision foundation models such as CLIP [Radford et al. (2021)) to be mapped into the latent
space of LLMs, enabling progress in a variety of vision—language reasoning tasks (Liu et al., 2024¢c; Driess
et al., 2023). However, these models still face challenges in tasks that require fine-grained perception, such
as complex optical character recognition or chart understanding, where the ability to process high-resolution
inputs is critical for preserving detailed visual information. Enhancing visual understanding has therefore
become a key priority, not only for improved performance in high-resolution tasks, but also for reducing
hallucinations (Shi et al., [2024).

Recent studies [Lin et al.| (2024)); |[Chen et al.| (2025); [Vasu et al.| (2025); |Shen et al| (2025 have explored
different strategies to enhance the visual understanding capabilities of MLLMs. One line of work strengthens
vision encoders, either by scaling model parameters and pretraining data to match those of LLMs |Zhai et al.
(2023)); (Chen et al.| (2024c)); Sun et al.| (2023)), or by enabling fine-grained perception through tiling Liu
et al| (2024b); |Chen et al.| (2024b)); [Wu et al. (2025) and high-resolution inputs [Beyer et al.| (2024); [Zhang
et al.| (2024). Another promising direction is the Mixture of Vision Encoders (MoVE) paradigm, which
integrates multiple pretrained experts to employ their complementary strengths. These models maintain the
standard MLLM architecture while enriching visual understanding through specialized encoders. Existing
MoVE-based models employ fusion strategies ranging from straightforward approaches such as sequence [Kar]
et al.| (2024)); [Lin et al. (2023) or channel [Shi et al.| (2025); [Lu et al.| (2024a)) concatenation, and sequence
interleaving Tong et al.| (2024), to more advanced methods like mixture-of-resolution adaptation |[Luo et al.
(2025)), cross-attention |Li et al.[(2024b)) or routing mechanisms |[Zong et al. (2024). While these methods have
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Figure 1: Overview of LEO and its performance. LEO integrates key design principles into a lightweight
MoVE-based architecture for high-resolution visual reasoning.

demonstrated gains in the visual reasoning capacity of MLLMs, most have been studied in isolation, leaving
their broader interactions underexplored. As a pioneer empirical work, Eagle investigated
encoder selection and training strategies for scaling mixtures. However, key questions remain, including
how strategies for enhancing visual capacity interact, the granularity at which fusion is most effective, and
whether scaling the number of experts is necessary, or if effective fusion designs can yield competitive gains.

Addressing these questions requires moving beyond isolated design choices toward a principled understanding
of how MoVE models function. To this end, we conduct a systematic study to determine which strategies
are most effective for integrating multiple vision encoders. Specifically, we examine three core aspects of
MoVE design: how dynamic tiling interacts with MoVE; which token merging strategies are most effective,
from simple concatenation to structured interleaving or cross-attention; and when fusion should be applied,
either before or after adaptation into the multimodal space.

Our empirical study yields several insights into how MoVE models can be most effectively designed. We find
that simple but crucial choices consistently improve multimodal reasoning. Our three key findings are as
follows. (1) Combining the mixture of vision encoders with dynamic tiling and global context (Tiled MoVE)
enables models to process high-resolution inputs without exceeding context length. This design preserves
fine-grained details while strengthening overall visual understanding. (2) Straightforward token merging
strategies often outperform more complex designs such as cross-attention . Among these,
tile-level interleaving consistently achieves the best results, surpassing both sequence append and channel
concatenation. (3) Aligning each encoder’s tokens independently with dedicated projectors before merging
preserves encoder-specific features and consistently outperforms pre-adaptation fusion.

Building on these insights, we propose LEO, a lightweight and effective MoVE-based MLLM. As illustrated
in Fig. |1} LEO integrates the key principles identified in our empirical study: (1) dynamic tiling with global
context to preserve fine-grained details, (2) tile-level sequence interleaving to ensure efficient and balanced
token integration, and (3) post-adaptation fusion with independent projectors to retain encoder-specific
strengths. Despite its simplicity, this design yields a powerful architecture that achieves strong performance
across a wide range of vision—language tasks.

Our main contributions are summarized as follows:

e We conduct a systematic study of design choices in MoVE-based MLLMs, examining the interac-
tion between visual reasoning enhancements, token-level merging strategies, and fusion timing, and
identify key findings (1)—(3).

o We integrate these insights into LEO, a lightweight MoVE-based MLLM that provides an efficient
recipe for high-resolution visual reasoning.
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o We conduct extensive experiments across multiple vision-language benchmarks, demonstrating LEO’s
effectiveness on the majority of tasks compared to existing MoVE models.

¢ We demonstrate that LEO can be applied to the specialized domain of autonomous driving with-
out modifying its architecture or training recipe, achieving competitive results and highlighting its
generalizability.

2 Related work

2.1 Multimodal large language models

With the rapid advancement of large language models (Touvron et al. 2023} |Achiam et al., [2023; Team|
let al.| 2023} [Chiang et al.,|2023)), there has been considerable interest in multimodal extensions that enhance
understanding and reasoning capabilities. Pioneering works such as BLIP-2 |Li et al| (2023a); Dai et al.
introduce the Q-Former to bridge the modality gap between images and text, while Flamingo |Alayrac
enables flexible processing of mixed visual-textual sequences through a resampler for in-context
few-shot learning. The LLaVA family |[Liu et al| (2024cfa) simplifies this design by adopting lightweight
projection modules, such as linear layers or MLPs, to align vision encoder outputs with the LLM token
space. Our work follows this general framework of vision encoder — alignment module — LLM, building
on its simplicity and effectiveness. Rather than revisiting the alignment mechanism itself, we adopt it as a
foundation and shift our focus to the integration of multiple vision encoders. In particular, we investigate
principles that guide the effective fusion of complementary encoders in MoVE-based MLLMs.

2.2 Enhanced Visual Understanding for MLLMs

To address the constraints of lower input resolutions, recent MLLMs have concentrated on enhancing their
vision encoder module. From a vision-focused standpoint, these approaches can be broadly categorized into
four main strategies: (1) robust vision encoders, which design stronger backbones by scaling model size
and pretraining data to better capture complex features Zhai et al. (2023); (Chen et al. (2024c), (2) tile
segmentation, which processes high-resolution inputs by dividing images into smaller tiles [Shi et al.| (2024);
[Liu et al. (2024c); |Chen et al.| (2024b)); [Li et al.| (2024c), (3) knowledge-distilled vision encoders, where large
pretrained experts are distilled into smaller encoders for efficiency while retaining fine-grained perception, as
in Radio Ranzinger et al. (2024); Heinrich et al| (2025)), and (4) mixture of vision encoders (MoVE), which
integrates multiple vision experts into a unified backbone [Lin et al. (2023); Luo et al. (2025); |Tong et al.|
(2025); [Li et al.| (2024b)); [Shen et al| (2025)); [Shi et al.| (2025); Wei et al. (2024).

Focusing on MoVE approaches, some models suggest merging high-resolution visual details with low-
resolution tokens to enhance visual representation [Luo et al| (2025)); [Li et al| (2024b). LLaVA-HR
proposes a dual-pathway vision model that integrates features from high-resolution convolu-
tional blocks with those from low-resolution ViT blocks. These pretrained vision experts can nevertheless
lack key capabilities, such as text understanding and object localization. To broaden encoder capacity, sev-
eral studies integrate multiple vision experts trained on diverse tasks. Brave and MouSi
perform sequence appending, combining vision tokens from multiple experts into a longer se-
quence. Tong et al(2024) identify distinct differences in the visual features captured by CLIP
and DINOv2|Oquab et al.| (2024)), leading to the design of an image-level mixture-of-features strategy
that employs sequence interleaving. Other models apply channel concatenation to preserve sequence length,

as in DeepSeek-VL [Lu et al. (2024a)) and Eagle [Shi et al. (2025), or adopt more advanced fusion and routing
mechanisms [Lee et al. (2024)); [Zong et al.| (2024).

A

Overall, these methods differ not only in the choice of vision encoders but also in their fusion mechanisms.
Despite demonstrated gains, most have been studied in isolation with limited systematic comparisons. Our
work is most related to Eagle , which provides empirical insights into vision encoder selec-
tion and explores training strategies for scaling MoVE. Yet important questions remain: How do different
enhancement strategies, such as tiling and MoVE, interact when combined? At what granularity is fusion
most effective? And does stronger visual reasoning truly require scaling the number of experts? Our work



Under review as submission to TMLR

| ) | )

oobo | e ) 000D sscssssss
», - [ Fusion B]ULk ]
EEsEEsEs :
X [ Fusmn Block J E Ay [ PI‘Q] 1 PI'O_] 2
s bR WE EL L elh :‘E
"‘&’“\%&?«%—{ [VE2 ) ) f‘&f“\%i&—{ Vel {VE2} )

(a) Pre-adaption Tiled MoVE (b) Post-adaptation Tiled MoVE
- SN T ™
}{ (1) Sequence (2) Sequence (3) Channel (4) Cross-attention \} :{ Tilejlevel i :
I appending interleaving concatenation oO0o0o0O & } : sequence interleaving :
[

i o000 — @ || 00080000 |

} DDDDDD DDDDDD DDDD ] H (] visual tokens: tile 1 :

}\ oooo 8 I (O visual tokens: tile 2 /:

\ 7
(c) Existing token merging strategies for MoVE-based MLLMs (d) Tiled MoVE
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Cross- attentlon m m,@) A sample tile-level token merging strategy in Tiled MoVE.

is complementary. We conduct a systematic empirical study of fusion strategies for MoVE-based MLLMs.
Specifically, we investigate post-adaptation fusion, sequence interleaving, and dynamic tiling with global
context, offering practical guidance on which design choices are most effective.

3 Rethinking mixtures of vision encoders

In this section, we take a fresh look at MoVE by systematically examining the factors that govern how
multiple vision encoders can be combined most effectively. In contrast to prior studies that aim to propose
new merging architectures or routing mechanisms, we instead focus on deriving clear, practical insights
through extensive ablations. To this end, we organize our study around three investigative directions: D1
— how the integration of visual reasoning enhancement techniques operates; D2 — token merging strategies,
contrasting straightforward concatenation or sequence interleaving with more advanced approaches such as
cross attention; and D3 — the timing of token merging, asking whether encoder outputs are better merged
prior to or following alignment. Through these investigations, we establish guiding principles that inform
the design of LEO, a simple and effective MoVE-based MLLM.

3.1 Tiled MoVE (D1)

Recent MLLMs enhance visual understanding either by employing tile segmentation to support high-
resolution inputs with a single vision encoder (Li et al., 2024c; |Chen et al., [2024b)), or by using a mixture of
vision encoders to exploit complementary expertise (Shi et al., 2025; [Kar et al.l [2024; [Shen et al.| [2025}
let al., 2023; [Lu et al., 2024a). While both directions have shown benefits independently, their combination
has not been systematically studied. Here, we investigate how different tiling methods and MoVE interact
when applied together.

To explore this interaction, we evaluate four tiling strategies across multiple encoder combinations as prepro-
cessing for high-resolution inputs: (1) No-tiling, where the full image is treated as a single tile, (2) Fized-grid
tiling, which partitions the image into a uniform grid of equally sized tiles, (3) Owverlapping tiling, which
uses tiles of the same size but allows adjacent tiles to partially overlap for denser spatial coverage, and (4)
Dynamic tiling, which adapts the number and arrangement of tiles based on the image aspect ratio while
keeping the tile size fixed. These strategies differ in how they partition a high-resolution image, and therefore
vary in the spatial detail they preserve and the redundancy they introduce. Given an image I, € RE>XW >3/
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Table 1: Tiled MoVE: Investigating the impact of tiling within MoVE. I, S, VQA” .and MMB denote
InternViT, SigLIP, TextVQA, and MMBench, respectively.

MoVE | Tiling Method | VQAT GQA  VizWiz MMB POPE SEED SQA MMVeT | Avg.
L4 SAM no-tiling 623 631 529 651 867 688 683 341 | 62.7
fixed-grid 629 63.0 538 675 870 694 712 342 | 63.6
overlapping 62.6 633 534 663 856 698 673 339 | 62.8
dynamic 634 639 542 675 871 708 712 346 | 64.1
no-tiling 61.9 634 527 649 868 663 655 337 | 619
I+ ConvNeXt fixed-grid 625 635 539 660 869 681 695 343 | 63.1
overlapping 61.9 629 536 655 869 669 631 339 | 625
dynamic 62.6 639 540 664 870 685 711 346 | 63.5
no-tiling 62.2 635 527 650 868 685 67.3 340 | 62.5
[+ DINOv2 1 g edegrid 63.7 638 540 665 871 685 70.1 342 | 63.5
overlapping 62.5 63.6 53.4 65.1 86.8 68.2 68.7 33.8 62.8
dynamic 63.3 640 539 671 872 684 71.0 345 | 63.7
S 4 SAM no-tiling 62.1 629 532 648 863  67.6 665 342 | 62.2
dynamic 634 632 540 673 8.9 698 704 348 | 63.7
no-tiling 60.8 632 528 647 864 669 660 334 | 618
S+ ConvNeXt | 0 amic 62.3 638 536 665 869 684 708 339 | 63.3
no-tiling 60.4  63.2 528 652 862 686 67.2 339 | 62.2
S+ DINOVZ 40 amic 63.2 643 539 669 872 705 701 347 | 63.9
each method partitions it into a set of tiles Iijios = I, Io, ..., In, where each tile I,, € RHeile xWeine) X3 Jhag g

dimension of Hyjje X Wiile.

As an illustrative example, we describe the dynamic tiling procedure in detail. Dynamic tiling
(2024b) is aspect-ratio—aware, adapting the number and shape of tiles to the image geometry. The input
image I, is resized to a closest available aspect ratio that is dividable into square patches of size 448 x
448. For example, for common aspect ratios such as 3:2, the procedure produces up to six tiles, ensuring
coverage of informative regions (see Fig. . In parallel, we generate a thumbnail representation I; of the full
image, which preserves global structure and provides complementary context to the localized tile features.
Figure [3] illustrates this tiling process with an example driving scene image, where the tiles are shown after
normalization by the SAM preprocessor Kirillov et al.| (2023]).

Each tile is then processed independently by two pretrained
vision encoders, yielding embeddings I7' and I2. Because
these encoders are trained on different domain-specific vi-
sion tasks and objectives, they emphasize distinct aspects
of the visual signal; one may specialize in semantic catego-
rization, while another better captures fine-grained textures
or geometric cues. This diversity allows the downstream fu-
sion module to benefit from complementary perspectives of
the same visual input. To reduce the number of visual to-
kens and ensure that both vision encoders generate the same
number of tokens, we apply pixel unshuffling[Shi et al | the SAM preprocessor Kirillov et al.| (2023).
if necessary. This technique rearranges the spatial layout of
pixels, reducing the number of visual tokens while preserving
important visual features. Given an input visual embedding I¥* € R€1*(Vi=h1xw1) ‘and a downscaling factor
7, the module outputs I'* € R(CLX () x (ke /rxwr/T) Finally, each segmented tile is represented by 256 visual
tokens per encoder. Experimental settings are provided in Appendix

Figure 3: Dynamic tiling with global context.
The tiles are shown after preprocessing with

Table 1] reports the effect of incorporating different tiling strategies into MoVE across a variety of vision
encoders, including InternViT [Chen et al. (2024c)), SAM [Kirillov et al| (2023)), SigLIP [Zhai et al. (2023),
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ConvNeXt [Woo et al(2023)), and DINOv2 |Oquab et al|(2024)). Across all configurations, we observe three
consistent patterns. First, dynamic tiling achieves the strongest performance, improving the average score
in all encoder combinations. For example, pairing InternViT with SAM, ConvNeXt, or DINOv2 yields clear
gains of 2.3%, 2.6%, and 1.9%, respectively, compared to the no-tiling baseline. This illustrates the benefit of
adapting the number of tiles to the image aspect ratio, allowing the model to preserve spatial structure while
maintaining a stable token budget. Second, fixed-grid tiling typically ranks second, outperforming both the
no-tiling and overlapping settings. Its uniform grid increases spatial coverage, although the inability to adapt
to diverse image geometries may limit its effectiveness relative to dynamic tiling. Third, overlapping tiling
provides only modest gains and often remains close to the no-tiling baseline, suggesting that the redundant
coverage introduced by overlapping regions does not yield proportionally more informative tokens for the
LLM. Overall, these results demonstrate that tiling and MoVE are complementary: while MoVE uses the
diversity of multiple vision encoders, tiling strengthens each encoder’s ability to process high-resolution visual
content, leading to more robust multimodal understanding.

3.2 Token merging strategies for Tiled MoVE (D2)

Existing MLLM frameworks have explored different ways of merging tokens from multiple vision encoders,
aiming to exploit their complementary strengths. While improvements in multimodal performance have been
consistently reported, the contribution of the merging strategy itself has rarely been isolated. In most cases,
token merging is entangled with other architectural innovations, making it difficult to assess whether gains
arise from the fusion design or from stronger encoder representations. investigated MoVE
fusion strategies with respect to the trade-off between accuracy and efficiency, but their analysis focused on
image-level fusion in general. In contrast, our work examines token merging strategies at the tile level (see
Fig : within Tiled MoVE, we perform a controlled comparison of four representative methods under a
consistent tiled MoVE setting.

Figure illustrates the four most common token merging
strategies used in recent MoVE-based MLLMs. In this work, Taple 2: Comparison of various token merg-
we explore these strategies to combine token sequences from ing gtrategies within Tiled MoVE acroos 8

two vision encoders. (1) Sequence Appending (SA) benchmarks (see Appendix |A.3)).

(2024])), where tokens from each encoder are concatenated along

the sequence dimension. If a tile produces D, tokens per en- MoV | Merging | Ave (8 benchmarks)
coder, the combined sequence has length 2D.. (2) Sequence SS? 2;‘;'_*7;
Interleaving (SI) [Tong et al| (2024), where tokens are inter- [+ SAM cc 64.1
leaved position by position, e.g., [t}",t}%,...,tp ¢} |, which oA 635
preserves the order while mixing encoder streams. As above, SS? gg:;
the combined sequence has length 2D.. (3) Channel Concate- I+ ConvNeXt cc 63.5
nation (CC) (2025), where instead of extending the oA 625
sequence length, the features from both encoders at each token Ss? 662'17
position are concatenated along the channel dimension, result- T+ PINOv2 cC 63.7
ing in vectors of size Cy + C5 per token. (4) Cross-Attention CA 62.9
(CA) [Li et al| (2024b)), where tokens from one encoder act SS? 31'26
as queries attending to the other encoder’s keys and values, 5+ SAM cC 63.7
enabling adaptive integration of complementary information CA 63.0
through cross-attention. SA 63.5
S 4+ ConvNeXt SI 64.0
Table @l summarizes the effect of different token merging strate- 82 gg’:g’
gies within Tiled MoVE across six encoder pairs. We observe Y s
that sequence interleaving achieves the best performance in 5 S+ DINOVS ST 66.4
out of 6 combinations, with the only exception being I + Con- 853 gzg

vNeXt, where it ties with sequence append. We hypothesize
that interleaving the visual tokens at the tile level helps pre-
serve spatial relationships while improving information integration, leading to stronger overall performance.
In contrast, channel concatenation and cross-attention consistently underperform relative to interleaving and
appending. Overall, these results highlight the importance of the token merging strategy, with interleaving
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Table 3: Comparison of pre-adaptation vs. post-adaptation fusion strategies within Tiled MoVE. I, VQAT,
and MMB denote InternViT, TextVQA, and MMBench, respectively.

MoVE | Fusion Method | VQAT GQA VizWiz MMB POPE SEED SQA MMVeT | Avg.
I + SAM pre-adaptation 65.2 64.2 54.7 68.7 87.8 69.1 74.6 35.2 64.9

post-adaptation 68.8 64.8 57.9 72.9 88.0 72.2 78.5 37.2 67.5
[+ SigLIP pre-adaptation 69.2 62.4 53.6 67.8 86.5 71.2 72.3 33.0 64.5

post-adaptation 70.4 64.8 56.5 70.5 88.2 73.0 74.5 36.9 66.8

pre-adaptation 64.2 63.3 54.7 64.7 86.4 68.3 73.4 34.6 63.7
post-adaptation | 67.3 63.7 56.7 66.8 87.4 72.0 75.4 35.2 65.6

pre-adaptation 65.0 62.5 48.4 68.9 86.4 71.6 70.4 31.3 63.1
post-adaptation | 67.0 63.8 48.4 2.7 87.8 73.0 5.7 34.3 65.3

pre-adaptation 68.5 64.3 56.8 71.3 88.0 72.9 76.8 35.2 66.7
post-adaptation 70.6 64.8 57.3 2.7 87.8 73.2 74.3 35.4 67.0

I + ConvNeXt

I 4+ CLIP

I + DINOv2

emerging as the most effective design choice for Tiled MoVE. An efficiency analysis of the four token-merging
strategies revealed distinct accuracy—throughput trade-offs (See Appendix [A.5]).

3.3 Pre-Adaptation versus Post-Adaptation Fusion Strategy (D3)

An important design consideration in MoVE models is when fusion should occur: should visual tokens be
merged immediately after feature extraction, or only after each encoder has been adapted to the multimodal
backbone? Most existing MoVE MLLMs |Luo et al.| (2025); [Li et al.| (2024b); |[Kar et al.| (2024); |Shi et al.
(2025); |[Fan et al| (2024); Lu et al| (2024a) adopt the former, reffered to as pre-adaptation fusion, where
tokens from different encoders are merged before the vision-text alignment stage. In this setup, visual tokens
from different encoders are first merged (by a standard token merging method), and the fused tokens are
then mapped into the multimodal space using a single shared projector module.

In contrast, post-adaptation fusion equips each encoder with its own dedicated projector, such that visual
embeddings are first aligned independently before being merged. For instance, the outputs f;{l and I_ﬁQ from
two encoders are mapped through their respective projectors, I'r_, 1, (fﬁl) — TP and I't,1, (I;*f) — TP,
producing normalized token sequences prior to fusion. This design allows the integration step to operate
on representations that are already aligned with the multimodal backbone while preserving encoder-specific
characteristics. The relative effectiveness of these two strategies has not yet been systematically investigated
in the literature. Accordingly, we design a controlled empirical study within Tiled MoVE to isolate the
effect of fusion timing by contrasting pre- and post-adaptation approaches. We adopt a simple and effective
two-layer MLP as the projector design. Each vision encoder output, fﬁl and I}?, is independently mapped
into aligned token sequences TV, T*2 € RP<*D: where D, is the per-tile token length and Dy matches the
hidden dimension of the LLM. This ensures compatibility with the multimodal backbone while maintaining

encoder-specific characteristics. Experimental settings are provided in Appendix

Table |3| presents the comparison between pre- and post-adaptation fusion across several encoder combina-
tions. In all cases, post-adaptation yields consistent improvements over pre-adaptation, highlighting the
benefits of aligning encoder outputs independently before fusion. On average, post-adaptation delivers gains
of around 2.9% across the evaluated backbones. We hypothesize that these improvements stem from allowing
each encoder to independently align its features before fusion, which both preserves encoder-specific infor-
mation and ensures that the subsequent fusion operates on already normalized representations. Moreover,
the consistency of these gains across five different encoder pairs suggests that preserving encoder-specific
features during alignment facilitates stronger integration between visual and language representations, ulti-
mately leading to better multimodal reasoning and overall performance. We also compare the computational
efficiency of pre- and post-adaptation fusion for the I + SAM encoder pair. The latency difference between
the two designs is minimal, with post-adaptation showing a slight advantage (3.19s vs. 3.25s). This in-
dicates that both approaches are computationally comparable, with post-adaptation providing marginally
faster generation while achieving higher accuracy.
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4 LEO

Having systematically analyzed tiling (D1), token merging strategies (D2), and the timing of fusion (D3),
we now combine these insights into a unified multimodal large language model, which we call LEo. This
section introduces the overall design of LEO, constructed with the best-performing settings identified in
our empirical study: dynamic tiling for high-resolution processing, sequence interleaving for effective token
merging, and post-adaptation fusion for stronger alignment across encoders. In this Section, we describe the
model’s architecture in detail and further discuss how LEO can be adapted to autonomous driving scenarios,
where fine-grained perception and robust reasoning are both critical.

LEO begins by dividing an input image I;,4 € RIXWX3 into a set of tiles Iijjes = {11, I2, ..., Ix}, along the

lines of |Chen et al|(2024a), where each tile I,, € RtileXWtieX3 captures a high-resolution patch of the scene.
This tiling step preserves fine-grained details without exceeding the token budget.

Each tile is processed by two complementary vision encoders, VE; and VE,. In practice, our implementation
follows a ViT—projector—LLM pipeline, using InternViT-300M |Chen et al.[(2024c) as the first encoder, selected
for its strong vision—language alignment and SAM-L [Kirillov et al.| (2023) as the second ecnoder, chosen for
its ability to capture segmentation-based, region-level features (see Section |3). Architecturally, LEO does
not impose any explicit weighting or priority on tokens from either encoder.

The two encoders extract embeddings IVt € R Xf/l and I;? € RC2*V2 | which are compressed through
pixel unshuffling to yield compact representations I;1 and I;2. These are projected into the multimodal

space using two independent MLP-based projectors, I'y,p, (I?*) — T and Ty, (I¥2) — T2, where
TYr,TP2 € RP=XPs are aligned token sequences. This post-adaptation design ensures that each encoder is

independently normalized before fusion, preserving encoder-specific information.

For fusion, LEO employs a tile-level sequence interleaving strategy F(T**,TY?) — T,, which merges tokens
from the two encoders in alternating order within each tile. This design maintains local spatial structure
while promoting cross-encoder interaction. The fused visual tokens T, are then combined with text tokens
T; and processed by the multimodal backbone LLM ®(T;,, T}) for joint vision-language reasoning:

L

p(Y | To,Ty) = [ [ p(yi | To, To y<i). (1)
=1

4.1 Adaption to autonomous driving

Although numerous studies have successfully applied MLLMs to autonomous driving (Marcu et al., [2024;
Cao et al.l |2024; |Tian et all 2024} Wang et al.| |2024)), a straightforward approach that avoids extensive
modifications to model architecture, training processes, or heavy data collection has yet to be fully explored.
In this work, we investigate the potential of applying LEO to the autonomous driving domain without altering
its architecture or training recipe, aiming to offer insights into streamlined transfer learning and facilitate
MLLM adaptation to specialized domains. Instruction tuning plays a crucial role in helping models learn to
follow user prompts, utilizing training data in visual question answering and conversational formats. For this
domain, we design tasks in a VQA format, with each frame represented as: <img> <IMG-CONTEXT>
</img>. At the prompt level, the temporal aspect of video frames is managed by treating sequential frames
as multiple image inputs. A sample prompt is formulated as “<imagel> ... <image N> Is it safe to enter
the intersection at this time?”.

5 Experiments

5.1 Implementation Details.

Training Procedure. The training of LEO is performed in two stages. The first stage serves as a warm-up
phase for the projector layers, where both vision encoders remain frozen and optimization focuses solely on
the projector modules to ensure stable and effective alignment. To mitigate representation inconsistencies,
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Table 4: Comparison with MoVE MLLMs on 11 evaluation benchmarks. All models use a 7B language
model. The best and second best values are shown in bold and underlined, respectively.

= < E < S g

<2 o 8 g ki o 5 s

> B £ 8 = > 2 2 g =

T i & 2 X 2 B % 5 B & %

Model & & = 3 ) S = S & g 82 & =

Brave-X5 100 M NA - 52.7 54.2 - - - 87.6 - - -
Deepseek-VL [Fan et al.|(2024 3.7 M 3 M - - - - 73.2 41.5 - 88.1 70.4 - 36.1

Eagle-X2[Shi et al.| (2025 505 K 1.8 M - 63.2 67.0 48 - - 777 883 735 707 -

Eagle-X3 Shi et al.|(2025 505 K 1.8 M - 63.2 67.8 51.7 - - 777 89 73.9 694 -

LLaVA-HR [Luo et al.| (2025 558 K 1.2M | 67.1 64.2 - 48.7 - 31.2 - 87.6 642  65.1 -
Mini—Gemi 2024b 12M 15M | 652 - - - 69.3  40.8 - - - 71.1 314

MoME-X3 [Shen et al.| (2025 NA NA 53.2  59.7 57.2 - - - 50.8 - - - -

MouSi-X2 [Fan et al.| (2024 1.2M 16M | 534  60.5 - - 65.4  29.1 - 85.4 62.0 716 -

MouSi-X3 [Fan et al.| (2024 1.2M 16M | 58 633 - - 66.8  32.2 - 87.3 66  70.2 -
SPHINX [Lin et al.|(2023] 400 M NA 51.6  62.6 - 39.9 669 36.0 - 80.7 69.1 69.3 27

LEo 595 K 1M 68.8 64.8 71.0 57.9 729 372 80.1 880 722 785 37.2
A - - 1+1.7 106 132 137 103 43 124 109 |17 169 {11

the initialization of the projector MLPs depends on the encoder type: if the encoder has been pretrained on a
vision—language task, we initialize its projector from pretrained weights; otherwise, we initialize it randomly.
The second stage involves supervised instruction tuning, where the projector modules are unfrozen together
with the language model. Both stages are trained with a context length of 8196 tokens using the AdamW
optimizer and a cosine learning rate schedule. In the first stage, we apply a learning rate of 4 x 10~* with a
weight decay of 0.01, while in the second stage the learning rate is reduced to 4 x 107° with the same weight
decay. Each stage is trained for one epoch.

Training Datasets. For the first (alignment) stage, we use the LLaVA-595K dataset [Liu et al. (2024c),
which contains 595K vision-language instruction pairs. For the second (supervised fine-tuning) stage, we
follow the same dataset setup as the baseline model |Chen et al(2024c), comprising approximately 1M visual
instruction tuning samples, all publicly available.

Training Infrastructure. Training was performed on 8 NVIDIA A100 GPUs (80 GB each) using Deep-
Speed’s ZeRO-2 optimization strategy. The complete training process took approximately 72 hours.

Benchmarks. We evaluate LEO on a broad suite of multimodal benchmarks, grouped into three cate-
gories. (1) OCR and chart understanding: DocVQA Mathew et al. (2021)), TextVQA |Singh et al.| (2019),
ChartQA [Masry et al.|(2022)), and AI2D Kembhavi et al.| (2016). (2) General VQA: GQA Hudson & Manning
(2019), VizWiz Gurari et al. (2018), and VQA v2 |Goyal et al| (2017). (3) General multimodal evaluation:
MMMU [Yue et al| (2024), MMBench Liu et al| (2025), SEED [Li et al, (2024al), POPE (2023b)),
MM-Vet (2024), and ScienceQA [Lu et al| (2022), MathVista Lu et al| (2024b). In addition, we
assess LEO in the autonomous driving domain using LingoQA Marcu et al.| (2024), which requires reasoning
about road scenes and language-based driving queries. Further details are provided in Appendix [A1]

5.2 Main Results

Table [] presents a comprehensive comparison of LEO with existing MoVE-based MLLMs across 11 bench-
marks. Overall, LEO delivers strong results in 7 out of 11 tasks, demonstrating the effectiveness of the
design principles established through our empirical analysis. In particular, LEO achieves strong performance
on DocVQA (80.1) and ScienceQA (78.5), with margins of improvement that are substantially greater than
those observed in prior models, indicating robust capabilities in both text-heavy OCR settings and reasoning-
oriented benchmarks. LEO also records clear gains on ChartQA (+3.2%) and VizWiz (43.7%), showing that
the proposed architecture can generalize effectively to both structured visual data and challenging real-world
images. On MMBench (72.9), LEO remains competitive, ranking just below the top-performing system. Im-
portantly, these improvements are achieved with substantially less pretraining and instruction-tuning data
than models such as SPHINX and DeepSeek-VL |[Fan et al.| (2024), demonstrating that
LEO’s performance gains stem from architectural design rather than data scale.
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A closer comparison with strong baselines further highlights the efficiency of our approach. Models such as
LLaVA-HR |Luo et al|(2025) and Mini-Gemini |Li et al.| (2024b)), which employ more complex fusion mech-
anisms, still lag behind on reasoning-intensive tasks including SEED and ScienceQA. Likewise, Brave [Kar
et al.| (2024)), despite integrating as many as five vision encoders through pre-adaptation fusion, achieves
weaker or only comparable results. LEO attains competitive or superior performance with just two encoders.
These findings suggest that the consistent improvements of LEO arise from the design principles identified in
our empirical study, including tiling for high-resolution processing, sequence interleaving for balanced token
integration, and post-adaptation fusion for preserving encoder-specific strengths. Taken together, these re-
sults establish LEO as both a data- and computation-efficient multimodal model, capable of outperforming
or matching more heavily engineered MoVE MLLMs while using a straightforward and effective architecture.

5.3 Ablation studies

Analysis of training strategies. To more effectively analyze the impact of training strategies for the vision
encoders, we conduct ablation studies to test whether unfreezing the vision backbones improves performance
(Table . We first observe that using a single encoder alone results in reduced performance: InternViT by
itself achieves a reasonable average score of 60.8, while SAM alone performs much worse (51.4), reflecting
its specialization in segmentation rather than general visual-language understanding. Freezing SAM slightly
improves stability and yields a small gain (53.7), but it still lags far behind InternViT. Combining InternViT
and SAM without freezing substantially boosts performance to 65.6, confirming that their complementary
strengths—InternViT’s strong vision-language alignment and SAM’s fine-grained region cues—synergize
when trained together.

Interestingly, the results in Table [f]show that the best

performance is achieved when both vision encoders Taple 5: Ablation study on training settings for vi-

are frozen at SFT, reaching an average of 67.5. This gjon backbones (full results in Appendix [A.3).
finding stands in sharp contrast to Eagle |[Shi et al.

(2025)), where unfreezing the encoders was found to InternViT | SAM | Freeze | Avg. (8 benchmarks)

be necessary for competitive results. We hypothe- v % % 60.8
size that this difference stems from the tiling setup % v % 51.4
in Tiled MoVE: since each encoder already processes % v v 53.7
high-resolution patches, their pretrained representa- v v % 65.6
tions remain highly effective without further adapta- v v v 67.5

tion. Freezing prevents catastrophic forgetting of these
pretrained priors and shifts the burden of adaptation to the lightweight projector modules, which can more
efficiently normalize encoder-specific embeddings into the multimodal space. This design leads to more stable
training and better overall reasoning performance.

Analysis of fusion strategies. To further isolate
the contribution of individual design choices in LEO, Taple 6: Ablation study on various types of fu-
we conduct an ablation across eight benchmarks, with gjon strategies and SFT data (full results in Ap-
average results summarized in Table [§] While Sec- pendix.

tions [3:2] and [3-3] examined token merging and fusion

strategies more broadly, here we focus on their im-  Model ‘ Avg. (8 benchmarks)
pact within the finalized LEO setting. We find that oo ‘ 67.5
tile-level sequence interleaving yields the best perfor-
mance (avg. 67.5), surpassing both sequence append- w/ pre-adaptation 64.9
ing (avg. 66.5) and channel concatenation (avg. 66.1). w/ sequence appending 66.5
This confirms the advantages of interleaving in bal- w/ channel concatenation 66.1

w/o tile segmentation 64.6

ancing token integration across encoders. In addition,
removing dynamic tiling leads to a clear drop in per-  w/ 1.8M SFT data ‘ 67.3
formance (avg. 64.6), underscoring the role of high-
resolution tiling in preserving fine-grained details for visual understanding. Finally, post-adaptation fusion
again outperforms pre-adaptation, reinforcing that aligning encoder outputs independently before fusion

10
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facilitates stronger integration with the multimodal backbone. Together, these results echo the broader
analyses from Sections [3.2] and [3.3] while providing a controlled validation of LEO’s design principles.

Effect of training data scale. We evaluate the impact of increasing SFT data by training LEO with Eagle-

1.8M SFT data|Shi et al.| (2025). While this leads to improvements on three benchmarks (see Appendix|A.3)),
the overall average remains stable (67.3 vs. 67.5), suggesting that LEO achieves strong performance even
with limited data, demonstrating its training efficiency and robustness.

5.4 How Does LEO Compare to Single-Encoder Models with Knowledge Distillation?

To further contextualize LEO ’s performance,

Table [7] compares it against models that em-  Table 7: Comparison with knowledge distillation (multiple
ploy a single vision encoder obtained through vision encoder teachers) approaches.

multi-teacher knowledge distillation [Ranzinger GOA  ChartQA  VQAT DocVQA POPE

et al.| (2024)); [Heinrich et al.| (2025); |Cao et al. RADIO [Ranzinger ot al] 5301 - 6.3 . %6.20
(2025)). These approaches compress informa-  RADIO2.5[Heinrich et al. - 3040  69.74  52.33 -

: . L - MoVE-KD-vI.1[Cao et al.|{ 63.9 - 59.6 - 86.3
tion from several teacher encoders into a single [ */ ors 7.0 o 80.1 88.0

backbone during training. For example, RA-
DIO uses per-teacher adapters only during the distillation stage to better align teacher features; for the
VQA task at inference, the trained student model operates as a standard single vision encoder followed by a
two-layer MLP adaptor. Consistent with their original design, these models are evaluated using their default
single-tile input resolution. Despite relying on substantially larger pretraining (RADIO is trained on 614M
samples with 64 GPUs, and RADIO-2.5 on 9.8M samples), LEO achieves competitive or stronger perfor-
mance across most benchmarks using only 1M training samples and 8 GPUs. It is worth mentioning that
knowledge-distilled encoders such as RADIO or MoVE-KD’s encoder have lower inference-time latency than
MoVE encoders, since they require only a single backbone forward pass, whereas MoVE-based approaches
perform one forward pass per encoder. Furthermore, unlike knowledge distillation-based models, which blur
the representational roles of individual vision experts, LEO preserves modularity and interpretability by
explicitly integrating multiple encoders. Moreover, LEO shows equally strong performance against general
MLLMs with similar resource constraints (See Appendix.

5.5 Results in the autonomous driving domain

We evaluate LEO on the LingoQA validation

set Marcu et al.| (]2924Da with results presented  Table 8: Results on the LingoQA benchmark
in Table Against the closed-source Lin- (2024). N denotes the number of frames used during train-

goQA baseline Marcu et al| (2024), which is ing. Lingo-J represents the Lingo-Judge metric.
pretrained on over 22M data samples, LEO

d . ; b Model | N | Lingo-J+ BLUE+ METEOR 1 CIDEr 1
emonstrates competitive performance on the  prpoFE==r a5 1] 5220  13.00 17.40 60.10
Lingo-J and BLUE metrics, and significantly = LLaVA-T5Ciu et al|(2024a) | 5 | 51.00 10.62 29.44 48.18
outperforms the baseline on the METEOR, and InternVL |Chen et al.|(2024c 5 58.00 13.53 34.27 67.17
CIDEr metrics Without modlfymg its ar- LingoQA Marcu et al.|(2024 3 59.80 14.61 18.44 62.61
R L. . LingoQA Marcu et al.|(2024) | 5 60.80 15.00 18.56 65.62
chitecture or training recipe, LEO also sur- —
LEO (ours) | 2 61.00 14.91 35.44 69.72

passes all existing open-source baselines across
all four metrics. Notably, LEO achieves higher scores than the top-performing model of |Chen et al.| (2024c]).
These results indicate that LEO can better capture fine-grained multimodal cues, a critical property for tasks
such as scene understanding and instruction following in dynamic driving environments.

5.6 Efficiency analysis

Table El compares the efficiency of LEO and Eagle in terms of vision encoder parameters,
latency, FLOPs, and generation time, using a 1024 x 1024 input image with the prompt “describe this image in
detail”. LEO demonstrates significant efficiency improvements with only 612M vision encoder parameters—
just over half the parameters of Eagle-X2 and less than half those of Eagle-X3. Despite higher latency due to
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Reasoning:
Is it summertime in the scene? Answer it and give the rationale.
LEO: No. Pumpkin patches are typically associated with autumn, as they are

harvested during this season. The presence of pumpkins in the scene suggest
that the image was taken during the fall season, not in the summer.

What is located to the
right of the shampoo?

What is the first website name
on the page?

LEO: london-
underground.blogspot.com

How many grams are in the
white chocolate?

LEO: 70

LEO: Hair conditioner

Mult

‘What does the o in ola stand for?

LEO: Ontario

‘What is the c

i-image rea

LEO: I am stopping to let the pedestrian safely cross on
the zebra or pedestrian crossing ahead.

Complex counting:

How many parked cars can you spot? LEO: I can’t see any parked cars.

Accounting and math:

Average Cost per Unit
Direct materials
Direct labor
Indirect materials
Fixed manufacturing overhead
Variable manufacturing overhead
Fixed selling and administrative expenses
Variable sales commissions

Ronvowwo

‘What
equation of the graph?
A. Y = cos (2mx)

B. Y =sin (21x)

C. Y = cos (x)

produced, what are the per unit manufacturing overhead costs incurred? D. Y =sin (mx)
A.$10. B.S$11. C.$12. D.$13.
LEO: C LEO: A

option is  the

Baxter Company has a relevant range of production between 15,000
and 30,000 units. The following cost data represents average variable
costs per unit for 25,000 units of production. If 15,000 units are

soning:

i

Tell me the difference between imagel and image 2.

LEO: The difference between the two images is the dog’s head position. In
image 1, the dog head is turned to the left, while in image 2, the dog is facing
directly to the camera.

urrent action and its justification? Answer in How many cars are driving in your direction?

the form "action, justification".

LEO: There are no cars driving in my direction.

Figure 4: Qualitative results of LEO’s enhanced visual understanding on various vision-language tasks.
Images are taken from the following benchamrks: MMVet (2024), MMMU [Yue et al| (2024),

TextVQA |Singh et al.| (2019)), and LingoQA |Marcu et

al (2024)

SAM’s lack of flash attention support (2024), LEO achieves a notable 61.6% reduction in vision encoder
FLOPs and a 19.6% decrease in generation time compared to Eagle-X3, highlighting its efficiency.

5.7 Visualization

To highlight the visual understanding capabilities
of LEO, we present a qualitative analysis in Fig.
Our model is applied to a variety of vision-language
tasks, including complex reasoning, detailed count-
ing, OCR, spatial and mathematical reasoning,
accounting analysis, and multi-image and multi-
frame reasoning. With an efficient tile-level post-
adaptation fusion strategy, LEO exhibits impressive

Table 9: Efficiency analysis of LEO. ‘GT’ and ‘lat’
denote generation time and latency, respectively.

Model VE Param. VE lat. VE FLOPs GT
Fagle-X3 1460M 0.07s 4281 3.97s
Fagle-X2 1155M 0.04s 3347 3.92s
LEO 612M 0.78s 1642 3.19s

performance across these challenging tasks. For example, our model can perform attribute-based counting,
such as identifying the absence of parked cars while there are several moving vehicles in the driving scene.
Beyond simple recognition, LEO demonstrates spatial awareness, enabling it to answer OCR-related ques-
tions like “ What is located to the right of the shampoo?” In multi-image reasoning, LEO accurately identifies

detail differences between images, such as the dog’s he

ad being in different positions. LEO also demonstrates

strong capabilities in multi-frame reasoning in the autonomous driving domain, including recognizing safe
actions in dynamic scenes, such as stopping to allow a pedestrian to cross. Finally, LEO excels in OCR
tasks, effectively interpreting dense text, and also handles complex mathematical and accounting problems,
showcasing its strong reasoning abilities. See Appendix [A27]

1

2
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5.8 Limitations

The processing capacity of our model is limited to a maximum of six image patches (excluding the global
context), constrained by the LLM’s context length and available computational resources. This restriction
hinders support for higher-resolution images or tasks requiring a larger number of multi-image inputs. More-
over, due to computational constraints, our setup relies on a fixed set of vision encoders and a 7B LLM,
which, while efficient, may limit the diversity of visual features and the breadth and depth of the system’s
reasoning abilities.

6 Conclusion

Through a systematic empirical study, we have investigated how different design choices within MoVE
influence the effectiveness of multimodal large language models. We organized our study around three
investigative directions: visual reasoning enhancement methodologies, token merging strategies, and the
timing of fusion. From our experiments, we have derived clear principles for effectively combining multiple
vision encoders. We have demonstrated that it is possible to consistently strengthen multimodal reasoning in
a computationally efficient way by means of judicious lightweight design choices. Specifically, by integrating
dynamic tiling with MoVE, by employing tile-level sequence interleaving, and by adopting post-adaptation
fusion. Using these principles, we designed a compact and powerful architecture that we call LEo. LEO
achieves better results than prior MoVE models on the majority of benchmarks and is competitive with
the best models on benchmarks that it does not lead. LEO further demonstrates its generalizability by
transferring effectively to the specialized domain of autonomous driving without requiring extensive domain-
specific adjustments. We envision LEO as a foundation for advancing MoVE-based MLLMs and as a practical
guide for adapting them efficiently to domain-specific applications.

Broader Impact Statement

The proposed LEO framework extends the capabilities of existing vision—language models and therefore
shares many of their broader social impacts. As with other multimodal systems, potential risks include
biased or misleading outputs, privacy concerns, and the propagation of harmful content. These risks are
mitigated in part by thoughtful data selection and the application of safeguards designed to encourage safe
and responsible use. We present LEO primarily as a research contribution, and recommend that its outputs
be applied with caution in sensitive contexts, with human oversight to mitigate possible misuse.
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[A T Benchmark Datasets

A2l Experimental Settings

[A3 Benchmark Details

[A4 Lo performance beyond the MoVE setting

[A5 Additional efficiency analysis

[A6l Does Scaling the Training Data Improve Cross-Attention Merging Performance?

[A. Tt Additional Visualization Results

A.1 Benchmark Datasets
This section provides a more detailed description of the evaluation benchmarks, highlighting their key fea-

tures. Unless specified otherwise, we report scores based on the performance of models evaluated on the
provided test splits. We consider the following benchmarks:
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1. OCR and chart understanding benchmarks:

DocVQA Mathew et al.| (2021)). A Visual Question Answering (VQA) benchmark for document
images, featuring 50K questions on more than 12K images sourced from the UCSF Industry Docu-
ments Library. It contains a diverse set of document types (letters, forms, tables, reports), assessing
the capabilities of multimodal models in text recognition, document understanding (structure and
context), and figure interpretation. The dataset is composed of questions categorized into 9 types,
including form-based, table/list-based, layout-based, running text, handwritten text, figure-based,
photograph-based, Yes/No, and other.

TextVQA (VQAT) Singh et al. (2019). A VQA benchmark designed to evaluate the ability of
MLLMs to read and interpret text within images. It consists of 45,336 questions paired with 28,408
images with a focus on categories that frequently contain text, such as billboards, street signs, and
product packaging. Each question-image pair includes ten human-provided ground truth answers.
The dataset is designed to necessitate OCR for accurate question answering, as many responses rely
on text embedded within the visual scene.

ChartQA |Masry et al.| (2022). A VQA benchmark for charts, designed to evaluate MLLMs’
ability to perform visual and logical reasoning. It consists of 9,608 human-authored questions and
23,111 machine-generated questions based on 20,882 real-world charts collected from diverse sources.
The dataset covers bar, line, and pie charts, ensuring a variety of styles and topics. The questions
are categorized into data retrieval, visual reasoning, compositional reasoning, and combined visual-
compositional reasoning, requiring models to extract data, interpret visual attributes, and perform
arithmetic/logical operations.

AI2D Kembhavi et al.| (2016). A VQA benchmark for diagram understanding and reasoning,
for scientific diagrams. It comprises 5,000 grade-school science diagrams, annotated with 118,000+
labelled constituents and 53,000+ relationships, along with 15,000 multiple-choice questions that
test comprehension and reasoning. The dataset covers a diverse set of scientific concepts such as
food webs, life cycles, and planetary systems. The dataset is divided into a training set of 4,000
diagram images and a blind test set consisting of 1,000 images.

2. General visual question answering benchmarks:

VQAY? |Goyal et al.| (2017). A VQA benchmark, designed to reduce language biases and assess
MLLMs’ ability to rely on image understanding. It consists of approximately 1.1 million question-
image pairs, with 13 million answers sourced from ~ 200,000 images in the COCO dataset. A key
feature of VQA"? is its balanced question-image pairs, where each question is linked to two similar
images that yield different answers, ensuring that models cannot rely solely on language priors. The
dataset covers diverse question types, including yes/no, number, and open-ended questions.

GQA [Hudson & Manning| (2019). A VQA benchmark designed to evaluate visual reasoning
capabilities by incorporating scene graph representations of images. It consists of 22 million ques-
tions derived from 113,000 real-world images sourced from the Visual Genome dataset |Krishna et al.
(2017)), with each question grounded in a structured scene graph that captures object relationships,
attributes, and spatial arrangements. This dataset emphasizes compositional reasoning, linguistic
clarity, and reduced bias, ensuring questions are well-formed, diverse, and require multi-step infer-
ence. The dataset includes detailed annotations specifying the reasoning steps involved, supporting
fine-grained evaluation of model interpretability and robustness. Also, GQA provides balanced
question-answer pairs to mitigate dataset biases and includes multiple difficulty levels.

VizWiz |Gurari et al.| (2018). A VQA benchmark designed to address challenges faced by blind
individuals in obtaining visual information. It comprises over 31,000 visual questions, where each
consists of an image captured by a blind user via a mobile phone and a spoken question that was later
transcribed. Each question is paired with 10 crowd-sourced answers, allowing for a robust evaluation
of answer variability. Unlike existing VQA datasets, VizWiz introduces real-world complexities such
as poor image quality, conversational question phrasing, and a high rate of unanswerable questions
(~ 28%), reflecting the natural uncertainties blind users face.

3. General multimodal benchmarks:
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MMMU |Yue et al.| (2024). The Massive Multi-discipline Multimodal Understanding and Rea-
soning benchmark is a dataset designed to evaluate MLLMs on expert-level perception and reasoning
across a diverse set of academic disciplines. It contains 11.5K multimodal questions sourced from
college exams, quizzes, and textbooks, covering six broad disciplines including Art & Design, Busi-
ness, Science, Health & Medicine, Humanities & Social Sciences, and Technology & Engineering,
spanning 30 subjects and 183 subfields. The dataset includes 30 heterogeneous image types, such
as charts, diagrams, medical scans, sheet music, and chemical structures, to test models’ ability to
integrate textual and visual information. Unlike existing benchmarks, MMMU emphasizes complex
domain-specific reasoning, requiring models to apply advanced subject knowledge to solve problems.

MMBench Liu et al.| (2025]). A bilingual, multimodal benchmark designed to rigorously evaluate
MLLMs across 20 fine-grained ability dimensions. It consists of over 3,000 multiple-choice questions,
covering a diverse range of tasks including object localization, social reasoning, structuralized image-
text understanding, and spatial relationships. MMBench introduces a novel CircularEval strategy to
ensure robust evaluation by testing models multiple times with shuffled answer choices. Additionally,
it incorporates GPT-4-based choice extraction to handle free-form model predictions, improving
evaluation accuracy. We report results on the English subset of MMBench.

SEED-Bench [Li et al.| (2024al). A multimodal benchmark designed to evaluate generative com-
prehension in MLLMs. It consists of 19,000 multiple-choice questions, making it six times larger than
existing benchmarks, with human-annotated ground-truth answers to ensure evaluation accuracy.
SEED-Bench spans 12 evaluation dimensions covering both spatial and temporal understanding,
incorporating image and video modalities. These dimensions are as follows: scene understand-
ing, instance identity, instance attributes, instance localization, instance counting, spatial relations,
instance interaction, visual reasoning, text recognition, action recognition, action prediction, and
procedure understanding. We report results on the image set of this dataset.

POPE [Li et al.| (2023b). Polling-based Object Probing Evaluation is an evaluation pipeline
designed to systematically evaluate object hallucination in MLLMs. Following the approach of |Li
et al.| (2023b)), we evaluate MLLMs with POPE built on the validation set of MSCOCO |Lin et al.
(2014). Unlike traditional evaluation methods, POPE formulates object hallucination detection as a
binary classification task, prompting MLLMs with Yes/No questions about the presence of specific
objects in images. It introduces three distinct negative sampling strategies, including random,
popular, and adversarial, to assess the tendency of MLLMs to hallucinate objects based on frequency
and co-occurrence patterns in training data. POPE provides a stable, scalable, and fair evaluation
framework, making use of both human annotations and automated segmentation tools to extend
assessments to unannotated datasets.

MDMVet [Yu et al.| (2024)). A multimodal benchmark designed to systematically evaluate MLLMs
on complex vision-language tasks by assessing their ability to integrate multiple core capabilities.
It defines six fundamental vision-language capabilities, including recognition, OCR, knowledge, lan-
guage generation, spatial awareness, and math, and evaluates models across 16 integrated task
categories requiring different capability combinations. MM-Vet contains 200 images and 218 open-
ended questions, sourced from various datasets and human annotations. To evaluate open-ended
responses, MM-Vet employs a GPT-4-based evaluator, to provide a unified and scalable scoring
metric across different answer styles and question types.

ScienceQA [Lu et al.| (2022). A multimodal dataset designed to evaluate multi-step reasoning
and interpretability in Al systems through science-based question answering. It comprises 21,208
multiple-choice questions sourced from elementary and high school science curricula, covering nat-
ural science, social science, and language science across 26 topics, 127 categories, and 379 skills.
This dataset includes rich multimodal contexts, with 48.7% of questions containing images (both
diagrams and natural images) and 48.2% containing textual contexts, as well as annotated lectures
and explanations to support chain-of-thought (CoT) reasoning. The benchmark assesses whether
models can generate explanations alongside answers.

MathVista [Lu et al.| (2024b)). A benchmark designed to evaluate the mathematical reasoning
capabilities of foundation models in visually complex contexts. It contains 6,141 examples, drawn
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from 31 existing multimodal datasets and three newly created ones. MathVista spans five primary
tasks, figure question answering, geometry problem solving, math word problems, textbook question
answering, and visual question answering, covering seven reasoning types including algebraic, arith-
metic, geometry, logical, numeric commonsense, scientific, and statistical reasoning. The dataset
features diverse visual contexts, such as natural images, geometry diagrams, scientific figures, charts,
tables, and function plots.

4. Autonomous Driving benchmark:

LingoQA Marcu et al.| (2024). A large-scale vision-language dataset designed to evaluate visual
question answering in autonomous driving. It consists of 28,000 unique short video scenarios, video
captioning, and 419.9K question-answer pairs, covering a broad range of perception and reasoning
based tasks. The dataset features free-form questions and answers, extending beyond object de-
tection to include driving behaviour and scenery based questions, while allowing for more robust
evaluation with greater answer variability. Question types include a variety of categories that en-
compass different aspects of understanding the driving task. Below, we present these categories
along with an example of each type.

(a) Action identification: What action are you taking as the current driver?

(b) Action justification: Why are you taking this action?

(c) Object/Scenery identification: What type of structures do you see on the right side of the road?
(d) Object/Scenery description: Can you describe the SUV you see? or How is the weather today?
(e) Attention: What are you paying attention to?

(f) Anticipation: What are you adjusting your position in anticipation of?

(g) Object localization: Is the pedestrian crossing the road on a zebra crossing?

(h) Counting: How many parked cars can you spot?

(i) Counterfactual: How should you react if there are pedestrians still crossing the zebra crossing?

To further assess model performance, LingoQA introduces Lingo-Judge, a learned text classifier
that achieves a 0.95 Spearman correlation with human ratings of model performance. We calculate
Lingo-Judge (Lingo-J), BLUE, METEOR, and CIDEr scores on the evaluation suite of the LingoQA
benchmark, which consists of 1,000 additional examples.

A.2 Experimental Settings

In this section, we describe the detailed experimental settings for our empirical analysis. Starting with Tiled
MoVE in Section [3.1] (D1), we build on the baseline introduced by InternViT [Chen et al. (2024c). We employ
two vision foundation models as first encoders, InternViT |Chen et al.| (2024c) and SigLIP [Zhai et al.| (2023),
and combine them with three additional encoders selected for their diverse and complementary strengths:
SAM [Kirillov et al.| (2023) for segmentation, ConvNeXt [Woo et al.| (2023)) for OCR-related performance,
and DINOv2 |Oquab et al.| (2024]) for representation learning. As in the baseline, we adopt InternL.M2-7B-
Chat |Cai et al| (2024) as the LLM backbone, with a two-layer MLP as the projector. Token merging is
performed via channel concatenation with pre-adaptation, i.e., fusion occurs before alignment, and a shared
projector is used throughout.

For the next set of experiments (Section D2), we retain the same settings as before, including the LLM,
projector, and related configurations. We adopt pre-adaptation as the fusion strategy and apply tiling, while
varying the token merging strategies.

For the experiments comparing pre- and post-adaptation (Section D3), and to ensure a fair comparison,
we fix the best-performing settings from the previous stages, namely sequence interleaving and tiling. More-
over, as reported in Tables|[l]and [2] combinations with InternViT consistently outperform those with SigL.IP.
Therefore, we focus on InternViT as the first vision encoder, while adding two additional combinations for
comparison: SigLIP |Zhai et al|(2023) and CLIP Radford et al.| (2021).
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Table 10: Comparison of various token merging strategies within Tiled MoVE. SA, SI, CC, and CA denote
sequence append, sequence interleaving, channel concatenation, and cross-attention respectively.

MoVE | Merging | VQAT  GQA  VizWiz MMB POPE SEED SQA MMVeT | Avg.
SA 63.8 640 544 680 875 695 724 347 | 643
I+ SAM ST 65.2 642 547 687 878  69.1 746 352 | 64.9
cC 634 639 542 675  87.1 708 71.2 346 | 64.1
CA 62.6 635 534 669 869 683 714 347 | 635
SA 63.5 637 539 665 867 689 715 347 | 63.7
ST 642 633 547 647 864 683 734 346 | 63.7
I+ ConvNeXt lele 62.6 639 540 664 87.0 685 711 346 | 63.5
CA 62.3 631 535 635 859 673 707 338 | 625
SA 65.4 642 553 692 874 706 739 347 | 65.1
ST 68.5 643 568 713 880 729 768 352 | 66.7
I+ DINOv2 cC 63.3 640 539 671 872 684 71.0 345 | 63.7
CA 63.4 636 542 662 868 645 703 338 | 629
SA 63.6 635 543 680 874  69.1 725 348 | 642
S 4 SAM ST 65.0 643 545 683 874 684 739 351 | 64.6
cC 634 632 540 673 869 698 704 348 | 63.7
CA 62.6 634 532 663 864 681 698 345 | 63.0
SA 634 638 535 663 865 689 709 346 | 635
ST 645 636 547 646 868 690 741 346 | 64.0
S + ConvNeXt cC 62.3 638 536 665 869 684 708 339 | 633
CA 62.1 628 532 646 861 672 702 340 | 625
SA 65.3 640 556 687 87.0  70.1 739 341 | 648
ST 68.1 642 560 709 882 718 762 359 | 66.4
S + DINOv2 cC 632 643 539 669 872 705 701 347 | 639
CA 62.7 639 537 645 860 663 696 334 | 625

Table 11: Ablation study on training settings for vision backbones.

InternViT ‘ SAM ‘ Freeze ‘ VQAT GQA VizWiz MMB POPE SEED SQA MMVet | Avg.

v X X 57.0 62.9 52.5 64.6 86.4 65.4 66.2 31.2 60.8
X v X 45.2 56.4 47.5 44.7 84.2 51.3 64.0 18.2 51.4
X v v 49.5 58.2 50.6 48.3 85.4 54.7 65.2 19.8 53.7
v v X 67.2 63.1 55.7 71.0 87.6 69.6 75.8 35.0 65.6
v v v 68.8 64.8 57.9 72.9 88.0 72.2 78.5 37.2 67.5

A.3 Benchmark Details

This section provides additional details on results reported in the main text.

Table presents the complete results across all eight benchmarks for the comparison of token merging
strategies within Tiled MoVE, as summarized in Table Although sequence interleaving is not always
optimal for every vision-language task and MoVE combination, for instance, in I + ConvNeXt, where
sequence appending performs similarly, it achieves the highest average score in 5 out of 6 combinations.

Table [L1] provides detailed results of the ablation study on different training strategies for vision encoders.
Unfreezing both vision encoders does not improve performance. This is likely because the pretrained encoders
already provide strong visual representations, and fine-tuning them may disrupt their learned features rather
than enhancing them.
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Table 12: Ablation study on various types of fusion strategies and SFT data.

Model ‘ VQAT GQA VizWiz MMB POPE SEED SQA MMVeT ‘ Avg.
Leo ‘ 68.8 64.8 57.9 72.9 88.0 72.2 78.5 37.2 ‘ 67.5
w/ pre-adaptation 65.2 64.2 54.7 68.7 87.8 69.1 74.6 35.2 64.9
w/ sequence appending 67.9 63.1 56.3 71.2 87.3 71.8 78.4 36.3 66.5
w/ channel concatenation 67.3 62.8 54.3 70.9 87.6 72.0 78.4 35.7 66.1
w/o tile segmentation 64.2 63.6 54.4 67.3 86.9 70.4 74.8 35.4 64.6

w/ 1.8M SFT data 68.9 64.3 55.4 72.7 89.8 73.7 76.7 36.7 ‘ 67.3

Table 13: Comparison with general MLLMs with similar resource constraints. All models in the lower section
use a 7B language model. Models in grey use significantly more training data or larger-scale LLMs.

Model | ChartQA  DocVQA  VQAT GQA VQAY? VizWiz MMB MMMU POPE AI2D SEED SQA MMVet
GPT-4V 78.5 88.4 780 368 - - 75.8 56.8 - 782 69.1 757
Cambrian-1-34B[Tong et al.|(2025 75.6 75.5 76.7 658 - - 81.4 49.7 - 79.7 753 85.6

Llama 3.2-11B [Meta f} 83.4 88.4 - - 75.2 - - 50.7 - 91.1

Instruct-BLIP |Dai et ‘aL 23 50.1 49.2 - 34.5 36.0 - - - - 60.5 26.2
LLaVA.15 2024 582 620 785 50.0 64.3 - - - - 66.8  31.1

[0}
o
=
(=2}
Gt
K

57.0 62.9 79.3 52.5 64.6 66.2 31.2

[=2}
3
'Sy
W
S
e}
o0
=2
Tt
-
(=}
no

®
<
ot

64.4 62.5 79.9 57.8 68.9

VILA |Lin et al.[(2024] - - - - 61.1  68.2 34.9
VILA-T.5|Lin et al.[(2024 52.7 40.6 68.5 - 83.0 - - 38.6 - 76.6 73.8 - -
Monkey |Li et al.[(2024c 65.1 66.5 67.6  60.7 - 61.2 - - - 62.6 - 69.4

LEO 71.0 80.1 68.8 64.8 783 57.9 72.9 364 88.0  69.6 2.2 785 372

Table [I2] presents the complete results across all eight benchmarks for the ablation study on different types
of fusion strategies and SFT data, as summarized in Table [f] of the main text.

A.4 LEO performance beyond the MoVE setting

In addition to the main evaluation on MoVE MLLMSs, we compare LEO against representative non-MoVE
(general) models with similar resource constraints, i.e., those trained with comparable amounts of data and
using a 7B language model (Table . For reference only, we also include larger-resource models. The goal
here is not to compete with frontier-scale systems [Tong et al.| (2025]); [OpenATl (2024)); [Li et al.| (2025); Meta]
(2024); |Zhu et al.| (2025), which operate with orders of magnitude more resources, but rather to place
our approach into perspective against fair baselines. Despite being optimized for the MoVE setting, LEO
demonstrates strong multimodal reasoning and understanding, achieving high scores on ChartQA (71.0),
DocVQA (80.1), GQA (64.8), POPE (88.0), SQA (78.5), MMVet (37.2), and MMBench (72.9). It also
secures the second-best performance on VizWiz, MMMU, AI2D, and SEED. Compared to other general
MLLMs that support high-resolution inputs, LEO performs competitively; for instance, it surpasses the
LLaVA-NeXt Liu et al.| (2024c) model on all available benchmarks and achieves superior results in 6 out of 7
benchmarks when compared to Monkey , underscoring its robust visual reasoning capabilities.
Models highlighted in grey are included for reference only, as they use significantly more training data or
larger LLMs.

A.5 Additional efficiency analysis

We report the computational characteristics of the
four token-merging strategies used in Tiled MoVE.  Table 14: Efficiency analysis of merging strategies.
For each method, we measure the number of visual
tokens per tile, the inference throughput, and the

Merging ‘ #Tokens/tile #Tokens/s Params. Avg.

. SA 512 41.14 679M 64.3
parameter count excluding the LLM. Table [14] sum- oI 512 4091 670M 649
marizes the results. The four strategies exhibit clear cC 256 42.49 670M  64.1
efficiency—accuracy trade-offs. Sequence interleav- CA 256 38.74 680M  63.5

ing achieves the highest average score, indicating
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that tightly mixing visual tokens produces richer joint representations, though with a slight reduction in
throughput. Sequence appending offers a balanced middle ground, providing strong accuracy with marginally
higher speed. Channel concatenation is the most efficient option, but consistently yields lower accuracy. In
contrast, cross-attention introduces the highest parameter overhead and the slowest inference speed, while
also delivering the weakest accuracy among the methods.

A.6 Does Scaling the Training Data Improve Cross-Attention Merging Performance?

To evaluate whether increasing the amount of supervised training data benefits the cross-attention merging
strategy, we train cross-attention variants using both the larger Eagle-1.8M dataset (2025). We
conduct experiments on two encoder configurations, and report results across eight standard benchmarks
in Table [I5] Training the cross-attention merging strategy with the larger Eagle-1.8M dataset yields only
marginal improvements in both encoder configurations. The average gains range from 0.2-0.3 points, indi-
cating that increasing the supervised training scale has limited impact on the effectiveness of cross-attention
fusion.

A.7 Additional Visualization Results

Figure [5| provides additional visualizations showcasing LEO’s
capabilities across OCR-related tasks, chart interpretation, and
document understanding. In the OCR setting, LEO is able
to localize and read fine-grained textual elements embedded
within complex scenes. For example, it not only identifies the
player wearing a green jersey on the right but also correctly rec-

ognizes the number printed on the jersey, demonstrating robust = SEEEEEE v smomesanime gy

text recognition under challenging visual conditions. Beyond ... LE0:015 LE0: 26

natural images, LEO exhibits strong performance on structured

documents: it can navigate dense layouts, focus on the appro- Figure 5: More qualitative results of OCR
priate textual regions, and extract semantically relevant infor- and chart and document understanding.
mation. In one example, LEO determines the number of meet-

ings attended by “B. Sen” by precisely locating the corresponding entry and interpreting the surrounding
context. These cases highlight LEO’s ability to integrate visual perception and text reasoning, enabling
accurate understanding across both scene-text scenarios and complex document analysis.

What does the unshaded bar represent?

LEO: Pre-exp
How many meetings did B. Sen

Figure [7] gives additional qualitative examples of the scene understanding capabilities of LEO in the au-
tonomous driving domain. As shown, LEO can effectively reason about the driving scenario, identify the
appropriate safe action, interpret dynamic scenes, and detect any immediate hazards.

Finally, Fig. [6] highlights two representative failure cases of
LEO, covering both document understanding and scene-level
traffic sign recognition. In the driving scenario, the model cor-
rectly detects the circular road marking that indicates a speed
limit of 20 mph, yet it misinterprets the question “Are there
any traffic signs?” by treating the painted road symbol ag — Canyouspotany uaflicsign? What do they indicate?

equivalent to a physical signpost. Since no actual traffic sign = LEO:Yes there s amaffic sin indicating a speed limit of 20 mph.
is visible in the scene, the model’s answer is strictly incorrect, 4
revealing a limitation in distinguishing between road markings
and standard signboards. In the second example, which in-
volves document understanding, the model is asked to identify
a specific individual associated with a query. LEO incorrectly
outputs “A. Baijal” after detecting the number four that corre-
sponds to the count of other directorships, rather than linking
the correct entity “H. Khan.” This error illustrates how LEO
can become distracted by salient numerical patterns while fail-
ing to ground them in the appropriate semantic context. To-

Who is the non
executive director who
holds 4 chairmanships in
other companies?

LEO: A. Baijal

Figure 6: Two failure cases of LEO’s scene
and document understanding.
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Is it safe for you to increase your speed in the current driving conditions? Provide a rationale.

LEO: No, it is not safe for me to increase my speed in the current driving conditions because there is a cyclist ahead of me, and
I need to maintain a safe distance from them.

In which direction is the red car driving? Answer the question using one or two sentences.

LEO: The red car is driving in the opposite direction.

Can you spot any immediate hazard on the road ahead? Answer the question using one or two sentences.

LEO: Yes, there is a zebra crossing ahead with a pedestrian crossing.

Figure 7: Additional qualitative results of scene understanding. The images are taken from LingoQA

Table 15: Impact of training data scale on cross-attention merging.

MoVE |Dataset | VQAT GQA VizWiz MMB POPE SEED SQA MMVet Avg.

I+ SAM 1M 62.6 63.5 53.4 66.9 86.9 68.3 71.4 34.7 63.5
1.8M 62.5 63.6 53.6 66.9 87.1 68.5 71.2 35.9 63.7
S 4 SAM 1M 62.6 63.4 53.2 66.3 86.4 68.1 69.8 34.5 63.0
1.8M 62.7 63.7 53.0 66.5 86.9 68.6 70.4 34.8 63.3

gether, these examples underscore that while LEO demonstrates strong capabilities, it can still conflate
visually similar cues or overlook fine-grained semantic relations, leading to incorrect predictions.
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