
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

MATH FOR AI: ON THE GENERALIZATION OF LEARN-
ING MATHEMATICAL PROBLEM SOLVING

Anonymous authors
Paper under double-blind review

ABSTRACT

There has been a growing interest in enhancing the mathematical problem-solving
(MPS) capabilities of LLMs. While some researchers focus on developing spe-
cialized math models to advance AI for math, others study mathematical reasoning
with a math for AI perspective, positing that integrating mathematical reasoning
data could enable LLMs to perform complex reasoning more broadly. This hy-
pothesis draws from neuroscience studies which show that solving mathematical
problems aids in the development of general reasoning skills in humans. The con-
cept of “math for AI” has gained particular relevance as the research community
increasingly focuses on complex reasoning – Given the scarcity of complex and
lengthy chain-of-thought data, MPS emerges as a prime candidate for collecting
or synthesizing substantial volumes of intricate thought processes, thus serving
as a potential key resource for enhancing general complex reasoning. However, it
remains unclear whether skills acquired through learning MPS can extend to other
reasoning tasks or merely improve MPS-specific benchmark scores. In this paper,
we present a comprehensive empirical analysis to address this question. Specifi-
cally, we explore three prevalent methods for improving MPS: (1) continual pre-
training on mathematical text; (2) instruction pretraining on large-scale QA pairs
synthesized from raw text; and (3) instruction tuning on MPS datasets. Through
controlled experiments and evaluations across seven distinct reasoning domains,
while no approaches consistently generalize across all non-mathematical tasks,
both continual pretraining and instruction pretraining outperform instruction tun-
ing, with continual pretraining often yielding greater gains when effective. These
findings indicate that most readily available data sources do not support the “math
for AI” objective in enhancing non-MPS tasks. Identifying which data sources
best contribute to the acquisition of complex reasoning skills remains a crucial
question for future research.

1 INTRODUCTION

Cognitive neuroscience research has consistently demonstrated that learning to solve mathematical
problems enhances general reasoning abilities in humans, as engaging in mathematical problem-
solving promotes logical thinking, abstract reasoning, and transferable problem-solving strategies
across various domains (Dehaene et al., 2004; Hawes & Ansari, 2020). This notion – that learning
math fosters the development of general reasoning skills – points toward a “math for AI” vision,
where incorporating mathematical reasoning data into AI training could help large language models
(LLMs) develop more complex and versatile reasoning abilities. The “math for AI” goal is particu-
larly relevant to recent attentions to complex reasoning abilities of LLMs (OpenAI, 2024) , as mathe-
matical problem-solving (MPS) is one of the few domains where large volumes of long and intricate
CoT data can be generated or synthesized (Tang et al., 2024; Lu et al., 2024), making it a valuable
data source to potentially learn complex reasoning. However, while numerous models have been
developed to tackle mathematical problem-solving (Cobbe et al., 2021b; Yu et al., 2023; Luo et al.,
2023a) , their evaluations focus narrowly on benchmarks like GSM8K (Cobbe et al., 2021a) and
MATH (Hendrycks et al., 2021b), and it is unclear whether these approaches and the accompanied
datasets can really help learn other types of reasoning. Therefore, these works, whether intentional
or not, fall within the “AI for math” scope and fail to demonstrate their impact for the “math for AI”
objective. Thus, a key question remains: Does learning mathematical problem-solving contribute
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to the development of a model’s general reasoning abilities, or does it merely enhance performance
on MPS benchmarks?

In this study, we conduct empirical analysis focusing on this central question. Specifically, we ex-
plore whether training LLMs on mathematical problem-solving tasks can help broader reasoning
tasks beyond mathematics. We first identify three common training strategies to enhance LLMs’
capabilities in solving mathematical problems: (1) Continual pretraining on mathematical text in-
volves extending the pretraining of LLMs on large-scale mathematical text to enhance their adapt-
ability to the mathematical domain, such as RhO-Math (Lin et al., 2024) and Deepseek-Math (Shao
et al., 2024). (2) Instruction pretraining on diverse QA pairs is a method focused on training mod-
els using diverse question-answer pairs from raw texts, typically encompassing various formats and
types of math problems (Yue et al., 2024; Cheng et al., 2024). (3) Instruction tuning on MPS datasets
involves fine-tuning models on MPS datasets. This is the most common method adopted to learn
mathematical problem-solving and lead to state-of-the-art performance (Yu et al., 2023; Gou et al.,
2023; LI et al., 2024; Tong et al., 2024).

We perform control experiments and evaluate a series of model created by the three training strate-
gies above, where the models are either from open-source checkpoints or our own training. We
assess these models across multiple benchmarks involving MPS benchmarks and six types of non-
MPS reasoning: mathematical reasoning (excluding problem-solving) , STEM reasoning, logical
reasoning, commonsense reasoning, symbolic reasoning, and agent reasoning. When trained exclu-
sively on mathematical texts, we observed that models tend to lose their ability to follow general
instructions and become limited to performing only math-related tasks. To mitigate this effect, we
also incorporated general chat-based data into the training process. This approach simulates a realis-
tic development scenario where math-related training is integrated as part of broader model training,
rather than isolating it to create a model solely capable of MPS tasks.

Our experimental results reveal that although no approaches that demonstrate consistent general-
ization for non-mathematical tasks, continual pretraining on raw mathematical texts enhance per-
formance across a broader range of reasoning tasks. However, as we transition from continual
pretraining to instruction pretraining and instruction tuning, the diversity of data drops, leading to
decreased improvements. Particularly, MPS-oriented training negatively impacts performance on
non-mathematical tasks. These findings also suggest that most open-source datasets in the math do-
main, which specifically target mathematical problem-solving, are unable to facilitate broader types
of reasoning tasks to fulfill the “math for AI” goal. We encourage future research to reconsider
the objectives when studying mathematical reasoning. If the goal is to enhance general reasoning
capabilities rather than “AI for math”, it may be worthwhile to explore which data sources, whether
math-related or otherwise, can effectively contribute to the acquisition of more diverse reasoning
skills.

In the final part of this work, we perform a pilot study, trying to identify potential data sources
that could enhance reasoning skills. To this end, we experiment with three popular non-MPS SFT
datasets that cover various thought reasoning processes, including coding-related tasks, a broad
array of reasoning-intensive tasks and state-of-the-art conversational datasets. Unfortunately, none
of these datasets demonstrated significant improvements across a wide spectrum of reasoning tasks.
This points to a pessimistic conclusion that, in comparison to the extensive data used in pretraining,
the relatively modest volume of SFT data is insufficient to substantially improve the model’s general
reasoning capabilities, even when the data originates from diverse domains.

2 METHODS

2.1 TRAINING PARADIGMS FOR MATHEMATICAL PROBLEM-SOLVING

The improvement of mathematical problem-solving abilities in LLMs has been explored through
various training approaches, each with its own strengths and focus. Starting from a pretrained base
model, in this study, we explore three prominent training strategies as followed. Due to the expensive
cost of running some of the training paradigms, we obtain the required model from either the open-
source checkpoints or our own training as we also detail next.
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Figure 1: Three ways to incorporate math-related data into original training pipeline through hybrid
training process. Original training pipeline is to SFT models with general converation data. For the
instruction tuning on MPS datasets, we conducted both two-stage training and mix-data training, for
continual pretraining on mathematical text and instruction pretraining on diverse QA pairs, we only
conducted the two-stage training.

Continual Pretraining on Mathematical Text. In mathematics, where texts often involve multi-
step reasoning and formal expressions, this approach helps models better grasp the reasoning pat-
terns (Lewkowycz et al., 2022). Due to the expensive cost of running continual pretraining, in this
study, we experiment with two open-weight LLMs continually pretrained on mathematical-related
text: RhO-Math (Lin et al., 2024) and DeepSeekMath (Shao et al., 2024). DeepSeekMath-Base is
continual pretrained based on the DeepSeek-Coder-Base model using a large mathematical corpus
called DeepSeekMath Corpus. It achieves 64.2% on GSM8K and 36.2% on the competition-level
MATH dataset. Rho-Math-7B is continual pretraining with Selective Language Modeling method
through OpenWebMath corpus on Mistral-7B, achieving 66.9% on GSM8K and 31.0% on MATH
dataset. Distinct from normal continual pretraining, Rho-Math utilizes another reference model to
select tokens and only optimize losses on the selected tokens. However, the reference model is cre-
ated by training on task-specific SFT datasets. While Rho-Math demonstrated superior performance
on mathematical problem-solving, in §3.3 we will show that this training scheme may potentially
overfit on benchmark tasks as well, and fail to achieve significant gains on non-MPS tasks.

Instruction Pretraining on Diverse QA Pairs. Instruction pretraining using diverse question-
answer (QA) pairs improves a model’s generalization across diverse tasks while enhancing its
instruction-following capabilities (Yue et al., 2024; Chung et al., 2024; Cheng et al., 2024). This
approach involves with large QA datasets, often synthesized from raw text, encompassing various
formats, complexities, and problem types. Typically, powerful LLMs like GPT-4 are used to filter
raw text and generate relevant QA pairs. In our study, we leverage the open-weight MammoTH2
model (Yue et al., 2024) to evaluate it on broader tasks. MammoTH2 was trained on approximately
10 million QA pairs synthesized through open-source LLMs from a wide range of mathematical,
science and engineering texts.

Instruction Tuning on MPS Datasets. Unlike continual pretraining or instruction pretraining
on diverse QA pairs, this approach focuses on smaller, domain-specific datasets typically aligned
with benchmark tasks. This is the most commonly used approach to boost MPS scores due to its
efficiency. To assess whether models finetuned on MPS datasets can generalize beyond their source
tasks, we use two different MPS-oriented datasets to train two models on our own : Math-COT SFT
and Math-POT SFT. Math-COT SFT was trained on the MetaMath dataset (Yu et al., 2023), which
draws primarily from the GSM8K and MATH benchmarks, all structured in a chain-of-thought
(CoT) format. Math-POT SFT, on the other hand, was trained on the NuminaMath-TIR dataset (LI
et al., 2024), which includes problems from GSM8K and MATH, as well as other benchmarks, with
tasks presented in natural language and solutions in code snippets. The NuminaMath-TIR dataset
directly leads to the NuminaMath model that wins a recent AI for Math competition.1

2.2 HYBRID TRAINING

The training strategies described in §2.1, if exclusively used, could lead to the development of
models specialized solely in mathematical reasoning tasks. However, this work focuses on studying

1https://www.kaggle.com/competitions/ai-mathematical-olympiad-prize/leaderboard
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“math for AI”, the impact of math-related training and data on general model development. And
it is a common practice to mix different sources of datasets to perform training (Xu et al., 2023;
Meta, 2024). Given this context, it is crucial for developers to understand: how would incorporating
additional math-related training impact the original general training performance? To investigate
this, we design our experiments to mimic the realistic setting, focusing on a simple yet prevalent
training pipeline: a pretrained base model followed by the original SFT training (e.g., on general
conversational data). We then conduct controlled experiments to introduce additional math-related
data into this training pipeline, aiming to evaluate its influence on the model’s performance across
various tasks. we explore two different ways of integrating math-related training: two-stage training
and mix-data training, as we detail below. The process is illustrated in Figure 1.

Two-stage Training Since continual pretraining and instruction pretraining typically serve as an
intermediate stage to obtain an enhanced base model followed by SFT training (Shao et al., 2024;
Yue et al., 2024), we examine a two-stage training approach that injects math-related data in a
mid-training stage. Specifically, in the first stage, one of the three methods outlined in §2.1 is
applied, designed to strengthen the model’s foundational mathematical reasoning abilities. In the
second stage, we fine-tune these first-stage models using general conversation data to broaden their
applicability to a variety of reasoning tasks, we choose UltraChat (Ding et al., 2023) as the general
SFT dataset in this work, which is commonly used to create chat models (Tunstall et al., 2023). This
process helps the models adapt to instruction-following tasks, thereby improving their versatility
across different domains.

Mix-data Training Considering that the two-stage training method may weaken a model’s gen-
eralization ability due to catastrophic forgetting, we explore another commonly adopted training
strategy for incorporating additional SFT datasets, which mixes various SFT data sources together.
We only experiment this method for instruction tuning on MPS datasets, since the other two are de-
signed to be conducted in a separate, intermediate training stage. In this mix-data training approach,
the training data is a mixture of either Math-COT SFT or Math-POT SFT data combined with Ul-
traChat data. Unlike two-stage training, where the model undergoes independent two sequential
fine-tuning stages, the mix-data approach consolidates the training process into a single stage.

3 EXPERIMENTS

We consider seven particular models from three training strategies which aimed at enhancing the
math reasoning capabilities. And we assess the generalization capabilities across multiple types of
reasoning benchmarks of these models, encompassing both MPS and non-MPS tasks.

3.1 TRAINING SETUP

Two-stage training setup We compare several models across the three studied training strate-
gies to evaluate their performance on reasoning tasks. The models used in the first stage of train-
ing come from approaches in §2.1, which are outlined as follows:(1) For continual pretraining
on mathematical text, we leveraged two existing checkpoints: deepseek-math-7b-base and
rho-math-7b-v0.1. Their corresponding base models, are Deepseek-Coder-Base and Mistral-
7B, respectively. (2) For instruction pretraining on diverse QA pairs , we used the checkpoint
MAmmoTH2-7B, and Mistral-7B serves as its base model. (3) For instruction tuning on MPS
datasets, we fine-tuned the base model mistral-7b-v0.1 ourselves using the MetaMath (Yu
et al., 2023) and NuminaMath-TIR (LI et al., 2024) datasets to get the Math-COT SFT model and
the Math-POT SFT model. These models serve as the first-stage models for further tuning. After
obtaining these first-stage models from each of three approaches, we performed a second-stage fine-
tuning on both the math-specialized models and their corresponding base models. In this stage, we
fine-tuned the models using the filtered UltraChat (Ding et al., 2023) data, which consists of general
conversational content with approximately 200K samples.

Mix-data training setup Additionally, we conducted mix-data training through these SFT
datasets. The UltraChat data was combined with either MetaMath or NuminaMath-TIR data, ran-
domly shuffled and mixed together. Then we fine-tuned the checkpoint mistral-7b-v0.1 on
these two mixture data. All the training methods that we study are summarized in Table 1.
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Table 1: Models trained through two-stage training and mix-data training process. The baseline of
DeepSeekMath (2-stage) is DeepSeek-Coder (2-stage), which is Deepseek-Coder-Base after Ultra-
Chat tuning, while other final models’ baseline is Mistral-7B (2-stage), which is Mistral-7B after
UltraChat tuning.

Model Training Process

Two-stage Training Process

DeepSeek-Coder-Base → DeepSeekMath Corpus → DeepSeekMath-Base → UltraChat → DeepSeekMath (2-stage)

Mistral-7B-Base → OpenWebMath Corpus → Rho-Math-7B → UltraChat → Rho-Math-7B (2-stage)

Mistral-7B-Base → WebInstruct → MAmmoTH2-7B → UltraChat → MAmmoTH2-7B (2-stage)

Mistral-7B-Base → MetaMath → Math-COT SFT → UltraChat → Math-COT SFT (2-stage)

Mistral-7B-Base → NuminaMath-TIR → Math-POT SFT → UltraChat → Math-POT SFT (2-stage)

Mix-data Training Process

Mistral-7B-Base → MetaMath + UltraChat → Math-COT SFT (mixed)

Mistral-7B-Base → NuminaMath-TIR + UltraChat → Math-POT SFT (mixed)

Table 2: Benchmarks in Each Reasoning Domain.

Reasoning Domain Benchmarks

Math Reasoning (problem-solving) GSM8K, GSM8K MQA, MATH, MMLU-math

Math Reasoning (excluding problem-solving) MR-BEN-math, DocMath (Zhao et al., 2024)

Logical Reasoning ZebraLogic (Bill Yuchen Lin, 2024), ProofWriter (Tafjord et al., 2020),
LogiQA (Liu et al., 2020)

STEM Reasoning GPQA (Rein et al., 2023), MMLU-stem

Commonsense Reasoning NQ (Lee et al., 2019), SWAG (Zellers et al., 2018), WinoGrande (Sak-
aguchi et al., 2021), ARC-challenge (Clark et al., 2018)

Symbolic Reasoning BBH (Suzgun et al., 2022)

Agent Reasoning MiniWoB++ (Liu et al., 2018)

We use the sanitized version of Ultrachat provided by HuggingFace2, To balance the exposure of the
math and general conversation data, we randomly selected 200K data samples from MetaMath for
SFT. For NumniaMath-TIR only has 72K items, so we keep all the samples for SFT. More training
hyperparameters are showed in Appendix C.1.

3.2 EVALUATION DATASETS

To evaluate models’ multi-dimensional reasoning capabilities, we choose seven reasoning tasks:
math reasoning (problem-solving) (MPS), math reasoning (exculding problem-solving), logical rea-
soning, STEM reasoning, commonsense reasoning, symbolic reasoning and agent reasoning. The
corresponding benchmarks are shown in Table 2. The GSM8K MQA dataset is derived from the
original GSM8K format, repurposed into a multiple-choice question format. The MMLU-math and
MMLU-stem are the math and stem sub-categories of MMLU (Hendrycks et al., 2021a). The MR-
BEN-math is only the math subject of MR-BEN (Zeng et al., 2024). See more introduction of
benchmarks in Appendix C.3

2https://huggingface.co/datasets/HuggingFaceH4/ultrachat 200k
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Table 3: Performance of different models. Models are after the two-stage training or mix-data
training. Absolute accuracy changes compared to the baselines are highlighted. The baseline of
DeepSeekMath (2-stage) is the DeepSeek-Coder (2-stage). The baseline of other models are the
Mistral-7B (2-stage). Both baselines are finetuned with UltraChat data. MPS: Math (problem-
solving). MR: Math (excluding problem-solving). CS: Commonsense.

Math Resaoning Non-Math Resaoning

Model MPS MR Logical STEM CS Symbolic Agent

Mistral-7B (2-stage) 38.8 16.4 22.3 42.4 53.6 55.3 50.4
DeepSeek-Coder (2-stage) 43.5 25.1 21.6 38.1 42.8 56.8 57.6
Llama 3.1-8B (2-stage) 49.3 31.8 25.4 44.5 54.6 57.5 38.8

(1) Continual pretraining on raw text
DeepSeekMath (2-stage) 57.7 ↑ 14.2 26.4 ↑ 1.3 21.3 ↓ 0.3 42.3 ↑ 4.2 43.6 ↑ 0.8 60.6 ↑ 3.8 45.9 ↓ 11.7

Rho-Math-7B (2-stage) 54.0 ↑ 15.2 19.3 ↑ 2.9 21.9 ↓ 0.4 42.7 ↑ 0.3 49.4 ↓ 4.2 57.0 ↑ 1.7 50.3 ↓ 0.1

(2) Instruction pretraining on large-scale diverse QA pairs
MAmmoTH2-7B (2-stage) 56.0 ↑ 17.2 21.4 ↑ 5.0 23.7 ↑ 1.4 43.1 ↑ 0.7 51.5 ↓ 2.1 56.4 ↑ 1.1 50.3 ↓ 0.1

(3) Instruction tuning on MPS datasets
Math-COT SFT (2-stage) 44.6 ↑ 5.8 18.1 ↑ 1.7 22.9 ↑ 0.6 40.7 ↓ 1.7 53.5 ↓ 0.1 53.8 ↓ 1.5 50.4
Math-POT SFT (2-stage) 42.0 ↑ 3.2 18.1 ↑ 1.7 22.2 ↓ 0.1 42.2 ↓ 0.2 53.5 ↓ 0.1 54.1 ↓ 1.2 45.4 ↓ 5.0

Math-COT SFT (mixed) 54.4 ↑ 15.6 20.1 ↑ 3.7 22.4 ↑ 0.1 41.1 ↓ 1.3 52.5 ↓ 1.1 49.5 ↓ 5.8 52.1 ↑ 1.7

Math-POT SFT (mixed) 52.0 ↑ 13.2 20.4 ↑ 4.0 22.5 ↑ 0.2 41.7 ↓ 0.7 52.5 ↓ 1.1 52.8 ↓ 2.5 57.7 ↑ 7.3

Math-COT SFT (Llama 3.1) 50.3 ↑ 1.0 23.6 ↓ 8.2 24.0 ↓ 1.4 40.8 ↓ 3.7 52.7 ↓ 0.8 55.8 ↓ 1.7 41.1 ↑ 2.3

Math-POT SFT (Llama 3.1) 51.3 ↑ 2.0 20.3 ↓ 11.5 24.1 ↓ 1.3 43.8 ↓ 0.7 52.5 ↓ 1.0 57.4 ↓ 0.1 39.5 ↑ 0.7

Figure 2: Relative change across all benchmarks for Math-COT SFT, MAmmoTH2 and DeepSeek-
Math after two-stage training. Benchmarks outside the MPS domain are ordered from left to right
based on their average cosine similarity to MPS domain datasets, ranked in descending order.

3.3 MAIN RESULTS

Table 3 presents the performance of models of three kinds of training strategies on seven kinds
of reasoning tasks. The results are calculated as the average value across each reasoning domain.
Results for each benchmark are showed in Appendix A.1.

Learning mathematical problem-solving helps mathematical reasoning in general We could
observe that all models demonstrate improvements on math problem-solving (MPS) tasks, but the
gains for Math-COT and Math-POT models with two-stage training are relatively smaller compared
to other methods. Mixed training for Math-COT and Math-POT lead to much higher performance
on MPS tasks. On other types of math reasoning tasks which are not problem-solving, all models
demonstrate gains despite smaller magnitudes compared to problem-solving tasks. This suggests
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that learning mathematical problem-solving is able to generalize and help other types of mathemat-
ical reasoning as well.

Continual pretraining generally improves non-mathematical reasoning while selective con-
tinual pretraining falls short The improvements on mathematical reasoning tasks are actually
expected, yet we note that this work emphasizes more the effect on other non-mathematical reason-
ing tasks. While continual pretraining does not lead to improvements on all tasks, it consistently
exhibits relatively better performance across diverse reasoning benchmarks. We first observe that
continual pretraining of DeepSeekMath enhances performance in 3 out of 5 non-mathematical tasks,
achieving a notable increase of 4.6 points in STEM reasoning and 3.8 points in symbolic reason-
ing. DeepSeekMath is also the only one among these models that can achieve an average of over
2-point gain on some non-mathematical reasoning domains. Conversely, Rho-Math, another vari-
ant of continual pretraining, only showed improvements in 2 out of 5 non-mathematical reasoning
domains with limited gains under 2 points. In more detail, as shown in Figure 2, the Rho-Math
perform worse than DeepSeekMath on more datasets. As introduced in §2.1, Rho-Math employs
a selective language modeling loss that leverages a reference model to help select tokens for opti-
mization – this reference model, trained on task-specific SFT datasets, may introduce biases that
compromise the generalization capacity. Previously, the extent of this compromise was unknown
as only mathematical problem-solving tasks were assessed. Therefore, we urge the research com-
munity to conduct to more comprehensive evaluations of a model’s reasoning capabilities, to gain a
more complete understanding of different training algorithms. Otherwise, in the case of Rho-Math,
although it achieves similar gains on MPS benchmarks as DeepSeekMath while being trained on far
fewer tokens, the trade-offs compared to standard continual pretraining were not initially clear, as
we now demonstrate.

Instruction pretraining sometimes help non-mathematical reasoning, while instruction tuning
generally impairs We observe that instruction pretraining with the MAmmoTH2 model improves
3 out of 5 non-mathematical reasoning tasks, despite small gains around 1 point. However, instruc-
tion tuning on MPS datasets, the most commonly adopted method to learn mathematical problem
solving, undermines the original training pipeline on most non-mathematical reasoning tasks, except
for the agent reasoning task. This points to a pessimistic reality: most previous efforts that develop
new MPS datasets and advance state-of-the-art for mathematical reasoning may not generalize to
facilitate learning in other types of reasoning. In fact, the created data resources may even nega-
tively impact other reasoning abilities, a phenomenon that contradicts intuitive expectations based
on human learning studies.

Figure 3: Performance on
MiniWob++ for models tun-
ing on task specific data.

Agent task specicfic tuning As the models exhibit significant
variation in performance on the agent reasoning task, which is likely
due to the fixed-format code required as input for agent tasks. The
performance comparison becomes highly dependent on the mod-
els’ ability to generate accurate code. To reduce this disparity, we
replaced the second-stage UltraChat data with task-specific data
related to the benchmark. Specifically, we used data from Mini-
Wob++, generated by Claude-2, as the second-stage training data.
The results of this adjustment are shown in Figure 3. We observe
that Rho-Math, MAmmoTH2 and DeepSeekMath all demonstrate
improvement over the base model, while Math-COT SFT and Math-
POT SFT continue to underperform, reinforcing the notion that
models trained via SFT have limited generalization capabilities.

On a benchmark level, continual pretraining generally enhances performance across a wider
range of benchmarks, whereas instruction tuning limits generalization As shown in Figure 2,
DeepSeekMath shows consistent improvements across a larger number of benchmarks compared to
Math-COT SFT. In contrast, Math-COT SFT, even in benchmarks where it shows some improve-
ments, achieves only marginal gains, indicating its limited impact and generalization. Notably, the
benchmarks in the figure are ordered by their cosine similarity to the MPS domain datasets, ranked
from highest to lowest. Using DocMath in Figure 2 as a threshold to separate math and non-math
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WebInstruct MetaMath OpenWebMath

(a) (b) (c)

Figure 4: Visualization of query embedding distributions: (a) WebInstruct vs. all benchmarks, (b)
MetaMath vs. all benchmarks, and (c) OpenWebMath vs. all benchmarks. The training dataset’s
distribution is highlighted with a red curve. Embeddings are projected into a 2D space using PCA.

tasks, we observe that continual pretraining and instruction pretraining consistently outperform in-
struction tuning that uses Math-COT SFT data. This suggest the effectiveness of continual pretrain-
ing in achieving broader generalization compared to instruction tuning or math-specific fine-tuning.

Greater coverage for instruction pretraining dataset than instruction tuning dataset. We
sampled 1K queries from each benchmark and 10K queries from the training dataset. We choose
three math-related training datasets, WebInstruct is used for instruction pretraining, MetaMath is
used for SFT and OpenWebMath is used for continue pretraining. The dimensionality of the em-
beddings was reduced using Principal Component Analysis (PCA) to visualize the data in a 2-
dimensional space. As shown in Figure 4, the WebInstruct query distribution shows more overlap
with many benchmarks, indicates that WebInstruct covers a broader range of topics or problem types
that align well with the benchmarks. This overlap likely contributes to its effectiveness in general-
ization tasks. And for MetaMath, its queries are more concentrated within math-related areas, which
may restricts its generalization potential.

4 WHAT OTHER DATA SOURCES CONTRIBUTE TO REASONING – A PILOT
STUDY

So far, we have explored the effect of various math-related data sources on general reasoning learn-
ing, and we have concluded that only continual training with raw math text has a significantly pos-
itive effect on general reasoning learning. However, continual pretraining is typically large-scale
and computationally expensive. In this section, we perform a pilot study to search for efficient SFT
datasets from non-mathematical tasks, to examine whether they can help learn reasoning. Specifi-
cally, we identify the following three non-MPS SFT datasets as our targets to study, based on their
diverse task coverage as showed in Table 4:

• Magicoder-Evol-Instruct3 (Wei et al., 2023) is used primarily to enhance code generation
capabilities in LLMs. The dataset was decontaminated and repurposed from an earlier
open-source instruction dataset, Evol-CodeAlpaca4, which has augmented questions and
answers by GPT-4. The dataset helping improve the performance of LLMs on code gener-
ation and program algorithm tasks, particularly in diverse programming contexts.

• Magpie-Reasoning5 is a specialized SFT dataset designed to improve the reasoning capa-
bilities of LLMs. It is generated by Qwen2-72B-Instruct (Yang et al., 2024) and Llama-3-
70B Instruct (Meta, 2024) using Magpie (Xu et al., 2024b). It consists of 150K samples

3https://huggingface.co/datasets/ise-uiuc/Magicoder-Evol-Instruct-110K
4https://huggingface.co/datasets/theblackcat102/evol-codealpaca-v1
5https://huggingface.co/datasets/Magpie-Align/Magpie-Reasoning-150K
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Table 4: Areas covered by the three selected non-MPS SFT datasets.

Dataset Size Code Algorithm Reasoning General Knowledge

Magicoder-Evol-Instruct 110K ✓ ✗ ✗

Magpie-Reasoning 150K ✓ ✓ ✗

OpenOrca 200K ✓ ✓ ✓

Table 5: Performance of mix-data training models of non-MPS data on reasoning tasks. Base
model is Mistral-7B after UltraChat tuning. Absolute accuracy changes are highlighted. MPS:
Math (problem-solving). MR: Math (excluding problem-solving). CS: Commonsense. Results are
averaged across each reasoning domain.

Math Resaoning Non-Math Resaoning

Model MPS MR Logical STEM CS Symbolic Agent

Mistral-7B (2-stage) 38.8 16.4 22.3 39.6 53.6 55.3 50.4

Mix-data training on non-MPS datasets
Magicoder-Evol-Instruct SFT (mixed) 38.1 ↓ 0.7 20.8 ↑ 4.4 23.5 ↑ 1.2 36.7 ↓ 2.9 52.9 ↓ 0.7 52.9 ↓ 2.4 49.0 ↓ 1.4

Magpie-Reasoning SFT (mixed) 47.0 ↑ 8.2 21.1 ↑ 4.7 21.8 ↓ 0.5 38.8 ↓ 0.8 52.8 ↓ 0.8 50.9 ↓ 4.4 54.5 ↑ 4.1

OpenOrca SFT (mixed) 30.4 ↓ 8.4 24.8 ↑ 8.4 20.6 ↓ 1.7 40.1 ↑ 0.5 53.1 ↓ 0.5 54.6 ↓ 0.7 56.5 ↑ 6.1

of conversations, covering a mix of tasks including mathematical reasoning, code-based
reasoning, and general logic-based problem-solving.

• OpenOrca6 is a large, open-domain dataset that spans diverse fields, including math, sci-
ence, general knowledge, and other multi-domain tasks, with the distributions outlined
in Orca (Mukherjee et al., 2023). This dataset is augmented from FLAN collection
data (Longpre et al., 2023) with GPT-4. Given resource limitations, we performed SFT
on 200K samples.

Setup Based on the results in §3.3, we found that, when using the same mathematical SFT
datasets, mix-data training model generally outperforms two-stage training model in terms of per-
formance. Therefore, we employ mix-data training process for the three non-MPS datasets in this
section. Specifically, each non-MPS SFT dataset is randomly mixed with filtered UltraChat data,
following the same approach used in §3.1. The initial model remains mistral-7b-v0.1.

Results As shown in Table 5, despite incorporating diverse datasets such as Magicoder-Evol-
Instruct, Magpie-Reasoning, and OpenOrca, the generalization capability of the models across
different reasoning tasks remains limited. See detail results on all benchmarks in Appendix A.1.
Additionally, the performance among each model still remains some distinction. The Magicoder-
Evol-Instruct SFT model shows improvements in fewer areas compared to the other models. This
may be attributed to the narrower scope of this dataset, which primarily focuses on code-related
tasks. In contrast, the Magpie-Reasoning SFT model demonstrates performance improvements in a
broader range of tasks. This is likely due to its more balanced dataset, which covers both code al-
gorithms and reasoning tasks. Interestingly, the OpenOrca SFT model, despite its broader coverage
of reasoning, coding, and general knowledge, shows relatively fewer performance gains compared
to Magpie. This could be due to the complexity and diversity of the OpenOrca dataset, which might
introduce competing learning objectives, causing the model to struggle in balancing between differ-
ent types of tasks. While there are some localized improvements in certain domains, such as agent
reasoning, where the models exhibit noticeable gains, the overall trend indicates that SFT method,
even with diverse and extensive datasets, struggles to generalize effectively across a wide range of
reasoning challenges. How to find efficient datasets to enhance general reasoning abilities of LLMs
still remain as a critical challenge for future researches to study.

6https://huggingface.co/datasets/Open-Orca/OpenOrca
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5 RELATED WORKS

While LLMs exhibit remarkable performance out of the box, especially in tasks that require pattern
recognition and language understanding (Zhao et al., 2022; Brown, 2020; Wei et al., 2022; Creswell
et al., 2022), their ability to perform complex reasoning often requires additional refinement through
targeted training methods.

Supervised Fine-Tuning A key method for enhancing LLM performance is Supervised Fine-
Tuning (SFT). SFT not only improves a model’s ability to follow instructions but also enhances
its performance on intricate tasks requiring specialized knowledge by training on well-curated
datasets (Xu et al., 2023; Zhou et al., 2023; Wu et al., 2023b; Yuan et al., 2023b; Chen et al.,
2023b). As LLMs continue to evolve, researchers also employ SFT as a crucial step in tailoring the
models for more complex reasoning scenarios or tasks (Huang & Chang, 2022; Wang et al., 2023b).
In the context of mathematical reasoning, SFT has demonstrated substantial improvements in model
performance (Cobbe et al., 2021b; Nye et al., 2021; Yuan et al., 2023a; Yue et al., 2023; Wang et al.,
2023a; Li et al., 2023; Liu et al., 2023; Chen et al., 2024). For instance, the MetaMath model,
fine-tuned on an augmented GSM8K and MATH dataset, demonstrated notable improvements on
mathematical problem-solving benchmarks (Yu et al., 2023). In addition to mathematical reasoning,
SFT has also been utilized to achieve better results on other types of reasoning tasks. It has been
applied to domains like commonsense reasoning (Huang et al., 2022; Bian et al., 2024) and logical
reasoning (Luo et al., 2023b; Chen et al., 2023c; Li et al., 2024), Moreover, researchers also reveal
that SFT also helps LLMs handle more dynamic and context-rich tasks like agent-based reason-
ing (Gou et al., 2023; Chen et al., 2023a), where understanding interactions and goals in simulated
environments is essential.

Continual Pretrain Continual pretraining is another widely adopted approach to enhance the per-
formance of LLMs in specific domains (Aharoni & Goldberg, 2020). Unlike SFT, which relies
on task-specific datasets, continual pretraining exposes models to large-scale, domain-relevant cor-
pora Paster et al. (2023); Wang et al. (2023c). The large-scale corpora expands the model’s knowl-
edge base and helps the model generalize better within specialized areas (Jin et al., 2021; Gupta
et al., 2023; Ke et al., 2023; Wu et al., 2023a; Bian et al., 2024). In the realm of mathematical
problem solving, continual pretraining also has been instrumental in improving models’ abilities to
tackle complex reasoning tasks (Lewkowycz et al., 2022; Lin et al., 2024; Shao et al., 2024).

6 CONCLUSION

In this paper, we explored the generalization potential of three different training strategies to learn
mathematical problem-solving. Our experiments evaluated models trained using (1) continual pre-
training on mathematical text, (2) instruction tuning on diverse QA pairs, and (3) instruction tun-
ing on MPS datasets. Although there are no training paradigms that show consistent generaliza-
tion across all non-mathematical tasks, both continual pretraining and instruction pretraining show
relatively better generalization. Between the two, continual pretraining generally achieves higher
gains than instruction pretraining when it is effective. In contrast, models fine-tuned on MPS SFT
datasets struggled to generalize beyond math-specific tasks and even impaired other reasoning abil-
ities. These observations imply that previous researches on mathematical reasoning may put too
much focus on mathematical problem-solving task, which stay far away from the “math for AI”
goal. Future research could explore how both math-related or non-math datasets can be leveraged to
better develop models capable of handling a wider variety of reasoning tasks.
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APPENDIX

A RESULT DETAILS

A.1 BENCHMARK RESULTS

In this section, we present the detailed results of each trained model. Table 6 provides detailed results
for each benchmark of math (problem-solving) and STEM reasoning tasks of math-related models
after two-stage training or mix-data training. We could observe the Math-SFT (2-stage) models have
some decline in certain MPS benchmarks, indicate that these two models even have the limitation
on math problem solving question that they are not familiar with. Besides, most of the SFT models
not performed well on the STEM reasoning tasks, while the continual pretrained models, Rho-Math
and DeepSeekMath showed enhancement. Table 7 presents detailed results for each benchmark
of math (excluding problem-solving) and logical reasoning of math-related models after two-stage
training or mix-data training. MAmmoTH2 and Math-COT SFT (2-stage) model showed consistent
improvement across these benchmarks, while other models fail to demonstrate superior performance
especially in logical reasoning benchmarks. Table 8 shows the commonsense benchmarks results of
2-stage models and mix-data training models. We could observe that models not outperform in this
reasoning domain, particular both continual pretrained and instruction pretrained models. This may
suggest that when models incorporate math-related data in training process, it potentially shifts the
focus away from the general commonsense reasoning patterns.

Table 9 provides detailed results for each benchmark of math (problem-solving) and logical rea-
soning tasks of models SFT through mix-data training process on non-MPS datasets. We could
observe that all models indicate a drop on the benchmarks expect for GSM8K. This indicate this
non-MPS data do not enhance the models capbility on math problem solving. Table 10 presents
detailed results for each benchmark of math (excluding problem-solving) and logical reasoning of
models SFT through mix-data training process on non-MPS datasets. These models demonstrate
similar proficiency across these benchmarks. Table 11 presents detailed results for each benchmark
of commonsense reasoning of models SFT through mix-data training process on non-MPS datasets.
Same to the math-related models, these models show a reduction among commonsense reasoning
task. This may indicate that these non-MPS data also not help to develop the necessary capabilities
of models for solving general commonsense reasoning problems.

Table 6: Detailed results on math (problem-solving) and STEM reasoning benchmarks of two-stage
training and mix-data training models. Absolute accuracy changes compared to the baselines are
highlighted.

Math Reasoning (problem-solving) STEM Reasoning

Model GSM8K GSM8K MQA MATH MMLU-math GPQA MMLU-stem

Mistral-7B (2-stage) 40.6 56.9 12.3 45.5 30.8 48.4
DeepSeek-Coder (2-stage) 48.8 55.1 18.9 51.1 28.8 45.7

(1) Continual pretraining on raw text
DeepSeekMath (2-stage) 66.7 ↑ 17.9 70.1 ↑ 15.0 34.5 ↑ 15.6 59.6 ↑ 8.5 30.4 ↑ 1.6 53.4 ↑ 7.7

Rho-Math-7B (2-stage) 64.8 ↑ 24.2 65.7 ↑ 8.8 29.6 ↑ 17.3 55.8 ↑ 10.3 31.5 ↑ 0.7 50.1 ↑ 1.7

(2) Intruction pretraining on diverse QA pairs
MAmmoTH2-7B (2-stage) 63.6 ↑ 23.0 72.2 ↑ 15.3 32.9 ↑ 20.6 55.3 ↑ 9.8 29.5 ↓ 1.3 52.4 ↑ 4.0

(3) Instruction tuning on MPS datasets
Math-COT SFT (2-stage) 61.8 ↑ 21.2 53.1 ↓ 3.8 19.4 ↑ 7.1 44.1 ↓ 1.4 27.7 ↓ 3.1 47.7 ↓ 0.7

Math-POT SFT (2-stage) 56.0 ↑ 15.4 52.2 ↓ 4.7 16.9 ↑ 4.6 43.0 ↓ 2.5 31.0 ↑ 0.2 47.9 ↓ 0.5

Math-COT SFT (mixed) 72.4 ↑ 31.8 74.7 ↑ 17.8 22.5 ↑ 10.2 48.0 ↑ 2.5 29.5 ↓ 1.3 46.7 ↓ 1.7

Math-POT SFT (mixed) 67.8 ↑ 27.2 65.9 ↑ 9.0 28.3 ↑ 16.0 45.9 ↑ 0.4 29.9 ↓ 0.9 48.0 ↓ 0.4
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Table 7: Detailed results on math (excluding problem-solving) and logical reasoning benchmarks
of two-stage training and mix-data training models. Absolute accuracy changes compared to the
baselines are highlighted.

Math Reasoning (excluding problem-solving) Logical Reasoning

Model MR-BEN-math DocMath ZebraLogic LogiQA ProofWriter

Mistral-7B (2-stage) 21.5 11.3 4.8 29.5 32.5
DeepSeek-Coder (2-stage) 35.2 15.0 4.7 25.4 34.8

(1) Continual pretraining on raw text
DeepSeekMath (2-stage) 34.3 ↓ 0.9 18.5 ↑ 3.5 5.1 ↑ 0.4 26.7 ↑ 1.3 32.2 ↓ 2.6

Rho-Math-7B (2-stage) 26.8 ↑ 5.3 11.7 ↑ 0.4 6.1 ↑ 1.3 27.7 ↓ 1.8 32.0 ↓ 0.5

(2) Intruction pretraining on diverse QA pairs
MAmmoTH2-7B (2-stage) 23.0 ↑ 1.5 19.7 ↑ 8.4 4.8 30.9 ↑ 1.4 35.5 ↑ 3.0

(3) Instruction tuning on MPS datasets
Math-COT SFT (2-stage) 24.3 ↑ 2.8 11.8 ↑ 0.5 5.9 ↑ 1.1 30.1 ↑ 0.6 32.7 ↑ 0.2

Math-POT SFT (2-stage) 24.3 ↑ 2.8 11.8 ↑ 0.5 6.0 ↑ 1.2 28.6 ↓ 0.9 32.0 ↓ 0.5

Math-COT SFT (mixed) 21.2 ↓ 0.3 19.0 ↑ 7.7 6.3 ↑ 1.5 28.0 ↓ 1.5 32.8 ↑ 0.3

Math-POT SFT (mixed) 21.2 ↓ 0.3 19.5 ↑ 8.2 7.3 ↑ 2.5 25.8 ↓ 3.7 34.5 ↑ 2.0

Table 8: Detailed results on commonsense reasoning benchmarks of two-stage training and mix-data
training models. Absolute accuracy changes compared to the baselines are highlighted.

Commonsense Reasoning

Model NQ SWAG WinoGrande ARC-challenge

Mistral-7B (2-stage) 29.5 58.8 72.1 54.1
DeepSeek-Coder (2-stage) 13.7 52.7 64.5 40.1

(1) Continual pretraining on raw text
DeepSeekMath (2-stage) 13.0 ↓ 0.7 51.6 ↓ 7.2 63.5 ↓ 1.0 46.1 ↑ 5.0

Rho-Math-7B (2-stage) 21.0 ↓ 8.5 55.7 ↓ 3.1 71.0 ↓ 1.1 50.0 ↓ 4.1

(2) Intruction pretraining on diverse QA pairs
MAmmoTH2-7B (2-stage) 22.8 ↓ 6.7 56.4 ↓ 2.4 70.3 ↓ 1.8 56.5 ↑ 2.4

(3) Instruction tuning on MPS datasets
Math-COT SFT (2-stage) 29.5 59.0 ↑ 0.2 72.9 ↑ 0.8 52.7 ↓ 1.4

Math-POT SFT (2-stage) 29.0 ↓ 0.5 58.9 ↑ 0.1 73.7 ↑ 1.6 52.5 ↓ 1.6

Math-COT SFT (mixed) 27.0 ↓ 2.5 58.9 ↑ 0.1 71.5 ↓ 0.6 52.5 ↓ 1.6

Math-POT SFT (mixed) 26.7 ↓ 2.8 59.0 ↑ 0.2 70.9 ↓ 1.2 53.4 ↓ 0.7

Table 9: Detailed results on math (problem-solving) and STEM reasoning benchmarks of mod-
els with mix-data training process on non-MPS datasets (based on Mistral-7B). Absolute accuracy
changes compared to the baselines are highlighted.

Math Reasoning (problem-solving) STEM Reasoning

Model GSM8K GSM8K MQA MATH MMLU-math GPQA MMLU-stem

Mistral-7B (2-stage) 40.6 56.9 12.3 45.5 30.8 48.4

Mix-data training on non-MPS datasets
Magicoder-Evol-Instruct SFT (mixed) 43.1 ↑ 2.5 55.5 ↓ 1.4 10.9 ↓ 1.4 42.9 ↓ 2.6 26.1 ↓ 4.7 47.2 ↓ 1.2

Magpie-Reasoning SFT (mixed) 62.7 ↑ 22.1 65.6 ↑ 8.7 15.7 ↑ 3.4 44.0 ↓ 1.05 29.2 ↓ 1.6 48.4
OpenOrca SFT (mixed) 49.1 ↑ 8.5 21.8 ↓ 35.1 11.2 ↓ 1.1 39.4 ↓ 6.1 31.5 ↓ 0.7 48.7 ↑ 0.3

B MORE RESULT ANALYSIS

Figure 5 illustrates the comparative performance between the first-stage models and the final mod-
els across multiple reasoning domains. From the radar chart, it is evident that the final models
usually exhibit a consistent improvement. Additionally, for models tuned on MPS datasets, the mix-
data training process showed slight improvements over the two-stage training method on certain
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Table 10: Detailed results on math (exculding problem-solving) and logical reasoning benchmarks
of models with mix-data training process on non-MPS datasets (based on Mistral-7B). Absolute
accuracy changes compared to the baselines are highlighted.

Math Reasoning (excluding problem-solving) Logical Reasoning

Model MR-BEN-math DocMath ZebraLogic LogiQA ProofWriter

Mistral-7B (2-stage) 21.5 11.3 4.8 29.5 32.5

Mix-data training on non-MPS datasets
Magicoder-Evol-Instruct SFT (mixed) 23.7 ↑ 2.2 17.8 ↑ 6.5 6.4 ↑ 1.6 29.3 ↓ 0.2 34.8 ↑ 2.3

Magpie-Reasoning SFT (mixed) 22.9 ↑ 1.4 19.2 ↑ 7.9 5.0 ↑ 0.2 29.0 ↓ 0.5 31.3 ↓ 1.2

OpenOrca SFT (mixed) 28.4 ↑ 6.9 21.2 ↑ 9.9 5.2 ↑ 0.3 26.0 ↓ 3.5 30.5 ↓ 2.0

Table 11: Detailed results on commonsense reasoning benchmarks of models with mix-data training
process on non-MPS datasets (based on Mistral-7B). Absolute accuracy changes compared to the
baselines are highlighted.

Commonsense Reasoning

Model NQ SWAG WinoGrande ARC-challenge

Mistral-7B (2-stage) 29.5 58.8 72.1 54.1

Mix-data training on non-MPS datasets
Magicoder-Evol-Instruct SFT (mixed) 27.7 ↓ 1.8 59.2 ↑ 0.4 71.3 ↓ 0.8 53.3 ↓ 0.8

Magpie-Reasoning SFT (mixed) 27.2 ↓ 2.3 59.6 ↑ 0.8 71.1 ↓ 1.0 53.2 ↓ 0.9

OpenOrca SFT (mixed) 27.4 ↓ 2.1 59.6 ↑ 0.8 72.5 ↑ 0.4 52.7 ↓ 1.4

benchmarks. Figure 6 shows that the models with mix-data training have higher confidence than
the models after UltraChat tuning. Even compare to the models after task specific data tuning, the
mixed data models have more samples with higher confidence.

C EXPERIMENT DETAILS

C.1 TRAINING HYPERPARAMETERS

The training process was carried out using the AdamW optimizer with a cosine learning rate sched-
uler. The training utilized a warmup ratio of 0.1 and set the batch size as 512. Additionally, the
training was conducted using DeepSpeed with stage2 configuration. All of these SFT models were
fine-tuned using the FastChat (Zheng et al., 2023) framework with a peak learning rate of 2e-5.
Based on the FashChat original framework, we also adapted the sequence packaging technique to
speed up the training.

For the first stage models with instruction tuning on MPS datasets (Math-COT SFT and Math-POT
SFT), we trained for 3 epochs with math-related data, and for the UltraChat tuning stage, we trained
1 epoch. For the mix-data training, we trained for 3 epochs for both Math-COT SFT (mixed) model
and Math-POT SFT (mixed) model. Besides, when we replace the second stage data with task
specific data for MiniWob++, we trained for 3 epochs to force the models learned the ability of
generate the correct format code. We trained all models on a cluster with 8 NVIDIA A800 GPUs.

C.2 EVALUATION DETAILS

For evaluation, we assessed the majority of datasets using the lm-evaluation-harness (Gao et al.,
2024) framework. For other datasets that not be included in lm-evaluation-harness, we opted to use
the original scripts provided with the datasets if existed. For the MiniWob++ task, we adapted the
script from ENVISIONS (Xu et al., 2024a) and leverage the ChromeDriver to simulate the agent.
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Figure 5: Performance for first stage models and final models after two-stage training or mix-data
training. MPS: Math Reasoning (problem-solving). MR: Math Reasoning (excluding problem-
solving). LR: Logical Reasoning. SR: STEM Reasoning. CR: Commonsense Reasoning. BR:
Symbolic Reasoning. AR: Agent Reasoning.

(a) (b)

Figure 6: Density of log probability across various math SFT models on MiniWob++. Math SFT
task tuning means the second stage tuning is through task specific data instead of UltraChat.

C.3 BRIEF INTROCUTION OF BENCHMARKS

Here are the brief introduction to each benchmark. For some complex benchmarks, we also present
the corresponding prompt for evaluation.

GSM8K GSM8K (Cobbe et al., 2021a) is a dataset specifically designed for evaluating LLMs
in the domain of multi-step mathematical reasoning. The problem in this dataset are high quality
linguistically diverse grade school math word problems created by human problem writers.
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GSM8K MQA This is a dataset where we reformatted the original GSM8K dataset into multiple-
choice questions. We kept the original question and let GPT-4o generate other three confusing
answers based on the original answer. Models need to generate the option letter of the correct
answer.

MATH MATH (Hendrycks et al., 2021b) test dataset contains 5,000 challenging competition
mathematics problems. Each problem in MATH has a full step-by-step solution which can be used
to teach models to generate answer derivations and explanations.

MMLU-math Massive Multitask Language Understanding (MMLU) (Hendrycks et al., 2021a) is
a benchmark designed to measure knowledge acquired by the LLMs. It covers 57 subjects. For
MMLU-math, we choose the abstract algebra, college mathematics, elementary mathematics, high
school mathematics subjects. Models need to think step by step and generate the final answer.

MMLU-stem We retain the original set of STEM in MMLU. Specifically, it include abstract al-
gebra, anatomy, astronomy, college biology, college chemistry, college computer science, college
mathematics, college physics, computer security, conceptual physics, electrical engineering, ele-
mentary mathematics, high school biology, high school chemistry, high school computer science,
high school mathematics, high school physics, high school statistics, machine learning. Compare to
MMLU-math, we use the probabilities of options to determine the answer instead of generate it, the
options with highest probabilities among all the options will be considered as the final answer.

NQ NQ (Lee et al., 2019) is a benchmark for open-domain question answering derived from
Google’s Natural Questions dataset. The task is to predict a concise English answer to a question
using only the information from English Wikipedia.

SWAG SWAG (Zellers et al., 2018) is a large-scale dataset for the task of grounded commonsense
inference, unifying natural language inference and physically grounded reasoning. Each question is
a video caption, with four answer choices about what might happen next in the scene. The correct
answer is the (real) video caption for the next event in the video.

MR-BEN-math MR-BEN (Zeng et al., 2024) is a comprehensive benchmark demands a meta rea-
soning skill, where LMs are asked to locate and analyse potential errors in automatically generated
reasoning steps. We choose the math among all subjects for evaluation.

MR-BEN-math

Following is a question and solution pair in subject college math. Your task is to examine
the solutions step by step and determine the solution correctness. If the solution is incorrect,
please further find out the first error step and explain the error reason.

<few-shot examples>

Below is the question and solution for you to solve:
Question: <question>
Options: <options>
Please follow the desired response format:
Solution Analysis: [Give a step by step analysis on the solution correctness here] Solution
Correctness: [Input ’correct’/’incorrect’ here to indicate the overall correctness of the solu-
tion]
First Error Step: [Input ’Step x’ here to indicate the first error step here. Input ’N/A’ if the
solution is correct.]
Error Reason: [Input the error reason and the rectified reasoning of the first error step here.
Input ’N/A’ if the solution is correct.]

Please follow this format without any additional introductory or concluding statements.
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DocMath DocMath (Zhao et al., 2024) is a benchmark specifically designed to evaluate the nu-
merical reasoning capabilities of LLMs in the context of understanding and analyzing specialized
documents containing both text and tables. Models are asked to generate answer through COT.

DocMath

You are a financial expert, you are supposed to answer the given question based on the
provided financial document context. You need to first think through the problem step by
step, documenting each necessary step. Then you are required to conclude your response
with the final answer in your last sentence as ’Therefore, the answer is final answer’. The
final answer should be a numeric value.

USER: <context and document>
Question: <question >
Let’s think step by step to answer the given question.
ASSISTANT:

ZebraLogic ZebraLogic (Bill Yuchen Lin, 2024) is a benchmark consisting of Logic Grid Puzzles,
assesses LLMs’ logical reasoning capabilities. Each puzzle presents N houses with M features,
requiring unique value assignments based on given clues. We use the average result of LLMs of
different levels of puzzles.

ZebraLogic

A chat between a curious user and an artificial intelligence assistant. The assistant gives
helpful, detailed, and polite answers to the user’s questions.

USER:
# Puzzle to Solve
<puzzle>
## Clues:
<clues>
# Instruction
Now please solve the above puzzle. Present your reasoning and solution in the following
json format:
<output format>

LogiQA LogiQA (Liu et al., 2020) is a benchmark which is sourced from expert-written questions
for testing human Logical reasoning, covering multiple types of deductive reasoning.

ProofWriter Proofwriter (Tafjord et al., 2020) contains many small rulebases of facts and rules,
expressed in English. Each rulebase also has a set of questions which can either be proven true or
false using proofs of various depths, or the answer is “Unknown” or assumed negative.
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ProofWriter

Task Description: You are given a problem description and a question. The task is to:
1) define all the predicates in the problem
2) parse the problem into logic rules based on the defined predicates
3) write all the facts mentioned in the problem
4) parse the question into the logic form
——
<few-shot examples>
——

Problem:
[[PROBLEM]]
Question:
[[QUESTION]
###

GPQA GPQA (Rein et al., 2023) is a multiple-choice, Q&A dataset of very hard questions written
and validated by experts in biology, physics, and chemistry.

WinoGrande WinoGrande (Sakaguchi et al., 2021) is designed for commonsense reasoning. The
samples are formulated as fill-in-the-blank questions where two answer choices are provided. The
goal is to select the correct option based on commonsense knowledge.

ARC-challenge AI2 Reasoning Challenge (ARC) (Clark et al., 2018) is a widely used dataset for
evaluating large language models (LLMs) on their commonsense reasoning abilities. We choose the
challenge set of ARC, which contains questions that simple retrieval or co-occurrence-based models
struggle with, thus pushing models to reason more deeply.

BBH BBH (Suzgun et al., 2022) is designed to evaluate LLMs’ capability on difficult reasoning
benchmarks. We selected the categories with a focus on symbolic reasoning. It includes problems
that require manipulation of abstract symbols, helps to measure the generalization ability to symbolic
reasoning beyond typical language tasks.

MiniWob++ MiniWob++ (Liu et al., 2018) is a browsers-based interactive tasks, include a range
of tasks where an agent interacts with a simplified browser interface. Models are asked to generate
the code for a goal-directed task in a simulation environment.

MiniWob++

You are required to navigate the web. To accomplish the task, use methods in Agent
class to generate actions, with the following functions. type(characters: str): Type a
string via the keyboard. click xpath(xpath: str): Click an HTML element with a valid
XPath. press(key type: str): Press a key on the keyboard (enter, space, arrowleft,
arrowright, backspace, arrowup, arrowdown, command+a, command+c, command+v).
click option(xpath: str): Click an option HTML element in a list with a valid XPath.
movemouse(xpath: str): Move the mouse cursor on an HTML element with a valid XPath.

USER: The observation is:
<HTML description>
ASSISTANT: The action is:

D CASE STUDY
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There are 2 houses, numbered 1 to 2 
from left to right, as seen from across 
the street. Each house is occupied by 
a different person. Each house has a 
unique attribute for each of the 
following characteristics:
- Each person has a unique name: 
`Eric`, `Arnold`
- The mothers' names in different 
houses are unique: `Holly`, `Aniya`

## Clues:
1. Eric is not in the second house.
2. The person whose mother's name 

is Aniya is not in the second 
house.

Problem Mistral-7B MAmmoTH2

Given Clue 1, Eric is not in the 
second house. Clue 2 states that the 
person whose mother's name is Aniya 
is not in the second house. This 
means that Eric's mother's name is 
not Aniya.
Therefore, Eric's mother's name must 
be Holly. This leaves Arnold's 
mother's name as Aniya. Therefore, 
Arnold is in the second house and 
Eric is in the first house.

Given Clue 1, Eric is not in the 
second house. Therefore, Eric must 
be in the first house. Clue 2 states 
that the person whose mother's name 
is Aniya is not in the second house, 
so Aniya must be the mother of the 
person in the first house. Thus, the 
person in the second house must 
have Holly as their mother.

There are 2 houses, numbered 1 to 2 
from left to right, as seen from across 
the street. Each house is occupied by 
a different person. Each house has a 
unique attribute for each of the 
following characteristics:
- Each person has a unique name: 
`Arnold`, `Eric`
- People use unique phone models: 
`samsung galaxy s21`, `iphone 13`
- Each person has a unique favorite
drink: `water`, `tea`

## Clues:
1. The person who uses a Samsung 

Galaxy S21 and the tea drinker 
are next to each other.

2. Arnold is in the first house.\n3. 
The person who uses a Samsung 
Galaxy S21 and Eric are next to 
each other.

Problem Mistral-7B MAmmoTH2

Given Clue 1, the person who uses a 
Samsung Galaxy S21 and the tea 
drinker are next to each other. This 
means that Arnold, who is in the first 
house, must be the tea drinker. Clue 
2 states that Arnold is in the first 
house, so the person who uses a 
Samsung Galaxy S21 must be in the 
second house. Clue 3 tells us that the 
person who uses a Samsung Galaxy 
S21 and Eric are next to each other, 
so Eric must be in the first house. 
Therefore, the person who uses an 
iPhone 13 must be in the second 
house.

Given Clue 2, Arnold is in the first 
house. Clue 1 states the tea drinker 
and the Samsung Galaxy S21 user 
are next to each other. Since Arnold 
is in the first house, the tea drinker 
must be in the second house. This 
leaves Eric in the first house. Clue 3 
tells us the Samsung Galaxy S21 
user and Eric are next to each other, 
which means Eric must be in the 
second house. Therefore, the 
Samsung Galaxy S21 user is in the 
first house.

Figure 7: Cases of ZebraLogic. The MAmmoTH2-7B is correct but Mistral-7B is wrong. Both
models are after two-stage training.

There are 2 houses, numbered 1 to 2 
from left to right, as seen from across 
the street. Each house is occupied by 
a different person. Each house has a 
unique attribute for each of the 
following characteristics:
- Each person has a unique name: 
`Arnold`, `Eric`
- Each person lives in a unique style 
of house: `colonial`, `victorian`
- People use unique phone models: 
`iphone 13`, `samsung galaxy s21`

## Clues:
1. Eric is somewhere to the left of the 

person who uses an iPhone 13.
2. The person who uses a Samsung 

Galaxy S21 is the person residing 
in a Victorian house.

Problem DeepSeek-Coder DeepSeekMath

Given Clue 1, Eric is in the first 
house. Clue 2 tells us that the person 
who uses a Samsung Galaxy S21 is 
the person residing in a Victorian 
house, so the person in the second 
house uses an iPhone 13. Therefore, 
Arnold lives in the second house and 
uses a Samsung Galaxy S21.

Given Clue 1, the person who uses 
an iPhone 13 is in the second house. 
Therefore, the person in the first 
house uses a Samsung Galaxy S21. 
Clue 2 states that the person who 
uses a Samsung Galaxy S21 is the 
person residing in a Victorian house, 
so the person in the first house is the 
person who lives in a Victorian house. 
This means the person in the second 
house lives in a colonial house. 
Therefore, the person in the first 
house is Eric, and the person in the 
second house is Arnold.

There are 3 houses, numbered 1 to 3 
from left to right, as seen from across 
the street. Each house is occupied by 
a different person. Each house has a 
unique attribute for each of the 
following characteristics:
- Each person has a unique name: 
`Eric`, `Arnold`, `Peter`
- The mothers' names in different 
houses are unique: `Aniya`, `Holly`, 
`Janelle`

## Clues:
1. The person whose mother's name 

is Holly is not in the first house.
2. Eric is The person whose mother's 

name is Aniya.
3. The person whose mother's name 

is Aniya is in the third house.
4. The person whose mother's 

name is Janelle is Arnold.

Problem DeepSeek-Coder DeepSeekMath

Given Clue 1, the person whose 
mother's name is Holly is not in the 
first house. Therefore, the person 
whose mother's name is Holly must 
be in the second house. Clue 2 tells 
us that Eric is the person whose 
mother's name is Aniya, so Eric must 
be in the first house. Clue 3 states 
that the person whose mother's name 
is Aniya is in the third house, so the 
person whose mother's name is 
Janelle must be in the second house. 
Therefore, Arnold is the person 
whose mother's name is Janelle, and 
Peter is the person whose mother's 
name is Holly.

Given Clue 2, Eric is the person 
whose mother's name is Aniya. Clue 
3 states that the person whose 
mother's name is Aniya is in the third 
house, so Eric must be in the third 
house. Clue 4 tells us that the person 
whose mother's name is Janelle is 
Arnold, so Arnold must be in the first 
house. This leaves Peter in the 
second house. Therefore, the mother 
of Peter is Holly.

Figure 8: Cases of ZebraLogic. The DeepSeekMath is correct but DeepSeek-Coder is wrong. Both
models are after two-stage training.
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