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Abstract

Handwritten text recognition aims to convert
visual input into machine-readable text, and it
remains challenging due to the evolving and
context-dependent nature of handwriting. Char-
acter sets change over time, and character fre-
quency distributions shift across historical pe-
riods or regions, often causing models trained
on broad, heterogeneous corpora to underper-
form on specific subsets. To tackle this, we
propose a novel loss function that incorporates
the Wasserstein distance between the charac-
ter frequency distribution of the predicted text
and a target distribution empirically derived
from training data. By penalizing divergence
from expected distributions, our approach en-
hances both accuracy and robustness under tem-
poral and contextual intra-dataset shifts. Fur-
thermore, we demonstrate that character dis-
tribution alignment can also improve existing
models at inference time without requiring re-
training by integrating it as a scoring function
in a guided decoding scheme. Experimental
results across multiple datasets and architec-
tures confirm the effectiveness of our method
in boosting generalization and performance.

1 Introduction

Handwritten Text Recognition (HTR) enables the
automatic conversion of handwritten input into
machine-readable text, supporting critical appli-
cations such as historical manuscript digitization,
document analysis, and archival research. A central
challenge in HTR arises from the fact that charac-
ter frequency distributions vary across time periods
and geographic regions, driven by linguistic evolu-
tion, orthographic reforms, and contextual usage
shifts (Moreno, 2005). In the transition from Old
English to Modern English, for example, gram-
matical changes, such as the loss of case mark-
ings, led to notable alterations in letter distributions
(Moreno, 2005). Character frequency distributions
also differ across languages that share the same

alphabet, with measurable disparities even among
closely related languages (Grigas and Juskeviciene,
2018). Beyond language, writing style and genre
exert substantial influence on letter usage, which is
reflected in systematic differences across news arti-
cles, novels, and scientific texts (Zhao and Zheng,
2024). Specialized domains further introduce devi-
ations: for instance, proprietary prescription drug
names diverge markedly from standard English dis-
tributions (Carico et al., 2022), while authorship at-
tribution studies exploit subtle statistical variations
in letter frequencies to differentiate between writers
(Diurdeva et al., 2016; Merriam, 1994; Kjell, 1995).
These findings underscore the dynamic nature of
character frequency distributions and their depen-
dence on both linguistic and contextual factors.

HTR models face challenges when transcribing
historical manuscripts, where orthographic conven-
tions and character usage shift considerably over
time (Tsochatzidis et al., 2021; Cascianelli et al.,
2022). A common mitigation strategy involves
training on diverse corpora to increase generaliza-
tion, but this does not necessarily yield optimal per-
formance (Nguyen et al., 2022). Models trained on
heterogeneous data often struggle to perform well
in specific subsets in which character frequency
distributions deviate, resulting in systematic biases
and suboptimal transcription accuracy relative to
the model’s capacity.

To address these challenges, we propose FADA
(Frequency-Aware Distribution Alignment), a
novel training framework that aligns a model’s pre-
dicted character-level frequency distributions with
empirically observed ones. When such distribu-
tions are available, FADA enhances robustness to
temporal and contextual variation by incorporating
a distance-based loss function that penalizes dis-
crepancies between predicted and empirical char-
acter frequencies during training. This alignment
loss allows the model to learn general task-relevant
representations while also reflecting the expected



subset-specific statistical patterns. In addition, we
introduce a guided decoding algorithm that inte-
grates the frequency-aware objective into the beam
search process at inference time. By treating empir-
ical character frequency distributions as soft con-
straints, our method refines predictions to better
match expected patterns, improving transcription
accuracy without the need for retraining. FADA is
the first framework to explicitly address character-
level frequency distribution shifts in text recogni-
tion. In contrast to prior work, which largely over-
looks intra-dataset variation, FADA introduces both
a trainable alignment mechanism and an inference-
time correction strategy, providing a comprehen-
sive solution for mitigating distributional shifts.
Our main contributions are: (i) We introduce
FADA, a novel training framework that explicitly ad-
dresses character-level frequency distribution shifts
in recognition tasks. (ii) We propose a guided
decoding strategy that incorporates empirical fre-
quency priors into beam search, enhancing align-
ment between predicted and expected character fre-
quency distributions at inference time. (iii) We
demonstrate the effectiveness and generality of
FADA through extensive experiments on HTR, show-
ing consistent performance gains across multiple
datasets, languages, and model architectures.

2 Related Work

Feature and distribution alignment have been
extensively explored as strategies to mitigate per-
formance degradation caused by distribution shifts
in recognition models. Prior work addresses
these challenges by enhancing alignment at var-
ious stages of the recognition pipeline, including
structural feature extraction, semantic representa-
tion learning, and distribution matching.

In scene text recognition (STR), Hu et al.
(2024) proposed shape-driven attention to guide
models toward higher-quality character features us-
ing geometric priors. In vision-language models
(VLMs), distributional alignment has also been ex-
plored (Cho et al., 2023). For example, Li et al.
(2025) minimized distributional gaps between pos-
itive and negative captions to improve image-text
alignment by promoting stronger visual grounding.

In speech-related tasks, alignment techniques
have been applied to adapt to domain-specific vari-
ation. Zhou et al. (2024) investigated distribu-
tion alignment for multi-genre speaker recogni-
tion, showing that Within-Between Distribution

Alignment (WBDA) (Hu et al., 2022) improved ro-
bustness but did not fully eliminate genre-specific
variability. Moreover, Hou et al. (2021) aligned
the character-level audio representations between
a source and a target domain in an unsupervised
manner via Maximum Mean Discrepancy.

Standard decoding strategies like greedy or beam
search often lack mechanisms to enforce external
constraints, which are crucial in tasks requiring
adherence to linguistic structure or statistical prop-
erties. To address this, guided decoding methods
steer generation based on predefined constraints
(Wang and Shu, 2025), typically grouped as seman-
tic, structural, or lexical (Zhang et al., 2023). Se-
mantic constraints enforce stylistic or topical align-
ment (Yang et al., 2018; Ghazvininejad et al., 2017;
Pascual et al., 2021), or integrate task-specific
priors (Kaliosis et al., 2024; Samprovalaki et al.,
2024). Structural approaches promote syntactic co-
herence (Bastan et al., 2023; Lu et al., 2021), while
lexical constraints guide the inclusion or exclusion
of specific tokens (Anderson et al., 2017; Hokamp
and Liu, 2017; Yao et al., 2024).

Despite this progress, existing approaches do not
explicitly address the impact of character-level fre-
quency distribution shifts, which are particularly
prominent in recognition tasks involving historical
or domain-specific data. Most alignment methods
focus on feature-level or semantic alignment, over-
looking statistical priors at the character level that
can guide model predictions. FADA fills this gap by
introducing a frequency-aware training and decod-
ing framework that directly incorporates character-
level distributional knowledge into both learning
and inference.

3 The Proposed FADA Method

Our proposed method, FADA, introduces a novel
training framework that aligns the predicted
character-level frequency distribution of the model
with an empirical target distribution at each train-
ing step, thereby reducing discrepancies caused by
temporal and contextual shifts.

For example, if the model predicts a character
frequency of 9.3% for the letter “a”, while the em-
pirical distribution indicates an expected 11.1%,
FADA encourages the model to adjust its predic-
tions to reduce this gap. To achieve this, we in-
troduce an auxiliary loss term that penalizes diver-
gence between the predicted and empirical charac-
ter frequency distributions. This alignment loss is



jointly optimized with the task-specific objective
(e.g., CTC or Cross-Entropy loss), enabling the
model to preserve recognition performance while
adapting to subset-specific distributional properties.
As aresult, the model becomes more robust to intra-
dataset shifts and better aligned with the statistical
patterns present in the data.

Empirical Relative Frequency Distributions
To capture character frequency variations, we com-
pute empirical relative frequency distributions from
the training data. First, we normalize transcriptions
by converting all text to lowercase to ensure con-
sistency. Frequencies are calculated by counting
character occurrences and normalizing by the to-
tal number of characters. To model intra-dataset
distribution shifts, we compute separate frequency
distributions for each temporal or contextual subset
of the training set (e.g., distinct centuries/regions).

Character Frequency Analysis Figure 1 illus-
trates the character-level relative frequency distri-
butions of the HPGT dataset (Platanou et al., 2022)
over seven centuries, revealing clear distributional
shifts in character usage. Certain letters, such as
0, %, and v, display stable frequencies over time,
suggesting consistent orthographic roles in written
Greek. In contrast, others, such as t and ¢, exhibit
notable fluctuations, suggesting potential shifts in
orthographic conventions or variations in dataset
composition. Additionally, characters such as &
and £, are absent in earlier centuries but emerge
in later ones, which may reflect historical linguis-
tic developments or artifacts of dataset annotation
and coverage. However, these variations are not
solely attributable to linguistic evolution; external
factors, such as dataset biases or uneven temporal
representation, may also influence the observed dis-
tributions. We present a detailed analysis including
correlation scores between the character frequency
distributions across centuries in Appendix A.

FADA Training Framework In conventional
recognition models, training is typically guided
by task-specific objectives such as CTC or CE loss.
While these objectives effectively optimize tran-
scription accuracy, they do not account for intra-
dataset shifts in character frequency distributions.
As a result, models trained on aggregated datasets
may develop implicitly biases toward dominant
character distributions, leading to suboptimal per-
formance when applied to subsets that exhibit dif-
ferent statistical properties at the character level.

Character Frequency by Century

Letter

10 11 12 13 14 15 16
Century

Figure 1: Empirical character-level frequency distri-
butions in the HPGT dataset across seven centuries
(10th—16th CE). Characters with relative frequency be-
low 0.01 are omitted for clarity.

To address this limitation, we introduce an auxil-
iary distribution alignment loss that encourages the
model’s predicted character frequency distributions
to align with empirical distributions observed in
the training data. At each training step, we com-
pute the predicted distribution from the model’s
output logits and compare it with a sample-specific
empirical distribution derived from the training set
(e.g., based on the sample’s century or region). The
alignment loss penalizes discrepancies between the
predicted and empirical distributions, guiding the
model toward representations that preserve the ex-
pected statistical properties of the corresponding
subset. This loss is designed to complement—not
replace—the primary recognition objective (CTC
or CE), thereby enhancing the model’s robustness
to intra-dataset distributional shifts without com-
promising transcription accuracy.

To formally define this alignment loss, we em-
ploy the Wasserstein distance, a well-established
metric for quantifying discrepancies between
probability distributions. Given two probabil-
ity distributions D and @ , the Wasserstein-
p (Wp) distance is defined as Wy(D,Q) =

1
(x>0, DGy — Q@ lIP) » where Dy;y and Q;
denote the i-th elements of the sorted (in ascend-
ing order) versions of D and (@), respectively, and
n is the number of characters. Since we operate
over discrete relative frequency distributions, i.e.,
one-dimensional empirical probability vectors sum-



ming to one, we specifically adopt the second-order
Wasserstein distance (I5), where p = 2:

1 & :
Ly, = Ws(D,Q) = (n > 1D — Q(i)|2>
=1

(1
This choice is motivated by the fact that W5 cor-
responds to the Euclidean norm, offering a natural
and computationally efficient measure of distribu-
tional divergence that is sensitive to fine-grained
differences. In the one-dimensional case, W5 sim-
plifies to the Root Mean Squared Error (RMSE)
between the sorted frequency vectors, making it
especially suitable for character-level distributions.
At each training step, the total loss is defined as a
convex combination of the primary recognition loss
and the distribution alignment loss. The former cor-
responds to either CTC (Lctc) or Cross-Entropy
(Lcg) loss, depending on the model architecture.
The latter is the alignment loss Lyy, introduced in
Equation 1.

FADA Guided Decoding Framework Our pro-
posed method also supports an inference-time ap-
plication via a guided decoding algorithm that
aligns predicted character-level frequency distri-
butions with empirical targets. While training-time
alignment enhances robustness to distributional
shifts, inference-time adjustment provides an addi-
tional mechanism for refining predictions without
requiring model retraining. To enable this, we in-
corporate a frequency-aware scoring component
into the beam search process, which biases candi-
date sequences toward those whose character distri-
butions more closely match the expected empirical
ones. In this way, we correct potential distribu-
tional mismatches at inference time, thereby im-
proving overall transcription accuracy.

In standard beam search, candidate sequences
are ranked based on their cumulative log-
probability, favoring highly probable continuations.
We extend this decoding objective by introducing
a penalty term that quantifies the divergence be-
tween a candidate sequence’s predicted character
frequency distribution and the corresponding em-
pirical distribution. This penalty term is applied
at each decoding step, enabling the beam search
process to dynamically incorporate character-level
alignment as the sequence is generated. Specifi-
cally, at decoding step ¢, each candidate sequence
V = (v1,v9,...,v) is scored using the following
frequency-aware objective:

t
Sop = [\ - Zlog P(vi|lvei)—
=1
(1 - )‘) ' WQ(Dpred7 Demp)} (2)

Here, P(v;|v<;) denotes the model-assigned
probability of character v; given the preceding se-
quence V<. Dpreq and Dep represent the predicted
and empirical character frequency distributions, re-
spectively. The first term captures the standard
beam search objective and the second imposes a
penalty based on the Wasserstein distance Wy (see
Equation 1). The hyperparameter A € [0, 1] con-
trols the trade-off between maximizing likelihood
and enforcing distributional alignment.

This formulation ensures that candidate se-
quences with both high likelihood and strong agree-
ment with the expected character frequency distri-
bution are favored during decoding. Importantly,
at each decoding step, the alignment penalty is
computed over the entire (potentially incomplete)
candidate sequence, rather than applied at the in-
dividual token level. While a per-token penalty
may seem intuitive, it treats frequency alignment
as a local property and risks biasing the model to-
ward optimizing each next-token prediction in iso-
lation. In contrast, our approach promotes global
coherence by encouraging sequences whose overall
character-level statistics align better with the em-
pirical target distribution. As a result, the guided
decoding strategy functions as a lightweight cali-
bration mechanism that leverages known statistical
properties of the target domain to enhance recogni-
tion performance without additional training.

4 Experiments

We evaluate the performance of FADA primarily on
HTR, using two model architectures across three
datasets, two real-world and one synthetic, span-
ning Greek and French manuscripts from the 10"
to 16™ cent. CE. To demonstrate the broader ap-
plicability of our method, we also conduct sec-
ondary experiments on Automatic Speech Recog-
nition (ASR) using the Whisper model (Radford
et al., 2023) and an English dataset. Next, we
discuss dataset and model details (§4.1-§4.2), base-
lines (§4.3), evaluation metrics (§4.4), and then we
present the experimental results (§4.5), followed
by an ablation study and qualitative analyses.



4.1 Datasets

HPGT Dataset (HTR): HPGT (Platanou et al., 2022)
is a Handwritten Paleographic Greek Text recog-
nition dataset comprising 77 digitized page-level
images from Greek manuscripts in the Oxford Uni-
versity Bodleian Library.! The images are seg-
mented into 1,698 line-level between the 10 to
16™ century CE.

CATMuS-FR Dataset (HTR): CATMuS (Clérice et al.,
2024) is a multilingual manuscript dataset con-
taining over 200 historical texts. We extracted all
French-written samples to form CATMuS-FR, con-
sisting of 3,401 samples spanning four centuries
(13" to 16'™) and six distinct script types.
Synthetic Dataset (HTR): To evaluate FADA un-
der controlled conditions, we generated a synthetic
Greek dataset with deliberately induced shifts in
character frequency distributions. Using predefined
prompts and topics, we synthesized text with four
different LLMs (GPT-4 (OpenAl, 2023), Llama-
3.1 (Meta-Al, 2024), Gemini (Google, 2024), and
Claude-3.5 (Anthropic, 2024)) each producing out-
puts with distinct statistical properties, effectively
simulating four separate “centuries.” Images were
rendered using an open-source handwritten text
generator.” More details about the dataset creation
are provided in the Appendix.

EdAcc Dataset (ASR): EdAcc (Sanabria et al.,
2023) is an ASR dataset containing 40 hours of
transcribed speech from speakers with diverse lin-
guistic backgrounds and English accents. We se-
lected the four most represented categories; US En-
glish, Southern British English, Irish English, and
Indian English, resulting in 2,756 samples. More
details about the inter-group character distribution
shifts and correlation scores for each dataset are
provided in the Appendix.

4.2 Backbone Models

We experiment with three backbone models fea-
turing distinct architectures across two recognition
tasks. In our experiments, C-RNN is trained from
scratch, while TrOCR and Whisper are fine-tuned
from publicly available pretrained checkpoints. We
evaluate each model under two baseline configura-
tions (see §4.3) as well as our proposed distribu-
tional alignment framework (FADA).

C-RNN (HTR): C-RNN (Shi et al., 2015) is a
widely used architecture for HTR that combines a

! https://bav.bodleian.ox.ac.uk/greek-manuscripts
2https ://github.com/Belval/TextRecognitionDataGenerator

CNN for visual feature extraction with an RNN for
sequential text generation. The model outputs text
at character level and is trained using the CTC loss.
TrOCR (HTR): TrOCR (Li et al., 2021) is a state-
of-the-art Transformer-based (Vaswani et al., 2017)
approach for HTR. It comprises a Vision Trans-
former (ViT) (Dosovitskiy et al., 2021) as an image
encoder and a text Transformer (Vaswani et al.,
2017) as the decoder. TrOCR operates at token
level and is trained using CE loss.

Whisper (ASR): Whisper (Radford et al., 2023) is
a state-of-the-art speech recognition model based
on a Transformer-based encoder-decoder architec-
ture. It is pre-trained on a range of speech process-
ing tasks, including ASR and speech translation.

4.3 Baseline Configurations

Fine-tuned Backbone Model: This configuration
serves as our simplest baseline. For Transformer-
based models (TrOCR and Whisper), we fine-tune
publicly available pre-trained checkpoints on each
target dataset using only the standard task-specific
objective (CE loss). For the C-RNN model, which
does not rely on a pre-trained backbone, we train
the model from scratch using CTC loss. This setup
reflects the default recognition setting without any
frequency-level supervision, and enables direct as-
sessment of the added value introduced by our pro-
posed distributional alignment mechanism.

Temporal/Regional Token Tagging (TR-TT):
Following strategies employed in multilingual and
multi-task models such as mBART (Liu et al.,
2020) and Whisper (Radford et al., 2023), we fine-
tune each backbone model by prepending a special
token to each input sequence indicating the tempo-
ral or regional context. This token is treated as part
of the input and provides an implicit conditioning
signal for generation. This configuration does not
incorporate any explicit alignment with empirical
distributions. Instead, it relies on the model’s abil-
ity to learn contextual associations from the data.
Training is performed end-to-end using only the
standard task-specific objective (CTC or CE).

4.4 Evaluation Metrics

Character Error Rate (CER) measures transcrip-
tion accuracy at character level. It is computed
as the edit distance between the predicted and the
reference text, normalized by the length of the ref-
erence. Lower CER indicates better performance.

Word Error Rate (WER) is the word-level coun-
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Dataset Model Standard FT FT w/ TR-TT FT w/ FADAtr.Gp (Ours)
CER | WER | CER | WER | CER | WER |

HPGT TrOCR 26.92 (0.96) 73.82 (1.31) 26.89 (.61) 72.53 (0.81) 25.06 (0.91) 70.14 (0.48)
C-RNN 24.72 0.38) 77.08 (0.85) 24 .41 (0.55) 76.66 (0.81) 23.89 (0.34) 76.31 .77

CATMuS TrOCR 9.56 (0.22) 37.02 0.28) 9.68 0.17) 37.01 (0.69) 9.63 (0.25) 37.05 0.47)
C-RNN 17.08 (0.29 54.79 0.32) 27.12 (1.13) 67.61 (1.98) 16.79 052 53.65 (1.02)

Synthetic TrOCR 5.94 0.09) 17.61 0.31) 5.48 ©.17) 17.12 (1.96) 5.19 027 16.60 (0.45)
y C-RNN 9.71 0.73) 31.58 2.73) 9.82 0.34) 34.58 1.78) 8.31 (0.12) 27.08 (0.36)

Table 1: Main evaluation results. We report average CER and WER (across three runs plus SEM) across all
datasets and models. FT indicates fine-tuning the model. Our proposed method outperforms all baselines in most
cases. FADA TR gp denotes our proposed approach combining training-time alignment and inference-time guided
decoding. TR-TT is a token-based contextual conditioning baseline described in §4.3. The best CER and WER
scores per model and dataset are in bold and underlined respectively.

Model Standard FT w/ TR-TT w/ FADA1R-GD

Whisper  27.11/40.02  28.88/44.09  26.70/38.02

Table 2: ASR results on EdAcc. CER / WER for
Whisper-small across three configurations. Best scores
per metric are bolded and underlined respectively.

terpart of CER. It calculates the edit distance be-
tween the predicted and reference word sequences,
normalized by the number of words in the refer-
ence. As with CER, lower WER values correspond
to higher transcription accuracy.

4.5 Experimental Results

We evaluate our proposed method (FADA) across
multiple backbone models (§4.2) and compare it
to two baseline configurations, each involving fine-
tuning (or training from scratch depending on the
architecture) the backbone models on the target
dataset (§4.3). Our main configuration, dubbed
FADATR.GD, fine-tunes (or trains) each model using
a combined objective that includes the standard
task-specific loss (CTC or CE) and our distribu-
tional alignment loss. At inference time, we apply
our guided decoding algorithm to further refine out-
puts. This setup integrates frequency alignment
at both training and inference stages, resulting in
end-to-end frequency-aware recognition. We run
each experiment three times with different seeds
and report the mean and standard error of the mean
(SEM) for each metric (see §5 for reproducibility).

Quantitative Analysis Table 1 reports the perfor-
mance of the two models on the three HTR datasets.
For each model (TrOCR, C-RNN), we report three
scores per evaluation metric (CER, WER); one for
each baseline approach, and one for our proposed

method (FADATr.gp). For the latter, scores obtained
with the best hyperparameter A\ are reported. In
Table 2, we examine the effectiveness of our pro-
posed method in ASR. We report the performance
of Whisper on the Edacc dataset across the two
baseline methods and FADATR.GD.

The results in both tables show that FADATR.Gp
consistently improves both text and speech recog-
nition performance across a range of datasets and
model architectures, demonstrating the effective-
ness of character-level frequency distribution align-
ment in recognition tasks. Despite the single case
where FADATR.gp does not improve over TrOCR
baseline (falling within the SEM) it generally pro-
vides substantial gains (up to three WER units),
highlighting its robustness and broad applicabil-
ity. These findings confirm that aligning model
predictions with empirical character statistics can
enhance recognition accuracy, even under diverse
temporal or regional shifts.

Ablation study In addition to our full end-to-
end configuration (FADATR.Gp ), incorporating align-
ment at both training and inference, we assess two
partial variants: training-only alignment (FADATR)
and inference-only alignment via guided decoding
(FADAGD). As can be seen in Table 4, inference-
time alignment improves recognition performance
in most cases, despite operating solely as a post-
hoc adjustment to model outputs (see also §5).
Training-time alignment yields larger improve-
ments overall, as it directly shapes the model’s
internal representations by reducing character fre-
quency discrepancies during optimization. While
the combined approach (FADATR.gp) consistently
achieves the best overall performance, training-
only and inference-only alignment offer meaning-
ful improvements at a lower computational cost.



Method Transcription CER
Baseline (TfOCR) || ¢pwvng eiomvatiov TNy 8E xog NV GUUPOVIS SPNXY THY 29.16
FADAGD POYNC EIOTIVOTIOV THV OE X0C NV SUUPOVIS APNXY THY 29.16
FADATR PwYNC elomvaTTovTal diXac AV CLUUPHOVLS APN XAVTNY 14.58
FADATR-GD (PWYNG ELOTIVOTTOVTAL OIXUC MY CUUPOVELS APT XAVTNY 14.58
Ground Truth Qwviic elompdtTtovton dixac fiv CLPPWOVLS dPTxay THY
Baseline (Whisper) || yeah and all i bet and like in the apartment that we have 18.18
FADAGD and uh i bet in like in the apartment that we have 19.98
FADATR and uh i bet in like in the apartment that we have 19.98
FADATR-GD yeah i know i bet in like in the apartment that we have 3.63
Ground Truth yeah i know i bet uh like in the apartment that we have

Table 3: Qualitative analysis of FADA on HTR and ASR tasks. The upper section presents a Greek manuscript
transcription example, while the lower section showcases an English ASR transcript. Correctly restored characters
are highlighted in green. CER and NED values are reported for each setting, demonstrating the improvements.

Dataset Model FADAGgp FADAr FADArr.GD

TOCR  —14% —65%  —6.9%
HPGT  CRNN  —08% —32%  —33%

TOCR  +1.7% +1.6%  +0.7%
CATMUS - RNN  —04% —11%  -11%
sntheic TIOCR  —02%  —106%  —12.6%
ynthelic "c RNN —0.1% —12.9% —14.4%

Table 4: Ablation Study: The relative improvement
in CER over standard fine-tuning across FADA con-
figurations. Negative values indicate error reduction.
Bold marks the best per model/dataset (lower is better).

Qualitative Analysis Table 3 presents two tran-
scription examples—one from each task—to il-
lustrate the qualitative impact of our proposed
framework. We compare outputs from the fine-
tuned backbone model (TrOCR or Whisper) with
those produced by the same model enhanced with
inference-time alignment (FADAgp), training-time
alignment (FADATR), and the full configuration com-
bining both (FADATR-gp). In both examples, the full
configuration (FADATr.gp) produced the most ac-
curate transcriptions, closely matching the ground
truth and outperforming the standard fine-tuned
model as well as the individual FADA variants. In
the first case, training-only alignment (FADATR)
achieved the same CER as the full configuration,
suggesting that training-time alignment alone can
often be sufficient. In contrast, the second example
illustrates a complementary effect: while neither
training-only nor inference-only improved upon
the baseline in isolation, their combination resulted
in a significantly better transcription, highlighting
the benefit of aligning frequency distributions at
both training and inference time.

Per-Century/Region Results To further assess

the effectiveness of FADA, we evaluate model per-
formance in terms of CER across individual cen-
turies (for HTR) and linguistic regions (for ASR).
Rather than reporting only aggregated scores, this
analysis focuses on how well each model per-
forms on specific temporal and regional subsets.
The results reveal substantial variation in difficulty
across these subsets. Notably, FADA-enhanced mod-
els—FADATR, FADAGD, and FADATR.gp—exhibit im-
proved and more consistent performance across
diverse subsets, effectively narrowing the gap be-
tween easier and more challenging cases. A de-
tailed breakdown of per-century and per-region re-
sults is provided in Appendix F.

Lipogram Generation To test FADA’s applicability
beyond text recognition, we apply it to lipogram
generation; a constrained generation task where
the model must avoid generating a given (forbid-
den) character (Roush et al., 2022). We prompted
Llama-3.1 with 30 diverse topics and applied our
proposed guided decoding algorithm (FADAgp) by
setting the target frequency of the forbidden char-
acter to zero (i.e., the model must not generate
it). We repeated this process for three different
forbidden characters and compared standard beam
search with FADAgp decoding, measuring violation
rate and perplexity. Results show that FADA effec-
tively enforces character-level constraints during
open-ended generation. Full results, topic list, and
prompts appear in Appendix E.

Beam size sensitivity study Undertaking a sen-
sitivity study, we investigate the effect of beam
size, comparing the performance of the fine-tuned
backbone model with and without training-time
alignment (i.e., FADA ). We examine beam sizes
of 1, 5 and 7. Increasing the beam size in the
standard fine-tuned TrOCR model yields only mi-



nor gains. In contrast, FADATr shows stronger im-
provements, especially at beam size of 1, where it
consistently outperforms the baseline even with a
beam size of 7. This shows that frequency-aware
training boosts transcription quality without rely-
ing on large beams, with smaller returns as beam
size grows. For more results, see Appendix H.

5 Discussion

Importance of inference-time alignment Ta-
ble 4 shows that inference-time alignment
(FADAGp) yields smaller gains compared to training-
time alignment (FADATR), which is expected since
the latter can update model parameters. However,
inference-time alignment offers several practical
advantages: it is computationally lightweight, re-
quires no retraining, and is ideal for low-resource
scenarios. It also acts as a post-hoc calibration
step, often improving results when combined with
FADATR (Table 4), suggesting that frequency-aware
scoring can refine outputs even when the underly-
ing model has already been trained to align with
frequency statistics. Finally, it supports zero-shot
adaptation, as is shown in our Lipogram experiment
(§4), where it effectively guides generation away
from forbidden characters without any fine-tuning.

Advantages over Temporal/Regional Tagging
(TR-TT  Baseline) Contextual-conditioning
strategies, such as prepending special tokens to
indicate conditioning attributes (e.g., language
or time) are widely used in recognition tasks
(Liu et al., 2020; Radford et al., 2023). While
effective, these methods control the model in an
implicit way that is hard to interpret or adjust. In
contrast, by explicitly aligning predicted character
distributions with empirical ones, computed from
the training data, FADA makes the alignment
process interpretable and transparent. Also, it gives
control to users over the output, who can change
the target distribution, encouraging (discouraging)
certain characters; this is difficult to achieve with
token-based methods.

Differences from Domain Adaptation Methods
Traditional domain adaptation methods typically
assume that a model is trained on a single source-
domain (e.g., modern printed text) and then adapted
to a different target-domain with limited labeled
data, using techniques such as feature alignment
or adversarial training. In contrast, FADA is not de-
signed to transfer between domains, but to handle

intra-dataset distributional variation within a sin-
gle dataset. Instead of treating each subset (e.g.,
century, region) as an isolated domain, we train a
single model on the entire dataset and guide it to
respect the empirical character distribution asso-
ciated with each training sample. This allows the
model to learn general task-relevant representations
while adjusting its output to reflect expected pat-
terns of the specific input context without requiring
separate adaptation stages or domain boundaries.

Computational Overhead and Reproducibility
Training with FADArRr introduces a modest 4—6%
increase in training time due to the alignment
loss computation, while FADAGp slows decoding
by 7-9% due to the added frequency-based scor-
ing. The memory overhead is minimal. Given the
accuracy improvements and character-level con-
trol, this trade-off remains favorable in most cases.
All models were trained with fixed seeds to en-
sure reproducibility. For CTC-based models, we
used the deterministic Baidu CTC implementation.
Training/fine-tuning ran for up to 30 epochs with
early stopping (patience = 4), using a batch size of
4 and a beam size of 5. Details on the A hyperpa-
rameter tuning are included in Appendix F.

6 Conclusion

We present FADA (Frequency-Aware Distribution
Alignment), a framework mitigating character rela-
tive frequency distribution shifts in text and speech
recognition, consisting of two components: (i) a
training-time alignment loss minimizing discrep-
ancies between predicted and empirical character
distributions; (ii) an inference-time guided decod-
ing frequency-based algorithm that dynamically
adjusts predictions. Our experiments on HTR and
ASR demonstrate consistent performance improve-
ments across datasets, languages, writing systems,
and model architectures. Directions of future work
include extending FADA by incorporating bi-grams
and tri-grams, enabling alignment at the sequence
level rather than for individual characters (uni-
grams). Also, we plan to explore case-sensitive
frequency distributions, and to improve recogni-
tion of named entities and specialized terminol-
ogy. Finally, we aim to develop adaptive weighting
strategies for ), allowing a dynamic adjustment
that will be based on contextual factors instead of
relying on a fixed hyperparameter.



Limitations

While FADA consistently enhances recognition per-
formance across multiple datasets and models, its
effectiveness relies on the availability of empiri-
cal character frequency distributions. In scenarios
where such distributions are not well-defined or
highly variable, its impact may be less pronounced.
Additionally, the current approach focuses on uni-
gram frequency alignment, leaving room for future
exploration of higher-order character dependencies.
Although FADA introduces only a modest computa-
tional overhead, optimizing its efficiency for real-
time applications remains an area of interest. These
considerations highlight directions for further re-
finement rather than fundamental constraints, as
FADA remains broadly applicable across different
recognition settings.
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A HPGT Dataset - Analysis

This section presents a further analysis on the
intra-dataset correlation throughout centuries in
the HPGT dataset. In Figure 2, we quantify the
correlation trends between character frequency dis-
tributions across centuries. Adjacent centuries
tend to exhibit strong correlations (e.g., 10th—11th:
0.99; 12th—13th: 0.94), whereas distant pairs di-
verge more substantially (e.g., 10th—16th: 0.91;
13th—15th: 0.89). While correlations above 0.9
generally indicate high similarity, such differences
are meaningful in the context of a shared alphabet
and may reflect shifts in writing practices, docu-
ment selection, or biases introduced during data
curation. These findings highlight the presence of
intra-dataset distribution shifts, whether linguistic
or dataset-induced, that can degrade model perfor-
mance when training ignores subset-specific statis-
tical variation.

B CATMusS Dataset - Analysis

In this section, we examine character frequency
distribution shifts in the CATMusS dataset (Clérice
et al., 2024), complementing the analysis presented
for other datasets. Figure 3 visualizes the rela-
tive frequency distributions across four centuries,
revealing more subtle intra-dataset variations com-
pared to the rest of the HTR datasets. While some
characters exhibit relatively stable frequencies, oth-
ers show minor fluctuations across different time
periods. Figure 4 further illustrates these trends
through LOWESS-smoothed frequency distribu-
tions, where the black line represents the charac-
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Character Frequency Correlation Across Centuries

Century

Figure 2: Heatmap of Pearson correlation measuring
distributional similarity across centuries; darker shades
indicate higher correlation.

ter distribution for a given century, and the gray
lines provide comparisons to the other centuries.
The trends indicate that while there are observable
shifts, they are not as pronounced as in datasets
covering a broader temporal range. Finally, Fig-
ure 5 presents a Pearson correlation heatmap, quan-
tifying the similarity between character distribu-
tions. The consistently high correlation values (e.g.,
15th—16th: 0.99) suggest that distributional shifts
are relatively minor, confirming that character fre-
quencies remain largely stable over time in this
dataset.
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Figure 3: Heatmap illustrating the relative frequency
distribution of characters in CATMuS (Clérice et al.,
2024).
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Figure 4: Fitted character frequency trends across dif-
ferent centuries in CATMusS (Clérice et al., 2024). Each
subplot represents a specific century, with the black
line indicating the LOWESS-smoothed letter frequency
distribution for that century. Gray lines represent the
character frequency trends of the rest of the centuries
for comparison.

:
ba)
1)
=
L
c
]
8]
: -
! - |
13 14 15 16

Century

Figure 5: Pearson correlation heatmap of the charac-
ter frequency distribution across centuries in CATMuS
(Clérice et al., 2024). Higher values (darker shades) indi-
cate stronger similarity in character usage, while lower
values (lighter shades) suggest greater divergence.

C Synthetic Dataset - Analysis

Similarly, we provide an analysis for our synthetic
dataset, which was designed to exhibit controlled
character frequency shifts across centuries. Fig-
ure 6 presents a heatmap of character usage, reveal-
ing stable trends for some characters and substan-
tial fluctuations for others.

To further examine these variations, Figure 7
visualizes the fitted frequency distributions per cen-
tury using LOWESS smoothing. The black line
represents the smoothed trend for a given century,
while gray lines show distributions from the rest of
the centuries for comparison. Lastly, Figure 8 quan-
tifies distributional similarity via a Pearson corre-
lation heatmap. Adjacent centuries show strong
correlations (e.g., 11th—12th: 0.97), while more
distant ones exhibit lower values (e.g., 10th—12th:
0.89), indicating more pronounced shifts.
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Figure 6: Heatmap illustrating the relative frequency
distribution of Greek characters in our synthetic dataset
(see Section 4.1).

D EdAcc Dataset - Analysis

Similarly, we provide an analysis for our ASR
dataset. Figure 9 presents a heatmap visualizing
the intra-dataset character frequency distributions
among the four linguistic backgrounds, exploiting
some subtle but noticeable patterns between them.
Figure 10 presents the fitted frequency distribu-
tions per linguistic background further enhancing
the previously stated observations as the black lines
deviate compared to the grey lines in each of the
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Figure 7: Fitted character frequency trends across differ-
ent centuries. Each subplot represents a specific century,
with the black line indicating the LOWESS-smoothed
letter frequency distribution for that century. Gray lines
represent the character frequency trends of the rest of
the centuries for comparison.
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Figure 8: Pearson correlation heatmap of the character
frequency distribution across centuries in our synthetic
dataset. Higher values (darker shades) indicate stronger
similarity in character usage, while lower values (lighter
shades) suggest greater divergence.
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Figure 9: Heatmap illustrating the relative frequency dis-
tribution of characters in EdAcc (Sanabria et al., 2023).
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the LOWESS-smoothed letter frequency distribution
for that background. Gray lines represent the character
frequency trends of the rest of the backgrounds for com-

parison.



E Lipogram Generation - Extensive
Results

To further assess the impact of FADAgp beyond
recognition tasks, we applied it in a controlled
text generation setting focused on lipogram con-
straints. In this experiment, we tested whether
FADAGp could steer an LLM (Llama3.1) to gen-
erate coherent passages while avoiding a specific
character. The task involved generating short texts
(4-6 sentences) on various topics while ensuring
that a predetermined character never appeared.
This provided a structured way to evaluate how
effectivelyFADAGp can influence character distribu-
tions in an open-ended autoregressive setting.

We selected three different forbidden charac-
ters, namely “A”, “E” and “L”. In each case, we
applied FADAgp during decoding by setting the
forbidden character’s target relative frequency to
zero.To assess its impact, we compared two decod-
ing configurations: standard beam search, where
no constraints were applied, and FADA-GD, which
introduced frequency-aware scoring to penalize se-
quences containing the forbidden character.

For each configuration, the model was prompted
with 30 different topics covering diverse subjects.
The full list of topics is presented in Table 5, while
the prompt is presented in Figure ??. The generated
text was evaluated based on the following metrics:

* Violation Rate: The percentage of outputs
where the forbidden character appeared at
least once.

Perplexity: A measure of fluency and coher-
ence in the generated text.

Readability: An assessment of how natu-
ral and comprehensible the generated text re-
mains under the applied constraints. We calcu-
lated it using the Flesch Reading Ease Score
(Courtis and Hassan, 2002), which evaluates
how easy a text is to read. Higher scores indi-
cate more readable text, with values above 60
considered easy to read, while lower scores
(below 30) indicate more complex writing.

We present the numerical results in Table 11.
The violation rate succesfully decreases across all
three forbidden characters (“A”, “E”, “L”), with
the most notable reduction observed for “E”, where
the percentage of outputs containing the forbid-
den character drops from 10.60% to 8.66%, a rela-
tive improvement of 18.3%. This confirms that
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frequency-aware decoding successfully discour-
ages character occurrences without the need for
model retraining.

In terms of perplexity, which reflects the fluency
and coherence of the generated text, the results
show a marginal increase for A and E, while it
slightly improves for L. This suggests that enforc-
ing character-level constraints withFADAgp does
not significantly degrade text fluency, with differ-
ences remaining within acceptable bounds. Read-
ability scores, measured using the Flesch Read-
ing Ease score (Courtis and Hassan, 2002), exhibit
improvements for “A” and “L”, while remaining
nearly unchanged for “E”. Overall, these findings
highlight FADAGp as an effective approach for guid-
ing language model outputs at the character level
while maintaining fluency and readability.

The prompt used in our experiments was:

A lipogram is a form of writing where one
or more specific letters are deliberately
avoided throughout the text.

This constraint challenges writers to be
creative and resourceful, often resulting
in unique word choices and phrasing.
Lipograms can be fun and artistic

but also difficult, especially when

the omitted letter is common.

For example, avoiding the letter

'e'—the most frequently used letter

in English-requires significant

effort and skill.

Writers must find alternative ways

to express ideas without breaking

the constraint, which can lead

to inventive language.

TASK:

Generate a short story

(maximum 150 words) about {topic}.

You have to follow a lipogram constraint.
The lipogram constraint is that the letter
{forbidden_character} must not appear
anywhere in the text.

First, go over the task.

Then, explain how you avoided

using the letter {forbidden_character} .

FORMAT:

To ensure clarity and easy readability,
format your output into a JSON.

Use the following format:

{

"Story"”: "<Generated_story>"

}

Text:

F Per Century/Region Results

To further assess the impact of FADA across differ-
ent temporal and linguistic variations, we report
per-century and per-region results in Tables 7-10.



ID | Topic
1 | A person who went to the post office.
2 | A dog at the park.
3 | A family that went to the beach.
4 | An elephant in the jungle.
5 | A person who went to the aquarium.
6 | A child who lost a toy at the mall.
7 | A bird flying over a quiet village.
8 | A person who got stuck in an elevator.
9 | A cat exploring a new garden.
10 | A teacher who helped a struggling student.
11 | A couple hiking in the mountains.
12 | A farmer working in the field.
13 | A boy who found a hidden cave.
14 | A woman who forgot her umbrella on a
rainy day.
15 | A man fishing by the river.
16 | A team that won a soccer match.
17 | A child who met their favorite author.
18 | A chef preparing a special dish for a cele-
bration.
19 | A group of friends camping under the stars.
20 | A traveler visiting an ancient temple.
21 | A robot learning how to read.
22 | A young girl who dreamed of flying.
23 | A scientist discovering a new species.
24 | A person who got lost in a museum.
25 | A dog who saved a child from danger.
26 | A boy who built a treehouse with his
friends.
27 | A person who volunteered at an animal
shelter.
28 | A musician performing on a busy street.
29 | A fisherman who caught a rare fish.
30 | A person planting trees in a park.

Table 5: Topics used in the Lipogram Generation exper-
iment.

These results allow us to examine how frequency-
aware alignment affects model performance in sub-
sets characterized by distinct character distribu-
tions.

For HTR, the results on the HPGTR dataset reveal
that FADA provides substantial benefits in centuries
where character distributions deviate most from
the overall dataset trend. This effect is particularly
noticeable in later centuries, where orthographic
variations and evolving linguistic conventions intro-
duce additional challenges for recognition models.
Similarly, for the CATMuS dataset, where distribu-
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tional shifts are more subtle, FADA still contributes
to performance improvements, particularly in cen-
turies with greater deviations from the dataset-wide
character frequencies. The Synthetic dataset fur-
ther reinforces these observations, as the controlled
frequency shifts across different subsets allow us to
systematically evaluate the method’s effectiveness
in handling predefined character distribution dis-
crepancies. Across all cases, the most substantial
improvements are observed when both training-
time and inference-time alignment are applied to-
gether, highlighting their complementary nature.

For ASR, the results from the EdAcc dataset
demonstrate that FADA adapts well to different lin-
guistic backgrounds, helping the model better han-
dle accent-based variations that lead to systematic
shifts in character usage patterns. While training-
time alignment consistently enhances performance
across most linguistic categories, the impact of
inference-time alignment varies. In some cases,
guided decoding further refines predictions, while
in others, its effect is more limited, suggesting that
the degree of benefit depends on the severity of dis-
tributional shifts and the alignment between train-
ing data and inference-time distributions.

G Tuning A

To balance transcription accuracy and frequency
alignment, we conducted a hyperparameter search
over A values ranging from 0.05 to 0.95 in incre-
ments of 0.05. Both training-time (FADATR) and
inference-time (FADAgp) alignment were evaluated
on the validation set using CER, WER, and NED
as metrics. While no single A value was optimal
across all datasets and models, we observed that
values in the 0.3-0.6 range generally led to better
overall performance.

H Ablation on beam size

As an ablation study, we investigate the effect of
the beam size in FADA. To this end, we compare
the performance of the standard fine-tuned model
with standard beam search against FADATr. We ex-
plore beam sizes of 1 (greedy decoding), 5 and 7.
For both datasets (HPGTR and Synthetic), increas-
ing the beam size in the fine-tuned TrOCR model
yields only marginal improvements, particularly in
CER and WER. While a larger beam (e.g., 5 or
7) generally reduces errors slightly compared to
greedy decoding (beam size = 1), the gains are rel-
atively small. This suggests that the standard beam



Lipogram Generation
Violation Rate | Perplexity | Readability 1
A E L A E L A E L
Llama3.1 6.48 10.60 3.02 3.64 1.93 2.24 72.40 78.97 | 79.20
Llama3.1 + FADAGp 5.73 8.66 2.50 3.81 1.98 2.03 75.61 78.11 | 79.37

Table 6: The performance of FADAgp framework in the lipogram generation task.

HPGTR Dataset - Per Century Results (CER)
TrOCR-base (Li et al., 2021)

10 11 12 13 14 15 16
Standard FT 8.99 15.31 27.18 32.47 50.06 32.37 43.78
FADAGD 8.44 14.74 27.27 30.76 49.34 31.61 46.15
FADATR 8.07 12.64 25.48 27.98 46.57 27.32 42.09
FADATR-GD 8.04 12.07 25.10 28.11 45.82 27.15 41.36

C-RNN (Shi et al., 2015)

10 11 12 13 14 15 16
Standard FT 10.26 16.11 27.19 38.78 37.78 31.41 38.54
FADAGD 10.20 16.07 27.08 38.14 37.11 30.55 38.51
FADATR 10.13 15.88 26.31 37.84 35.75 29.54 38.76
FADATR-GD 10.05 15.77 26.27 37.79 35.77 29.59 38.47

Table 7: The per-century performance (in terms of CER) of TrOCR-base (Li et al., 2021) and C-RNN (Shi et al.,
2015) on the HPGTR dataset (Platanou et al., 2022). Baseline denotes the vanilla model, FADAgp and FADATg
denote the proposed inference-time and training-time alignment methods respectively, while FADATr_gp indicates

the combination of them.

CATMuS Dataset - Per Century Results (CER) Synthetic Dataset - Per Category Results (CER)
TrOCR-base (Li et al., 2021) TrOCR-base (Li et al., 2021)
13 14 15 16 GPT4 Llama Gemini | Claude
Standard 12.28 12.07 947 5.76 Standard 3.96 9.83 5.38 443
FT FT
FADAGD 12.11 12.16 9.46 5.79 FADAGD 20.21 22.78 5.23 4.39
FADATR 11.95 12.16 9.42 4.94 FADATR 2.96 8.87 5.05 4.27
FADATR-GD 12.10 12.17 9.18 4.90 FADATR-GD 3.23 8.19 4.65 3.81
C-RNN (Shi et al., 2015) C-RNN (Shi et al., 2015)
13 14 15 16 GPT4 Llama Gemini | Claude
Standard 20.34 23.01 15.79 8.92 Standard 9.29 14.77 11.32 8.97
FT FT
FADAGD 20.11 22.89 15.77 8.73 FADAGD 9.17 13.29 10.88 8.45
FADATR 19.87 21.36 15.89 8.67 FADATR 8.07 11.67 9.16 5.41
FADATR.GD 19.78 21.20 15.64 8.65 FADATR.GD 8.03 11.48 9.12 5.21

Table 8: The per-century performance (in terms of CER)
of TrOCR-base (Li et al., 2021) and C-RNN (Shi et al.,
2015) on the CATMuS dataset (Clérice et al., 2024).
Standard FT denotes the fine-tuned backbone model,
FADAGp and FADATR denote the proposed inference-time
and training-time alignment methods respectively, while
FADATR.Gp indicates the combination of them.

search does not significantly improve recognition
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Table 9: The per-century performance (in terms of CER)
of TrOCR-base (Li et al., 2021) and C-RNN (Shi et al.,
2015) on our synthetic dataset. Standard FT denotes
the fine-tuned backbone model, FADAgp and FADATr
denote the proposed inference-time and training-time
alignment methods respectively, while FADAtg_gp indi-
cates the combination of them.

performance beyond a certain threshold.




Synthetic Dataset - Per Category Results (CER)
Whisper-small (Radford et al., 2023)
Southern | Indian Irish US

British English | English | English

English
Standard 37.23 25.85 28.37 28.70
FT

FADAGD 36.26 25.76 29.51 28.38
FADATR 35.71 25.93 27.37 27.62
FADATR-GD 37.05 26.17 27.92 27.74

Table 10: The per linguistic background performance
(in terms of CER) of Whisper-small on the EdAcc
dataset (Sanabria et al., 2023). Standard FT denotes the
vanilla model, FADAgp and FADATR denote the proposed
inference-time and training-time alignment methods re-
spectively, while FADATg_gp indicates the combination
of them.

When applying FADATR, the improvements are
more substantial, particularly for beam size = 1,
where it consistently outperforms the fine-tuned
model even at beam size = 7. This demonstrates
that the proposed training-time alignment enhances
the model’s inherent ability to generate more accu-
rate transcriptions without relying heavily on an ex-
tensive search space. Notably, even with beam size
= 1, FADATR achieves lower CER and WER than
the fine-tuned model with beam size = 7, highlight-
ing the effectiveness of frequency-aware training.
Moreover, FADATR also benefits from a moderate
increase in beam size, but the relative improve-
ments diminish as the beam size grows.

HPGTR - Beam Size Ablation
CER | WER |
1 5 7 1 5 7
Fine-tuned 29.01 26.92 26.87 76.25 73.82 73.31
(TrOCR)
FADATR 25.33 25.16 24.73 70.41 70.47 69.98
Synthetic Dataset - Beam Size Ablation
CER | WER |
1 5 7 1 5 7
Fine-tuned 6.44 5.92 591 18.98 17.89 17.86
(TrOCR)
FADATR 5.46 5.30 5.28 17.10 16.86 16.85

Table 11: Beam size ablation for TrOCR on HPGTR
and the Synthetic dataset.
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