
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

SVD-LLM: TRUNCATION-AWARE SINGULAR VALUE
DECOMPOSITION FOR LARGE LANGUAGE MODEL
COMPRESSION

Anonymous authors
Paper under double-blind review

ABSTRACT

The advancements in Large Language Models (LLMs) have been hindered by
their substantial sizes, which necessitate LLM compression methods for practical
deployment. Singular Value Decomposition (SVD) offers a promising solution
for LLM compression. However, state-of-the-art SVD-based LLM compression
methods have two key limitations: truncating smaller singular values may lead to
higher compression loss, and the lack of update on the compressed weight after
SVD truncation. In this work, we propose SVD-LLM, a new SVD-based LLM
compression method that addresses the limitations of existing methods. SVD-LLM
incorporates a truncation-aware data whitening strategy to ensure a direct mapping
between singular values and compression loss. Moreover, SVD-LLM adopts a
parameter update with sequential low-rank approximation to compensate for the
accuracy degradation after compression. We evaluate SVD-LLM on 10 datasets
and seven models from three different LLM families at three different scales. Our
results demonstrate the superiority of SVD-LLM over state-of-the-arts, especially
at high model compression ratios.

1 INTRODUCTION

Large Language Models (LLMs) have demonstrated remarkable capabilities in a wide range of
tasks such as natural language understanding and generation (Zhao et al., 2023; Gozalo-Brizuela
and Garrido-Merchán, 2023). Despite such capabilities, the democratization of LLMs is primarily
restricted by their substantial resource demands (Wan et al., 2023; Wang et al., 2024; Zhou et al., 2024).
One of the most effective techniques to reduce resource demands of LLMs is model compression (Zhu
et al., 2023). To avoid resource-intensive retraining, LLM compression is often conducted in a
post-training manner, and methods based on quantization (Yuan et al., 2024; Huang et al., 2024),
unstructured pruning (Frantar and Alistarh, 2023), and structured pruning (Ma et al., 2023; Ashkboos
et al., 2024; Zhong et al., 2024) specifically designed for LLMs have been intensively studied.
Regardless of their success, these techniques have their own constraints, such as hardware dependency
and low inference speedup. Compared to those techniques, compression techniques based on low-rank
approximation, such as Singular Value Decomposition (SVD) are not limited by those constraints.
Moreover, the KV cache of LLMs compressed via SVD at runtime can also be reduced.

Despite these advantages, the potential of SVD for LLM compression has not been thoroughly
explored. A few SVD-based LLM compression methods such as FWSVD (Hsu et al., 2022) and
ASVD (Yuan et al., 2023) have recently been proposed. However, these methods exhibit severe
performance degradation when model compression ratio1 increases. Such limitation can be attributed
to two fundamental issues involved in their approaches: ❶ Misalignment between SVD Truncation
and Compression Loss2: All existing methods fail to establish a direct relationship between singular
values and the model compression loss. As a consequence, truncating smaller singular values in
SVD could lead to significant compression loss. ❷ Lack of Model Parameter Update after SVD
Truncation: as model compression ratio increases, the number of singular values that need to be

1Model compression ratio refers to the percentage of parameter reduction achieved through compression.
2Given input activation X , original weight matrix W and its compressed version W ′ in the LLM, the SVD

compression loss (Yuan et al., 2023; Hsu et al., 2022) refers to ||WX −W ′X||F in the form of Frobenius loss.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

truncated in SVD increases as well. To compensate for the accuracy degradation caused by truncating
a larger number of singular values, it becomes necessary to update the remaining parameters of the
compressed model. Unfortunately, existing SVD-based LLM compression methods do not take such
update into account, and thus fail to compensate for the accuracy degradation under high model
compression ratios.

In this paper, we propose a SVD-based post-training LLM compression method, which we refer to
as SVD-LLM, that effectively addresses the two fundamental issues of existing methods. SVD-LLM
differs from existing SVD-based LLM compression methods in two key aspects: ❶ Truncation-
Aware Data Whitening: supported by the theoretical proof, SVD-LLM incorporates a truncation-
aware data whitening technique that ensures a direct mapping between singular values and model
compression loss. In doing so, the proposed truncation-aware data whitening technique is able
to identify which singular values should be truncated to incur minimal model compression loss.
❷ Parameter Update with Sequential Low-rank Approximation: to compensate for accuracy
degradation after compression, SVD-LLM sequentially fine-tunes the decomposed low-ranking
matrices for a global accuracy recovery.

We compare SVD-LLM with both state-of-the-art SVD-based LLM compression methods as well
as pruning and quantization-based LLM compression methods. To demonstrate the generability of
SVD-LLM, we conduct our evaluation on a total of 10 datasets and seven models from three different
LLM families (LLaMA, OPT, and Mistral) at three different scales (7B, 13B, 30B), and evaluate the
performance of SVD-LLM on both GPU and CPU. We highlight three of our findings:

• SVD-LLM consistently outperforms state-of-the-art SVD-based LLM compression methods
across all 10 datasets, three LLM families at three scales by a large margin.

• SVD-LLM outperforms state-of-the-art structured pruning-based LLM compression methods
with up to 57% lower perplexity under 7GB memory budget. It also outperforms state-of-
the-art 1-bit post-training quantization-based LLM compression methods. More importantly,
when combined with 2-bit post-training quantization, SVD-LLM outperforms state-of-the-art
1-bit training-required quantization-based LLM compression method, presenting a new way
to achieve state-of-the-art compression performance without incurring expensive retraining.

• LLMs compressed by SVD-LLM are able to achieve inference speedup and memory reduc-
tion when deployed on real hardware. In particular, compared to the original LLMs, models
compressed by SVD-LLM are able to achieve 3.1 times higher throughput on A100 GPU
and 2.3 times higher throughput on AMD EPYC 7643 CPU. Moreover, the weight memory
saving brought by SVD-LLM are near linear to the compression ratio. At the same time,
SVD-LLM is able to reduce runtime KV cache memory without additional accuracy drop.

2 RELATED WORK

Large Language Model Compression: LLMs in general contain billion-scale parameters. Applying
conventional model compression methods for LLMs is unfeasible as they necessitate resource-
intensive retraining. Given that, post-training methods that avoid retraining in the compression
process have been developed. In general, these methods can be grouped into four categories:
unstructured pruning, structured pruning, quantization, and low-rank approximation. Specifically,
unstructured pruning methods set the individual weights of an LLM to zero without changing its shape.
However, the irregular sparsification of unstructured pruning is difficult to achieve the desired speedup
or memory saving and can only demonstrate its best efficiency on certain hardware architecture such
as NVIDIA Ampere GPU. Unlike unstructured pruning, structured pruning methods directly remove
entire channels or other structured components from LLMs, making them easier to implement on
hardware. A notable contribution is LLM-Pruner (Ma et al., 2023), which utilizes a small amount of
data to obtain the weight, parameter, and group importance of the coupled structure for pruning with
LoRA to recover precision. However, due to the great modification of the weight matrix, it suffers
from accuracy degradation especially under high compression ratios, and many follow-up works
such as SliceGPT (Ashkboos et al., 2024) and BlockPruner (Zhong et al., 2024) have been proposed
with better compression performance. Quantization methods, on the other hand, achieve model
compression by reducing the precision of weight matrices of an LLM. However, quantization is not
only difficult to achieve the desired inference speedup (Lin et al., 2024), but also has the drawback
of only providing a limited range of compression options, typically ranging from 2 to 8 bits. This
limited range prevents full utilization of the available memory budget. Recent studies, including

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Wv

Cholesky decomposition

Original
LLM

Layer 1
Layer 2

Layer M Whitening Matrix S

Input Activation

Compressed
LLM

Layer 1

Layer 2

Layer M
...

Weight W

WuW•S
SVD

1 2
Truncation-Aware Data

Whitening
Parameter Update with Sequential

Low-rank Approximation

Calibration Data

Trunc.
Wv

Wu

Wu Wv

Wu Wv

Update Wu

Update Wv

W•S

Figure 1: Overview of SVD-LLM.

PB-LLM (Yuan et al., 2024), and BiLLM (Huang et al., 2024) have focused on 1-bit post-training
quantization. Nevertheless, these approaches often lead to severe accuracy degradation, indicating
that 1-bit quantization remains a challenging aspect of LLM compression.

SVD for LLM Compression: Singular Value Decomposition (SVD) is a widely used technique to
reduce matrix size by approximating a matrix with two smaller low-ranking matrices (Golub et al.,
1987). SVD is commonly used to compress models. Previous work Drone (Chen et al., 2021) has
successfully compressed the Bert model via SVD. In LLM compression, for example, AAFM (Yu
and Wu, 2023) dynamically identifies the compressed model architecture and selectively compresses
the output features of individual linear layers instead of the model weights. LoSparse (Li et al., 2023)
compresses the weight matrix by the sum of a low-rank matrix and a sparse matrix. ARS (Gao et al.,
2024) dynamically allocates the rank of the SVD compression based on the importance of weights in
the LLM. Directly applying SVD on the weight matrix without considering the importance of the
weights leads to a large LLM compression error. To address this issue, Hsu et al. (2022) propose
FWSVD, which introduces Fisher information to weigh the importance of parameters. To make up
for the lack of motivation to apply SVD in the context of LLM compresion, the authors in FWSVD
also provide an analysis of the impact of SVD compression to the final compression performance.
However, FWSVD requires a complex gradient calculation that demands substantial computing
and memory resources for LLM compression. Another problem of vanilla SVD is the distribution
of activation can affect the compression error. To address this issue, Yuan et al. (2023) propose
ASVD, which scales the weight matrix by a diagonal matrix that normalizes the impact of input
channels on the weights. However, all of the SVD-based LLM compression methods, particularly
including FWSVD and ASVD, do not establish a direct relationship between singular values and
compression loss. As a result, truncating the smaller singular values may lead to higher compression
loss. Moreover, as the compression ratio increases, it is necessary to update the compressed weights
due to truncating a great number of singular values. However, existing methods have no design for
this update and thus incur severe accuracy degradation under high compression ratios.

3 SVD-LLM
Figure 1 provides an overview of SVD-LLM. At a high level, SVD-LLM is a SVD-based post-training
LLM compression method. Specifically, following the standard procedure of post-training LLM
compression methods (Frantar and Alistarh, 2023; Yuan et al., 2023; Xiao et al., 2023), SVD-LLM
uses a random set of sentences as calibration data to generate activation for truncation-aware data
whitening. Given the generated activation, SVD-LLM calculates the whitening matrix S through
Cholesky decomposition, and then performs SVD to truncate the multiplication of weight matrices
W and whitening matrix S to compress the LLM. After truncation, SVD-LLM updates the remaining
model parameters with sequential low-rank approximation to recover accuracy. In the following,
we describe both truncation-aware data whitening and parameter update with sequential low-rank
approximation in detail. The pseudocode of SVD-LLM is provided in Appendix A.8.

3.1 TRUNCATION-AWARE DATA WHITENING

Motivation: Due to high variance of input activation, simply applying vanilla SVD for LLM
compression leads to severe accuracy degradation (Yuan et al., 2023). To address this issue, existing
methods (Yuan et al., 2023; Hsu et al., 2022) formulate LLM compression as an optimization problem
with the following objective:

O = min(||WX −W ′X||F) (1)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

2.4 1.8 0.9 0.1

 One Singular Value Multiple Singular Values

Trunc.
1 2

Loss: 1.1 0.7

0.1 0.9

1.9 1.7

0.9 0.1 0.12.4

(a) Data Normalization (ASVD)

2.4 1.8 0.9 0.1

 One Singular Value Multiple Singular Values

Trunc.
1 2

Loss: 0.1 0.9

0.1 0.9 0.9 0.1 0.12.4

0.9 +
2 2

0.1 2.4 0.1+
2 2

(b) Truncation Aware Data Whitening (SVD-LLM)

Figure 2: Compression loss (L = ||WX −W ′X||F) of different data preprocessing methods.

where W is the weight matrix of the original LLM, X is the activation of W , W ′ is the compressed
weight matrix, and ||WX −W ′X||F is the compression loss in the form of Frobenius loss.

Although existing methods attempt to reduce this compression loss during their SVD truncation,
they all fail to establish a direct relationship between singular values and compression loss. As a
consequence, truncating smaller singular values in SVD could lead to significant compression loss.
Taking ASVD (Yuan et al., 2023) as an example, ASVD extracts a diagonal matrix S0 from X where
each element in the diagonal is the absolute mean value of each channel. It then uses S0 to normalize
X and converts WX into (WS0)(S

−1
0 X). Subsequently, SVD is performed on WS0 to obtain the

decomposed matrices U0, Σ0, and V0. Lastly, ASVD truncates the smallest singular values in Σ0 to
obtain the compressed weight matrix W ′

0 = U0 × Trunc.(Σ0)× V0 × S−1
0 .

Although normalizing the activation improves the performance, ASVD does not establish a direct rela-
tionship between singular values and compression loss (a detailed proof is included in Appendix A.1).
To better illustrate this point, we show two concrete examples in Figure 2(a). In the first example
❶ where only one singular value is truncated, truncating the smallest singular value 0.1 results in a
higher compression loss (loss = 1.1) than truncating the second smallest singular value 0.9 (loss =
0.7). In the second example ❷ where multiple singular values are truncated, truncating the smallest
two singular values 0.9 and 0.1 also leads to a higher loss (loss = 1.9) than truncating 2.4 and 0.1
(loss = 1.7). Hence, truncating the smallest singular values does not lead to minimal loss.

Key Design: The key idea of SVD-LLM is to incorporate a truncation-aware data whitening tech-
nique that ensures a direct mapping between singular values and compression loss. To achieve
this, SVD-LLM enforces the whitened activation S−1X to be orthonormal such that each channel
is independent of each other, i.e., (S−1X)(S−1X)T = S−1XXT (S−1)T = I , where S is de-
rived through Cholesky decomposition (Meyer, 2000). Then we perform SVD on WS to obtain
the decomposed matrices U,Σ, V , where U = [u1, u2, u3, ..., ur], Σ = diag(σ1, σ2, σ3, · · · , σr),
and V = [v1, v2, v3, ..., vr]. Lastly, the smallest singular values in Σ are truncated to ob-
tain the compressed weight matrix W ′ = U × Trunc.(Σ) × V T × S−1. To save the model
memory, SVD-LLM replace the original matrix W with the two smaller and low-ranking ones
Wu = U × [Trunc.(Σ)]

1
2 ,Wv = [Trunc.(Σ)]

1
2 × V T × S−1 in the compressed LLM.

Figure 2(b) illustrates the effect of the proposed truncation-aware data whitening method. In the first
example ❶ where only one singular value is truncated, the compression loss equals to the truncated
singular value. In the second example ❷, the compression loss of truncating multiple singular values
equals to the square root of the sum of their squares. As such, under the proposed truncation-aware
data whitening method, truncating the smallest singular values leads to minimal compression loss.

In the following, we provide a theoretical proof on why the proposed truncation-aware data whitening
technique ensures a direct mapping between singular values and compression loss in the case of one
singular value (Theorem 3.2) and multiple singular values (Corollary 3.3). To further illustrate the
feasibility of our proposed technique in compressing LLM, we also provide the spectrum analysis of
the singular values obtained by our technique in Appendix A.4.
Lemma 3.1. The Frobenius norm of matrix A with dimension m× n can be deduced into the square
root of the trace of its gram matrix, which is:

∥A∥F ≜

 n∑
j=1

m∑
i=1

|aij |2
 1

2

=
[
trace

(
ATA

)] 1
2 (2)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Using Lemma 3.1, we obtain the compression loss Li when truncating the ith singular value of WS
to reduce its rank for compression:

Li = ∥WX −W ′X∥F =
∥∥WSS−1X − SV D(WS)S−1X

∥∥
F
=
∥∥(WS − SV D(WS))S−1X

∥∥
F

=
∥∥σiuiv

T
i S

−1X
∥∥
F
= σi trace

(
uiv

T
i S

−1XXT
(
S−1

)T
viu

T
i

) 1
2

(3)

Since both U = [u1, u2, u3, ..., ur] and V = [v1, v2, v3, ..., vr] are orthonormal matrices, we have:

vTi vi = uT
i ui = 1; vTi vj = uT

i uj = 0,∀i ̸= j; trace(viv
T
i) = trace(uiu

T
i) = 1 (4)

Theorem 3.2. If S is the Cholesky decomposition of XXT , the compression loss Li equals to σi.

Proof. Since the whitening matrix S is the Cholesky decomposition of XXT , we have SST = XXT .
We can further infer Equation (3) to obtain:

Li = σi trace(uiv
T
i viu

T
i)

1
2 = σi trace

(
ui

(
vTi vi

)
uT
i

) 1
2 = σi trace

(
uiu

T
i

) 1
2 = σi (5)

Therefore, Li of truncating σi equals to the singular value σi itself.

Corollary 3.3. If S is the Cholesky decomposition of XXT , truncating the smallest singular values
leads to the lowest loss L compared to truncating others.

Proof. If we truncate σm+1, σm+2, σm+3, ..., σr in Σ for compression, the square of the loss L is:

L2 =

∣∣∣∣∣
∣∣∣∣∣

r∑
i=m+1

σiuiv
T
i S

−1X

∣∣∣∣∣
∣∣∣∣∣
2

F

=

r∑
j=m+1

r∑
i=m+1

σiσj trace(uiv
T
i S

−1XXT (S−1)T vju
T
j)

=

r∑
i=m+1

σ2
i trace(uiv

T
i S

−1XXT (S−1)T viu
T
i) =

r∑
i=m+1

(Li)
2 =

r∑
i=m+1

(σi)
2

(6)

The squared loss L2 equals to the sum of the squared singular values (More detailed derivation is in
Appendix A.2). Truncating the smallest singular values achieves the lowest compression loss.

Apart from aligning the SVD truncation with the compression loss, our data whitening method
can even obtain the optimal minimization of compression loss, which has been achieved by Drone
on small model but unable to be applied for LLM. More detailed analysis about the optimality of
SVD-LLM and comparison with Drone are provided in Appendix A.10.

3.2 PARAMETER UPDATE WITH SEQUENTIAL LOW-RANK APPROXIMATION

Motivation: Although aligning SVD truncation with the compression loss, as done in Section 3.1
helps to preserve the accuracy degradation during compression, with the increase of compression
ratio, the performance of the compressed LLM may still become worse since more and more larger
singular values will get truncated by SVD compression. Therefore, it is necessary to update the
remaining parameters in the compressed LLM.

Key Design: Driven by previous post-training LLM compression works (Ma et al., 2023), SVD-LLM
uses LoRA fine-tuning to update the remaining weight parameters of the compressed LLM for
accuracy recovery. Specifically, suppose that we decompose the original weight matrix W into two
low-ranking matrices Wu,Wv with SVD-LLM, as discussed in the pseudocode in Appendix A.8.
Instead of directly fine-tuning the compressed weight matrix W ′ = Wu×Wv , which would break its
low-rank structure, we treat Wu and Wv as two linear layers and update them sequentially as follows:

Y = W ′
u ×W ′

v ×X (7)

where W ′
u = Wu+BuAu, W ′

v = Wv+BvAv , and Au, Bu, Av , and Bv are matrices used for LoRA
fine-tuning. Simultaneously fine-tuning Wu and Wv will not guarantee a decrease in fine-tuning
loss. This is because the derivatives of Wu and Wv are interdependent during the fine-tuning process,
meaning that changes in one matrix may counteract or interfere with the optimization of the other. As

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Table 1: Performance of LLaMA-7B compressed by SVD-LLM (SVD-LLM * denote the version
without parameter update with sequential low-rank approximation) and baselines under different
compression ratio (corresponding weight memory is listed inside bracket) on two language modeling
datasets (measured by perplexity (↓)), eight common sense reasoning datasets (six measured by
both individual and average accuracy (↑), TruthfulQA measured by BLEU score (↑), and GSM8K
measured by Exact Match Accuracy (↑)). The best performance is marked in bold. The relative
performance gain compared to the best-performing baseline is marked in green inside bracket.

RATIO (MEM.) METHOD WikiText-2↓ C4↓ Openb. ARC_e WinoG. HellaS. PIQA MathQA Average↑ TruthfulQA↑ GSM8K↑
0% (13.5 GB) Original 5.68 7.34 0.34 0.75 0.70 0.57 0.79 0.27 0.57 0.30 0.09

20% (10.2 GB)

SVD 20061 18800 0.05 0.04 0.01 0.03 0.02 0.03 0.03 0.00 0.00
FWSVD 1727 1511 0.09 0.11 0.05 0.08 0.10 0.05 0.08 0.00 0.00
ASVD 11.14 15.93 0.29 0.53 0.64 0.41 0.68 0.17 0.45 0.21 0.04

SVD-LLM * 7.94 (↓29%) 15.84 (↓1%) 0.31 0.62 0.61 0.45 0.71 0.21 0.49 (↑9%) 0.26 (+0.05) 0.05 (+0.01)
SVD-LLM 6.73 (↓40%) 9.81 (↓38%) 0.33 0.67 0.69 0.55 0.79 0.26 0.55 (↑22%) 0.28 (+0.07) 0.08 (+0.04)

40% (7.76 GB)

SVD 52489 47774 0.04 0.04 0.05 0.01 0.03 0.02 0.03 0.00 0.00
FWSVD 18156 12847 0.06 0.05 0.02 0.00 0.05 0.03 0.04 0.00 0.00
ASVD 1407 1109 0.08 0.11 0.09 0.08 0.13 0.08 0.10 0.01 0.00

SVD-LLM * 13.73 (↓99%) 75.42 (↓93%) 0.25 0.33 0.61 0.40 0.63 0.12 0.39 (↑290%) 0.17 (+0.17) 0.02 (+0.02)
SVD-LLM 8.18 (↓99%) 12.61 (↓99%) 0.29 0.59 0.68 0.52 0.69 0.20 0.50 (↑400%) 0.24 (+0.23) 0.07 (+0.07)

60% (5.35 GB)

SVD 105474 106976 0.01 0.03 0.01 0.00 0.01 0.02 0.01 0.00 0.00
FWSVD 32194 29292 0.06 0.02 0.01 0.01 0.02 0.03 0.03 0.00 0.00
ASVD 57057 43036 0.05 0.04 0.06 0.09 0.08 0.05 0.06 0.00 0.00

SVD-LLM * 66.62 (↓99%) 471.83 (↓99%) 0.10 0.05 0.17 0.10 0.21 0.04 0.11 (↑83%) 0.01 (+0.01) 0.00(+0.00)
SVD-LLM 13.31 (↓99%) 19.72 (↓99%) 0.27 0.52 0.60 0.41 0.66 0.21 0.45 (↑650%) 0.04 (+0.04) 0.04(+0.04)

80% (2.58 GB)

SVD 687291 708243 0.00 0.04 0.02 0.01 0.01 0.00 0.01 0.00 0.00
FWSVD 96872 89243 0.01 0.02 0.00 0.06 0.09 0.00 0.03 0.00 0.00
ASVD 80425 67927 0.04 0.03 0.03 0.07 0.10 0.01 0.05 0.00 0.00

SVD-LLM * 1349 (↓98%) 6224 (↓91%) 0.07 0.01 0.12 0.10 0.07 0.06 0.07 (↑40%) 0.00 (+0.00) 0.00 (+0.00)
SVD-LLM 31.79 (↓99%) 43.71 (↓99%) 0.21 0.33 0.51 0.29 0.53 0.21 0.35 (↑600%) 0.14 (+0.14) 0.02 (+0.02)

a result, the overall effect on the fine-tuning loss function can be unpredictable and may not always
lead to a reduction in loss. Therefore, as depicted in Figure 1, we propose a sequential fine-tuning
strategy in SVD-LLM. To better illustrate the effectiveness of our sequential fine-tuning strategy
compared to the normal simultaneous fine-tuning, we provide a comparison in Appendix A.12.
Specifically, we first freeze matrix Wv and fine-tune Wu with LoRA for all the decomposed weight
matrices in the LLM. We then perform the second-round LoRA fine-tuning on the matrix Wv while
freezing the updated weight matrix Wu. Finally, we fuse the Au, Bu, Av , and Bv matrices into Wu

and Wv as the final compressed matrices.

4 EXPERIMENTS AND ANALYSIS

Experiment Setup. We compare SVD-LLM against three groups of methods. (1) We com-
pare SVD-LLM with vanilla SVD and state-of-the-art SVD-based LLM compression methods:
FWSVD (Hsu et al., 2022), ASVD (Yuan et al., 2023) (Section 4.1) and FLAP (Appendix A.11). (2)
We compare SVD-LLM with other types of LLM compression methods. These include three state-of-
the-art pruning-based LLM compression methods: LLM-Pruner (Ma et al., 2023), SliceGPT (Ashk-
boos et al., 2024), and BlockPruner (Zhong et al., 2024), and three state-of-the-art quantization-
based LLM compression methods: PB-LLM (Yuan et al., 2024), BiLLM (Huang et al., 2024), and
OneBit (Xu et al., 2024) (Section 4.4). (3) Lastly, we compare SVD-LLM against smaller LLM
StableLM-3B (Tow et al.) pre-trained from scratch (Appendix A.7). More experimental setups are
provided in Appendix A.3 due to page limit.

4.1 COMPARISON WITH STATE-OF-THE-ART SVD-BASED LLM COMPRESSION METHODS

First, we compare the performance of SVD-LLM with state-of-the-art SVD-based LLM compression
methods from three aspects: (1) performance under different compression ratios, (2) performance on
different LLMs, and (3) performance on LLMs with larger scales. The compression speed analysis
is provided in Appendix A.5. Driven from FLAP An et al. (2023), to ensure a fair comparison, we
not only evaluate the integrated SVD-LLM to show its best accuracy, but also compare SVD-LLM
without without parameter update with sequential low-rank approximation (denoted as SVD-LLM
*) with other baselines under the no LoRA fine-tuning setting. Example contents generated by the
compressed LLMs are included in Appendix A.6.

Performance under Different Compression Ratios. We first evaluate the performance of LLaMA-
7B compressed by SVD-LLM and the SVD-based baselines under compression ratios ranging from
20% to 80% on all 10 datasets. Table 1 summarizes the results. Both SVD-LLM and SVD-LLM *
without LoRA fine-tuning consistently outperforms vanilla SVD, FWSVD and ASVD across all the

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 2: Perplexity (↓) of SVD-LLM (SVD-LLM * denote the version without parameter update with
sequential low-rank approximation) and baselines on WikiText-2 and the average accuracy (↑) of the
six common sense reasoning datasets of four different LLMs – OPT-6.7B, LLaMA 2-7B, Mistral-7B,
and Vicuna-7B – under 20% compression ratio. The relative performance gain compared to the
best-performing baseline is marked in green color inside bracket.

OPT-6.7B LLAMA 2-7B MISTRAL-7B VICUNA-7B

METHOD Perplexity↓ Accuracy↑ Perplexity↓ Accuracy↑ Perplexity↓ Accuracy↑ Perplexity↓ Accuracy↑
Original 10.86 0.52 5.47 0.57 5.25 0.61 6.78 0.56

SVD 66275 0.03 18192 0.09 159627 0.03 18644 0.05
FWSVD 14559 0.06 2360 0.12 6357 0.08 2758 0.09
ASVD 82.00 0.32 10.10 0.36 13.72 0.32 16.23 0.33

SVD-LLM * 16.04 (↓80%) 0.41 (↑28%) 8.50 (↓16%) 0.53 (↑47%) 10.21 (↓26%) 0.42 (↑24%) 8.41 (↓48%) 0.51 (↑55%)
SVD-LLM 11.61 (↓86%) 0.48 (↑50%) 6.07 (↓40%) 0.56 (↑56%) 6.01 (↓56%) 0.59 (↑84%) 7.43 (↓54%) 0.54 (↑64%)

compression ratios. In particular, when the compression ratio reaches 40% and above, SVD-LLM
reduces the perplexity by more than 99% on two language modeling datasets and achieves over
400% higher average accuracy on six classification datasets. More importantly, the results on two
generation datasets ((TruthfulQA, GSM8K) of all three baselines when compression ratios are 60%
and above are zero, meaning that the compressed LLMs totally lose their generation ability. In
contrast, SVD-LLM still outputs good generation even under the 80% compression ratio. These
results indicate that SVD-LLM is more effective in compressing LLMs for more resource-constrained
devices such as smartphones and IoT devices.

Table 3: Perplexity (↓) of SVD-LLM (SVD-LLM
* denote the version without parameter update
with sequential low-rank approximation) and
baselines on WikiText-2 and the average ac-
curacy (↑) of the six classification datasets of
LLaMA-13B and LLaMA-30B under 20% com-
pression ratio. The relative performance gain
compared to the best-performing baseline is
marked in green color inside bracket.

LLAMA-13B LLAMA-30B

METHOD Perplexity↓ Accuracy↑ Perplexity↓ Accuracy↑
Original 5.09 0.59 4.10 0.61

SVD 946.31 0.21 54.11 0.33
FWSVD 15.98 0.43 20.54 0.42
ASVD 6.74 0.54 22.71 0.44

SVD-LLM * 6.61 (↓2%) 0.54 (↑0%) 5.63 (↓75%) 0.57 (↑30%)
SVD-LLM 5.18 (↓23%) 0.58 (↑7%) 4.54 (↓80%) 0.61 (↑39%)

Performance on Different LLMs. To exam-
ine the generability of SVD-LLM across differ-
ent LLMs, we compare the performance between
SVD-LLM and the baselines on four different mod-
els from three different LLM families – OPT-
6.7B (OPT family), LLaMA 2-7B (LLaMA fam-
ily), Mistral-7B (Mistral family), and Vicuna-7B
(LLaMA family) – under 20% compression ratio
on WikiText-2 and six classification datasets. As
shown in Table 2, SVD-LLM consistently outper-
forms baselines on all four LLMs, and exhibits
more stable performance across different LLMs,
especially compared to vanilla SVD and FWSVD.

Performance on LLMs with Larger Scales. To
examine the generability of SVD-LLM on LLMs
with larger scales, we compare the performance
between SVD-LLM and the baselines on LLaMA-
13B, and LLaMA-30B under 20% compression ratio. As shown in Table 3, SVD-LLM consistently
outperforms vanilla SVD, FWSVD, and ASVD on both of the two model sizes.

4.2 INFERENCE EFFICIENCY OF SVD-LLM

Theoretical Analysis of Inference Efficiency. Suppose SVD-LLM compresses the weight matrix
W ∈ Rd×n into two low-ranking matrices Wu ∈ Rd×r,Wv ∈ Rr×n, as discussed in the pseudocode
in Appendix A.8. The compression ratio Rw will be Rw = 1− (d+n)r

dn
.

(1) Compute Complexity Analysis: Given the input X ∈ Rn×d, instead of recalculating the full
weight matrix W ′ = Wu ×Wv and then compute the output W ′ ×X, we calculate the intermediate
state M = Wv ×X and then compute the output Y = Wu ×M . In this way, the compute complexity
will be reduced from original O

(
d2n

)
to O

(
d2r + rnd

)
. If we set the compression ratio Rw = 50%,

since Rw = 1 − (d+n)r
dn

, we have, r = dn
2(d+n)

. The compute complexity will be O
(
d2r + rnd

)
=

O(rd(d+ n)) = O
(

d2n
2

)
= 1

2
O
(
d2n

)
, which reduces 50%. Similarly, given a compression ratio Rw,

the compute complexity will also be reduced to 1−Rw times of the original.

(2) Inference Memory Analysis: Since SVD-LLM does not recalculate the full weight W ′ = Wu ×
Wv, the weight memory will still be reduced to 1−Rw times of the original one during inference.
Additionally, SVD-LLM is able to reduce the runtime KV cache memory without further losing

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

64 128 256 512
Batch Size

800
1600
2400
3200
4000

To
ke

ns
 /

se
c

2220

2925

3678
3983

1591
2041

2354
2707

1257
1606 1794 1886

1032
1303 1483 1524

1006 1190 1284 1280

Ratio=80% Ratio=60% Ratio=40% Ratio=20% Original

64 128 256 512
Batch Size

800
1600
2400
3200
4000

To
ke

ns
 /

se
c

(a) Varying Batch Size on GPU

32 64 128 256
Sequence Length

800
1200
1600
2000
2400

To
ke

ns
 /

se
c

(b) Varying Sequence Length on GPU

64 128 256 512
Batch Size

50
150
250
350

To
ke

ns
 /

se
c

(c) Varying Batch Size on CPU

32 64 128 256
Sequence Length

40

80

120

To
ke

ns
 /

se
c

(d) Varying Sequence Length on CPU

Figure 3: Throughput (Tokens/sec) of original LLaMA-7B and its compressed version by SVD-LLM
under different compression ratio on single A100 GPU (Figure (a),(b)) and single AMD EPYC 7643
CPU (Figure (c),(d)). Figure (a),(c) is the comparison with different batch size while sequence length
= 32, Figure (b), (d) is the comparison with different sequence length while batch size = 64.

accuracy. Specifically, instead of keeping Wu ×Wv ×X into the KV cache, SVD-LLM provides the
option to store the intermediate result M = Wv ×X into the KV cache and recompute the original
key and value states with the decomposed weight matrix Wu if required. Therefore, the memory of
the runtime KV cache will be reduced to r

d
= (1−Rw)× d

n+d
times of the original. Moreover, since

Wu is already stored as the weight matrix in the decomposed LLM, the original intermediate state
matrix can still be recovered by Y = Wu ×M without accuracy drop. Therefore, SVD-LLM provides
a unified solution that combines model compression and KV cache compression into a single process.
This is different from existing quantization or parameter pruning-based LLM compression methods
that need to be combined with other techniques for compressing both weights and KV cache.

Inference Speedup on Hardware. To quantify the inference speedup achieved by SVD-LLM, we
measure the numbers of tokens that the original LLaMA-7B and its compressed version by SVD-LLM
generate per second with different batch sizes and sequence lengths on a single NVIDIA A100
GPU and a single AMD EPYC 7643 CPU. As shown in Figure 3, SVD-LLM consistently ensures
an enhancement in the generation speed across all the compression ratios. More importantly, the
enhancement becomes more significant as the batch size increases and the sequence length decreases,
resulting in a maximum speedup of 1.2x on GPU and 1.1x on CPU under 20% compression ratio,
1.7x on GPU and 1.5x on CPU under 40% compression ratio, 2.1x on GPU and 1.64x on CPU under
60% compression ratio, and 3.1x on GPU and 2.3x on CPU under 80% compression ratio.

Inference Memory Reduction on Hardware. SVD-LLM is able to compress not only LLMs but
also the runtime KV cache at the same time. In this experiment, we evaluate the inference memory
saving, including the compressed weight memory and the runtime KV cache memory saving on
a single A100 GPU. Specifically, we measure the peak memory footprint during inference when
generating 128 tokens with batch size of 32 using LLaMA-7B compressed by SVD-LLM under
different compression ratios w/ and w/o considering KV cache reduction. The results are illustrated
in Figure 4 where the memory reduction from the dotted line to the blue bars comes mainly from
model compression and the memory reduction from the blue to the yellow bars comes mainly from
the reduced footprint of the KV cache. As shown, the weight memory saving brought by SVD-LLM
is near linear to the compression ratio, which meets other previous theoretical analyses. Moreover,
SVD-LLM is able to save additional 51% memory from its KV cache under 80% compression ratio.

4.3 ABLATION STUDY

In this section, we provide three ablation studies of SVD-LLM while more are provided in Ap-
pendix A.12 due to page limit.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 4: Peak memory to generate 128 tokens
with batch size of 32 using LLaMA-7B com-
pressed by SVD-LLM w/ and w/o KV-cache reduc-
tion. The dotted line indicates the peak memory of
the original LLaMA-7B. The memory reduction
from the dotted line to the blue bars mainly comes
from the model compression. The memory reduc-
tion from the blue to the yellow bars mainly comes
from the reduced footprint of the KV cache.

Table 4: Perplexity (↓) of compressed LLaMA-
7B on WikiText-2 under different compression
ratios. SVD-LLM (W) denotes the version of
SVD-LLM with truncation-aware data whiten-
ing only; SVD-LLM (U) denote the version of
SVD-LLM with parameter update with sequen-
tial low-rank approximation only; SVD-LLM
(W+U) denotes the version of SVD-LLM with
both truncation-aware data whitening and param-
eter update with sequential low-rank approxima-
tion. The relative performance gain compared to
ASVD is marked in green color inside bracket.

METHOD 20% 40% 60%

ASVD 11.14 1407 57057

SVD-LLM (W) 7.94 (↓29%) 13.11 (↓99%) 42.30 (↓99%)

SVD-LLM (U) 10.12 (↓9%) 19.28 (↓99%) 49.88 (↓99%)

SVD-LLM (W+U) 6.73 (↓40%) 8.18 (↓99%) 13.31 (↓99%))

Modular Sensitivity Study. We conduct ablation studies to evaluate the separate contributions of
the two key components (i.e., truncation-aware data whitening and parameter update with sequential
low-rank approximation) of SVD-LLM. Let SVD-LLM (W) denote the version of SVD-LLM with
truncation-aware data whitening only; SVD-LLM (U) denote the version of SVD-LLM with normal
SVD truncation and parameter update with sequential low-rank approximation; and SVD-LLM
(W+U) denote the version of SVD-LLM with both truncation-aware data whitening and parameter
update with sequential low-rank approximation. As shown in Table 4. We have three observations.
(1) SVD-LLM (W), SVD-LLM (U) and SVD-LLM (W+U) consistently outperform ASVD across
all the compression ratios. Notably, when the compression ratio is at and above 40%, all variants
reduce the perplexity by more than 99% compared to ASVD. (2) SVD-LLM (W+U) consistently
outperforms SVD-LLM (U) across all compression ratios and SVD-LLM (W) achieves a lower
perplexity compared to SVD-LLM (U) across all compression ratios, highlighting the effectiveness
of truncation-aware data whitening component in SVD-LLM. (3) With the increase of compression
ratio, SVD-LLM (W+U) achieves a much lower perplexity compared to SVD-LLM (W), highlighting
the importance of combining both components in SVD-LLM when the compression ratio increases.

Impact of Calibration Data. Next, we examine the impact of calibration data used for both
truncation-aware data whitening on the compression performance. Figure 5 and Table 6 summarize
the performance of compressed LLaMA-7B when changing three key characteristics of the calibration
data: (1) the number of the calibration data, (2) the seed used to randomly sample the calibration data,
and (3) the data set from which the calibration data is sampled. As shown, the changes on calibration
data incur no more than 2% to the final performance, demonstrating that the sensitivity of SVD-LLM
on calibration data is limited.

Impact of Updating Order. We finally examine the impact of updating order in parameter update
with sequential low-rank approximation component to the final performance of the compressed LLM.
Table 5 summarizes the performance of compressed LLaMA-7B under 20% to 80% compression
ratios on WikiText-2 with different updating order. As shown, there is only a small difference of the
final performance between updating matrix U first and updating matrix V first, indicating SVD-LLM
is not sensitive to the updating order.

4.4 COMPARISON WITH OTHER TYPES OF LLM COMPRESSION METHODS

SVD-LLM is orthogonal to other post-trainingLLM compression methods including quantization
and pruning. In this experiment, we compare the performance of SVD-LLM with the state-of-the-
art structured pruning-based and quantization-based LLM compression methods. As discussed in
Section 2, since unstructured pruning methods are difficult to realize its efficiency, we do not make a
comparison with them in this experiment.

Comparison with Structured Pruning. First, we compare SVD-LLM with three state-of-
the-art structured pruning-based LLM compression methods: LLM-Pruner (Ma et al., 2023),
SliceGPT (Ashkboos et al., 2024), and BlockPruner (Zhong et al., 2024) under the same com-
pressed weight memory, ranging from 10GB to 7GB. The results on LLaMA-7B are shown in Table 7.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

32 64 128 256 512
Number of data (x2048 tokens)

6.70

6.78

6.93

Pe
rp

le
xi

ty

(a) Change of Number

3 10 42 57 100
Seed for Random Sampling

6.70

6.73

6.78

Pe
rp

le
xi

ty

(b) Change of Seed

Figure 5: Perplexity of LLaMA-7B under 20%
compression ratio using calibration data sampled
with different number or seeds from WikiText-2.

Table 5: Perplexity of LLaMA-7B compressed by
SVD-LLM under 20% to 80% compression ratio
on WikiText-2 with different updating order.

UPDATING ORDER 20% 40% 60% 80%

V first, then U 6.85 8.32 13.20 (↓1%) 31.67(↓1%)

U first, then V 6.73 (↓2%) 8.18 (↓2%) 13.31 31.79

Table 6: Performance of LLaMA-7B compressed
by SVD-LLM under 20% compression ratio us-
ing calibration data sampled from WikiText-2
(by default in our paper) and C4 datasets. The
performance on WikiText-2 and C4 are reported
by perplexity (↓), while the performance on six
downstream datasets are reported by average ac-
curacy (↑). The performance on TruthfulQA and
GSM8K are reported by BLEU score(↑) and Ex-
act Match Accuracy (↑) respectively. The rela-
tive performance gain for data sampled from one
dataset compared to another is marked in green
color inside bracket.

WikiText-2↓ C4↓ Average↑ TruthfulQA↑ GSM8K↑
Calibration data sampled from WikiText-2

6.73 (↓1%) 9.81 0.55 (↑2%) 0.28 0.08

Calibration data sampled from C4

6.79 9.62 (↓2%) 0.54 0.28 0.08

Table 7: Perplexity (↓) of LLaMA-7B compressed
by structured pruning methods and SVD-LLM un-
der various weight memory budget on WikiText-2.
The relative performance gain compared to the best-
performing baseline is marked in green.

PERPLEXITY UNDER WEIGHT MEMORY BUDGET

METHOD 10 GB 9 GB 8 GB 7 GB

LLM-Pruner 9.88 12.21 18.94 21.68
SliceGPT 8.78 12.73 16.39 27.41

BlockPruner 9.4 12.76 19.78 43.05

SVD-LLM 6.92 (↓26%) 7.38 (↓40%) 8.02 (↓51%) 9.23 (↓57%)

Table 8: Perplexity (↓) of LLaMA-7B com-
pressed by 1-bit quantization methods and
SVD-LLM on WikiText-2. The relative perfor-
mance gain compared to the best-performing
baseline is marked in green.

METHOD TYPE MEMORY PERPLEXITY

PB-LLM Post-training 1.9 GB 104.83
BiLLM Post-training 1.5 GB 47.67

SVD-LLM Post-training 1.5 GB 47.21 (↓1%)

OneBit Training-required 1.3 GB 10.20

SVD-LLM + QuIP# Post-training 1.3 GB 9.83 (↓4%)

SVD-LLM outperforms all state-of-the-art structured pruning-based LLM compression methods. In
particular, SVD-LLM achieves up to 57% reduction in perplexity under the 7G memory budget.

Comparison with Quantization. Finally, we compare SVD-LLM with three state-of-the-
art quantization-based LLM compression methods that push the frontier to 1-bit quantization:
BiLLM (Huang et al., 2024), PB-LLM (Yuan et al., 2024), and OneBit (Xu et al., 2024). Both
BiLLM and PB-LLM are post-training methods, and OneBit is training-required. The results on
LLaMA-7B are shown in Table 8: We have three observations: (1) Among all the post-training
methods, SVD-LLM achieves the best performance compared to PB-LLM and BiLLM. (2) Training-
required method OneBit outperforms SVD-LLM. This result is expected. This is because OneBit
belongs to training-required method, which involves retraining using the large-scale dataset with
intensive computing resources to boost performance after compression. However, compared to post-
training methods such as SVD-LLM which does not require retraining, training-required method is
way too expensive. (3) Lastly, by combining SVD-LLM with a 2-bit post-training quantization-based
LLM compression method QuIP# (Tseng et al., 2024), we can outperform training-required method
OneBit without expensive retraining. This result is important, because it introduces a highly efficient
post-training approach that outperforms state-of-the-art 1-bit training-required quantization-based
LLM compression method without incurring expensive retraining.

5 CONCLUSION

In this paper, we presented SVD-LLM, a SVD-based post-training LLM compression method.
SVD-LLM proposes a novel truncation-aware data whitening strategy to guide which singular values
to be truncated with minimal compression loss. It also introduces a parameter update with sequential
low-rank approximation to compensate for accuracy degradation. We evaluated SVD-LLM on 10
datasets and seven models from three LLM families at three scales. Our results demonstrate the
superiority of SVD-LLM over state-of-the-arts, especially at high model compression ratios.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Aida Amini, Saadia Gabriel, Shanchuan Lin, Rik Koncel-Kedziorski, Yejin Choi, and Hannaneh
Hajishirzi. Mathqa: Towards interpretable math word problem solving with operation-based
formalisms. In NAACL-HLT (1), pages 2357–2367. Association for Computational Linguistics,
2019.

Yongqi An, Xu Zhao, Tao Yu, Ming Tang, and Jinqiao Wang. Fluctuation-based adaptive structured
pruning for large language models, 2023.

Saleh Ashkboos, Maximilian L. Croci, Marcelo Gennari Do Nascimento, Torsten Hoefler, and James
Hensman. Slicegpt: Compress large language models by deleting rows and columns. In ICLR.
OpenReview.net, 2024.

Yonatan Bisk, Rowan Zellers, Ronan Le Bras, Jianfeng Gao, and Yejin Choi. PIQA: reasoning about
physical commonsense in natural language. In AAAI, pages 7432–7439. AAAI Press, 2020.

Patrick H. Chen, Hsiang-Fu Yu, Inderjit S. Dhillon, and Cho-Jui Hsieh. DRONE: data-aware low-rank
compression for large NLP models. In NeurIPS, pages 29321–29334, 2021.

Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna: An
open-source chatbot impressing gpt-4 with 90%* chatgpt quality, March 2023. URL https:
//lmsys.org/blog/2023-03-30-vicuna/.

Peter Clark, Isaac Cowhey, Oren Etzioni, Tushar Khot, Ashish Sabharwal, Carissa Schoenick, and
Oyvind Tafjord. Think you have solved question answering? try arc, the AI2 reasoning challenge.
CoRR, abs/1803.05457, 2018.

Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, Christopher Hesse, and John
Schulman. Training verifiers to solve math word problems. CoRR, abs/2110.14168, 2021.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, Anirudh Goyal, Anthony Hartshorn,
Aobo Yang, Archi Mitra, Archie Sravankumar, Artem Korenev, Arthur Hinsvark, Arun Rao, Aston
Zhang, Aurélien Rodriguez, Austen Gregerson, Ava Spataru, Baptiste Rozière, Bethany Biron,
Binh Tang, Bobbie Chern, Charlotte Caucheteux, Chaya Nayak, Chloe Bi, Chris Marra, Chris
McConnell, Christian Keller, Christophe Touret, Chunyang Wu, Corinne Wong, Cristian Canton
Ferrer, Cyrus Nikolaidis, Damien Allonsius, Daniel Song, Danielle Pintz, Danny Livshits, David
Esiobu, Dhruv Choudhary, Dhruv Mahajan, Diego Garcia-Olano, Diego Perino, Dieuwke Hupkes,
Egor Lakomkin, Ehab AlBadawy, Elina Lobanova, Emily Dinan, Eric Michael Smith, Filip
Radenovic, Frank Zhang, Gabriel Synnaeve, Gabrielle Lee, Georgia Lewis Anderson, Graeme
Nail, Grégoire Mialon, Guan Pang, Guillem Cucurell, Hailey Nguyen, Hannah Korevaar, Hu Xu,
Hugo Touvron, Iliyan Zarov, Imanol Arrieta Ibarra, Isabel M. Kloumann, Ishan Misra, Ivan
Evtimov, Jade Copet, Jaewon Lee, Jan Geffert, Jana Vranes, Jason Park, Jay Mahadeokar, Jeet
Shah, Jelmer van der Linde, Jennifer Billock, Jenny Hong, Jenya Lee, Jeremy Fu, Jianfeng Chi,
Jianyu Huang, Jiawen Liu, Jie Wang, Jiecao Yu, Joanna Bitton, Joe Spisak, Jongsoo Park, Joseph
Rocca, Joshua Johnstun, Joshua Saxe, Junteng Jia, Kalyan Vasuden Alwala, Kartikeya Upasani,
Kate Plawiak, Ke Li, Kenneth Heafield, Kevin Stone, and et al. The llama 3 herd of models. CoRR,
abs/2407.21783, 2024.

Elias Frantar and Dan Alistarh. Sparsegpt: Massive language models can be accurately pruned in one-
shot. In ICML, volume 202 of Proceedings of Machine Learning Research, pages 10323–10337.
PMLR, 2023.

Leo Gao, Jonathan Tow, Baber Abbasi, Stella Biderman, Sid Black, Anthony DiPofi, Charles Foster,
Laurence Golding, Jeffrey Hsu, Alain Le Noac’h, Haonan Li, Kyle McDonell, Niklas Muennighoff,
Chris Ociepa, Jason Phang, Laria Reynolds, Hailey Schoelkopf, Aviya Skowron, Lintang Sutawika,
Eric Tang, Anish Thite, Ben Wang, Kevin Wang, and Andy Zou. A framework for few-shot
language model evaluation, 12 2023. URL https://zenodo.org/records/10256836.

11

https://lmsys.org/blog/2023-03-30-vicuna/
https://lmsys.org/blog/2023-03-30-vicuna/
https://zenodo.org/records/10256836

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Shangqian Gao, Ting Hua, Yen-Chang Hsu, Yilin Shen, and Hongxia Jin. Adaptive rank selections
for low-rank approximation of language models. In NAACL-HLT, pages 227–241. Association for
Computational Linguistics, 2024.

G.H. Golub, Alan Hoffman, and G.W. Stewart. A generalization of the eckart-young-mirsky matrix ap-
proximation theorem. Linear Algebra and its Applications, 88-89:317–327, 1987. ISSN 0024-3795.
doi: https://doi.org/10.1016/0024-3795(87)90114-5. URL https://www.sciencedirect.
com/science/article/pii/0024379587901145.

Roberto Gozalo-Brizuela and Eduardo C. Garrido-Merchán. A survey of generative AI applications.
CoRR, abs/2306.02781, 2023.

Yen-Chang Hsu, Ting Hua, Sungen Chang, Qian Lou, Yilin Shen, and Hongxia Jin. Language model
compression with weighted low-rank factorization. In ICLR. OpenReview.net, 2022.

Wei Huang, Yangdong Liu, Haotong Qin, Ying Li, Shiming Zhang, Xianglong Liu, Michele Magno,
and Xiaojuan Qi. Billm: Pushing the limit of post-training quantization for llms. In ICML.
OpenReview.net, 2024.

Albert Q. Jiang, Alexandre Sablayrolles, Arthur Mensch, Chris Bamford, Devendra Singh Chaplot,
Diego de Las Casas, Florian Bressand, Gianna Lengyel, Guillaume Lample, Lucile Saulnier,
Lélio Renard Lavaud, Marie-Anne Lachaux, Pierre Stock, Teven Le Scao, Thibaut Lavril, Thomas
Wang, Timothée Lacroix, and William El Sayed. Mistral 7b. CoRR, abs/2310.06825, 2023.

Yixiao Li, Yifan Yu, Qingru Zhang, Chen Liang, Pengcheng He, Weizhu Chen, and Tuo Zhao.
Losparse: Structured compression of large language models based on low-rank and sparse approxi-
mation. In ICML, volume 202 of Proceedings of Machine Learning Research, pages 20336–20350.
PMLR, 2023.

Stephanie Lin, Jacob Hilton, and Owain Evans. Truthfulqa: Measuring how models mimic human
falsehoods. In ACL (1), pages 3214–3252. Association for Computational Linguistics, 2022.

Yujun Lin, Haotian Tang, Shang Yang, Zhekai Zhang, Guangxuan Xiao, Chuang Gan, and Song
Han. Qserve: W4A8KV4 quantization and system co-design for efficient LLM serving. CoRR,
abs/2405.04532, 2024.

Xinyin Ma, Gongfan Fang, and Xinchao Wang. Llm-pruner: On the structural pruning of large
language models. In NeurIPS, 2023.

Stephen Merity, Caiming Xiong, James Bradbury, and Richard Socher. Pointer sentinel mixture
models. In ICLR (Poster). OpenReview.net, 2017.

Carl Dean Meyer. Matrix Analysis and Applied Linear Algebra. SIAM, 2000.

Todor Mihaylov, Peter Clark, Tushar Khot, and Ashish Sabharwal. Can a suit of armor conduct
electricity? A new dataset for open book question answering. In EMNLP, pages 2381–2391.
Association for Computational Linguistics, 2018.

Colin Raffel, Noam Shazeer, Adam Roberts, Katherine Lee, Sharan Narang, Michael Matena, Yanqi
Zhou, Wei Li, and Peter J. Liu. Exploring the limits of transfer learning with a unified text-to-text
transformer. J. Mach. Learn. Res., 21:140:1–140:67, 2020.

Keisuke Sakaguchi, Ronan Le Bras, Chandra Bhagavatula, and Yejin Choi. Winogrande: An
adversarial winograd schema challenge at scale. In AAAI, pages 8732–8740. AAAI Press, 2020.

Rohan Taori, Ishaan Gulrajani, Tianyi Zhang, Yann Dubois, Xuechen Li, Carlos Guestrin, Percy
Liang, and Tatsunori B. Hashimoto. Stanford alpaca: An instruction-following llama model.
https://github.com/tatsu-lab/stanford_alpaca, 2023.

Hugo Touvron, Louis Martin, Kevin Stone, Peter Albert, Amjad Almahairi, Yasmine Babaei, Nikolay
Bashlykov, Soumya Batra, Prajjwal Bhargava, Shruti Bhosale, Dan Bikel, Lukas Blecher, Cristian
Canton-Ferrer, Moya Chen, Guillem Cucurull, David Esiobu, Jude Fernandes, Jeremy Fu, Wenyin
Fu, Brian Fuller, Cynthia Gao, Vedanuj Goswami, Naman Goyal, Anthony Hartshorn, Saghar
Hosseini, Rui Hou, Hakan Inan, Marcin Kardas, Viktor Kerkez, Madian Khabsa, Isabel Kloumann,

12

https://www.sciencedirect.com/science/article/pii/0024379587901145
https://www.sciencedirect.com/science/article/pii/0024379587901145
https://github.com/tatsu-lab/stanford_alpaca

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Artem Korenev, Punit Singh Koura, Marie-Anne Lachaux, Thibaut Lavril, Jenya Lee, Diana
Liskovich, Yinghai Lu, Yuning Mao, Xavier Martinet, Todor Mihaylov, Pushkar Mishra, Igor
Molybog, Yixin Nie, Andrew Poulton, Jeremy Reizenstein, Rashi Rungta, Kalyan Saladi, Alan
Schelten, Ruan Silva, Eric Michael Smith, Ranjan Subramanian, Xiaoqing Ellen Tan, Binh Tang,
Ross Taylor, Adina Williams, Jian Xiang Kuan, Puxin Xu, Zheng Yan, Iliyan Zarov, Yuchen Zhang,
Angela Fan, Melanie Kambadur, Sharan Narang, Aurélien Rodriguez, Robert Stojnic, Sergey
Edunov, and Thomas Scialom. Llama 2: Open foundation and fine-tuned chat models. CoRR,
abs/2307.09288, 2023.

Jonathan Tow, Marco Bellagente, Dakota Mahan, and Carlos Riquelme. Stablelm 3b
4e1t. URL [https://huggingface.co/stabilityai/stablelm-3b-4e1t]
(https://huggingface.co/stabilityai/stablelm-3b-4e1t).

Albert Tseng, Jerry Chee, Qingyao Sun, Volodymyr Kuleshov, and Christopher De Sa. Quip#:
Even better LLM quantization with hadamard incoherence and lattice codebooks. In ICML.
OpenReview.net, 2024.

Zhongwei Wan, Xin Wang, et al. Efficient large language models: A survey. arXiv preprint
arXiv:2312.03863, 2023.

Xin Wang, Zhongwei Wan, Arvin Hekmati, Mingyu Zong, Samiul Alam, Mi Zhang, and Bhaskar
Krishnamachari. Iot in the era of generative ai: Vision and challenges. arXiv preprint
arXiv:2401.01923, 2024.

Guangxuan Xiao, Ji Lin, Mickaël Seznec, Hao Wu, Julien Demouth, and Song Han. Smoothquant:
Accurate and efficient post-training quantization for large language models. In ICML, volume 202
of Proceedings of Machine Learning Research, pages 38087–38099. PMLR, 2023.

Yuzhuang Xu, Xu Han, Zonghan Yang, Shuo Wang, Qingfu Zhu, Zhiyuan Liu, Weidong Liu, and
Wanxiang Che. Onebit: Towards extremely low-bit large language models. CoRR, abs/2402.11295,
2024.

Hao Yu and Jianxin Wu. Compressing transformers: Features are low-rank, but weights are not! In
AAAI, pages 11007–11015. AAAI Press, 2023.

Zhihang Yuan, Yuzhang Shang, Yue Song, Qiang Wu, Yan Yan, and Guangyu Sun. ASVD:
activation-aware singular value decomposition for compressing large language models. CoRR,
abs/2312.05821, 2023.

Zhihang Yuan, Yuzhang Shang, and Zhen Dong. PB-LLM: partially binarized large language models.
In ICLR. OpenReview.net, 2024.

Rowan Zellers, Ari Holtzman, Yonatan Bisk, Ali Farhadi, and Yejin Choi. Hellaswag: Can a
machine really finish your sentence? In ACL (1), pages 4791–4800. Association for Computational
Linguistics, 2019.

Susan Zhang, Stephen Roller, Naman Goyal, Mikel Artetxe, Moya Chen, Shuohui Chen, Christopher
Dewan, Mona T. Diab, Xian Li, Xi Victoria Lin, Todor Mihaylov, Myle Ott, Sam Shleifer, Kurt
Shuster, Daniel Simig, Punit Singh Koura, Anjali Sridhar, Tianlu Wang, and Luke Zettlemoyer.
OPT: open pre-trained transformer language models. CoRR, abs/2205.01068, 2022.

Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,
Beichen Zhang, Junjie Zhang, Zican Dong, Yifan Du, Chen Yang, Yushuo Chen, Zhipeng Chen,
Jinhao Jiang, Ruiyang Ren, Yifan Li, Xinyu Tang, Zikang Liu, Peiyu Liu, Jian-Yun Nie, and
Ji-Rong Wen. A survey of large language models. CoRR, abs/2303.18223, 2023.

Longguang Zhong, Fanqi Wan, Ruijun Chen, Xiaojun Quan, and Liangzhi Li. Blockpruner: Fine-
grained pruning for large language models. CoRR, abs/2406.10594, 2024.

Zixuan Zhou, Xuefei Ning, Ke Hong, Tianyu Fu, Jiaming Xu, Shiyao Li, Yuming Lou, Luning
Wang, Zhihang Yuan, Xiuhong Li, Shengen Yan, Guohao Dai, Xiao-Ping Zhang, Yuhan Dong, and
Yu Wang. A survey on efficient inference for large language models, 2024.

Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A survey on model compression for
large language models. CoRR, abs/2308.07633, 2023.

13

https://huggingface.co/stabilityai/stablelm-3b-4e1t
https://huggingface.co/stabilityai/stablelm-3b-4e1t

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A APPENDIX.

A.1 THE COMPRESSION LOSS OF ASVD

The previous state-of-the-art method ASVD introduced a diagonal scaling matrix S0 that modifies
the weight matrix to reflect the varying significance of different input channels. The linear layer is
formulated as Y = (WS0)S

−1
0 X . The compression is made by keeping the largest m singular value

of WS0:

WS0 ≈
m∑
i=1

σ′
iu

′
iv

′T
i

The resulting activation is expressed as:

Y ≈
m∑
i=1

σ′
iu

′
iv

′T
i S

−1
0 X .

The compression error L = ||(WS0 −
∑m

i=1 σ
′
iu

′
iv

′T
i)S

−1
0 X||F is demonstrated below:

L2 =||(WS0 −
m∑
i=1

σ′
iu

′
iv

′T
i)S

−1
0 X||2F

=

∣∣∣∣∣
∣∣∣∣∣

r∑
i=m+1

σ′
iu

′
iv

′T
i S

−1
0 X

∣∣∣∣∣
∣∣∣∣∣
2

F

=

r∑
j=m+1

r∑
i=m+1

σ′
iσ

′
j trace(u

′
iv

′T
i XXT v′ju

′T
j)

=

r∑
j=m+1

r∑
i=m+1

σ′
iσ

′
j trace(u

′T
j u

′
iv

′T
i S

−1
0 XXT (S−1

0)T v′j)

=

r∑
i=m+1

σ′2
i trace(v

′T
i S

−1
0 XXT (S−1

0)T v′i)

=

r∑
i=m+1

σ′2
i ||v′

T
i S

−1
0 X||2F ,

which is still a complex function that involves the activation X , the diagonal matrix S0, the singular
vector v′i and the singular value σ′

i. As a result, compression error is not directly related to the singular
value, and the conventional SVD compression by truncating the smallest singular values may lead to
suboptimal compression error.

A.2 THE COMPRESSION LOSS OF SVD-LLM

In SVD-LLM, we also formulate the linear layer as Y = (WS)S−1X , where S−1XXT
(
S−1

)T
= I .

The compression is made by keeping the largest m out of total r singular values of WS. The
compression loss L is demonstrated as:

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

L2 = ∥WX −W ′X∥2F =
∥∥WSS−1X − SV D(WS)S−1X

∥∥2
F

=
∥∥(WS − SV D(WS))S−1X

∥∥2
F

=

∥∥∥∥∥
(
WS −

m∑
i=1

σiuiv
T
i

)
S−1X

∥∥∥∥∥
2

F

=

∥∥∥∥∥
r∑

i=m+1

σiuiv
T
i S

−1X

∥∥∥∥∥
2

F

=

r∑
j=m+1

r∑
i=m+1

σiσj trace
(
uiv

T
i S

−1XXT
(
S−1

)T
vju

T
j

)
=

r∑
j=m+1

r∑
i=m+1

σiσj trace
(
uiv

T
i

(
S−1XXT

(
S−1

)T)
vju

T
j

)
=

r∑
j=m+1

r∑
i=m+1

σiσj trace
(
uiv

T
i vju

T
j

)

∵ vTi vi = uT
i ui = 1; vTi vj = uT

i uj = 0, trace
(
viv

T
i

)
= trace

(
uiu

T
i

)
= 1,∀i ̸= j

∴ L2 =

r∑
j=m+1

r∑
i=m+1

σiσj trace
(
uiv

T
i vju

T
j

)
=

r∑
i=m+1

σ2
i trace

(
uiv

T
i viu

T
i

)
=

r∑
i=m+1

σ2
i

Therefore, the squared loss L2 is equal to the sum of the squared singular values. Therefore, truncating
the smallest singular values achieves the lowest compression loss.

A.3 MORE EXPERIMENTAL SETUPS

Implementation Details of the experiments. To ensure a fair comparison, we followed ASVD (Yuan
et al., 2023) to randomly select 256 samples from WikiText-2 as the calibration data. We followed
the same configuration used in LLM-Pruner (Ma et al., 2023) to use Alpaca (Taori et al., 2023)
dataset with 50K samples for parameter update in SVD-LLM. The inference efficiency experiment is
conducted on both NVIDIA A100 GPU and AMD EPYC 7643 CPU while the other experiments are
conducted on NVIDIA A100 GPUs.

Models and Datasets. To demonstrate the generability of our method, we evaluate the performance of
SVD-LLM on seven models from three different LLM families at three different scales (LLaMA-7B,
13B, 30B, LLaMA2-7B (Touvron et al., 2023), OPT-6.7B (Zhang et al., 2022), Vicuna-7B (Chiang
et al., 2023) and Mistral-7B (Jiang et al., 2023)) and 10 datasets including two language modeling
datasets (WikiText-2 (Merity et al., 2017), and C4 (Raffel et al., 2020)), six classification datasets
(OpenbookQA (Mihaylov et al., 2018), WinoGrande (Sakaguchi et al., 2020), HellaSwag (Zellers
et al., 2019), Arc_e (Clark et al., 2018), PIQA (Bisk et al., 2020), MathQA (Amini et al., 2019)), and
two generation datasets (TruthfulQA (Lin et al., 2022), and GSM8K (Cobbe et al., 2021) with the
LM-Evaluation-Harness framework (Gao et al., 2023).

A.4 SPECTRUM ANALYSIS OF SINGULAR VALUES DECOMPOSED BY SVD-LLM

In general, SVD for compression is useful when the matrix to be compressed shows a sharp decay of
the singular values. Since SVD-LLM decomposes the multiplication of the weight matrix W and its
corresponding whitening matrix S instead of the original weight matrix W , which is different from
the weight decomposition in the previous work (Yuan et al., 2023; Hsu et al., 2022), to study whether
SVD compression is also applicable in SVD-LLM, we select the Query (WQ) and Key (WK) weight

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Layer Index

10 4

10 2

100

102

104

Sp
ec

tru
m

 o
f S

in
gu

la
r V

al
ue

s

(a) WQ × SQ

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
Layer Index

10 4

10 2

100

102

104

Sp
ec

tru
m

 o
f S

in
gu

la
r V

al
ue

s

(b) WK × SK

Figure 6: The singular value spectrum of the decomposed matrices across layers in LLaMA-7B.

matrices and show the spectrum of the singular values of their multiplication with corresponding
whitening matrices SQ and SK . As shown in Figure 6, most of the single values are less than 100
with only a few extremely large values, indicating that SVD compression is applicable in SVD-LLM.

A.5 COMPRESSION SPEED EVALUATION

Table 9: Compression time of SVD-LLM and ASVD on LLaMA-7B
under 20% compression ratio. The relative speedup is marked in green
color inside bracket.

SVD-LLM ASVD

Truncation-Aware
Data Whitening

Parameter Update with Sequential
Low-rank Approximation Total Normalize Search Total

10min 3.5h 3.5h (↓36%) 5min 5.5h 5.5h

Besides compression per-
formance, we also evalu-
ate the compression speed
of SVD-LLM and the base-
lines. Specifically, we mea-
sured the GPU hours used
for SVD-LLM and ASVD
when compressing LLaMA-
7B under 20% compression ratio on an A100 GPU. The results are shown in Table 9. As shown,

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

ASVD takes about 5.5 hours whereas SVD-LLM completes the compression process in 3.5 hours,
which is 36% times faster. When breaking down the time, most of the time consumed by ASVD
is dedicated to searching for the specific compression ratio for each weight matrix based on its
calculated importance score. In contrast, SVD-LLM maintains a consistent compression ratio across
all weight matrices and thus gets rid of the time-consuming search process.

A.6 CONTENTS GENERATED FROM THE LLM COMPRESSED BY SVD-LLM AND ASVD

Some examples of sentences generated by LLaMA-7B compressed with SVD-LLM and ASVD
are shown in Table 10. The sentences generated by the model compressed by SVD-LLM exhibit
better fluency, relevance, and informativeness compared to that compressed by ASVD. More impor-
tantly, when the compression ratio is increased to 40%, the previous state-of-the-art method ASVD
completely loses its generation ability. In contrast, even when the compression ratio is up to 80%,
SVD-LLM is still capable of generating complete sentences.
Table 10: An example of contents generated by the fine-tuned LLaMA-7B with LoRA after being
compressed by SVD-LLM and ASVD under different compression ratios. The input is marked in
bold and the normal texts are the generated sentences.

RATIO SVD-LLM ASVD

Original What is the responsibility of the AI assistant? The responsibility of an AI assistant is to complete the job without any
hesitation. Also, the AI assistant has no problem with taking a decision and executing it. An AI assistant is responsible to
complete the task and it needs to learn from his past experience to take the best possible decision without any hesitation...

20% What is the responsibility of the AI assistant? The AI
assistant’s role and responsibilities are often ambiguous and
can vary depending on the context and the type of assistant
being used. Some AI assistants may have preset responses
to common queries, but their behavior can also depend on
the user’s interaction and expectations...

What is the responsibility of the AI assistant? 1. To act
in the same way as the programmer intended. 2. To make
a value assessment of the user’s intentions and offer an
appropriate response. 3. To help the user carry out specific
tasks or follow a strict script. 4. To make the system as
independent of the user as possible...

40% What is the responsibility of the AI assistant? 1. The AI
assistant is responsible for performing tasks that can only
be done by AI technology such as scheduling appointments,
setting reminders and making suggestions, while also pro-
viding quick and accurate responses. 2. The AI assistant
is also responsible for learning and updating its knowledge
base through continuous improvement, thus making it more
efficient and effective. 3. The AI assistant is responsible
for handling and managing user-generated and customer-
oriented input...

What is the responsibility of the AI assistant? 1. Define
the definition of the job specification. 2. Define the role of
the AI assistant for the job. 3. Define the skills necessary
in order to carryout the tasks assigned to the job to do the
work of the same capacity in the market. 4. Determine
the evaluation of the job competence of the AI assistant
to ensure their professional integrity. 5. What type of AI
assistant jobs are available? 6. What industries require
technology assistance work to complete the tasks that it
own personnel cannot perform...

60% What is the responsibility of the AI assistant? In a nut-
shell, the responsibility of the AI assistant could vary depend-
ing on the task, but generally, the focus would be on auto-
matic tasks, without the need for human intervention. Some
common tasks could include setting reminders, scheduling
appointments, and making routine household or productivity
tasks. The AI assistant also serves as a backup or a relief
system, taking on responsibilities when the user is not avail-
able ...

What is the responsibility of the AI assistant? 2.3.
?? Brush for a discussion I wonder is it worth doing is
important.2- It isn’t useful just reducing labor costs; it
helps employees feel a sense of connected to your atten-
tion which leads to better workplace values among staffers
and leads to long relationships among org...

80% What is the responsibility of the AI assistant? Our Design
is based on our understanding of the world, and we are
actively learning, adapting and adapting, so we’re always
evolving new ideas, which we see to be most unique and
relevant in our community...

What is the responsibility of the AI assistant? ygua
AIeltemperaturen/2, (64mbz/.3/.1/, 7.kbld.org.0/2/ In
these puthebout les bnvols n merginels ...

A.7 COMPARISON WITH SMALLER LLMS PRE-TRAINED FROM SCRATCH

To compare the performance between SVD-LLM and scratch training, following the previous ex-
perimental design (Ma et al., 2023), we compress LLaMA-7B to the size of the 3B parameter with
SVD-LLM and select StableLM-3B (Tow et al.) as the baseline for comparison. The result is shown
in Table 11. LLaMA-3B compressed from LLaMA-7B by SVD-LLM achieves better accuracy in all
datasets, indicating that SVD-LLM could even achieve better accuracy than some scratch training
methods. Furthermore, SVD-LLM ensures higher throughput and lower memory consumption than
StableLM-3B as shown in the table, which also meets other efficiency analysis and discussion in
Section 4.2.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Table 11: Comparison of LLaMA-3B (compressed from LLaMA-7B by SVD-LLM) and original
StableLM-3B (Tow et al.) trained from scratch. Both the throughput and the peak memory footprint
during the inference are measured with batch size=32, sequence length = 128 on single A100 GPU.

MODEL Throughput Peak Mem. Openb. Arc_e WinoG. HellaS. PIQA MathQA Average↑ TruthfulQA↑ GSM8K↑
StableLM-3B 8463 Tokens/sec 9.41 GB 0.19 0.51 0.55 0.37 0.69 0.21 0.44 0.22 0.02

LLaMA-3B 9254 Tokens/sec 7.43 GB 0.27 0.54 0.58 0.46 0.68 0.23 0.46 (↑5%) 0.23 (+ 0.01) 0.04 (+ 0.02)

Algorithm 1 Pseudocode of SVD-LLM

1: Input: M : Original LLM
2: Output: M ′′: Compressed LLM by SVD-LLM
3: procedure SVD-LLM(M)
4: Randomly collect several sentences as the calibration data C
5: SetS ← TRUNCATION-AWARE DATA WHITENING(M,C)
6: SetW ←M ▷ Obtain the set of weights in M to compress
7: for W in SetW do
8: S ← SetS(W) ▷ Extract the whitening matrix of current weight W
9: U,Σ, V ← SVD(WS) ▷ Apply singular value decomposition on W

10: Σ1 ← Trunc.(Σ) ▷ Truncate the smallest singular values in Σ
11: Wu ← U(Σ1)

1/2,Wv ← (Σ1)
1/2V TS−1 ▷ Obtain two low-rank matrices

12: M ′(W)←Wu,Wv ▷ Replace W with Wu and Wv in L
13: end for
14: M ′′ ← PARAMETER UPDATE WITH SEQUENTIAL LOW-RANK APPROXIMATION(M ′)
15: return M ′′

16: end procedure

A.8 PSEUDOCODE OF SVD-LLM

Algorithm 1 shows the pseudocode of SVD-LLM. Before compression, SVD-LLM randomly collects
a small amount of sentences as the calibration data C, it then runs the truncation-aware data whitening
process as shown in Algorithm 2 to obtain the set of whitening matrix SetS for the weight to compress.
After that, it runs the SVD and truncation with SetS on each weight matrix in the LLM. Instead of
directly finishing the whole compression, it stores the decomposed matrices and further utilizes these
matrices to run the parameter update with sequential low-rank approximation as shown in Algorithm 3.

A.9 COMPARISON ON EXTREMELY LARGE-SCALE AND MORE RECENT LLMS

Table 12: Perplexity (↓) on WikiText-
2 of LLaMA 2-70B and LLaMA 3-8B
under 20% compression ratio.

MODEL LLAMA 2-70B LLAMA 3-8B

Original 3.32 6.14

SVD 19.82 29871
FWSVD OOM 4782
ASVD OOM 17.55

SVD-LLM 4.21 (↓66%) 8.16 (↓54%)

To further show the generalization of SVD-LLM, we com-
pare its performance with other SVD-based baselines on
extremely large-scale and more recent LLMs. Below
shows the perplexity of SVD-LLM and other baselines
on WikiText-2 when compressing LLaMA-2 70B (Tou-
vron et al., 2023) and LLaMA-3 8B (Dubey et al., 2024)
under 20% compression ratio. For LLaMA-2 70B, we
only apply truncation-aware data whitening of SVD-LLM
without parameter update with sequential low-rank approx-
imation due to the limited computational budget. OOM
means that running the algorithm causes out-of-memory on 4 A100 GPUs. As shown, SVD-LLM
still consistently outperforms other baselines when applied on these two LLMs.

A.10 COMPARISON WITH DRONE

Previous work Drone (Chen et al., 2021) focusing on compressing the Bert model also proposes
their data-aware method for SVD compression. They even provide a theoretical analysis to prove the

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Algorithm 2 Pseudocode of Truncation-Aware Data Whitening

1: Input: M : Original LLM
2: Input: C: Calibration Data
3: Output: SetS : Set of whitening matrices for the weight to compress in M
4: procedure TRUNCATION-AWARE DATA WHITENING(M,C)
5: SetS ← ∅ ▷ Initialize the set of whitening matrices
6: SetW ←M ▷ Obtain the set of weights in M to compress
7: for W in SetW do
8: X ←M(W,C) ▷ Obtain the input activation of the weight matrix W
9: S ← Cholesky_Decomposition(XXT) ▷ Apply cholesky decomposition on XXT

10: SetS ← S ∪ SetS ▷ Store the whitening weight matrix in the set
11: end for
12: return SetS
13: end procedure

Algorithm 3 Pseudocode of Parameter Update with Sequential Low-rank Approximation

1: Input: M ′: Compressed LLM by Truncation-aware Data Whitening
2: Output: M ′′: Compressed LLM with Parameter Update with Sequential Low-rank Approxima-

tion
3: procedure PARAMETER UPDATE WITH SEQUENTIAL LOW-RANK APPROXIMATION(M ′)
4: M ′

u ← LoRAu(M
′) ▷ Fix all Wv , fine-tune all Wu

5: M ′′ ← LoRAv(M
′
u) ▷ Fix all Wu, fine-tune all Wv

6: return M ′′

7: end procedure

optimal solution that their method achieve.s Specifically, Drone represents the low-rank compressed
weight matrix W ′ by WM . It performs SVD on both weight matrix W = UwSwV

T
w and the

transpose of input activation XT = UxSxV
T
x and then split these decomposed matrices as follows:

UW =
[
UW,r ŪW,r

]
, SW =

[
SW,r 0
0 0

]
, VW =

[
VW,r V̄W,r

]
UX =

[
UX,t ŪX,t

]
, SX =

[
SX,t 0
0 0

]
, VX =

[
VX,t V̄X,t

]
.

where r and k are the rank of the W and X . UW,r, VW,r, UX,t, VX,t denote corresponding row
spaces and column spaces and ŪW,r, V̄W,r, ŪX,t, V̄X,t are null spaces. Through theoretical deduction,
Drone converts the minimization of compression loss ||WX −W ′X||F = ||WX −WMX||F to
the minimization of

∥∥SW,rV
T
W,rVX,tSX,t − SW,rV

T
W,rMVX,tSX,t

∥∥
F

, whose optimal value Lmin is
the rank-k truncated SVD of Z = SW,rV

T
W,rVX,tSX,t by the fundamental property of SVD decom-

position. To achieve the optimal value, Drone formulates a solution M = VW,rS
−1
W,rZkS

−1
X,tV

T
X,t,

where Zk is the rank-k SVD truncation of Z.

In short, compared with Drone, SVD-LLM is also optimal with the same theoretical compression
loss as Drone. Moreover, SVD-LLM has three key advantages.

SVD-LLM is also optimal with the same theoretical compression loss as Drone. Although the
motivation of SVD-LLM originates from the LLM-based SVD compression method, especially
ASVD, and its motivation is to align the SVD truncation with the truncated singular values for
a correct truncation, as discussed in Section 3.1, our theoretical analysis shows that SVD-LLM
is also optimal with the same compression loss as Drone. Specifically, the theoretical minimum
compression loss Lmin is the F-norm loss of rank-k SVD truncation of WX , which has also been
achieved by Drone in their paper. Unlike Drone, SVD-LLM constructs the whitening matrix S so
that S−1X is orthonormal. Therefore, we have ||AS−1X||F = ||A||F . Suppose that we decompose
S with SVD to Us, Ss, Vs, we can have Ss = Sx, Us = Ux, Us = Ux, Vs = QVx, where Q is
an orthogonal matrix. The matrix WS to which SVD-LLM applies SVD could be represented by

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

UwSwV
T
w UsSsV

T
s . Suppose that we use Trunc.(C) to represent the rank-k truncation of the matrix

C during SVD compression, the compression loss L is derived as follows:

L = ||WX −W ′X||F = ||(WSS−1X − SV D(WS)S−1X)||F = ||(WS − SV D(WS))S−1X||F
= ||Trunc.(WS)S−1X||F = ||Trunc.(WS)||F
= ||Trunc.(UwSwV

T
w UsSsV

T
s)||F

= ||Trunc.(WXQT)||F = Lmin

Therefore, SVD-LLM shares the same theoretical compression loss as Drone.

Table 13: Compression loss of the randomly generated weight and
activation matrices with different shapes under 50% compression ratio
using SVD-LLM, Drone, and the theoretical minimum.

LOSS [128× 128]× [128× 128] [2048× 2048]× [2048× 2048] [4096× 4096]× [4096× 4096]

MINIMUM 276.1130 17784.2637 50321.9141

DRONE 276.1130 17785.6992 50337.2148

SVD-LLM 276.1130 17784.2676 50321.9727

Advantage #1: SVD-LLM
has better numerical sta-
bility, which leads to su-
perior empirical compres-
sion loss. While SVD-
LLM shares the same the-
oretical compression loss as
Drone, Drone’s higher com-
plexity—stemming from additional SVD operations and inverse calculations on large-scale matri-
ces—makes it less numerically stable compared to SVD-LLM. This often results in higher empirical
compression losses in practice. To illustrate this, we compare SVD-LLM and Drone in terms of the
empirical compression losses for randomly generated matrices of various shapes. We also include the
theoretical minimum value, represented by the rank-k Frobenius norm loss of WX . The results are
summarized in the following table. As shown, we observe that SVD-LLM achieves lower empirical
compression losses than Drone, underscoring its superior numerical stability.

Advantage #2: In practice, Drone incurs out-of-memory when compressing LLMs due to its
requirement of storing the full large-scale activations, whereas SVD-LLM is feasible. To achieve
data-awareness during compression, Drone caches all input activations X and spans them to calculate
the corresponding singular vectors and singular values. In the Drone paper, the authors apply Drone
to BERT. However, the activations generated by LLMs are often extremely large and are much larger
than BERT. For example, using Drone, caching 16 input activations produced by LLaMA-7B in
FP32 format, as required for SVD computation, already exceeds the memory capacity of an A100
GPU with 80GB memory. In contrast, SVD-LLM incrementally updates its XXT matrix by adding
the xxT of each new input x. As such, SVD-LLM eliminates the need to store the full activations,
requiring only the storage of the XXT matrix, which is considerably smaller than even a single input
activation. Due to this advantage, SVD-LLM is far more practical to compress LLMs of size 7B or
larger compared to Drone.

Table 14: Compression Time of the randomly generated weight and
activation matrices with different shapes using SVD-LLM and Drone.
The compression time is measured for 5 times’ compression.

TIME [128× 128]× [128× 128] [2048× 2048]× [2048× 2048] [4096× 4096]× [4096× 4096]

DRONE 0.07 seconds 5.81 seconds 30.35 seconds

SVD-LLM 0.02 seconds 1.98 seconds 10.37 seconds

Advantage #3: SVD-LLM
incurs much shorter com-
pression time compared
to Drone. Drone involves
more complex matrix opera-
tions, leading to longer com-
pression time compared to
SVD-LLM. To illustrate this, we measured the time required by Drone and SVD-LLM to compress
randomly generated weight and activation matrices of varying shapes under a 50% compression ratio.
The results show that SVD-LLM is approximately three times faster than Drone.

A.11 COMPARISON WITH FLAP

Recent work FLAP (An et al., 2023) is also a post-training structured-pruning method. Below we
compare the perplexity of SVD-LLM and FLAP on WikiText-2 under different compression ratios
when compressing LLaMA-7B. As shown in Table 15, SVD-LLM consistently outperforms FLAP,
especially under high compression ratios.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

Table 15: Perplexity (↓) of SVD-LLM and FLAP on WikiText-2 to compress LLaMA-7B under
different compression ratios. The better performance is marked in bold. The relative performance
gain of SVD-LLM compared to FLAP is marked in green inside bracket.

RATIO (MEM.) 20% (10.2GB) 40% (7.76GB) 60% (5.35GB) 80% (2.58GB)

FLAP 7.99 14.43 106.87 15023

SVD-LLM 6.73 (↓16%) 8.18 (↓43%) 13.31 (↓88%) 31.79 (↓99%)

Table 16: Perplexity (↓) of SVD-LLM with original LoRA fine-tuning (denoted as SVD-LLM (SFT)),
ASVD with sequential LoRA fine-tuning (denoted as ASVD (SFT)), and SVD-LLM with sequential
LoRA fine-tuning (denoted as SVD-LLM (SFT)) on WikiText-2 to compress LLaMA-7B under
different compression ratios.

RATIO (MEM.) 20% (10.2GB) 40% (7.76GB) 60% (5.35GB) 80% (2.58GB)

SVD-LLM (NFT) 7.25 11.98 16.30 80.23
ASVD (SFT) 8.37 14.86 44.81 271

SVD-LLM (SFT) 6.73 8.18 13.31 31.79

A.12 MORE ABLATION STUDIES

SVD-LLM + Normal LoRA Fine-tuning v.s. SVD-LLM + Sequential LoRA Fine-tuning. To
illustrate the superiority of the designed parameter update with sequential low-rank approximation in
SVD-LLM, which is a kind of sequential LoRA fine-tuning strategy over the normal LoRA fine-tuning
strategy, we compare the compression performance of SVD-LLM by applying either of these two
fine-tuning strategies. Let’s denote SVD-LLM (SFT) as SVD-LLM by applying sequential LoRA
fine-tuning and SVD-LLM (NFT) as SVD-LLM by applying normal LoRA fine-tuning. As shown
in Table 16, SVD-LLM (SFT) consistently outperforms SVD-LLM (NFT), which also reaffirms our
analysis in Section 3.2 that optimizing both of the low-rank matrices Wu,Wv at the same time is not
stable and may lead to poor fine-tuning performance.

ASVD + Sequential LoRA Fine-tuning v.s. SVD-LLM + Sequential LoRA Fine-tuning. Although
the designed sequential LoRA fine-tuning strategy could also be applied in other SVD-based LLM
compression methods, other methods’ performance is still poorer than SVD-LLM even being inte-
grated with this strategy for enhancement. To illustrate this, we compare the performance of previous
state-of-the-art method ASVD when be applied with the sequential LoRA finetuning with SVD-LLM.
Let’s denote SVD-LLM (SFT) as SVD-LLM by applying sequential LoRA fine-tuning and ASVD
(SFT) as ASVD by applying sequential LoRA fine-tuning. As shown in Table 16, SVD-LLM (SFT)
consistently outperforms ASVD (SFT) under various compression ratios.

21

	Introduction
	Related Work
	SVD-LLM
	Truncation-Aware Data Whitening
	Parameter Update with Sequential Low-rank Approximation

	Experiments and Analysis
	Comparison with State-of-the-Art SVD-based LLM compression Methods
	Inference Efficiency of SVD-LLM
	Ablation Study
	Comparison with Other Types of LLM Compression Methods

	Conclusion
	Appendix.
	The compression loss of ASVD
	The compression loss of SVD-LLM
	More Experimental Setups
	Spectrum Analysis of Singular Values decomposed by SVD-LLM
	Compression Speed Evaluation
	Contents Generated from the LLM Compressed by SVD-LLM and ASVD
	Comparison with smaller LLMs pre-trained from scratch
	Pseudocode of SVD-LLM
	Comparison on extremely large-scale and more recent LLMs
	Comparison with Drone
	Comparison with FLAP
	More Ablation Studies

