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Abstract001

Handwritten text recognition aims to convert002
visual input into machine-readable text, and it003
remains challenging due to the evolving and004
context-dependent nature of handwriting. Char-005
acter sets change over time, and character fre-006
quency distributions shift across historical pe-007
riods or regions, often causing models trained008
on broad, heterogeneous corpora to underper-009
form on specific subsets. To tackle this, we010
propose a novel loss function that incorporates011
the Wasserstein distance between the charac-012
ter frequency distribution of the predicted text013
and a target distribution empirically derived014
from training data. By penalizing divergence015
from expected distributions, our approach en-016
hances both accuracy and robustness under tem-017
poral and contextual intra-dataset shifts. Fur-018
thermore, we demonstrate that character dis-019
tribution alignment can also improve existing020
models at inference time without requiring re-021
training by integrating it as a scoring function022
in a guided decoding scheme. Experimental023
results across multiple datasets and architec-024
tures confirm the effectiveness of our method025
in boosting generalization and performance.026

1 Introduction027

Handwritten Text Recognition (HTR) enables the028

automatic conversion of handwritten input into029

machine-readable text, supporting critical appli-030

cations such as historical manuscript digitization,031

document analysis, and archival research. A central032

challenge in HTR arises from the fact that charac-033

ter frequency distributions vary across time periods034

and geographic regions, driven by linguistic evolu-035

tion, orthographic reforms, and contextual usage036

shifts (Moreno, 2005). In the transition from Old037

English to Modern English, for example, gram-038

matical changes, such as the loss of case mark-039

ings, led to notable alterations in letter distributions040

(Moreno, 2005). Character frequency distributions041

also differ across languages that share the same042

alphabet, with measurable disparities even among 043

closely related languages (Grigas and Juskeviciene, 044

2018). Beyond language, writing style and genre 045

exert substantial influence on letter usage, which is 046

reflected in systematic differences across news arti- 047

cles, novels, and scientific texts (Zhao and Zheng, 048

2024). Specialized domains further introduce devi- 049

ations: for instance, proprietary prescription drug 050

names diverge markedly from standard English dis- 051

tributions (Carico et al., 2022), while authorship at- 052

tribution studies exploit subtle statistical variations 053

in letter frequencies to differentiate between writers 054

(Diurdeva et al., 2016; Merriam, 1994; Kjell, 1995). 055

These findings underscore the dynamic nature of 056

character frequency distributions and their depen- 057

dence on both linguistic and contextual factors. 058

HTR models face challenges when transcribing 059

historical manuscripts, where orthographic conven- 060

tions and character usage shift considerably over 061

time (Tsochatzidis et al., 2021; Cascianelli et al., 062

2022). A common mitigation strategy involves 063

training on diverse corpora to increase generaliza- 064

tion, but this does not necessarily yield optimal per- 065

formance (Nguyen et al., 2022). Models trained on 066

heterogeneous data often struggle to perform well 067

in specific subsets in which character frequency 068

distributions deviate, resulting in systematic biases 069

and suboptimal transcription accuracy relative to 070

the model’s capacity. 071

To address these challenges, we propose FADA 072

(Frequency-Aware Distribution Alignment), a 073

novel training framework that aligns a model’s pre- 074

dicted character-level frequency distributions with 075

empirically observed ones. When such distribu- 076

tions are available, FADA enhances robustness to 077

temporal and contextual variation by incorporating 078

a distance-based loss function that penalizes dis- 079

crepancies between predicted and empirical char- 080

acter frequencies during training. This alignment 081

loss allows the model to learn general task-relevant 082

representations while also reflecting the expected 083
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subset-specific statistical patterns. In addition, we084

introduce a guided decoding algorithm that inte-085

grates the frequency-aware objective into the beam086

search process at inference time. By treating empir-087

ical character frequency distributions as soft con-088

straints, our method refines predictions to better089

match expected patterns, improving transcription090

accuracy without the need for retraining. FADA is091

the first framework to explicitly address character-092

level frequency distribution shifts in text recogni-093

tion. In contrast to prior work, which largely over-094

looks intra-dataset variation, FADA introduces both095

a trainable alignment mechanism and an inference-096

time correction strategy, providing a comprehen-097

sive solution for mitigating distributional shifts.098

Our main contributions are: (i) We introduce099

FADA, a novel training framework that explicitly ad-100

dresses character-level frequency distribution shifts101

in recognition tasks. (ii) We propose a guided102

decoding strategy that incorporates empirical fre-103

quency priors into beam search, enhancing align-104

ment between predicted and expected character fre-105

quency distributions at inference time. (iii) We106

demonstrate the effectiveness and generality of107

FADA through extensive experiments on HTR, show-108

ing consistent performance gains across multiple109

datasets, languages, and model architectures.110

2 Related Work111

Feature and distribution alignment have been112

extensively explored as strategies to mitigate per-113

formance degradation caused by distribution shifts114

in recognition models. Prior work addresses115

these challenges by enhancing alignment at var-116

ious stages of the recognition pipeline, including117

structural feature extraction, semantic representa-118

tion learning, and distribution matching.119

In scene text recognition (STR), Hu et al.120

(2024) proposed shape-driven attention to guide121

models toward higher-quality character features us-122

ing geometric priors. In vision-language models123

(VLMs), distributional alignment has also been ex-124

plored (Cho et al., 2023). For example, Li et al.125

(2025) minimized distributional gaps between pos-126

itive and negative captions to improve image-text127

alignment by promoting stronger visual grounding.128

In speech-related tasks, alignment techniques129

have been applied to adapt to domain-specific vari-130

ation. Zhou et al. (2024) investigated distribu-131

tion alignment for multi-genre speaker recogni-132

tion, showing that Within-Between Distribution133

Alignment (WBDA) (Hu et al., 2022) improved ro- 134

bustness but did not fully eliminate genre-specific 135

variability. Moreover, Hou et al. (2021) aligned 136

the character-level audio representations between 137

a source and a target domain in an unsupervised 138

manner via Maximum Mean Discrepancy. 139

Standard decoding strategies like greedy or beam 140

search often lack mechanisms to enforce external 141

constraints, which are crucial in tasks requiring 142

adherence to linguistic structure or statistical prop- 143

erties. To address this, guided decoding methods 144

steer generation based on predefined constraints 145

(Wang and Shu, 2025), typically grouped as seman- 146

tic, structural, or lexical (Zhang et al., 2023). Se- 147

mantic constraints enforce stylistic or topical align- 148

ment (Yang et al., 2018; Ghazvininejad et al., 2017; 149

Pascual et al., 2021), or integrate task-specific 150

priors (Kaliosis et al., 2024; Samprovalaki et al., 151

2024). Structural approaches promote syntactic co- 152

herence (Bastan et al., 2023; Lu et al., 2021), while 153

lexical constraints guide the inclusion or exclusion 154

of specific tokens (Anderson et al., 2017; Hokamp 155

and Liu, 2017; Yao et al., 2024). 156

Despite this progress, existing approaches do not 157

explicitly address the impact of character-level fre- 158

quency distribution shifts, which are particularly 159

prominent in recognition tasks involving historical 160

or domain-specific data. Most alignment methods 161

focus on feature-level or semantic alignment, over- 162

looking statistical priors at the character level that 163

can guide model predictions. FADA fills this gap by 164

introducing a frequency-aware training and decod- 165

ing framework that directly incorporates character- 166

level distributional knowledge into both learning 167

and inference. 168

3 The Proposed FADA Method 169

Our proposed method, FADA, introduces a novel 170

training framework that aligns the predicted 171

character-level frequency distribution of the model 172

with an empirical target distribution at each train- 173

ing step, thereby reducing discrepancies caused by 174

temporal and contextual shifts. 175

For example, if the model predicts a character 176

frequency of 9.3% for the letter “a”, while the em- 177

pirical distribution indicates an expected 11.1%, 178

FADA encourages the model to adjust its predic- 179

tions to reduce this gap. To achieve this, we in- 180

troduce an auxiliary loss term that penalizes diver- 181

gence between the predicted and empirical charac- 182

ter frequency distributions. This alignment loss is 183
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jointly optimized with the task-specific objective184

(e.g., CTC or Cross-Entropy loss), enabling the185

model to preserve recognition performance while186

adapting to subset-specific distributional properties.187

As a result, the model becomes more robust to intra-188

dataset shifts and better aligned with the statistical189

patterns present in the data.190

Empirical Relative Frequency Distributions191

To capture character frequency variations, we com-192

pute empirical relative frequency distributions from193

the training data. First, we normalize transcriptions194

by converting all text to lowercase to ensure con-195

sistency. Frequencies are calculated by counting196

character occurrences and normalizing by the to-197

tal number of characters. To model intra-dataset198

distribution shifts, we compute separate frequency199

distributions for each temporal or contextual subset200

of the training set (e.g., distinct centuries/regions).201

Character Frequency Analysis Figure 1 illus-202

trates the character-level relative frequency distri-203

butions of the HPGT dataset (Platanou et al., 2022)204

over seven centuries, revealing clear distributional205

shifts in character usage. Certain letters, such as206

δ, κ, and γ, display stable frequencies over time,207

suggesting consistent orthographic roles in written208

Greek. In contrast, others, such as τ and ε, exhibit209

notable fluctuations, suggesting potential shifts in210

orthographic conventions or variations in dataset211

composition. Additionally, characters such as ῶ212

and ἔ, are absent in earlier centuries but emerge213

in later ones, which may reflect historical linguis-214

tic developments or artifacts of dataset annotation215

and coverage. However, these variations are not216

solely attributable to linguistic evolution; external217

factors, such as dataset biases or uneven temporal218

representation, may also influence the observed dis-219

tributions. We present a detailed analysis including220

correlation scores between the character frequency221

distributions across centuries in Appendix A.222

FADA Training Framework In conventional223

recognition models, training is typically guided224

by task-specific objectives such as CTC or CE loss.225

While these objectives effectively optimize tran-226

scription accuracy, they do not account for intra-227

dataset shifts in character frequency distributions.228

As a result, models trained on aggregated datasets229

may develop implicitly biases toward dominant230

character distributions, leading to suboptimal per-231

formance when applied to subsets that exhibit dif-232

ferent statistical properties at the character level.233
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Figure 1: Empirical character-level frequency distri-
butions in the HPGT dataset across seven centuries
(10th–16th CE). Characters with relative frequency be-
low 0.01 are omitted for clarity.

To address this limitation, we introduce an auxil- 234

iary distribution alignment loss that encourages the 235

model’s predicted character frequency distributions 236

to align with empirical distributions observed in 237

the training data. At each training step, we com- 238

pute the predicted distribution from the model’s 239

output logits and compare it with a sample-specific 240

empirical distribution derived from the training set 241

(e.g., based on the sample’s century or region). The 242

alignment loss penalizes discrepancies between the 243

predicted and empirical distributions, guiding the 244

model toward representations that preserve the ex- 245

pected statistical properties of the corresponding 246

subset. This loss is designed to complement—not 247

replace—the primary recognition objective (CTC 248

or CE), thereby enhancing the model’s robustness 249

to intra-dataset distributional shifts without com- 250

promising transcription accuracy. 251

To formally define this alignment loss, we em- 252

ploy the Wasserstein distance, a well-established 253

metric for quantifying discrepancies between 254

probability distributions. Given two probabil- 255

ity distributions D and Q , the Wasserstein- 256

p (Wp) distance is defined as Wp(D,Q) = 257(
1
n

∑n
i=1 ∥D(i) −Q(i)∥p

) 1
p where D(i) and Q(i) 258

denote the i-th elements of the sorted (in ascend- 259

ing order) versions of D and Q, respectively, and 260

n is the number of characters. Since we operate 261

over discrete relative frequency distributions, i.e., 262

one-dimensional empirical probability vectors sum- 263
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ming to one, we specifically adopt the second-order264

Wasserstein distance (W2), where p = 2:265

LW2 = W2(D,Q) =

(
1

n

n∑
i=1

∥D(i) −Q(i)∥2
) 1

2

(1)266

This choice is motivated by the fact that W2 cor-267

responds to the Euclidean norm, offering a natural268

and computationally efficient measure of distribu-269

tional divergence that is sensitive to fine-grained270

differences. In the one-dimensional case, W2 sim-271

plifies to the Root Mean Squared Error (RMSE)272

between the sorted frequency vectors, making it273

especially suitable for character-level distributions.274

At each training step, the total loss is defined as a275

convex combination of the primary recognition loss276

and the distribution alignment loss. The former cor-277

responds to either CTC (LCTC) or Cross-Entropy278

(LCE) loss, depending on the model architecture.279

The latter is the alignment loss LW2 introduced in280

Equation 1.281

FADA Guided Decoding Framework Our pro-282

posed method also supports an inference-time ap-283

plication via a guided decoding algorithm that284

aligns predicted character-level frequency distri-285

butions with empirical targets. While training-time286

alignment enhances robustness to distributional287

shifts, inference-time adjustment provides an addi-288

tional mechanism for refining predictions without289

requiring model retraining. To enable this, we in-290

corporate a frequency-aware scoring component291

into the beam search process, which biases candi-292

date sequences toward those whose character distri-293

butions more closely match the expected empirical294

ones. In this way, we correct potential distribu-295

tional mismatches at inference time, thereby im-296

proving overall transcription accuracy.297

In standard beam search, candidate sequences298

are ranked based on their cumulative log-299

probability, favoring highly probable continuations.300

We extend this decoding objective by introducing301

a penalty term that quantifies the divergence be-302

tween a candidate sequence’s predicted character303

frequency distribution and the corresponding em-304

pirical distribution. This penalty term is applied305

at each decoding step, enabling the beam search306

process to dynamically incorporate character-level307

alignment as the sequence is generated. Specifi-308

cally, at decoding step t, each candidate sequence309

V = (v1, v2, . . . , vt) is scored using the following310

frequency-aware objective:311

SGD = [λ ·
t∑

i=1

logP (vi|v<i)− 312

(1− λ) ·W2(Dpred, Demp)] (2) 313

Here, P (vi|v<i) denotes the model-assigned 314

probability of character vi given the preceding se- 315

quence v<i. Dpred and Demp represent the predicted 316

and empirical character frequency distributions, re- 317

spectively. The first term captures the standard 318

beam search objective and the second imposes a 319

penalty based on the Wasserstein distance W2 (see 320

Equation 1). The hyperparameter λ ∈ [0, 1] con- 321

trols the trade-off between maximizing likelihood 322

and enforcing distributional alignment. 323

This formulation ensures that candidate se- 324

quences with both high likelihood and strong agree- 325

ment with the expected character frequency distri- 326

bution are favored during decoding. Importantly, 327

at each decoding step, the alignment penalty is 328

computed over the entire (potentially incomplete) 329

candidate sequence, rather than applied at the in- 330

dividual token level. While a per-token penalty 331

may seem intuitive, it treats frequency alignment 332

as a local property and risks biasing the model to- 333

ward optimizing each next-token prediction in iso- 334

lation. In contrast, our approach promotes global 335

coherence by encouraging sequences whose overall 336

character-level statistics align better with the em- 337

pirical target distribution. As a result, the guided 338

decoding strategy functions as a lightweight cali- 339

bration mechanism that leverages known statistical 340

properties of the target domain to enhance recogni- 341

tion performance without additional training. 342

4 Experiments 343

We evaluate the performance of FADA primarily on 344

HTR, using two model architectures across three 345

datasets, two real-world and one synthetic, span- 346

ning Greek and French manuscripts from the 10th 347

to 16th cent. CE. To demonstrate the broader ap- 348

plicability of our method, we also conduct sec- 349

ondary experiments on Automatic Speech Recog- 350

nition (ASR) using the Whisper model (Radford 351

et al., 2023) and an English dataset. Next, we 352

discuss dataset and model details (§4.1-§4.2), base- 353

lines (§4.3), evaluation metrics (§4.4), and then we 354

present the experimental results (§4.5), followed 355

by an ablation study and qualitative analyses. 356
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4.1 Datasets357

HPGT Dataset (HTR): HPGT (Platanou et al., 2022)358

is a Handwritten Paleographic Greek Text recog-359

nition dataset comprising 77 digitized page-level360

images from Greek manuscripts in the Oxford Uni-361

versity Bodleian Library.1 The images are seg-362

mented into 1,698 line-level between the 10th to363

16th century CE.364

CATMuS-FR Dataset (HTR): CATMuS (Clérice et al.,365

2024) is a multilingual manuscript dataset con-366

taining over 200 historical texts. We extracted all367

French-written samples to form CATMuS-FR, con-368

sisting of 3,401 samples spanning four centuries369

(13th to 16th) and six distinct script types.370

Synthetic Dataset (HTR): To evaluate FADA un-371

der controlled conditions, we generated a synthetic372

Greek dataset with deliberately induced shifts in373

character frequency distributions. Using predefined374

prompts and topics, we synthesized text with four375

different LLMs (GPT-4 (OpenAI, 2023), Llama-376

3.1 (Meta-AI, 2024), Gemini (Google, 2024), and377

Claude-3.5 (Anthropic, 2024)) each producing out-378

puts with distinct statistical properties, effectively379

simulating four separate “centuries.” Images were380

rendered using an open-source handwritten text381

generator.2 More details about the dataset creation382

are provided in the Appendix.383

EdAcc Dataset (ASR): EdAcc (Sanabria et al.,384

2023) is an ASR dataset containing 40 hours of385

transcribed speech from speakers with diverse lin-386

guistic backgrounds and English accents. We se-387

lected the four most represented categories; US En-388

glish, Southern British English, Irish English, and389

Indian English, resulting in 2,756 samples. More390

details about the inter-group character distribution391

shifts and correlation scores for each dataset are392

provided in the Appendix.393

4.2 Backbone Models394

We experiment with three backbone models fea-395

turing distinct architectures across two recognition396

tasks. In our experiments, C-RNN is trained from397

scratch, while TrOCR and Whisper are fine-tuned398

from publicly available pretrained checkpoints. We399

evaluate each model under two baseline configura-400

tions (see §4.3) as well as our proposed distribu-401

tional alignment framework (FADA).402

C-RNN (HTR): C-RNN (Shi et al., 2015) is a403

widely used architecture for HTR that combines a404

1
https://bav.bodleian.ox.ac.uk/greek-manuscripts

2
https://github.com/Belval/TextRecognitionDataGenerator

CNN for visual feature extraction with an RNN for 405

sequential text generation. The model outputs text 406

at character level and is trained using the CTC loss. 407

TrOCR (HTR): TrOCR (Li et al., 2021) is a state- 408

of-the-art Transformer-based (Vaswani et al., 2017) 409

approach for HTR. It comprises a Vision Trans- 410

former (ViT) (Dosovitskiy et al., 2021) as an image 411

encoder and a text Transformer (Vaswani et al., 412

2017) as the decoder. TrOCR operates at token 413

level and is trained using CE loss. 414

Whisper (ASR): Whisper (Radford et al., 2023) is 415

a state-of-the-art speech recognition model based 416

on a Transformer-based encoder-decoder architec- 417

ture. It is pre-trained on a range of speech process- 418

ing tasks, including ASR and speech translation. 419

4.3 Baseline Configurations 420

Fine-tuned Backbone Model: This configuration 421

serves as our simplest baseline. For Transformer- 422

based models (TrOCR and Whisper), we fine-tune 423

publicly available pre-trained checkpoints on each 424

target dataset using only the standard task-specific 425

objective (CE loss). For the C-RNN model, which 426

does not rely on a pre-trained backbone, we train 427

the model from scratch using CTC loss. This setup 428

reflects the default recognition setting without any 429

frequency-level supervision, and enables direct as- 430

sessment of the added value introduced by our pro- 431

posed distributional alignment mechanism. 432

Temporal/Regional Token Tagging (TR-TT): 433

Following strategies employed in multilingual and 434

multi-task models such as mBART (Liu et al., 435

2020) and Whisper (Radford et al., 2023), we fine- 436

tune each backbone model by prepending a special 437

token to each input sequence indicating the tempo- 438

ral or regional context. This token is treated as part 439

of the input and provides an implicit conditioning 440

signal for generation. This configuration does not 441

incorporate any explicit alignment with empirical 442

distributions. Instead, it relies on the model’s abil- 443

ity to learn contextual associations from the data. 444

Training is performed end-to-end using only the 445

standard task-specific objective (CTC or CE). 446

4.4 Evaluation Metrics 447

Character Error Rate (CER) measures transcrip- 448

tion accuracy at character level. It is computed 449

as the edit distance between the predicted and the 450

reference text, normalized by the length of the ref- 451

erence. Lower CER indicates better performance. 452

Word Error Rate (WER) is the word-level coun- 453

5

https://bav.bodleian.ox.ac.uk/greek-manuscripts
https://github.com/Belval/TextRecognitionDataGenerator


Dataset Model Standard FT FT w/ TR-TT FT w/ FADATR-GD (Ours)

CER ↓ WER ↓ CER ↓ WER ↓ CER ↓ WER ↓

HPGT TrOCR 26.92 (0.96) 73.82 (1.31) 26.89 (0.61) 72.53 (0.81) 25.06 (0.91) 70.14 (0.48)

C-RNN 24.72 (0.38) 77.08 (0.85) 24.41 (0.55) 76.66 (0.81) 23.89 (0.34) 76.31 (0.77)

CATMuS TrOCR 9.56 (0.22) 37.02 (0.28) 9.68 (0.17) 37.01 (0.69) 9.63 (0.25) 37.05 (0.47)

C-RNN 17.08 (0.29) 54.79 (0.32) 27.12 (1.13) 67.61 (1.98) 16.79 (0.52) 53.65 (1.02)

Synthetic TrOCR 5.94 (0.09) 17.61 (0.31) 5.48 (0.17) 17.12 (1.96) 5.19 (0.27) 16.60 (0.45)

C-RNN 9.71 (0.73) 31.58 (2.73) 9.82 (0.34) 34.58 (1.78) 8.31 (0.12) 27.08 (0.36)

Table 1: Main evaluation results. We report average CER and WER (across three runs plus SEM) across all
datasets and models. FT indicates fine-tuning the model. Our proposed method outperforms all baselines in most
cases. FADATR-GD denotes our proposed approach combining training-time alignment and inference-time guided
decoding. TR-TT is a token-based contextual conditioning baseline described in §4.3. The best CER and WER
scores per model and dataset are in bold and underlined respectively.

Model Standard FT w/ TR-TT w/ FADATR-GD

Whisper 27.11 / 40.02 28.88 / 44.09 26.70 / 38.02

Table 2: ASR results on EdAcc. CER / WER for
Whisper-small across three configurations. Best scores
per metric are bolded and underlined respectively.

terpart of CER. It calculates the edit distance be-454

tween the predicted and reference word sequences,455

normalized by the number of words in the refer-456

ence. As with CER, lower WER values correspond457

to higher transcription accuracy.458

4.5 Experimental Results459

We evaluate our proposed method (FADA) across460

multiple backbone models (§4.2) and compare it461

to two baseline configurations, each involving fine-462

tuning (or training from scratch depending on the463

architecture) the backbone models on the target464

dataset (§4.3). Our main configuration, dubbed465

FADATR-GD, fine-tunes (or trains) each model using466

a combined objective that includes the standard467

task-specific loss (CTC or CE) and our distribu-468

tional alignment loss. At inference time, we apply469

our guided decoding algorithm to further refine out-470

puts. This setup integrates frequency alignment471

at both training and inference stages, resulting in472

end-to-end frequency-aware recognition. We run473

each experiment three times with different seeds474

and report the mean and standard error of the mean475

(SEM) for each metric (see §5 for reproducibility).476

Quantitative Analysis Table 1 reports the perfor-477

mance of the two models on the three HTR datasets.478

For each model (TrOCR, C-RNN), we report three479

scores per evaluation metric (CER, WER); one for480

each baseline approach, and one for our proposed481

method (FADATR-GD). For the latter, scores obtained 482

with the best hyperparameter λ are reported. In 483

Table 2, we examine the effectiveness of our pro- 484

posed method in ASR. We report the performance 485

of Whisper on the Edacc dataset across the two 486

baseline methods and FADATR-GD. 487

The results in both tables show that FADATR-GD 488

consistently improves both text and speech recog- 489

nition performance across a range of datasets and 490

model architectures, demonstrating the effective- 491

ness of character-level frequency distribution align- 492

ment in recognition tasks. Despite the single case 493

where FADATR-GD does not improve over TrOCR 494

baseline (falling within the SEM) it generally pro- 495

vides substantial gains (up to three WER units), 496

highlighting its robustness and broad applicabil- 497

ity. These findings confirm that aligning model 498

predictions with empirical character statistics can 499

enhance recognition accuracy, even under diverse 500

temporal or regional shifts. 501

Ablation study In addition to our full end-to- 502

end configuration (FADATR-GD), incorporating align- 503

ment at both training and inference, we assess two 504

partial variants: training-only alignment (FADATR) 505

and inference-only alignment via guided decoding 506

(FADAGD). As can be seen in Table 4, inference- 507

time alignment improves recognition performance 508

in most cases, despite operating solely as a post- 509

hoc adjustment to model outputs (see also §5). 510

Training-time alignment yields larger improve- 511

ments overall, as it directly shapes the model’s 512

internal representations by reducing character fre- 513

quency discrepancies during optimization. While 514

the combined approach (FADATR-GD) consistently 515

achieves the best overall performance, training- 516

only and inference-only alignment offer meaning- 517

ful improvements at a lower computational cost. 518
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Method Transcription CER
Baseline (TrOCR) φωνης εἰσπνατιον τὴν δὲ κας ην συμφόνας ἀφηκαν τήν 29.16

FADAGD φωνης εἰσπνατιον τὴν δὲ κας ην συμφόνας ἀφηκαν τήν 29.16
FADATR φωνης εἰσπναττονται δίκας ἡν συμφώνως ἀφη καντὴν 14.58

FADATR-GD φωνης εἰσπναττονται δίκας ἡν συμφώνως ἀφη καντὴν 14.58
Ground Truth φωνῆς εἰσπράττονται δίκας ἢν συμφώνως ἀφῆκαν τήν

Baseline (Whisper) yeah and all i bet and like in the apartment that we have 18.18
FADAGD and uh i bet in like in the apartment that we have 19.98
FADATR and uh i bet in like in the apartment that we have 19.98

FADATR-GD yeah i know i bet in like in the apartment that we have 3.63
Ground Truth yeah i know i bet uh like in the apartment that we have

Table 3: Qualitative analysis of FADA on HTR and ASR tasks. The upper section presents a Greek manuscript
transcription example, while the lower section showcases an English ASR transcript. Correctly restored characters
are highlighted in green. CER and NED values are reported for each setting, demonstrating the improvements.

Dataset Model FADAGD FADATR FADATR-GD

HPGT TrOCR −1.4% −6.5% −6.9%
C-RNN −0.8% −3.2% −3.3%

CATMuS TrOCR +1.7% +1.6% +0.7%
C-RNN −0.4% −1.1% −1.7%

Synthetic TrOCR −0.2% −10.6% −12.6%
C-RNN −0.1% −12.9% −14.4%

Table 4: Ablation Study: The relative improvement
in CER over standard fine-tuning across FADA con-
figurations. Negative values indicate error reduction.
Bold marks the best per model/dataset (lower is better).

Qualitative Analysis Table 3 presents two tran-519

scription examples—one from each task—to il-520

lustrate the qualitative impact of our proposed521

framework. We compare outputs from the fine-522

tuned backbone model (TrOCR or Whisper) with523

those produced by the same model enhanced with524

inference-time alignment (FADAGD), training-time525

alignment (FADATR), and the full configuration com-526

bining both (FADATR-GD). In both examples, the full527

configuration (FADATR-GD) produced the most ac-528

curate transcriptions, closely matching the ground529

truth and outperforming the standard fine-tuned530

model as well as the individual FADA variants. In531

the first case, training-only alignment (FADATR)532

achieved the same CER as the full configuration,533

suggesting that training-time alignment alone can534

often be sufficient. In contrast, the second example535

illustrates a complementary effect: while neither536

training-only nor inference-only improved upon537

the baseline in isolation, their combination resulted538

in a significantly better transcription, highlighting539

the benefit of aligning frequency distributions at540

both training and inference time.541

Per-Century/Region Results To further assess542

the effectiveness of FADA, we evaluate model per- 543

formance in terms of CER across individual cen- 544

turies (for HTR) and linguistic regions (for ASR). 545

Rather than reporting only aggregated scores, this 546

analysis focuses on how well each model per- 547

forms on specific temporal and regional subsets. 548

The results reveal substantial variation in difficulty 549

across these subsets. Notably, FADA-enhanced mod- 550

els—FADATR, FADAGD, and FADATR-GD—exhibit im- 551

proved and more consistent performance across 552

diverse subsets, effectively narrowing the gap be- 553

tween easier and more challenging cases. A de- 554

tailed breakdown of per-century and per-region re- 555

sults is provided in Appendix F. 556

Lipogram Generation To test FADA’s applicability 557

beyond text recognition, we apply it to lipogram 558

generation; a constrained generation task where 559

the model must avoid generating a given (forbid- 560

den) character (Roush et al., 2022). We prompted 561

Llama-3.1 with 30 diverse topics and applied our 562

proposed guided decoding algorithm (FADAGD) by 563

setting the target frequency of the forbidden char- 564

acter to zero (i.e., the model must not generate 565

it). We repeated this process for three different 566

forbidden characters and compared standard beam 567

search with FADAGD decoding, measuring violation 568

rate and perplexity. Results show that FADA effec- 569

tively enforces character-level constraints during 570

open-ended generation. Full results, topic list, and 571

prompts appear in Appendix E. 572

Beam size sensitivity study Undertaking a sen- 573

sitivity study, we investigate the effect of beam 574

size, comparing the performance of the fine-tuned 575

backbone model with and without training-time 576

alignment (i.e., FADATR). We examine beam sizes 577

of 1, 5 and 7. Increasing the beam size in the 578

standard fine-tuned TrOCR model yields only mi- 579

7



nor gains. In contrast, FADATR shows stronger im-580

provements, especially at beam size of 1, where it581

consistently outperforms the baseline even with a582

beam size of 7. This shows that frequency-aware583

training boosts transcription quality without rely-584

ing on large beams, with smaller returns as beam585

size grows. For more results, see Appendix H.586

5 Discussion587

Importance of inference-time alignment Ta-588

ble 4 shows that inference-time alignment589

(FADAGD) yields smaller gains compared to training-590

time alignment (FADATR), which is expected since591

the latter can update model parameters. However,592

inference-time alignment offers several practical593

advantages: it is computationally lightweight, re-594

quires no retraining, and is ideal for low-resource595

scenarios. It also acts as a post-hoc calibration596

step, often improving results when combined with597

FADATR (Table 4), suggesting that frequency-aware598

scoring can refine outputs even when the underly-599

ing model has already been trained to align with600

frequency statistics. Finally, it supports zero-shot601

adaptation, as is shown in our Lipogram experiment602

(§4), where it effectively guides generation away603

from forbidden characters without any fine-tuning.604

Advantages over Temporal/Regional Tagging605

(TR-TT Baseline) Contextual-conditioning606

strategies, such as prepending special tokens to607

indicate conditioning attributes (e.g., language608

or time) are widely used in recognition tasks609

(Liu et al., 2020; Radford et al., 2023). While610

effective, these methods control the model in an611

implicit way that is hard to interpret or adjust. In612

contrast, by explicitly aligning predicted character613

distributions with empirical ones, computed from614

the training data, FADA makes the alignment615

process interpretable and transparent. Also, it gives616

control to users over the output, who can change617

the target distribution, encouraging (discouraging)618

certain characters; this is difficult to achieve with619

token-based methods.620

Differences from Domain Adaptation Methods621

Traditional domain adaptation methods typically622

assume that a model is trained on a single source-623

domain (e.g., modern printed text) and then adapted624

to a different target-domain with limited labeled625

data, using techniques such as feature alignment626

or adversarial training. In contrast, FADA is not de-627

signed to transfer between domains, but to handle628

intra-dataset distributional variation within a sin- 629

gle dataset. Instead of treating each subset (e.g., 630

century, region) as an isolated domain, we train a 631

single model on the entire dataset and guide it to 632

respect the empirical character distribution asso- 633

ciated with each training sample. This allows the 634

model to learn general task-relevant representations 635

while adjusting its output to reflect expected pat- 636

terns of the specific input context without requiring 637

separate adaptation stages or domain boundaries. 638

Computational Overhead and Reproducibility 639

Training with FADATR introduces a modest 4–6% 640

increase in training time due to the alignment 641

loss computation, while FADAGD slows decoding 642

by 7–9% due to the added frequency-based scor- 643

ing. The memory overhead is minimal. Given the 644

accuracy improvements and character-level con- 645

trol, this trade-off remains favorable in most cases. 646

All models were trained with fixed seeds to en- 647

sure reproducibility. For CTC-based models, we 648

used the deterministic Baidu CTC implementation. 649

Training/fine-tuning ran for up to 30 epochs with 650

early stopping (patience = 4), using a batch size of 651

4 and a beam size of 5. Details on the λ hyperpa- 652

rameter tuning are included in Appendix F. 653

6 Conclusion 654

We present FADA (Frequency-Aware Distribution 655

Alignment), a framework mitigating character rela- 656

tive frequency distribution shifts in text and speech 657

recognition, consisting of two components: (i) a 658

training-time alignment loss minimizing discrep- 659

ancies between predicted and empirical character 660

distributions; (ii) an inference-time guided decod- 661

ing frequency-based algorithm that dynamically 662

adjusts predictions. Our experiments on HTR and 663

ASR demonstrate consistent performance improve- 664

ments across datasets, languages, writing systems, 665

and model architectures. Directions of future work 666

include extending FADA by incorporating bi-grams 667

and tri-grams, enabling alignment at the sequence 668

level rather than for individual characters (uni- 669

grams). Also, we plan to explore case-sensitive 670

frequency distributions, and to improve recogni- 671

tion of named entities and specialized terminol- 672

ogy. Finally, we aim to develop adaptive weighting 673

strategies for λ, allowing a dynamic adjustment 674

that will be based on contextual factors instead of 675

relying on a fixed hyperparameter. 676
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Limitations677

While FADA consistently enhances recognition per-678

formance across multiple datasets and models, its679

effectiveness relies on the availability of empiri-680

cal character frequency distributions. In scenarios681

where such distributions are not well-defined or682

highly variable, its impact may be less pronounced.683

Additionally, the current approach focuses on uni-684

gram frequency alignment, leaving room for future685

exploration of higher-order character dependencies.686

Although FADA introduces only a modest computa-687

tional overhead, optimizing its efficiency for real-688

time applications remains an area of interest. These689

considerations highlight directions for further re-690

finement rather than fundamental constraints, as691

FADA remains broadly applicable across different692

recognition settings.693

References694

Peter Anderson, Basura Fernando, Mark Johnson, and695
Stephen Gould. 2017. Guided open vocabulary im-696
age captioning with constrained beam search. In697
Proceedings of the 2017 Conference on Empirical698
Methods in Natural Language Processing, pages 936–699
945, Copenhagen, Denmark. Association for Compu-700
tational Linguistics.701

Anthropic. 2024. Claude 3.5 sonnet.702

Mohaddeseh Bastan, Mihai Surdeanu, and Niranjan703
Balasubramanian. 2023. NEUROSTRUCTURAL704
DECODING: Neural text generation with structural705
constraints. In Proceedings of the 61st Annual Meet-706
ing of the Association for Computational Linguistics707
(Volume 1: Long Papers), pages 9496–9510, Toronto,708
Canada. Association for Computational Linguistics.709

Ron Carico, Keaton Kaplan, Kyler Hazelett, Megan710
Dillon, and Kelly Melvin. 2022. Letter frequency711
analysis of proprietary prescription drug names in the712
united states: Minding the zs and qs. Exploratory713
Research in Clinical and Social Pharmacy, 6:100146.714

Silvia Cascianelli, Marcella Cornia, Lorenzo Baraldi,715
and Rita Cucchiara. 2022. Boosting modern and his-716
torical handwritten text recognition with deformable717
convolutions. International Journal on Document718
Analysis and Recognition (IJDAR), 25:207 – 217.719

Eulrang Cho, Jooyeon Kim, and Hyunwoo J. Kim.720
2023. Distribution-aware prompt tuning for vision-721
language models. 2023 IEEE/CVF International722
Conference on Computer Vision (ICCV), pages723
21947–21956.724

Thibault Clérice, Ariane Pinche, Malamatenia Vlachou-725
Efstathiou, Alix Chagué, Jean-Baptiste Camps,726
Matthias Gille-Levenson, Olivier Brisville-Fertin,727
Franz Fischer, Michaels Gervers, Agnès Boutreux,728

Avery Manton, Simon Gabay, Patricia O’Connor, 729
Wouter Haverals, Mike Kestemont, Caroline 730
Vandyck, and Benjamin Kiessling. 2024. CATMuS 731
Medieval: A multilingual large-scale cross-century 732
dataset in Latin script for handwritten text recogni- 733
tion and beyond. In 2024 International Conference 734
on Document Analysis and Recognition (ICDAR), 735
Athens, Greece. 736

John K. Courtis and Salleh Hassan. 2002. Reading ease 737
of bilingual annual reports. The Journal of Business 738
Communication (1973), 39(4):394–413. 739

Polina Diurdeva, Elena Mikhailova, and Dmitry Sha- 740
lymov. 2016. Writer identification based on letter 741
frequency distribution. In Proceedings of the 19th 742
Conference of Open Innovations Association FRUCT, 743
FRUCT’19, page 24–30, Helsinki, Uusimaa, FIN. 744
FRUCT Oy. 745

Alexey Dosovitskiy, Lucas Beyer, Alexander 746
Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, 747
Thomas Unterthiner, Mostafa Dehghani, Matthias 748
Minderer, Georg Heigold, Sylvain Gelly, Jakob 749
Uszkoreit, and Neil Houlsby. 2021. An image 750
is worth 16x16 words: Transformers for image 751
recognition at scale. In 9th International Conference 752
on Learning Representations, ICLR 2021, Virtual 753
Event, Austria, May 3-7, 2021. 754

Marjan Ghazvininejad, Xing Shi, Jay Priyadarshi, and 755
Kevin Knight. 2017. Hafez: an interactive poetry 756
generation system. In Proceedings of ACL 2017, 757
System Demonstrations, pages 43–48, Vancouver, 758
Canada. Association for Computational Linguistics. 759

Google. 2024. Gemini: A family of highly capable 760
multimodal models. Preprint, arXiv:2312.11805. 761

Gintautas Grigas and Anita Juskeviciene. 2018. Letter 762
frequency analysis of languages using latin alphabet. 763
International Linguistics Research, 1:p18. 764

Chris Hokamp and Qun Liu. 2017. Lexically con- 765
strained decoding for sequence generation using grid 766
beam search. In Proceedings of the 55th Annual 767
Meeting of the Association for Computational Lin- 768
guistics (Volume 1: Long Papers), pages 1535–1546, 769
Vancouver, Canada. Association for Computational 770
Linguistics. 771

Wenxin Hou, Jindong Wang, Xu Tan, Tao Qin, and 772
Takahiro Shinozaki. 2021. Cross-domain speech 773
recognition with unsupervised character-level distri- 774
bution matching. ArXiv, abs/2104.07491. 775

Hang-Rui Hu, Yan Song, Li-Rong Dai, Ian Mclough- 776
lin, and Lin Liu. 2022. Class-aware distribution 777
alignment based unsupervised domain adaptation 778
for speaker verification. In Interspeech 2022, pages 779
3689–3693. 780

Yijie Hu, Bin Dong, Kaizhu Huang, Lei Ding, Wei 781
Wang, Xiaowei Huang, and Qiu-Feng Wang. 2024. 782
Scene text recognition via dual-path network with 783
shape-driven attention alignment. ACM Trans. Multi- 784
media Comput. Commun. Appl., 20(4). 785

9

https://www.anthropic.com
https://doi.org/10.1016/j.rcsop.2022.100146
https://doi.org/10.1016/j.rcsop.2022.100146
https://doi.org/10.1016/j.rcsop.2022.100146
https://doi.org/10.1016/j.rcsop.2022.100146
https://doi.org/10.1016/j.rcsop.2022.100146
https://api.semanticscholar.org/CorpusID:248685879
https://api.semanticscholar.org/CorpusID:248685879
https://api.semanticscholar.org/CorpusID:248685879
https://api.semanticscholar.org/CorpusID:248685879
https://api.semanticscholar.org/CorpusID:248685879
https://api.semanticscholar.org/CorpusID:261582506
https://api.semanticscholar.org/CorpusID:261582506
https://api.semanticscholar.org/CorpusID:261582506
https://inria.hal.science/hal-04453952
https://inria.hal.science/hal-04453952
https://inria.hal.science/hal-04453952
https://inria.hal.science/hal-04453952
https://inria.hal.science/hal-04453952
https://inria.hal.science/hal-04453952
https://inria.hal.science/hal-04453952
https://doi.org/10.1177/002194360203900401
https://doi.org/10.1177/002194360203900401
https://doi.org/10.1177/002194360203900401
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://arxiv.org/abs/2312.11805
https://aclanthology.org/P17-1141/
https://aclanthology.org/P17-1141/
https://aclanthology.org/P17-1141/
https://aclanthology.org/P17-1141/
https://aclanthology.org/P17-1141/
https://api.semanticscholar.org/CorpusID:233241023
https://api.semanticscholar.org/CorpusID:233241023
https://api.semanticscholar.org/CorpusID:233241023
https://api.semanticscholar.org/CorpusID:233241023
https://api.semanticscholar.org/CorpusID:233241023


Panagiotis Kaliosis, John Pavlopoulos, Foivos Char-786
alampakos, Georgios Moschovis, and Ion Androut-787
sopoulos. 2024. A data-driven guided decoding788
mechanism for diagnostic captioning. In Findings of789
the Association for Computational Linguistics ACL790
2024, pages 7450–7466, Bangkok, Thailand and vir-791
tual meeting. Association for Computational Linguis-792
tics.793

Bradley Kjell. 1995. Authorship determination us-794
ing letter pair frequency features with neural net-795
work classifiers. Literary and Linguistic Computing,796
9:119–124.797

Minghao Li, Tengchao Lv, Lei Cui, Yijuan Lu, Dinei798
A. F. Florêncio, Cha Zhang, Zhoujun Li, and Furu799
Wei. 2021. Trocr: Transformer-based optical char-800
acter recognition with pre-trained models. In AAAI801
Conference on Artificial Intelligence.802

Yuheng Li, Haotian Liu, Mu Cai, Yijun Li, Eli Shecht-803
man, Zhe Lin, Yong Jae Lee, and Krishna Kumar804
Singh. 2025. Removing distributional discrepancies805
in captions improves image-text alignment. In Com-806
puter Vision – ECCV 2024, pages 405–422, Cham.807
Springer Nature Switzerland.808

Yinhan Liu, Jiatao Gu, Naman Goyal, Xian Li, Sergey809
Edunov, Marjan Ghazvininejad, Mike Lewis, and810
Luke Zettlemoyer. 2020. Multilingual denoising pre-811
training for neural machine translation. Transac-812
tions of the Association for Computational Linguis-813
tics, 8:726–742.814

Ximing Lu, Peter West, Rowan Zellers, Ronan Le Bras,815
Chandra Bhagavatula, and Yejin Choi. 2021. Neuro-816
Logic decoding: (un)supervised neural text genera-817
tion with predicate logic constraints. In Proceedings818
of the 2021 Conference of the North American Chap-819
ter of the Association for Computational Linguistics:820
Human Language Technologies, pages 4288–4299,821
Online. Association for Computational Linguistics.822

Thomas Merriam. 1994. Letter frequency as a discrimi-823
nator of authors. Notes and Queries, 41:467–469.824

Meta-AI. 2024. The llama 3 herd of models. Preprint,825
arXiv:2407.21783.826

Marsha Lynn Moreno. 2005. Frequency analysis in light827
of language innovation: Exploring letter frequencies828
across time, from the days of old english to the days829
of now. Math 187, Spring.830

Thao Nguyen, Gabriel Ilharco, Mitchell Wortsman, Se-831
woong Oh, and Ludwig Schmidt. 2022. Quality not832
quantity: On the interaction between dataset design833
and robustness of clip. Advances in Neural Informa-834
tion Processing Systems, 35:21455–21469.835

OpenAI. 2023. Gpt-4 technical report.836

Damian Pascual, Beni Egressy, Clara Meister, Ryan837
Cotterell, and Roger Wattenhofer. 2021. A plug-and-838
play method for controlled text generation. In Find-839
ings of the Association for Computational Linguis-840
tics: EMNLP 2021, pages 3973–3997, Punta Cana,841

Dominican Republic. Association for Computational 842
Linguistics. 843

Paraskevi Platanou, John Pavlopoulos, and Georgios Pa- 844
paioannou. 2022. Handwritten paleographic Greek 845
text recognition: A century-based approach. In Pro- 846
ceedings of the Thirteenth Language Resources and 847
Evaluation Conference, pages 6585–6589, Marseille, 848
France. European Language Resources Association. 849

Alec Radford, Jong Wook Kim, Tao Xu, Greg Brock- 850
man, Christine McLeavey, and Ilya Sutskever. 2023. 851
Robust speech recognition via large-scale weak su- 852
pervision. In Proceedings of the 40th International 853
Conference on Machine Learning, ICML’23. 854

Allen Roush, Sanjay Basu, Akshay Moorthy, and 855
Dmitry Dubovoy. 2022. Most language models can 856
be poets too: An AI writing assistant and constrained 857
text generation studio. In Proceedings of the Second 858
Workshop on When Creative AI Meets Conversational 859
AI, pages 9–15, Gyeongju, Republic of Korea. Asso- 860
ciation for Computational Linguistics. 861

Marina Samprovalaki, Anna Chatzipapadopoulou, Geor- 862
gios Moschovis, Foivos Charalampakos, Panagiotis 863
Kaliosis, John Pavlopoulos, and Ion Androutsopou- 864
los. 2024. AUEB NLP Group at ImageCLEFmedical 865
Caption 2024. In CLEF2024 Working Notes, CEUR 866
Workshop Proceedings, Grenoble, France. CEUR- 867
WS.org. 868

Ramon Sanabria, Nikolay Bogoychev, Nina Markl, An- 869
drea Carmantini, Ondrej Klejch, and Peter Bell. 2023. 870
The Edinburgh International Accents of English Cor- 871
pus: Towards the Democratization of English ASR. 872
In ICASSP 2023. 873

Baoguang Shi, Xiang Bai, and Cong Yao. 2015. An 874
end-to-end trainable neural network for image-based 875
sequence recognition and its application to scene text 876
recognition. IEEE Transactions on Pattern Analysis 877
and Machine Intelligence, 39:2298–2304. 878

Lazaros Tsochatzidis, Symeon Symeonidis, Alexandros 879
Papazoglou, and Ioannis Pratikakis. 2021. Htr for 880
greek historical handwritten documents. Journal of 881
Imaging, 7(12). 882

Ashish Vaswani, Noam M. Shazeer, Niki Parmar, Jakob 883
Uszkoreit, Llion Jones, Aidan N. Gomez, Lukasz 884
Kaiser, and Illia Polosukhin. 2017. Attention is all 885
you need. In Neural Information Processing Systems. 886

Haoran Wang and Kai Shu. 2025. Make every token 887
count: A systematic survey on decoding methods for 888
foundation models. 889

Zichao Yang, Zhiting Hu, Chris Dyer, Eric P Xing, and 890
Taylor Berg-Kirkpatrick. 2018. Unsupervised Text 891
Style Transfer using Language Models as Discrimina- 892
tors. In Advances in Neural Information Processing 893
Systems, volume 31. Curran Associates, Inc. 894

10

https://api.semanticscholar.org/CorpusID:237581568
https://api.semanticscholar.org/CorpusID:237581568
https://api.semanticscholar.org/CorpusID:237581568
https://api.semanticscholar.org/CorpusID:159941338
https://api.semanticscholar.org/CorpusID:159941338
https://api.semanticscholar.org/CorpusID:159941338
https://arxiv.org/abs/2407.21783
https://api.semanticscholar.org/CorpusID:257532815
https://aclanthology.org/2022.lrec-1.708/
https://aclanthology.org/2022.lrec-1.708/
https://aclanthology.org/2022.lrec-1.708/
https://dl.acm.org/doi/10.5555/3618408.3619590
https://dl.acm.org/doi/10.5555/3618408.3619590
https://dl.acm.org/doi/10.5555/3618408.3619590
https://aclanthology.org/2022.cai-1.2/
https://aclanthology.org/2022.cai-1.2/
https://aclanthology.org/2022.cai-1.2/
https://aclanthology.org/2022.cai-1.2/
https://aclanthology.org/2022.cai-1.2/
https://api.semanticscholar.org/CorpusID:24139
https://api.semanticscholar.org/CorpusID:24139
https://api.semanticscholar.org/CorpusID:24139
https://api.semanticscholar.org/CorpusID:24139
https://api.semanticscholar.org/CorpusID:24139
https://api.semanticscholar.org/CorpusID:24139
https://api.semanticscholar.org/CorpusID:24139
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://api.semanticscholar.org/CorpusID:13756489
https://doi.org/10.13140/RG.2.2.32726.36160
https://doi.org/10.13140/RG.2.2.32726.36160
https://doi.org/10.13140/RG.2.2.32726.36160
https://doi.org/10.13140/RG.2.2.32726.36160
https://doi.org/10.13140/RG.2.2.32726.36160
https://proceedings.neurips.cc/paper_files/paper/2018/file/398475c83b47075e8897a083e97eb9f0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/398475c83b47075e8897a083e97eb9f0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/398475c83b47075e8897a083e97eb9f0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/398475c83b47075e8897a083e97eb9f0-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/398475c83b47075e8897a083e97eb9f0-Paper.pdf


Shunyu Yao, Howard Chen, Austin W. Hanjie, Runzhe895
Yang, and Karthik R Narasimhan. 2024. COLLIE:896
Systematic construction of constrained text genera-897
tion tasks. In The Twelfth International Conference898
on Learning Representations.899

Hanqing Zhang, Haolin Song, Shaoyu Li, Ming Zhou,900
and Dawei Song. 2023. A Survey of Control-901
lable Text Generation Using Transformer-Based Pre-902
Trained Language Models. Association for Comput-903
ing Machinery, 56(3):1–37.904

Neil Zhao and Diana Zheng. 2024. An analysis of905
letter dynamics in the english alphabet. ArXiv,906
abs/2401.15560.907

Zhenyu Zhou, Junhui Chen, Namin Wang, Lantian Li,908
and Dong Wang. 2024. An investigation of distri-909
bution alignment in multi-genre speaker recognition.910
In ICASSP 2024 - 2024 IEEE International Confer-911
ence on Acoustics, Speech and Signal Processing912
(ICASSP), pages 11596–11600.913

A HPGT Dataset - Analysis914

This section presents a further analysis on the915

intra-dataset correlation throughout centuries in916

the HPGT dataset. In Figure 2, we quantify the917

correlation trends between character frequency dis-918

tributions across centuries. Adjacent centuries919

tend to exhibit strong correlations (e.g., 10th–11th:920

0.99; 12th–13th: 0.94), whereas distant pairs di-921

verge more substantially (e.g., 10th–16th: 0.91;922

13th–15th: 0.89). While correlations above 0.9923

generally indicate high similarity, such differences924

are meaningful in the context of a shared alphabet925

and may reflect shifts in writing practices, docu-926

ment selection, or biases introduced during data927

curation. These findings highlight the presence of928

intra-dataset distribution shifts, whether linguistic929

or dataset-induced, that can degrade model perfor-930

mance when training ignores subset-specific statis-931

tical variation.932

B CATMuS Dataset - Analysis933

In this section, we examine character frequency934

distribution shifts in the CATMuS dataset (Clérice935

et al., 2024), complementing the analysis presented936

for other datasets. Figure 3 visualizes the rela-937

tive frequency distributions across four centuries,938

revealing more subtle intra-dataset variations com-939

pared to the rest of the HTR datasets. While some940

characters exhibit relatively stable frequencies, oth-941

ers show minor fluctuations across different time942

periods. Figure 4 further illustrates these trends943

through LOWESS-smoothed frequency distribu-944

tions, where the black line represents the charac-945
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Figure 2: Heatmap of Pearson correlation measuring
distributional similarity across centuries; darker shades
indicate higher correlation.

ter distribution for a given century, and the gray 946

lines provide comparisons to the other centuries. 947

The trends indicate that while there are observable 948

shifts, they are not as pronounced as in datasets 949

covering a broader temporal range. Finally, Fig- 950

ure 5 presents a Pearson correlation heatmap, quan- 951

tifying the similarity between character distribu- 952

tions. The consistently high correlation values (e.g., 953

15th–16th: 0.99) suggest that distributional shifts 954

are relatively minor, confirming that character fre- 955

quencies remain largely stable over time in this 956

dataset. 957
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Figure 3: Heatmap illustrating the relative frequency
distribution of characters in CATMuS (Clérice et al.,
2024).
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Figure 4: Fitted character frequency trends across dif-
ferent centuries in CATMuS (Clérice et al., 2024). Each
subplot represents a specific century, with the black
line indicating the LOWESS-smoothed letter frequency
distribution for that century. Gray lines represent the
character frequency trends of the rest of the centuries
for comparison.
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Figure 5: Pearson correlation heatmap of the charac-
ter frequency distribution across centuries in CATMuS
(Clérice et al., 2024). Higher values (darker shades) indi-
cate stronger similarity in character usage, while lower
values (lighter shades) suggest greater divergence.

C Synthetic Dataset - Analysis 958

Similarly, we provide an analysis for our synthetic 959

dataset, which was designed to exhibit controlled 960

character frequency shifts across centuries. Fig- 961

ure 6 presents a heatmap of character usage, reveal- 962

ing stable trends for some characters and substan- 963

tial fluctuations for others. 964

To further examine these variations, Figure 7 965

visualizes the fitted frequency distributions per cen- 966

tury using LOWESS smoothing. The black line 967

represents the smoothed trend for a given century, 968

while gray lines show distributions from the rest of 969

the centuries for comparison. Lastly, Figure 8 quan- 970

tifies distributional similarity via a Pearson corre- 971

lation heatmap. Adjacent centuries show strong 972

correlations (e.g., 11th–12th: 0.97), while more 973

distant ones exhibit lower values (e.g., 10th–12th: 974

0.89), indicating more pronounced shifts. 975
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Figure 6: Heatmap illustrating the relative frequency
distribution of Greek characters in our synthetic dataset
(see Section 4.1).

D EdAcc Dataset - Analysis 976

Similarly, we provide an analysis for our ASR 977

dataset. Figure 9 presents a heatmap visualizing 978

the intra-dataset character frequency distributions 979

among the four linguistic backgrounds, exploiting 980

some subtle but noticeable patterns between them. 981

Figure 10 presents the fitted frequency distribu- 982

tions per linguistic background further enhancing 983

the previously stated observations as the black lines 984

deviate compared to the grey lines in each of the 985
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letter frequency distribution for that century. Gray lines
represent the character frequency trends of the rest of
the centuries for comparison.
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shades) suggest greater divergence.

four plots.986
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Figure 9: Heatmap illustrating the relative frequency dis-
tribution of characters in EdAcc (Sanabria et al., 2023).
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E Lipogram Generation - Extensive987

Results988

To further assess the impact of FADAGD beyond989

recognition tasks, we applied it in a controlled990

text generation setting focused on lipogram con-991

straints. In this experiment, we tested whether992

FADAGD could steer an LLM (Llama3.1) to gen-993

erate coherent passages while avoiding a specific994

character. The task involved generating short texts995

(4-6 sentences) on various topics while ensuring996

that a predetermined character never appeared.997

This provided a structured way to evaluate how998

effectivelyFADAGD can influence character distribu-999

tions in an open-ended autoregressive setting.1000

We selected three different forbidden charac-1001

ters, namely “A”, “E” and “L”. In each case, we1002

applied FADAGD during decoding by setting the1003

forbidden character’s target relative frequency to1004

zero.To assess its impact, we compared two decod-1005

ing configurations: standard beam search, where1006

no constraints were applied, and FADA-GD, which1007

introduced frequency-aware scoring to penalize se-1008

quences containing the forbidden character.1009

For each configuration, the model was prompted1010

with 30 different topics covering diverse subjects.1011

The full list of topics is presented in Table 5, while1012

the prompt is presented in Figure ??. The generated1013

text was evaluated based on the following metrics:1014

• Violation Rate: The percentage of outputs1015

where the forbidden character appeared at1016

least once.1017

• Perplexity: A measure of fluency and coher-1018

ence in the generated text.1019

• Readability: An assessment of how natu-1020

ral and comprehensible the generated text re-1021

mains under the applied constraints. We calcu-1022

lated it using the Flesch Reading Ease Score1023

(Courtis and Hassan, 2002), which evaluates1024

how easy a text is to read. Higher scores indi-1025

cate more readable text, with values above 601026

considered easy to read, while lower scores1027

(below 30) indicate more complex writing.1028

We present the numerical results in Table 11.1029

The violation rate succesfully decreases across all1030

three forbidden characters (“A”, “E”, “L”), with1031

the most notable reduction observed for “E”, where1032

the percentage of outputs containing the forbid-1033

den character drops from 10.60% to 8.66%, a rela-1034

tive improvement of 18.3%. This confirms that1035

frequency-aware decoding successfully discour- 1036

ages character occurrences without the need for 1037

model retraining. 1038

In terms of perplexity, which reflects the fluency 1039

and coherence of the generated text, the results 1040

show a marginal increase for A and E, while it 1041

slightly improves for L. This suggests that enforc- 1042

ing character-level constraints withFADAGD does 1043

not significantly degrade text fluency, with differ- 1044

ences remaining within acceptable bounds. Read- 1045

ability scores, measured using the Flesch Read- 1046

ing Ease score (Courtis and Hassan, 2002), exhibit 1047

improvements for “A” and “L”, while remaining 1048

nearly unchanged for “E”. Overall, these findings 1049

highlight FADAGD as an effective approach for guid- 1050

ing language model outputs at the character level 1051

while maintaining fluency and readability. 1052

The prompt used in our experiments was: 1053

A lipogram is a form of writing where one 1054
or more specific letters are deliberately 1055
avoided throughout the text. 1056
This constraint challenges writers to be 1057
creative and resourceful, often resulting 1058
in unique word choices and phrasing. 1059
Lipograms can be fun and artistic 1060
but also difficult, especially when 1061
the omitted letter is common. 1062
For example, avoiding the letter 1063
'e'—the most frequently used letter 1064
in English—requires significant 1065
effort and skill. 1066
Writers must find alternative ways 1067
to express ideas without breaking 1068
the constraint, which can lead 1069
to inventive language. 1070

1071
TASK: 1072
Generate a short story 1073
(maximum 150 words) about {topic}. 1074
You have to follow a lipogram constraint. 1075
The lipogram constraint is that the letter 1076
{forbidden_character} must not appear 1077
anywhere in the text. 1078
First, go over the task. 1079
Then, explain how you avoided 1080
using the letter {forbidden_character} . 1081

1082
FORMAT: 1083
To ensure clarity and easy readability, 1084
format your output into a JSON. 1085
Use the following format: 1086
{ 1087

"Story": "<Generated_story>" 1088
} 1089

1090
Text: 1091

F Per Century/Region Results 1092

To further assess the impact of FADA across differ- 1093

ent temporal and linguistic variations, we report 1094

per-century and per-region results in Tables 7–10. 1095
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ID Topic
1 A person who went to the post office.
2 A dog at the park.
3 A family that went to the beach.
4 An elephant in the jungle.
5 A person who went to the aquarium.
6 A child who lost a toy at the mall.
7 A bird flying over a quiet village.
8 A person who got stuck in an elevator.
9 A cat exploring a new garden.
10 A teacher who helped a struggling student.
11 A couple hiking in the mountains.
12 A farmer working in the field.
13 A boy who found a hidden cave.
14 A woman who forgot her umbrella on a

rainy day.
15 A man fishing by the river.
16 A team that won a soccer match.
17 A child who met their favorite author.
18 A chef preparing a special dish for a cele-

bration.
19 A group of friends camping under the stars.
20 A traveler visiting an ancient temple.
21 A robot learning how to read.
22 A young girl who dreamed of flying.
23 A scientist discovering a new species.
24 A person who got lost in a museum.
25 A dog who saved a child from danger.
26 A boy who built a treehouse with his

friends.
27 A person who volunteered at an animal

shelter.
28 A musician performing on a busy street.
29 A fisherman who caught a rare fish.
30 A person planting trees in a park.

Table 5: Topics used in the Lipogram Generation exper-
iment.

These results allow us to examine how frequency-1096

aware alignment affects model performance in sub-1097

sets characterized by distinct character distribu-1098

tions.1099

For HTR, the results on the HPGTR dataset reveal1100

that FADA provides substantial benefits in centuries1101

where character distributions deviate most from1102

the overall dataset trend. This effect is particularly1103

noticeable in later centuries, where orthographic1104

variations and evolving linguistic conventions intro-1105

duce additional challenges for recognition models.1106

Similarly, for the CATMuS dataset, where distribu-1107

tional shifts are more subtle, FADA still contributes 1108

to performance improvements, particularly in cen- 1109

turies with greater deviations from the dataset-wide 1110

character frequencies. The Synthetic dataset fur- 1111

ther reinforces these observations, as the controlled 1112

frequency shifts across different subsets allow us to 1113

systematically evaluate the method’s effectiveness 1114

in handling predefined character distribution dis- 1115

crepancies. Across all cases, the most substantial 1116

improvements are observed when both training- 1117

time and inference-time alignment are applied to- 1118

gether, highlighting their complementary nature. 1119

For ASR, the results from the EdAcc dataset 1120

demonstrate that FADA adapts well to different lin- 1121

guistic backgrounds, helping the model better han- 1122

dle accent-based variations that lead to systematic 1123

shifts in character usage patterns. While training- 1124

time alignment consistently enhances performance 1125

across most linguistic categories, the impact of 1126

inference-time alignment varies. In some cases, 1127

guided decoding further refines predictions, while 1128

in others, its effect is more limited, suggesting that 1129

the degree of benefit depends on the severity of dis- 1130

tributional shifts and the alignment between train- 1131

ing data and inference-time distributions. 1132

G Tuning λ 1133

To balance transcription accuracy and frequency 1134

alignment, we conducted a hyperparameter search 1135

over λ values ranging from 0.05 to 0.95 in incre- 1136

ments of 0.05. Both training-time (FADATR) and 1137

inference-time (FADAGD) alignment were evaluated 1138

on the validation set using CER, WER, and NED 1139

as metrics. While no single λ value was optimal 1140

across all datasets and models, we observed that 1141

values in the 0.3–0.6 range generally led to better 1142

overall performance. 1143

H Ablation on beam size 1144

As an ablation study, we investigate the effect of 1145

the beam size in FADA. To this end, we compare 1146

the performance of the standard fine-tuned model 1147

with standard beam search against FADATR. We ex- 1148

plore beam sizes of 1 (greedy decoding), 5 and 7. 1149

For both datasets (HPGTR and Synthetic), increas- 1150

ing the beam size in the fine-tuned TrOCR model 1151

yields only marginal improvements, particularly in 1152

CER and WER. While a larger beam (e.g., 5 or 1153

7) generally reduces errors slightly compared to 1154

greedy decoding (beam size = 1), the gains are rel- 1155

atively small. This suggests that the standard beam 1156
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Lipogram Generation
Violation Rate ↓ Perplexity ↓ Readability ↑

A E L A E L A E L

Llama3.1 6.48 10.60 3.02 3.64 1.93 2.24 72.40 78.97 79.20

Llama3.1 + FADAGD 5.73 8.66 2.50 3.81 1.98 2.03 75.61 78.11 79.37

Table 6: The performance of FADAGD framework in the lipogram generation task.

HPGTR Dataset - Per Century Results (CER)
TrOCR-base (Li et al., 2021)

10 11 12 13 14 15 16

Standard FT 8.99 15.31 27.18 32.47 50.06 32.37 43.78

FADAGD 8.44 14.74 27.27 30.76 49.34 31.61 46.15

FADATR 8.07 12.64 25.48 27.98 46.57 27.32 42.09

FADATR-GD 8.04 12.07 25.10 28.11 45.82 27.15 41.36

C-RNN (Shi et al., 2015)
10 11 12 13 14 15 16

Standard FT 10.26 16.11 27.19 38.78 37.78 31.41 38.54

FADAGD 10.20 16.07 27.08 38.14 37.11 30.55 38.51

FADATR 10.13 15.88 26.31 37.84 35.75 29.54 38.76

FADATR-GD 10.05 15.77 26.27 37.79 35.77 29.59 38.47

Table 7: The per-century performance (in terms of CER) of TrOCR-base (Li et al., 2021) and C-RNN (Shi et al.,
2015) on the HPGTR dataset (Platanou et al., 2022). Baseline denotes the vanilla model, FADAGD and FADATR
denote the proposed inference-time and training-time alignment methods respectively, while FADATR-GD indicates
the combination of them.

CATMuS Dataset - Per Century Results (CER)
TrOCR-base (Li et al., 2021)

13 14 15 16

Standard
FT

12.28 12.07 9.47 5.76

FADAGD 12.11 12.16 9.46 5.79

FADATR 11.95 12.16 9.42 4.94

FADATR-GD 12.10 12.17 9.18 4.90

C-RNN (Shi et al., 2015)
13 14 15 16

Standard
FT

20.34 23.01 15.79 8.92

FADAGD 20.11 22.89 15.77 8.73

FADATR 19.87 21.36 15.89 8.67

FADATR-GD 19.78 21.20 15.64 8.65

Table 8: The per-century performance (in terms of CER)
of TrOCR-base (Li et al., 2021) and C-RNN (Shi et al.,
2015) on the CATMuS dataset (Clérice et al., 2024).
Standard FT denotes the fine-tuned backbone model,
FADAGD and FADATR denote the proposed inference-time
and training-time alignment methods respectively, while
FADATR-GD indicates the combination of them.

search does not significantly improve recognition1157

Synthetic Dataset - Per Category Results (CER)
TrOCR-base (Li et al., 2021)

GPT-4 Llama Gemini Claude

Standard
FT

3.96 9.83 5.38 4.43

FADAGD 20.21 22.78 5.23 4.39

FADATR 2.96 8.87 5.05 4.27

FADATR-GD 3.23 8.19 4.65 3.81

C-RNN (Shi et al., 2015)
GPT-4 Llama Gemini Claude

Standard
FT

9.29 14.77 11.32 8.97

FADAGD 9.17 13.29 10.88 8.45

FADATR 8.07 11.67 9.16 5.41

FADATR-GD 8.03 11.48 9.12 5.21

Table 9: The per-century performance (in terms of CER)
of TrOCR-base (Li et al., 2021) and C-RNN (Shi et al.,
2015) on our synthetic dataset. Standard FT denotes
the fine-tuned backbone model, FADAGD and FADATR
denote the proposed inference-time and training-time
alignment methods respectively, while FADATR-GD indi-
cates the combination of them.

performance beyond a certain threshold. 1158
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Synthetic Dataset - Per Category Results (CER)
Whisper-small (Radford et al., 2023)

Southern
British
English

Indian
English

Irish
English

US
English

Standard
FT

37.23 25.85 28.37 28.70

FADAGD 36.26 25.76 29.51 28.38

FADATR 35.71 25.93 27.37 27.62

FADATR-GD 37.05 26.17 27.92 27.74

Table 10: The per linguistic background performance
(in terms of CER) of Whisper-small on the EdAcc
dataset (Sanabria et al., 2023). Standard FT denotes the
vanilla model, FADAGD and FADATR denote the proposed
inference-time and training-time alignment methods re-
spectively, while FADATR-GD indicates the combination
of them.

When applying FADATR, the improvements are1159

more substantial, particularly for beam size = 1,1160

where it consistently outperforms the fine-tuned1161

model even at beam size = 7. This demonstrates1162

that the proposed training-time alignment enhances1163

the model’s inherent ability to generate more accu-1164

rate transcriptions without relying heavily on an ex-1165

tensive search space. Notably, even with beam size1166

= 1, FADATR achieves lower CER and WER than1167

the fine-tuned model with beam size = 7, highlight-1168

ing the effectiveness of frequency-aware training.1169

Moreover, FADATR also benefits from a moderate1170

increase in beam size, but the relative improve-1171

ments diminish as the beam size grows.1172

HPGTR - Beam Size Ablation
CER ↓ WER ↓

1 5 7 1 5 7
Fine-tuned
(TrOCR)

29.01 26.92 26.87 76.25 73.82 73.31

FADATR 25.33 25.16 24.73 70.41 70.47 69.98

Synthetic Dataset - Beam Size Ablation
CER ↓ WER ↓

1 5 7 1 5 7
Fine-tuned
(TrOCR)

6.44 5.92 5.91 18.98 17.89 17.86

FADATR 5.46 5.30 5.28 17.10 16.86 16.85

Table 11: Beam size ablation for TrOCR on HPGTR
and the Synthetic dataset.
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