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Abstract

Kernel methods are learning algorithms that enjoy solid theoretical foundations while
suffering from important computational limitations. Sketching, which consists in looking for
solutions among a subspace of reduced dimension, is a well-studied approach to alleviate
these computational burdens. However, statistically-accurate sketches, such as the Gaussian
one, usually contain few null entries, such that their application to kernel methods and their
non-sparse Gram matrices remains slow in practice. In this paper, we show that sparsified
Gaussian (and Rademacher) sketches still produce theoretically-valid approximations while
allowing for important time and space savings thanks to an efficient decomposition trick. To
support our method, we derive excess risk bounds for both single and multiple output kernel
problems, with generic Lipschitz losses, hereby providing new guarantees for a wide range of
applications, from robust regression to multiple quantile regression. Our theoretical results
are complemented with experiments showing the empirical superiority of our approach over
state-of-the-art sketching methods.

1 Introduction

Kernel methods hold a privileged position in machine learning, as they allow to tackle a large variety of
learning tasks in a unique and generic framework, that of Reproducing Kernel Hilbert Spaces (RKHSs),
while enjoying solid theoretical foundations (Steinwart & Christmann, 2008b; Scholkopf & Smola, 2018).
From scalar-valued to multiple output regression (Micchelli & Pontil, 2005; Carmeli et al., 2006; 2010),
these approaches play a central role in nonparametric learning, showing a great flexibility. However, when
implemented naively, kernel methods raise major issues in terms of time and memory complexity, and are
often thought of as limited to “fat data”, i.e., datasets of reduced size but with a large number of input
features. One way to scale up kernel methods are the Random Fourier Features (Rahimi & Recht, 2007; Rudi
& Rosasco, 2017; Sriperumbudur & Szabó, 2015; Li et al., 2021), but they mainly apply to shift-invariant
kernels. Another popular approach is to use sketching methods, first exemplified with Nyström approximations
(Williams & Seeger, 2001; Drineas et al., 2005; Bach, 2013; Rudi et al., 2015). Indeed, sketching has recently
gained a lot of interest in the kernel community due to its wide applicability (Yang et al., 2017; Lacotte et al.,
2019; Kpotufe & Sriperumbudur, 2020; Lacotte & Pilanci, 2020; Gazagnadou et al., 2022) and its spectacular
successes when combined to preconditioners and GPUs (Meanti et al., 2020).

Sketching as a random projection method (Mahoney et al., 2011; Woodruff, 2014) is rooted in the Johnson-
Lindenstrauss lemma (Johnson & Lindenstrauss, 1984), and consists in working in reduced dimension
subspaces while benefiting from theoretical guarantees. Learning with sketched kernels has mostly been
studied in the case of scalar-valued regression, in particular in the emblematic case of Kernel Ridge Regression
(Alaoui & Mahoney, 2015; Avron et al., 2017; Yang et al., 2017; Chen & Yang, 2021a). For several identified
sketching types (e.g., Gaussian, Randomized Orthogonal Systems, adaptive sub-sampling), the resulting
estimators come with theoretical guarantees under the form of the minimax optimality of the empirical
approximation error. However, an important blind spot of the above works is their limitation to the square
loss. Few papers go beyond Ridge Regression, and usually exclusively with sub-sampling schemes (Zhang
et al., 2012; Li et al., 2016; Della Vecchia et al., 2021). In this work, we derive excess risk bounds for sketched
kernel machines with generic Lipschitz-continuous losses, under standard assumption on the sketch matrix,
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solving an open problem from Yang et al. (2017). Doing so, we provide theoretical guarantees for a wide range
of applications, from robust regression, based either on the Huber loss (Huber, 1964) or ϵ-insensitive losses
(Steinwart & Christmann, 2008a), to quantile regression, tackled through the minimization of the pinball
loss (Koenker, 2005). Further, we address this question in the general context of single and multiple output
regression. Learning vector-valued functions using matrix-valued kernels (Micchelli & Pontil, 2005) have
been primarily motivated by multi-task learning. Although equivalent in functional terms to scalar-valued
kernels on pairs of input and tasks (Hein & Bousquet, 2004, Proposition 5), matrix-valued kernels (Álvarez
et al., 2012) provide a way to define a larger variety of statistical learning problems by distinguishing the
role of the inputs from that of the tasks. The computational and memory burden is naturally heavier in
multi-task/multi-output regression, as the dimension of the output space plays an inevitable role, making
approximation methods for matrix-valued kernel machines a crucial issue. To our knowledge, this work is the
first to address this problem under the angle of sketching. It is however worth mentioning Baldassarre et al.
(2012), who explored spectral filtering approaches for multiple output regression, and the generalization of
Random Fourier Features to operator-valued kernels by Brault et al. (2016).

An important challenge when sketching kernel machines is that the sketched items, e.g., the Gram matrix, are
usually dense. Plain sketchin matrices, such as the Gaussian one, then induce significantly more calculations
than sub-sampling methods, which can be computed by applying a mask over the Gram matrix. Sparse
sketching matrices (Clarkson & Woodruff, 2017; Nelson & Nguyên, 2013; Cohen, 2016; Derezinski et al.,
2021) constitute an important line of research to reduce complexity while keeping good statistical properties
when applied to sparse matrices (e.g., matrices induced by graphs), which is not the case of a Gram matrix.
Motivated by these considerations, we analyze a family of sketches, unified under the name of p-sparsified
sketches, that achieve interesting trade-offs between statistical accuracy (Gaussian sketches can be recovered
as a particular case of p-sparsified sketches) and computational efficiency. The p-sparsified sketches are
also memory-efficient, as they do not require computing and storing the full Gram matrix upfront. Besides
theoretical analysis, we provide extensive experiments showing the superiority of p-sparsified sketches over
SOTA approaches such as accumulation sketches (Chen & Yang, 2021a).

Contributions. Our goal is to provide a framework to speed-up both scalar and matrix-valued kernel
methods which is as general as possible while maintaining good theoretical guarantees. For that purpose, we
present three contributions, which may be of independent interest.

• We derive excess risk bounds for sketched kernel machines with generic Lipschitz-continuous losses,
both in the scalar and multiple output cases. We hereby solve an open problem from Yang et al.
(2017), and provide a first analysis to the sketching of vector-valued kernel methods.

• We show that sparsified Gaussian and Rademacher sketches provide valid approximations when
applied to kernels methods. They maintain theoretical guarantees while inducing important space
and computation savings, as opposed to plain sketches.

• We discuss how to learn these new sketched kernel machines, by means of an approximated feature
map. We finally present experiments using Lipschitz-continuous losses, such as robust and quantile
regression, on both synthetic and real-world datasets, supporting the relevance of our approach.

Notation. For any matrix A ∈ Rm×p, A† is its pseudo-inverse, ∥A∥op its operator norm, Ai: ∈ Rp its i-th
row, and A:j ∈ Rm its j-th column. The identity matrix of dimension d is Id. For a couple of random
variables (X,Y ) ∈ X × Y with distribution P , PX is the marginal distribution of X. For f : X −→ Y,
we use E [f ] = EPX

[f(X)], E [ℓf ] = EP [ℓ (f(X), Y )] and En[ℓf ] = 1
n

∑n
i=1 ℓ(f(xi), yi) for any function

ℓ : Y × Y −→ R.

2 Sketching Kernels Machines with Lipschitz-Continuous Losses

In this section, we derive excess risk bounds for sketched kernel machines with generic Lipschitz losses, for
both scalar and multiple output regression.
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2.1 Scalar Kernel Machines

We consider a general regression framework, from an input space X to some scalar output space Y ⊆ R.
Given a loss function ℓ : Y × Y → R such that z 7→ ℓ(z, y) is proper, lower semi-continuous and convex for
every y, our goal is to estimate f∗ = arg inff∈H E(X,Y )∼P [ℓ (f(X), Y )], where H ⊂ YX is a hypothesis set,
and P is a joint distribution over X × Y. Since P is usually unknown, we assume that we have access to a
training dataset {(xi, yi)}n

i=1 composed of i.i.d. realisations drawn from P . We recall the definitions of a
scalar-valued kernel and its RKHS (Aronszajn, 1950).

Definition 1 (Scalar-valued kernel). A scalar-valued kernel is a symmetric function k : X × X → R such
that for all n ∈ N, and any (xi)n

i=1 ∈ Xn, (αi)n
i=1 ∈ Rn, we have

∑n
i,j=1 αi k (xi, xj)αj ≥ 0.

Theorem 1 (RKHS). Let k be a kernel on X . Then, there exists a unique Hilbert space of functions
Hk ⊂ F (X ,R), where F (X ,R) denotes the set of functions from X to R, such that k (·, x) ∈ Hk for all
x ∈ X , and such that we have h (x) = ⟨h, k (·, x)⟩Hk

for any (h, x) ∈ Hk ×X .

A kernel machine computes a proxy for f∗ by solving

min
f∈Hk

1
n

n∑
i=1

ℓ(f(xi), yi) + λn

2 ∥f∥
2
Hk

, (1)

where λn > 0 is a regularization parameter. By the representer theorem (Kimeldorf & Wahba, 1971; Schölkopf
et al., 2001), the solution to Problem (1) is given by f̂n =

∑n
i=1 α̂i k(·, xi), with α̂ ∈ Rn the solution to

min
α∈Rn

1
n

n∑
i=1

ℓ([Kα]i, yi) + λn

2 α⊤Kα , (2)

where K ∈ Rn×n is the kernel Gram matrix such that Kij = k(xi, xj).
Definition 2 (Regularized Kernel-based Sketched Estimator). Given a random matrix S ∈ Rs×n, with
s << n, sketching consists in imposing the substitution α = S⊤γ in the empirical risk minimization problem
stated in Equation (2). We then obtain an optimisation problem of reduced size on γ, that yields the sketched
estimator f̃s =

∑n
i=1[S⊤γ̃]i k(·, xi), where γ̃ ∈ Rs is a solution to

min
γ∈Rs

1
n

n∑
i=1

ℓ([KS⊤γ]i, yi) + λn

2 γ⊤SKS⊤γ . (3)

The literature is rich in examples of distributions that can be used to generate the sketching matrix S. For
instance, the sub-sampling matrices, where each line of S is sampled from the n2-identity matrix, have been
widely studied in the context of kernel methods. They are computationally efficient from both time and
space perspectives, and yield the so-called Nyström approach (Williams & Seeger, 2001; Rudi et al., 2015).
More complex distributions, such as Randomized Orthogonal System (ROS) sketching or Gaussian sketch
matrices, have also been considered (Yang et al., 2017). In this work, we first give a general theoretical
analysis of regularized kernel-based sketched estimators for any K-satisfiable sketch matrix (Definition 3).
Then, we introduce the p-sparsified sketches and prove their K-satisfiablity, as well as their relevance for
kernel methods in terms of statistical and computational trade-off.

Works about sketched kernel machines usually assess the performance of f̃s by upper bounding its squared
L2(PN ) error, i.e., (1/n)

∑n
i=1(f̃s(xi)−fHk

(xi))2, where fHk
is the minimizer of the true risk overHk, supposed

to be attained (Yang et al., 2017, Equation 2), or through its (relative) recovery error ∥f̃s − f̂n∥Hk
/∥f̂n∥Hk

,
see Lacotte & Pilanci (2020, Theorem 3). In contrast, we focus on the excess risk of f̃s, the original quantity
of interest. As revealed by the proof of Theorem 2, the approximation error of the excess of risk can be
controlled in terms of the L2(PN ) error, and we actually recover the results from Yang et al. (2017) when
we particularize to the square loss with bounded outputs (second bound in Theorem 2). Furthermore,
studying the excess risk allows to better position the performances of f̃s among the known off-the-shelf
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kernel-based estimators available for the targeted problem. To achieve this study, we rely on the key notion
of K-satisfiability for a sketch matrix (Yang et al., 2017; Liu et al., 2019; Chen & Yang, 2021a).

Let K/n = UDU⊤ be the eigendecomposition of the Gram matrix, where D = diag (µ1, . . . , µn) stores the
eigenvalues of K/n in decreasing order. Let δ2

n be the critical radius of K/n, i.e., the lowest value such that
ψ(δn) = ( 1

n

∑n
i=1 min(δ2

n, µi))1/2 ≤ δ2
n. The existence and uniqueness of δ2

n is guaranteed for any unit ball
in the RKHS associated with a positive definite kernel (Bartlett et al., 2006; Yang et al., 2017). Note that
δ2

n is similar to the parameter ε̃2 used in Yang et al. (2012) to analyze Nyström approximation for kernel
methods. We define the statistical dimension of K as dn = min

{
j ∈ {1, . . . , n} : µj ≤ δ2

n

}
, with dn = n if no

such index j exists.

Definition 3 (K-satisfiability of a sketching matrix, Yang et al. 2017). Let c > 0 be independent of n,
U1 ∈ Rn×dn and U2 ∈ Rn×(n−dn) be the the left and right blocks of the matrix U previously defined, and
D2 = diag (µdn+1, . . . , µn). A sketch matrix S is said to be K-satisfiable for c if we have∥∥∥(SU1)⊤

SU1 − Idn

∥∥∥
op
≤ 1/2 , and

∥∥∥SU2D
1/2
2

∥∥∥
op
≤ cδn . (4)

Roughly speaking, a sketching matrix is K-satisfiable if it defines an isometry on the largest eigenvectors of
K, and has a small operator norm on the smallest eigenvectors. For random sketching matrices, it is common
to show K-satisfiability with high probability under some condition on the sketch size s, see e.g., Yang et al.
(2017, Lemma 5) for Gaussian sketches, Chen & Yang (2021a, Theorem 8) for Accumulation sketches. In
Section 3, we show similar results for p-sparsified sketches.

To derive our excess risk bounds, we place ourselves in the framework of Li et al. (2021), see Sections 2.1 and 3
therein. Namely, we assume that the true risk is minimized over Hk at fHk

:= arg inff∈Hk
E [ℓ (f (X) , Y )].

The existence of fHk
is standard in the literature (Caponnetto & De Vito, 2007; Rudi & Rosasco, 2017; Yang

et al., 2017), and implies that fHk
has bounded norm, see e.g., Rudi & Rosasco (2017, Remark 2). Similarly

to Li et al. (2021), we also assume that estimators returned by Empirical Risk Minimization have bounded
norm. Hence, all estimators considered in the present paper belong to some ball of finite radius R. However,
we highlight that our results do not require prior knowledge on R, and hold uniformly for all finite R. As a
consequence, we consider without loss of generality as hypothesis set the unit ball B (Hk) in Hk, up to an a
posteriori rescaling of the bounds by R to recover the general case.
Assumption 1. The true risk is minimized at fHk

.
Assumption 2. The hypothesis set considered is B (Hk).
Assumption 3. For all y ∈ Y, z 7→ ℓ(z, y) is L-Lipschitz.
Assumption 4. For all x, x′ ∈ X , we have k(x, x′) ≤ κ.
Assumption 5. The sketch S is K-satisfiable.

Note that we discuss some directions to relax Assumption 2 in Appendix B. Many loss functions satisfy
Assumption 3, such as the hinge loss (L = 1), used in SVMs (Cortes & Vapnik, 1995), the ϵ-insensitive ℓ1
(Drucker et al., 1997), the κ-Huber loss, known for robust regression (Huber, 1964), the pinball loss, used in
quantile regression (Steinwart & Christmann, 2011), or the square loss with bounded outputs. Assumption 4
is standard (e.g., κ = 1 for the Gaussian kernel). Under Assumptions 1 to 5 we have the following result.
Theorem 2. Suppose that Assumptions 1 to 5 hold, and let C = 1 +

√
6c, with c the constant from

Assumption 5. Then, for any δ ∈ (0, 1) with probability at least 1− δ we have

E
[
ℓf̃s

]
≤ E

[
ℓfHk

]
+ LC

√
λn + δ2

n + λn

2 + 8L
√
κ

n
+ 2
√

8 log (4/δ)
n

. (5)

Furthermore, if ℓ (z, y) = (z − y)2
/2 and Y ⊂ [0, 1], with probability at least 1− δ we have

E
[
ℓf̃s

]
≤ E

[
ℓfHk

]
+
(
C2 + 1

2

)
λn + C2δ2

n + 8κ+
√
κ√

n
+ 2
√

8 log (4/δ)
n

. (6)
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Proof sketch. The proof relies on the decomposition of the excess risk into two generalization error terms and
an approximation error term, i.e.,

E[ℓf̃s
]− E[ℓfHk

] = E[ℓf̃s
]− En[ℓf̃s

] + En[ℓf̃s
]− En[ℓfHk

] + En[ℓfHk
]− E[ℓfHk

]. (7)

The two generalization errors (of f̃s and fHk
) can be bounded using Bartlett & Mendelson (2003, Theorem 8)

together with Assumptions 1 to 4. For the last term, we can use Jensen’s inequality and the Lipschitz
continuity of the loss to upper bound this approximation error by the square root of the sum of the square
residuals of the Kernel Ridge Regression with targets the fHk

(xi). The latter can in turn be upper bounded
using Assumptions 1 and 5 and Lemma 2 from Yang et al. (2017). When considering the square loss, Jensen’s
inequality is not necessary anymore, leading to the improved second term in the right-hand side of the last
inequality in Theorem 2.

Recall that the rates in Theorem 2 are incomparable as is to that of Yang et al. (2017, Theorem 2), since we
focus on the excess risk while the authors study the squared L2(PN ) error. Precisely, we recover their results
as a particular case with the square loss and bounded outputs, up to the generalization errors. Instead, note
that we do recover the rates of Li et al. (2021, Theorem 1), based on a similar framework. Our bounds feature
two different terms: a quantity related to the generalization errors, and a quantity governed by δn, deriving
from the K-satisfiability analysis. The behaviour of the critical radius δn crucially depends on the choice of
the kernel. In Yang et al. (2017), the authors compute its decay rate for different kernels. For instance, we
have δ2

n = O(
√

log (n)/n) for the Gaussian kernel, δ2
n = O (1/n) for polynomial kernels, or δ2

n = O(n−2/3)
for first-order Sobolev kernels. Note finally that by setting λn ∝ 1/

√
n we attain a rate of O (1/

√
n), that is

minimax for the kernel ridge regression, see Caponnetto & De Vito (2007).
Remark 1. Note that a standard additional assumption on the second order moments of the functions in
Hk (Bartlett et al., 2005) allows to derive refined learning rates for the generalization errors. These refined
rates are expressed in terms of r̂⋆

Hk
, the fixed point of a new sub-root function ψ̂n. In order to make the

approximation error of the same order, it is then necessary to prove the K-satisfiability of S with respect to
r̂⋆2

Hk
instead of δ2

n. Whether it is possible to prove such a K-satisfiability for standard sketches is however a
nontrivial question, left as future work.

2.2 Matrix-valued Kernel Machines

In this section, we extend our results to multiple output regression, tackled in vector-valued RKHSs. Note
that the output space Y is now a subset of Rd, with d ≥ 2. We start by recalling important notions about
Matrix-Valued Kernels (MVKs) and vector-valued RKHSs (vv-RKHSs).
Definition 4 (Matrix-valued kernel). An MVK is an application K : X × X → L(Rd), where L(Rd) is the
set of bounded linear operators on Rd, such that K (x, x′) = K (x′, x)⊤ for all (x, x′) ∈ X 2, and such that for
all n ∈ N and any (xi, yi)n

i=1 ∈ (X × Y)n we have
∑n

i,j=1 y
⊤
i K (xi, xj) yj ⩾ 0.

Theorem 3 (Vector-valued RKHS). Let K be an MVK. There is a unique Hilbert space HK ⊂ F(X ,Rd),
the vv-RKHS of K, such that for all x ∈ X , y ∈ Rd and f ∈ HK we have x′ 7→ K (x, x′) y ∈ HK, and
⟨f,K (·, x) y⟩H = f(x)⊤y.

Note that we focus in this paper on the finite-dimensional case, i.e., Y ⊂ Rd, such that for all x, x′ ∈ X , we have
K(x, x′) ∈ Rd×d. For a training sample {x1, . . . , xn}, we define the Gram matrix as K = (K(xi, xj))1≤i,j≤n ∈
Rnd×nd. A common assumption consists in considering decomposable kernels: we assume that there
exist a scalar kernel k and a positive semidefinite matrix M ∈ Rd×d such that for all x, x′ ∈ X we have
K(x, x′) = k(x, x′)M . The Gram matrix can then be written K = K⊗M , where K ∈ Rn×n is the scalar Gram
matrix, and ⊗ denotes the Kronecker product. Decomposable kernels are widely spread in the literature as
they provide a good compromise between computational simplicity and expressivity —note that in particular
they encapsulate independent learning, achieved with M = Id. We now discuss two examples of relevant
output matrices.
Example 1. In joint quantile regression, one is interested in predicting d different conditional quantiles of
an output y given the input x. If (τi)i≤d ∈ (0, 1) denote the d different quantile levels, it has been shown in
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Sangnier et al. (2016) that choosing Mij = exp(−γ(τi − τj)2) favors close predictions for close quantile levels,
while limiting crossing effects.

Example 2. In multiple output regression, it is possible to leverage prior knowledge on the task relationships
to design a relevant output matrix M . For instance, let P be the d× d adjacency matrix of a graph in which
the vertices are the tasks and an edge exists between two tasks if and only if they are (thought to be) related.
Denoting by LP the graph Laplacian associated to P , Evgeniou et al. (2005) and Sheldon (2008) have proposed
to use M = (µLP + (1− µ)Id)−1, with µ ∈ [0, 1]. When µ = 0, we have M = Id and all tasks are considered
independent. When µ = 1, we only rely on the prior knowledge encoded in P .

Given a sample (xi, yi)n
i=1 ∈

(
X ,Rd

)n and a decomposable kernel K = kM (its associated vv-RKHS is HK),
the penalized empirical risk minimisation problem is

min
f∈HK

1
n

n∑
i=1

ℓ(f(xi), yi) + λn

2 ∥f∥
2
HK

, (8)

where ℓ : Rd × Rd → R is a loss such that z 7→ ℓ(z, y) is proper, lower semi-continuous and convex for all
y ∈ Rd. By the vector-valued representer theorem (Micchelli & Pontil, 2005), we have that the solution
to Problem (8) writes f̂n =

∑n
j=1K(·, xj)α̂j =

∑n
j=1 k(·, xj)Mα̂j , where Â = (α̂1, . . . , α̂n)⊤ ∈ Rn×d is the

solution to the problem

min
A∈Rn×d

1
n

n∑
i=1

ℓ
(

[KAM ]⊤i: , yi

)
+ λn

2 Tr
(
KAMA⊤) .

In this context, sketching consists in making the substitution A = S⊤Γ, where S ∈ Rs×n is a sketch matrix
and Γ ∈ Rs×d is the parameter of reduced dimension to be learned. The solution to the sketched problem is
then f̃s =

∑n
j=1 k(·, xj)M

[
S⊤Γ̃

]
j:, with Γ̃ ∈ Rs×d minimizing

1
n

n∑
i=1

ℓ
([
KS⊤ΓM

]
i: , yi

)
+ λn

2 Tr
(
SKS⊤ΓMΓ⊤) .

Theorem 4. Suppose that Assumptions 1 to 5 hold, that K = kM is a decomposable kernel with M invertible,
and let C as in Theorem 2. Then for any δ ∈ (0, 1) with probability at least 1− δ we have

E
[
ℓf̃s

]
≤ E

[
ℓfHK

]
+ LC

√
λn + ∥M∥op δ2

n + λn

2 + 8L
√
κTr (M)

n
+ 2
√

8 log (4/δ)
n

. (9)

Furthermore, if ℓ (z, y) = ∥z − y∥2
2 /2 and Y ⊂ B

(
Rd
)
, with probability at least 1− δ we have that

E
[
ℓf̃s

]
≤ E

[
ℓfHk

]
+
(
C2 + 1

2

)
λn + C2∥M∥op δ

2
n + 8 Tr (M)1/2 κ ∥M∥

1/2
op + κ1/2
√
n

+ 2
√

8 log (4/δ)
n

. (10)

Proof sketch. The proof follows that of Theorem 2. The main challenge is to adapt Yang et al. (2017,
Lemma 2) to the multiple output setting. To do so, we leverage that K is decomposable, such that the
K-satisfiability of S is sufficient, where K the scalar Gram matrix.

Note that for M = Id (independent prior), the third term of the right-hand side of both inequalities become
of order

√
d/n, that is typical of multiple output problems. If moreover we instantiate the bound for d = 1,

we recover exactly Theorem 2. To the best of our knowledge, Theorem 4 is the first theoretical result about
sketched vector-valued kernel machines. We highlight that it applies to generic Lipschitz losses and provides
a bound directly on the excess risk.
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2.3 Algorithmic details

We now discuss how to solve single and multiple output optimization problems. Let {(µ̃i, ṽi), i ∈ [s]} be the
eigenpairs of SKS⊤ in descending order, Ũ = [Ũij ]s×s = (ṽ1, . . . , ṽs), r = rank(SKS⊤), and K̃r = ŨrD̃

−1/2
r ,

where D̃r = diag(µ̃1, . . . , µ̃r), and Ũr = (ṽ1, . . . , ṽr).
Proposition 1. Solving Problem (3) is equivalent to solving

min
ω∈Rr

1
n

n∑
i=1

ℓ
(
ω⊤zS (xi) , yi

)
+ λn

2 ∥ω∥
2
2 , (11)

where zS (x) = K̃⊤
r S (k (x, x1) , . . . , k (x, xn))⊤ ∈ Rr.

Problem (11) thus writes as a linear problem with respect to the feature maps induced by the sketch,
generalizing the results established in Yang et al. (2012) for sub-sampling sketches. When considering multiple
outputs, it is also possible to derive a linear feature map version when the kernel is decomposable. These
feature maps are of the form zS ⊗M1/2, yielding matrices of size nd× rd that are prohibitive in terms of
space, see Appendix E. Note that an alternative way is to see sketching as a projection of the k(·, xi) into
Rr (Chatalic et al., 2021). Instead, we directly learn Γ. For both single and multiple output problems, we
consider losses not differentiable everywhere in Section 4 and apply ADAM Stochastic Subgradient Descent
(Kingma & Ba, 2015) for its ability to handle large datasets.
Remark 2. In the previous sections, sketching is always leveraged in primal problems. However, for some of
the loss functions we consider, dual problems are usually more attractive (Cortes & Vapnik, 1995; Laforgue
et al., 2020). This naturally raises the question of investigating the interplay between sketching and duality
on the algorithmic level. More details can be found in Appendix F.

3 p-Sparsified Sketches

We now introduce the p-sparsified sketches, and establish their K-satisfiability. The p-sparsified sketching
matrices are composed of i.i.d. Rademacher or centered Gaussian entries, multiplied by independent Bernoulli
variables of parameter p (the non-zero entries are scaled to ensure that S defines an isometry in expectation).
The sketch sparsity is controlled by p, and when the latter becomes small enough, S contains many columns
full of zeros. It is then possible to rewrite S as the product of a sub-Gaussian and a sub-sampling sketch of
reduced size, which greatly accelerates the computations.
Definition 5. Let s < n, and p ∈ (0, 1]. A p-Sparsified Rademacher (p-SR) sketching matrix is a random
matrix S ∈ Rs×n whose entries Sij are independent and identically distributed (i.i.d.) as follows

Sij =


1√
sp with probability p

2
0 with probability 1− p

−1√
sp with probability p

2

(12)

A p-Sparsified Gaussian (p-SG) sketching matrix is a random matrix S ∈ Rs×n whose entries Sij are i.i.d.
as follows

Sij =
{

1√
sp Gij with probability p

0 with probability 1− p
(13)

where the Gij are i.i.d. standard normal random variables. Note that standard Gaussian sketches are a special
case of p-SG sketches, corresponding to p = 1.

Several works partially addressed p-SR sketches in the past literature. For instance, Baraniuk et al. (2008)
establish that p-SR sketches satisfy the Restricted Isometry Property (based on concentration results
from Achlioptas (2001)), but only for p = 1 and p = 1/3. In Li et al. (2006), the authors consider generic
p-SR sketches, but do not provide any theoretical result outside of a moment analysis. The i.i.d. sparse
embedding matrices from Cohen (2016) are basically m/s-SR sketches, where m ≥ 1, leading each column to
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have exactly m nonzero elements in expectation. However, we were not able to reproduce the proof of the
Johnson-Linderstrauss property proposed by the author for his sketch (Theorem 4.2 in the paper, equivalent
to the first claim of K-satisfiability, left-hand side of (4)). More precisely, we think that the assumptions
considering “each entry is independently nonzero with probability m/s” and “each column has a fixed number
of nonzero entries” (m here) are conflicting. As far as we know, this is the first time p-SG sketches are
introduced in the literature. Note that both (12) and (13) can be rewritten as Sij = (1/√sp)BijRij , where the
Bij are i.i.d. Bernouilli random variables of parameter p, and the Rij are i.i.d. random variables, independent
from the Bij , such that E[Rij ] = 0 and E[RijRi′j′ ] = 1 if i = i′ and j = j′, and 0 otherwise. Namely, for
p-SG sketches Rij = Gij is a standard Gaussian variable while for p-SR sketches it is a Rademacher random
variable. It is then easy to check that p-SR and p-SG sketches define isometries in expectation. In the next
theorem, we show that p-sparsified sketches are K-satisfiable with high probability.
Theorem 5. Let S be a p-sparsified sketching matrix. Then, there are some universal constants C0, C1 > 0
and a constant c(p), increasing with p, such that for s ≥ max

(
C0dn/p

2, δ2
nn
)

and with a probability at least
1− C1e

−sc(p), the sketch S is K-satisfiable for c = 2√
p

(
1 +

√
log (5)

)
+ 1.

Proof sketch. To prove the left-hand side of (4), we use Boucheron et al. (2013, Theorem 2.13), which shows
that any i.i.d. sub-Gaussian sketch matrix satisfies the Johnson-Lindenstrauss lemma with high probability.
To prove the right-hand side of (4), we work conditionally on a realization of the Bij , and use concentration
results of Lipschitz functions of Rademacher or Gaussian random variables (Tao, 2012). We highlight that
such concentration results do not hold for sub-Gaussian random variables in general, preventing from showing
K-satisfiability of generic sparsified sub-Gaussian sketches. Note that having Sij ∝ BijRij is key, and that
sub-sampling uniformly at random non-zero entries instead of using i.i.d. Bernoulli variables would make
the proof significantly more complex. We highlight that Theorem 5 strictly generalizes Yang et al. (2017,
Lemma 5), recovered for p = 1, and extends the results to Rademacher sketches.

Computational property of p-sparsified sketches. In addition to be statistically accurate, p-sparsified
sketches are computationally efficient. Indeed, recall that the main quantity one has to compute when
sketching a kernel machine is the matrix SKS⊤. With standard Gaussian sketches, that are known to be
theoretically accurate, this computation takes O(sn2) operations. Sub-sampling sketches are notoriously
less precise, but since they act as masks over the Gram matrix K, computing SKS⊤ can be done in O(s2)
operations only, without having to store the entire Gram matrix upfront. Now, let S ∈ Rs×n be a p-sparsified
sketch, and s′ =

∑n
j=1 I{S:j ̸= 0s} be the number of columns of S with at least one nonzero element. The

crucial observation that makes S computationally efficient is that we have

S = SSG SSS , (14)

where SSG ∈ Rs×s′ is obtained by deleting the null columns from S, and SSS ∈ Rs′×n is a sub-Sampling
sketch whose sampling indices correspond to the indices of the columns in S with at least one non-zero
entry1. We refer to (14) as the decomposition trick. This decomposition is key, as we can apply first a fast
sub-sampling sketch, and then a sub-Gaussian sketch on the sub-sampled Gram matrix of reduced size. Note
that s′ is a random variable. By independence of the entries, each column is null with probability (1− p)s.
Then, by the independence of the columns we have that s′ follows a Binomial distribution with parameters n
and 1− (1− p)s, such that E [s′] = n(1− (1− p)s).

Hence, the sparsity of the p-sparsified sketches, controlled by parameter p, is an interesting degree of freedom
to add: it preserves statistical guarantees (Theorem 5) while speeding-up calculations (14). Of course, there
is no free lunch and one looses on one side what is gained on the other: when p decreases (sparser sketches),
the lower bound to get guarantees s ≳ dn/p

2 increases, but the expected number of non-null columns s′

decreases, thus accelerating computations (note that for p = 1 we exactly recover the lower bound and number
of non-null columns for Gaussian sketches). By substituting s = C0dn/p

2 into E[s′], one can show that it is
optimal to set p ≈ 0.7, independently from C0 and dn. This value minimizes computations while maintaining
the guarantees. However, the lower bound in Theorem 5 is a sufficient condition, that might be conservative.

1Precisely, SSS is the identity matrix Is′ , augmented with n − s′ null columns inserted at the indices of the null columns of S.
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Looking at the problem of setting s and p from the practitioner point of view, we also provide more aggressive
empirical guidelines. Indeed, although this regime is not covered by Theorem 5, experiments show that setting
s as for the Gaussian sketch and p smaller than 1/s yield very interesting results, see Figure 1(c). Overall,
p-sparsified sketches (i) generalize Gaussian sketches by introducing sparsity as a new degree of freedom, (ii)
enjoy a regime in which theoretical guarantees are preserved and computations (slightly) accelerated, (iii)
empirically yield competitive results also in aggressive regimes not covered by theory, thus achieving a wide
range of intesting accuracy/computations tradeoffs.

Related works. Sparse sketches have been widely studied in the literature, see Clarkson & Woodruff
(2017); Nelson & Nguyên (2013); Derezinski et al. (2021). However these sketches are well-suited when
applied to sparse matrices (e.g., matrices induced by graphs). In fact, given a matrix A, computing SA with
these types of sketching has a time complexity of the order of nnz (A), the number of nonzero elements of A.
Besides, these sketches usually are constructed such that each column has at least one nonzero element (e.g.
CountSketch, OSNAP), hence no decomposition trick is possible. Regarding kernel methods, since a Gram
matrix is typically dense (e.g., with the Gaussian kernel, nnz (K) = n2), and since no decomposition trick can
be applied, one has to compute the whole matrix K and store it, such that time and space complexity implied
by such sketches are of the order of n2. In practice, we show that we can set p small enough to computationally
outperform classical sparse sketches and still obtain similar statistical performance. Note that an important
line of research is devoted to improve the statistical performance of Nyström’s approximation, either by
adaptive sampling (Kumar et al., 2012; Wang & Zhang, 2013; Gittens & Mahoney, 2013), or leverage scores
(Alaoui & Mahoney, 2015; Musco & Musco, 2017; Rudi et al., 2018; Chen & Yang, 2021b). We took the
opposite route, as p-SG sketches are accelerated but statistically degraded versions of the Gaussian sketch.

4 Experiments

We now empirically compare the performance of p-sparsified sketches against state-of-he-art approaches,
namely Nyström approximation (Williams & Seeger, 2001), Gaussian sketch (Yang et al., 2017), Accumulation
sketch (Chen & Yang, 2021a), CountSketch (Clarkson & Woodruff, 2017) and Random Fourier Features
(Rahimi & Recht, 2007). We chose not to benchmark ROS sketches as CountSketch has equivalent statistical
accuracy while being faster to compute. Results reported are averaged over 30 replicates.

4.1 Scalar regression

Robust regression. We generate a dataset composed of n = 10, 000 training datapoints: 9, 900 input
points drawn i.i.d. from U ([010,110]) and 100 other drawn i.i.d. from N (1.5110, 0.25I10). The outputs are
generated as y = f⋆(x) + ϵ, where ϵ ∼ N (0, 1) and

f⋆(x) = 0.1e4x1 + 4
1 + e−20(x2−0.5) + 3x3 + 2x4 + x5 ,

as introduced in Friedman (1991). We generate a test set of nte = 10, 000 points in the same way. We use the
Gaussian kernel and select its bandwidth —as well as parameters λn and κ (and ϵ for ϵ-SVR)— via 5-folds
cross-validation. We solve this 1D regression problem using the κ-Huber loss, described in Appendix G. We
learn the sketched kernel machines for different values of s (from 40 to 140) and several values of p, the
probability of being non-null in a p-SR sketch. Figure 1(a) presents the test error as a function of the sketch
size s. Figure 1(b) shows the corresponding computational training time. All methods reduce their test
error, measured in terms of the relative Mean Squared Error (MSE) when s increases. Note that increasing p
increases both the precision and the training time, as expected. This behaviour recalls the Accumulation
sketches, since we observe a form of interpolation between the Nyström and Gaussian approximations. The
behaviour of all the different sketched kernel machines is shown in Figure 1(c), where each of them appears
as a point (training time, test MSE). We observe that p-SR sketches attain the smallest possible error
(MSE ≤ 0.05) at the lowest training time budget (mostly around 5.6 < time < 6.6). Moreover, p-SR sketches
obtain a similar precision range as the Accumulation sketches, but for smaller training times (both approaches
improve upon CountSketch and Gaussian sketch in that respect). Nyström sketching, which similarly to
our approach does not need computing the entire Gram matrix, is fast to compute. The method is however
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Figure 1: Trade-off between Accuracy and Efficiency for p-SR sketches with κ-Huber loss on synthetic dataset.

known to be sensitive to the non-homogeneity of the marginal distribution of the input data (Yang et al.,
2017, Section 3.3). In contrast, the sub-Gaussian mixing matrix SSG in (14) makes p-sparsified sketches more
robust, as empirically shown in Figure 1(c). See Appendix H.1 for results on p-SG sketches.

4.2 Vector-valued regression

Joint quantile regression. We choose the quantile levels as follows τ = (0.1, 0.3, 0.5, 0.7, 0.9). We apply a
subgradient algorithm to minimize the pinball loss described in Appendix G with ridge regularization and a
kernel K = kM with M discussed in Example 1, and k a Gaussian kernel. We select regularisation parameter
λn and bandwidth of kernel σ2 via a 5-fold cross-validation. We showcase the behaviour of the proposed
algorithm for Joint Sketched Quantile Regression on two datasets: the Boston Housing dataset (Harrison Jr
& Rubinfeld, 1978), composed of 506 data points devoted to house price prediction, and the Fish Otoliths
dataset (Moen et al., 2018; Ordoñez et al., 2020), dedicated to fish age prediction from images of otoliths
(calcium carbonate structures), composed of a train and test sets of size 3780 and 165 respectively. The
results are averages over 10 random 70%− 30% train-test splits for Boston dataset. For the Otoliths dataset
we kept the initial given train-test split. The results are reported in Table 1. Sketching allows for a massive
reduction of the training times while preserving the statistical performances. As a comparison, according to
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the results of Sangnier et al. (2016), the best benchmark result for the Boston dataset in terms of test pinball
loss is 47.4, while best test crossing loss is 0.48, which shows that our implementation does not compete in
terms of quantile prediction but preserves the non-crossing property.

Multi-output regression. We finally conducted experiments on multi-output kernel ridge regression. We
used decomposable kernels, and took the largest datasets introduced in Spyromitros-Xioufis et al. (2016).
They consist in four datasets, divided in two groups: River Flow (rf1 and rf2) both composed of 4108
training data, and Supply Chain Management (scm1d and scm20d) composed of 8145 and 7463 training data
respectively (more details and additional results can be found in Appendix H.2). We compare our non-sketched
decomposable matrix-valued kernel machine with the sketched version. For the sake of conciseness, we only
report here the Average Relative Root Mean Squared Error (ARRMSE), see Table 2 and Appendix H.2.
For all datasets, sketching shows strong computational improvements while maintaining the accuracy of
non-sketched approaches.

Note that for both joint quantile regression and multi-output regression the results obtained after sketching
(no matter the sketch chosen) are almost the same as that attained without sketching. It might be explained
by two factors. First, the datasets studied have relatively small training sizes (from 354 training data for
Boston to 8145 for scm1d). Second, predicting jointly multiple outputs is a complex task, so that it appears
more natural to obtain less differences and variance using various types of sketches (or no sketch). However,
in all cases sketching induces a huge time saver.

Table 1: Test pinball and crossing loss and training times (in seconds) with and without sketching (s = 50).
Dataset Metrics w/o Sketch 20/ntr-SR 20/ntr-SG Acc. m = 20 CountSketch

Boston
Pinball loss 51.28 ± 0.67 54.75 ± 0.74 54.78 ± 0.72 54.73 ± 0.75 54.60 ± 0.72

Crossing loss 0.34 ± 0.13 0.26 ± 0.08 0.11 ± 0.07 0.15 ± 0.07 0.10 ± 0.05
Training time 6.97 ± 0.25 1.43 ± 0.07 1.38 ± 0.08 1.48 ± 0.05 1.23 ± 0.07

otoliths
Pinball loss 2.78 2.66 ± 0.02 2.64 ± 0.02 2.67 ± 0.03 2.65 ± 0.02

Crossing loss 5.18 5.46 ± 0.06 5.43 ± 0.05 5.46 ± 0.06 5.44 ± 0.05
Training time 606.8 20.4 ± 0.5 20.0 ± 0.3 22.1 ± 0.4 20.9 ± 0.3

Table 2: ARRMSE and training times (in sec) with square loss and s = 100 when using Sketching.
Dataset Metrics w/o Sketch 20/ntr-SR 20/ntr-SG Acc. m = 20 CountSketch

rf1 ARRMSE 0.575 0.584 ± 0.003 0.583 ± 0.003 0.592 ± 0.001 0.575 ± 0.0005
Training time 1.73 0.22 ± 0.025 0.25 ± 0.005 0.60 ± 0.0004 0.66 ± 0.013

rf2 ARRMSE 0.578 0.671 ± 0.009 0.656 ± 0.006 0.796 ± 0.006 0.715 ± 0.011
Training time 1.77 0.28 ± 0.003 0.27 ± 0.003 0.82 ± 0.003 0.62 ± 0.001

scm1d ARRMSE 0.418 0.422 ± 0.002 0.423 ± 0.001 0.423 ± 0.001 0.420 ± 0.001
Training time 9.36 0.45 ± 0.022 0.45 ± 0.019 0.86 ± 0.006 2.49 ± 0.035

scm20d ARRMSE 0.755 0.754 ± 0.003 0.754 ± 0.003 0.753 ± 0.001 0.754 ± 0.002
Training time 6.16 0.38 ± 0.016 0.38 ± 0.017 0.70 ± 0.032 1.91 ± 0.047

5 Conclusion

We proposed excess-risk bounds for sketched kernel machines in the context of Lipschitz-continuous losses,
with results valid for both scalar and matrix-valued kernels. We introduced a novel sketching scheme that
leverages the good empirical statistical guarantees of the Gaussian Sketching while combining them with the
low cost of Nyström sketching. Numerical experiments show that this novel scheme opens the door to many
applications beyond the squared loss. Improvements on multi-output regression can certainly be obtained by
applying low-rank considerations in the output space as well.
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