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Abstract: Proactive robot assistance enables a robot to anticipate and provide for
a user’s needs without being explicitly asked. We formulate proactive assistance
as the problem of the robot anticipating temporal patterns of object movements
associated with everyday user routines, and proactively assisting the user by plac-
ing objects to adapt the environment to their needs. We introduce a generative
graph neural network to learn a unified spatio-temporal predictive model of ob-
ject dynamics from temporal sequences of object arrangements. We additionally
contribute the Household Object Movements from Everyday Routines (HOMER)
dataset, which tracks household objects associated with human activities of daily
living across 50+ days for five simulated households. Our model outperforms the
leading baseline in predicting object movement,correctly predicting locations for
11.1% more objects and wrongly predicting locations for 11.5% fewer objects
used by the human user.

Keywords: Proactive Assistance, Robot Learning, Graph Neural Network,
Spatio-Temporal Object Tracking

Figure 1: The robot observes and learns patterns of object movements resulting from everyday activities,
which it then uses to predict and execute proactive object relocations, such that the objects are in locations
where the user will need them in the near future.

1 Introduction
Service robots that operate in human environments and assist users with everyday tasks promise to
be valuable in domestic [1] as well as workplace [2] settings, and can cater to the needs of a wide
range of users, including children [3], older adults [4], and people with disabilities [5]. Critically,
prior studies have shown that in longitudinal assistive scenarios, users show a strong preference
for proactive robot assistance, such that the robot is able to anticipate and provide for the user’s
needs without being explicitly asked [6, 7, 8]. Prior work has focused on two proactive assistance
scenarios: assistance with fixed pre-determined tasks (e.g., manufacturing assembly [9, 10], object
arrangement [11]) and assistance with daily human activities in a home or office setting [7, 12, 13]

In this work, we focus on the problem of proactive robot assistance towards daily activities in the
form of object placement. Examples include the robot fetching objects for the user in anticipation
of their need (e.g., taking out the breakfast cereal and bowl in the morning), as well as restoring
objects after use (e.g., cleaning up after a meal), all without being asked. Prior work has addressed
proactive assistance by relying on detailed models of human activity, requiring the robot to perform
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human activity recognition or human action prediction in order to determine which action to perform
next [12, 14, 15]. However, it may be impractical for the robot to keep the person in view contin-
uously throughout the day, and building activity recognition models that comprehensively cover all
human activities remains a challenging problem due to the diversity of human behavior. Moreover,
since prior models are limited to assisting only with the user’s current activity and predicting only a
few minutes into the future, they may not provide sufficient time for a mobile manipulator to locate
and fetch objects across a house.

Our work contributes a novel approach for longitudinal proactive robot assistance over large spaces
(e.g. a whole house), and long time horizons (minutes to hours) without requiring recognition of the
underlying user activity. Our key insight is that objects provide perspective into the user’s activities
and needs, without explicit activity recognition. Since proactive assistance primarily takes the form
of object relocation, tracking the movement of objects in the environment has the benefit of providing
actionable object-level information that can be utilized to provide anticipatory assistance. Therefore,
as illustrated in Figure 1, our work aims to understand patterns in temporal daily routines of users,
anticipate user needs, and plan assistive actions.

Specifically, the contributions of our work are as follows. First, we contribute the Household Object
Movements from Everyday Routines (HOMER) dataset, which tracks household objects associated
with human activities across 50+ days for five simulated households. Second, we provide a formal
definition for longitudinal proactive assistance as an object dynamics modeling problem. Third,
we contribute a novel generative graph neural network model that performs spatio-temporal object
tracking and facilitates proactive robot assistance by modeling future movement of objects in an
environment. We validate our approach against prior works that perform object tracking based on
object-object relation frequencies [16] and previously observed periodic routines [17]. Our approach
outperforms both baselines in predicting object movement even with as little as 5 days of training
data, correctly predicting locations for 11.1% more objects and wrongly predicting locations for
11.5% fewer objects used by the human user. Additionally, we demonstrate the use of our system
on a physical robot proactively assisting a user with their morning routine.

2 Prior Work
In this section, we discuss prior work relating to the problem of object tracking, the representation
of object arrangements, and the computational models relating to our tracking formulation.

Object tracking methods have been developed towards manipulation in home robots [18], collision
avoidance [19], augmented reality [20], robot localization [21], etc. Most closely related to our work
are methods aimed at aiding object search. Probabilistic models have been used to represent beliefs
over object locations by combining prior knowledge, observations, and known constraints [22], and
additionally leveraging correlational information from datasets to generate semantic priors on the
likelihood of inter-object relations [16]. FreMEn [17] and temporal persistence modeling [23]
leverage past experience in the environment to model a temporal function of existence of objects of
interest in a location. We seek to combine spatial inter-object relations and observed object location
histories into a unified spatio-temporal model of object dynamics.

Object tracking for proactive assistance requires us to construct object models that span both
space and time. To model space, we utilize scene graphs, which are represented by a set of
< object, relationship, subject > triplets and model their progression in time through a sequence
of scene graphs at discrete time intervals. Probabilistic models [24] or graphical LSTMs [25] are
typically used for inference over spatio-temporal graphs, but learning a predictive model of graphi-
cal object arrangements requires a generative model that can represent the future scene graph given
the current scene graph. Generative Graph Neural Network models predict graphs using encoder-
decoder frameworks [26, 27, 28], or step-wise modification [29, 30, 31]. We find the latter more
suitable for our application, because of sparse changes in scenes over consecutive time steps. Due to
lack of domain specific heuristics that some modification-based networks [29, 31] require, we derive
inspiration from a general graph translation method, Node-Edge Co-evolving Deep Graph Transla-
tor (NEC-DGT) [30] to learn our predictive model only based on data. Graph Neural Networks
have been adapted to model temporal dynamics [32], by exploiting relationships between graphs
proximal in time [33], or related by known temporal periodicities in data [34]. However, our model
also needs to derive information from the absolute value of time (e.g. the user usually has breakfast
around 8am, in addition to after brushing their teeth). Hence, we use a time representation inspired
from prior work [35] as a global context for our network.
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Figure 2: Generative graph neural network to predict a future scene, given the current scene and time. The
input graph edges are embedded into latent space and then passed through attention-based aggregation to obtain
information from neighboring edges and temporal context to predict the output edge existence.

3 Problem Formulation
We model the state of the environment, Xt, at time t, as a set of object-location pairs (oi, li) repre-
senting the placement of object oi ∈ O at location li ∈ L. An embodied agent (human or robot) can
modify the environment by performing a relocation action r(o, l1 , l2 ) to move object o ∈ O from
location l1 to location l2 . We allow objects to serve as locations for placement of other objects (e.g.,
food items placed on a plate), such that O ∩ L 6= ∅. We assume all objects in O to be relocatable,
and instances of the same class (e.g., one of multiple cereal instances) to be uniquely identifiable.

Based on the above formulation, we model the object relocation problem as consisting of two parts.
First, given a set of previous observations of the environment X0:M over some time span M , learn
the model Φ(Xt, t) → X̂t+δ that takes the time t and the state of the environmentXt and predicts the
future state X̂t+δ some fixed δ timesteps in the future. Second, define the function Ψ(Xt, X̂t+δ) →
R which returns the set of relocations R required to transition the environment from Xt to X̂t+δ .

4 Spatio-Temporal Object Dynamics Model
We aim to learn the dynamics of object locations over graphical representations to conserve spa-
tial relationship information. We represent the environment state, Xt as a directed graph, Gt =
{Vt, Et}, and learn a model Φ(Gt, t) → p(Gt+δ) to predict a fully-connected probabilistic graph
from data. Gt is an in-tree with nodes V = {vi} representing each object/location instances, and
one edge {ei,j} ∈ E originating from every node, except the root node, leading to its parent location
node. The output probabilistic graph p(Gt+δ) is a distribution over in-trees, and we can infer the
posterior, Ĝt+δ = arg maxGt+δ p(Gt+δ), by picking the most likely out-edge for every node.

To learn the dynamics Φ from graph sequences, we create a graph translation model1. The inputs to
our model are one-hot encodings identifying each object instance as node embeddings, the adjacency
matrix of the input graph, and an encoding of the output graph timestamp. Our time encoding is sim-
ilar to Time2Vec [35], which uses sinusoidal functions parametrized by time periods τ to generate
a representation of time that can model periodicity. Instead of learning the time periods end-to-end
with the prediction task, as done in Time2Vec, we use nτ pre-specified periods to induce meaningful
priors on temporal periodicities, and use both sines and cosines for our periodic functions.

Our model generates latent edge features from the input edge existence and the associated node
embeddings using a Multi Layer Perceptron (MLP), and passes them through aggregation layers to
predict output edge existence probabilities as outlined in Figure 2. The first aggregation step oper-
ates on the input graph topology. For every edge ei,j , we aggregate the neighboring edge features
belonging to the four categories of sharing the origin ei,k, sharing the destination el,j , originating
from destination ej,m, and ending at origin en,i by summation and concatenate the four resulting
vectors along with the feature of edge ei,j and time context to produce the output feature for edge
ei,j . In this manner, the first aggregation layer generates edge features containing information about
itself, its neighbors, and time, which are passed through an MLP to generate attention weights for
each edge. In the second round, aggregation is done in a similar fashion, but on a fully connected
graph topology, with edge features being weighed by the attention weights before being summed,
and the resulting features are passed through an MLP to predict output edge existence likelihoods.

Our model is inspired by the the edge evolution framework in NEC-DGT [30], which operates
directly on a fully connected graph topology. We found such unweighted message passing over all
edges to be sub-optimal for scaling to the large number of objects in a house, potentially due to

1Implementation shared at https://github.com/Maithili/SpatioTemporalObjectTracking
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(a) Source samples of
what time each activity
is done

(b) Extract habits for
every activity by clus-
tering the samples

(c) Compose complete distri-
butions using a habit for every
activity

(d) Source action
scripts for each activity

(e) Comparison of activity distributions and schedule samples of two personas shows common activities such
as showering and breakfast, as well as activities unique to each household, for instance in Household A the user
does cleaning and watches TV in the evening, and in Household B the user leaves the house after lunch and
does laundry in the morning.

Figure 3: Process for generating the HOMER behavioral dataset.

over-squashing, so we employed the above attention mechanism. By predicting attention weights
based on the sparse input graph topology, we allow the signal from those edges to be stronger. To
avoid limiting the model’s receptive field to existing neighbors, we allow all edges to contribute in
the second step of aggregation, expecting the learned weights to emphasize important neighbors.
Empirical results shown in Sec.7.3 confirm that such a mechanism is indeed beneficial.

5 Behavioral Simulation Dataset
To train and validate spatio-temporal object tracking for proactive open world robot assistance, we
require a dataset capturing the locations of household objects as they move over the course of routine
day-to-day human activities. Specifically, we require data that is longitudinal (spanning weeks or
months) and captures naturally occurring variations in human behavior. Prior work has extensively
documented routine activities in the home, particularly through datasets for activity recognition [36,
37, 38, 39]. However, existing datasets that contain object location data span only a few hours of
data [40, 41, 42], and longitudinal datasets lack object location data [37, 43, 44].

We introduce the Household Object Movements from Everyday Routines (HOMER) dataset com-
posed of routine behaviors spanning several weeks generated for five households representing habits
of different individuals. The dataset is based on an apartment setting, where each apartment consists
of four rooms and contains 108 objects. We used the VirtualHome simulator [45] to model human
behavior, as it supports human agents, object interaction, and 33 high-level semantic command, such
as find, walk, grab, without requiring low-level motion control. Figure 3 presents an overview of the
dataset generation process. First, we obtained a list of activities of daily living relevant to in-home
routines from the activity recognition literature [46]. Figure 3e shows the complete set of activities.
We then separately crowd-sourced high level activity schedules and the low level action sequences
to perform each activity, and used the resulting data to sample the daily routines.

Activity Schedules: To obtain realistic activity schedules, we collected data from 21 workers2 on
Amazon Mechanical Turk about which hours on a typical day from 6am to 12am they are likely to

24F/17M, nearly equal participation from age groups of 25-35, 35-45, and over 45. Four of original 25
workers were omitted due to nonsensical answers, leaving 21 workers.
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be doing each activity, Figure 3a. To build a probabilistic model that realistically captures variations
in human behavior, we use clustering to extract diverse underlying habits of how each activity is
performed, Figure 3b, and define a household using a combination of such habits for every activity,
Figure 3c (see appendix for more details).

Action Sequences: In parallel to the above, we used the VirtualHome simulator to collect execution
scripts emulating each activity of daily living, detailing the step-by-step action sequences, as well
as the minimum and maximum time duration needed to do each action as shown in Figure 3d. We
sourced this data from 23 participants, resulting in a set of action sequences, along with time duration
ranges needed to perform each action, for all activities.

Schedule Sampling: Finally, using both the activity schedules and action sequences together, we
generated the HOMER dataset capturing how objects move throughout the environment over time.
We characterized each of our five households by a temporal activity distribution and an action script
per activity, and used Monte Carlo sampling to generate samples of their daily routines3, which are
visualized in Figure 3e. When executed on the simulator, these routines provide a sequence of object
arrangements, from which we derive states Xt to train and evaluate our model.

The sample routines generated by our dataset emulate natural stochasticity in human routines, thus
providing a realistic and challenging benchmark for a predictive system such as ours. Figure 3e
depicts two example schedules from our dataset, which represent the distribution of activities in two
different households. While day-to-day activity patterns in each household differ in timing, duration,
order, and frequency, strong commonalities in behavior occur within each household. The user in
household A tends to have breakfast only about half of the days and on some days they do so later,
after using their computer for a little while. They also take breaks from computer work through the
day to read, watch TV and socialize. They tend to work on the computer in the morning followed
by taking a break around noon, similar to Household B, but then they skip lunch and continue
working, whereas the user in Household B most often leaves the house after lunch. Other variations
include allocating different times of the day for longer chores, such as Household A takes time to
do cleaning towards the evening, whereas Household B does laundry earlier in the day. Thus, we
create a challenging test bed for our models, as they need to make good predictions to capitalize
on the opportunity to assist the user, but also avoid making incorrect predictions, particularly for
hard-to-predict activities, which might cause disruptions to the user’s natural routine.

6 Evaluation
We evaluate our predictive model on sequential scenes from each of our five household datasets
and report results averaged across all five. We use τi of 1 day, 12 hours, 6 hours, 3 hours, 1 hour,
30 mins, and 10 mins, construct each of the our MLPs with a single hidden layer consisting of 20
neurons and ReLU activation, and use Adam optimizer with a learning rate of 10−3. Starting with a
known graph Gt at time t, we use our network to predict the probabilistic graph one step (10 mins)
into the future p(Gt+1), and feed it back into the model iteratively to predict further into the future.
Finally we derive the desired posterior estimate Ĝt+δ .

6.1 Baselines
We compare our predictive model against two prior works on open world object tracking:

Static Semantic, adapted from [16], calculates static priors over object locations using observed
object-location relation frequencies, and uses these priors to update the estimate on every step. To
adapt the noise model to our topological formulation, we use a tunable probability of change and
spread belief uniformly over all potential locations, as opposed to nearby areas in metric space.

FreMEn, adapted from [17], uses past experience to model the prior probability of existence of
object-location relationships as periodic functions in time. We maintain beliefs over topological
relations instead of the metric occupancy grid used in [17]. The final belief is a combination of the
given state and periodic temporal priors, with a tunable time-decaying weight as suggested in [17].

6.2 Metrics
Given the current state Xt, represented by the graph Gt, our objective is to predict the state graph
δ timesteps in the future, Ĝt+δ , and use it to infer object relocations, r(oi, l1 , l2 ) caused by human

3The complete dataset can be found at https://github.com/GT-RAIL/rail_tasksim/tree/homer/
routines, and further implementation details are available in the appendix.
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actions, signifying the movement of object oi from its original location l1 to destination l2. The set
of such relocations, R̂t:t+1, predicted to happen one step into the future t+ 1 can be written as

R̂t:t+1 = {r(oi, l1 , l2 )|ei,l1 ∈ Ĝt, ei,l2 ∈ Ĝt+1, l1 6= l2}
To assist δ-steps into the future, the robot needs to predict relocations R̂t:t+δ obtained from sequen-
tial predictions from time t to t+ δ and reconciling multiple relocations:

R̂t:t+δ = R̂t:t+δ−1 ∪ {r(oi, l1 , l2 )|r(oi, l1 , l2 ) ∈ R̂t+δ−1:t+δ, r(oi, l1 , l3 ) /∈ R̂t:t+δ−1}
In addition, we can extract the set of objects that are relocated as a part of relocations R as

O(R) = {oi|r(oi, l1 , l2 ) ∈ R}
We evaluate model selected relocations against the ground truth relocations that would have been
made by the human user in the absence of any assistance (Rt:t+δ). The exact order and precise tim-
ing of the robot’s relocations is not critical as long as they occur before the human-generated event
(e.g, the bowl or cereal could be taken out first). Hence, we measure the predictive performance of
relocations over the entire proactivity δ.

For our evaluations, we separately consider objects that were used by the human user between time t
and t+δ, O(Rt:t+δ), and the remaining unused objects. While moving the unused objects might not
cause a direct disruption in the user’s routine, it would be disconcerting if objects randomly moved
in the house. Hence, we want to maximize the fraction of unused objects that are left in their places
({oi|oi /∈ O(Rt:t+δ), oi /∈ O(R̂t:t+δ)}). The more interesting cases are the objects that were used
by the human user. Robot’s predictions for these objects can fall into one of three categories. First,
objects whose predicted movements are correct (O(R̂t:t+δ ∩ Rt:t+δ)). Second, objects that are
predicted to move to the wrong locations ((O(R̂t:t+δ) ∩O(Rt:t+δ)) \ O(R̂t:t+δ ∩Rt:t+δ)); these
are especially undesirable as the robot would move objects to a random place, making it harder for
the user to find them. Third, objects that were missed (O(Rt:t+δ)) \ O(R̂t:t+δ)) and hence were
left untouched, which is still undesirable but the user would presumably easily find them in their
original locations. Of these three categories, we want to maximize the correct relocations, while
minimizing the wrong relocations on the objects that the user uses through their routine.

7 Results
Below, we compare the performance of our model against baselines, investigate the effect of fewer
observation days for training, show the importance of our attention mechanism and time encoding,
and finally validate our model on a real robot. Our quantitative comparisons are based on 50 days of
training data and a 30 minute proactivity window, however we show results over varying proactivity
windows in Section 7.1, and discuss the effect of fewer training observations in Section 7.2.

7.1 Performance comparison against Baselines

Our model moves 11.1% more objects to correct locations and 11.5% fewer objects to wrong loca-
tions out of those used by the user, compared to FreMEn, our leading baseline. Of the objects not
used by the user, our model mistakenly moves only 0.8% compared to over 4% objects moved by our
baselines. These results are summarized in Table 1. For these results, we train each model separately
on each household, and test on a withheld set of 10 days from the same household distribution.

Method % Used Objects % Unused Objects
Correct Wrong Missed Correct Wrong

Static Semantic 23.04 16.16 60.80 91.06 8.94
FreMEn 29.42 15.28 55.29 95.30 4.70
Ours 40.51 3.79 55.70 99.19 0.81

Table 1: Comparison of predictive performance on used and unused objects for a 30 minute proactivity window
of our method against baselines

Performance over used and unused objects are shown in Figure 4 for a predictive window of 10
minutes (leftmost bar) to 120 minutes (rightmost bar) with intervals of 10. More objects are used
for longer proactivity windows, as can be seen by the total height of each bar representing the
total number of used or unused objects in that window. On increasing the proactivity window upto
40 minutes (the first four bars), our method as well as FreMEn predict a larger fraction of moved
objects correctly, because a larger proactivity window allows for some error in predicting the time
of a future event. However beyond the 40 minutes, the performance starts dropping owing to the
natural uncertainty in predicting farther out in the future.
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(a) Breakdown of Used Objects (b) Breakdown of Unused Objects

Figure 4: Our methods moves the most used objects to correct places and fewest used objects to the wrong
places for proactivity δ of 10 minutes (leftmost bar) to 120 minutes(rightmost bar), at intervals of 10. Moreover,
our method touches fewer unused objects than our baselines.

Across different proactivity windows we observe that FreMEn makes a lot of wrong relocation pre-
dictions on both used and unused objects. This is because FreMEn rearrangements are based on a
prior that is conditioned entirely on time, without considering current environment state Xt. As a
result, natural deviations in user behavior (e.g., early breakfast) will cause the model to place ob-
jects in their typical locations (e.g., bowl back in the cabinet) even when it should remain unmoved
while still in use, or when they should be moved to the next location (e.g., bowl moved to sink).
By contrast, our model’s ability to model typical state progressions, allows it to handle such situ-
ations (e.g. bowl moves to the sink after coming out). The Static Semantic baseline demonstrates
weaknesses similar to FreMEn because its prior is agnostic to both Xt and time. In a real world
scenario, both baseline methods would cause the robot to constantly rearrange objects in the house,
often misplacing objects that would be needed and moving unrelated items.

Our model robustly predicts routine object movements, while maintaining a conservative behavior
over non-routine movements. In Household B (Figure 3e) the user takes a shower routinely and
consistently, so our model is able to reliably predict associated movement of the towel. In situations
that are especially challenging to predict (e.g., highly inconsistent breakfast routine in household
A), our model acts conservatively and avoids moving objects, resulting in fewer wrong movements
(3.79%). A consequence of the model’s conservative nature is that when the user does have break-
fast, no proactive assistance is provided. This results in missed assistive opportunities (55.7%), but
we believe real world users would prefer to avoid having objects moved unnecessarily. Sometimes
our model fails to predict assistive actions for activities with a large time variation, such as relocating
the TV remote for household B (Figure 3e), despite them watching TV almost everyday.

7.2 Training Data Efficiency
We evaluate data efficiency by training each model using varying amounts of training data, from
5 to 50 days of observations. As shown in Figure 5, our method improves performance as more
data becomes available, and outperforms both baselines with as little as 5 days of observations.
The relatively simpler representation of the baseline methods enables those models to achieve high
performance sooner, but hurt their improvement with more data as they cannot utilize it to learn more
complex patterns. For instance, FreMEn independently models each object being in each location,
and cannot learn correlations between different objects. Our model can leverage such correlations
(e.g., cereal and milk movements being correlated).

(a) Used Objects (b) Unused Objects
Figure 5: Our method, when trained from scratch (red triangles), outperforms baselines for as little as 5 days
of observations, and shows improved performance when pre-trained (orange dots) on other households.

Additionally, we evaluate the benefits of cross-training across households to take advantage of com-
monalities in human behavior. We use data from four households to pre-train a model, and fine-tune
and test on the train and test splits, respectively, on a fifth household. Compared to a model trained
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from scratch, the pre-trained model starts off with higher performance over the used objects (Fig-
ure 5a), but slightly lower performance over unused objects (Figure 5b) as it imposes other house-
holds’ patterns on the new household. As more data is made available, the performance gap on %
correct predictions closes, but the pre-trained model makes slightly fewer % wrong predictions on
both used and unused objects, implying that training on more varied data provides a good initializa-
tion. By comparison, for both baselines cross-training across households reduces performance.

7.3 Model Analysis
Method % Correct % Wrong
Ours 40.51 3.79
Without Attention 25.85 8.20
Without Time Enc. 24.84 8.29

Table 2: Model Analysis

We perform an analysis to measure the impact of our
attention mechanism and time representation. The
purpose of our attention mechanism is to avoid over-
squashing caused by message passing over a fully
connected graph topology with a large branching fac-
tor. Empirical results over used objects shown in Table 2 prove its benefit as our model outperforms
a version without such a mechanism. Our model also exhibits superior performance over using a
linear representation of time as a single number in minutes.

7.4 Robot Validation
Finally, we present a proof-of-concept demo of our system on a Fetch robot assisting with a break-
fast routine, as shown in Figure 6 and detailed in our accompanying video. The shown scenario
demonstrates anticipatory assistance through taking out of cereal, milk and bowl prior to the user’s
breakfast. Additionally, the robot anticipates the need to clean up, resulting in the restorative actions
of placing the cereal box and milk back, and leaving the bowl in the sink. One benefit of our object-
based proactive assistance model is that it is robust to certain variations in the user’s routine. When
the user skips breakfast, even though the robot prepared the breakfast items, it will also replace them
once breakfast time has elapsed.

(a) (b) (c) (d)
Figure 6: The robot observes user behavior and learns patterns therein (a). The robot uses the learned model
for proactive assistance (b), reducing effort to the user (c) both before the breakfast activity, and after (d).

8 Discussion, Limitations and Future Work
In this paper, we introduce an object-centric perspective to providing proactive robot assistance,
present a novel dataset for longitudinal object tracking, and contribute a novel generative graph
neural network formulation for predicting future environmental scenes. Our results show that our
model significantly outperforms two prior techniques for modeling environmental dynamics, even
if given as little as 5 days of training data. We additionally demonstrate that the model can be used
on a real robot to accurately predict future objects movements and plan anticipatory and restorative
actions that benefit the user, without the need for activity recognition and subsequent analysis of
used objects in each activity. Such assistance does not require explicit user commands, reducing the
burden on the user.

Limitations and Future Work: As discussed earlier, leveraging only object data removes reliance
on potentially incomplete or inaccurate activity recognition models, which can be a strength in
complex real-world deployment scenarios. However, the lack of activity modeling is also a limitation
because the robot is unaware of the user’s current actions. For example, if the user is taking an
unusually long time to eat breakfast, the robot may clean up too early. Future work should combine
the capabilities of both object-based and activity-based systems. An additional limitation is that our
method does not currently account for object state. Future work should expand the representation to
condition object placement on state information (e.g., place clean bowls in cabinet and dirty bowls
in the sink). Finally, human behavior is rarely deterministic and user preferences may be hard to
predict (e.g., cereal or yogurt for breakfast). Future work should integrate user interaction to enable
the robot to confirm with the user before performing actions with high uncertainty, and include a
user study to understand how users react to such a system.
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