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Abstract

The prevalent distributed machine learning
paradigm faces two critical challenges: commu-
nication efficiency and data privacy. SIGNSGD
provides a simple-to-implement approach with
improved communication efficiency by requiring
workers to share only the signs of the gradients.
However, it fails to converge in the presence of
data heterogeneity, and a simple fix is to add Gaus-
sian noise before taking the signs, which leads to
the Noisy SIGNSGD algorithm that enjoys compet-
itive performance while significantly reducing the
communication overhead. Existing results sug-
gest that Noisy SIGNSGD with additive Gaussian
noise has the same privacy guarantee as classic
DP-SGD due to the post-processing property of
differential privacy, and logistic noise may be a
good alternative to Gaussian noise when com-
bined with the sign-based compressor. Nonethe-
less, discarding the magnitudes in Noisy SIGNSGD
leads to information loss, which may intuitively
amplify privacy. In this paper, we make this intu-
ition rigorous and quantify the privacy amplifica-
tion effect of the sign-based compressor. Partic-
ularly, we analytically show that Gaussian noise
leads to a smaller estimation error than logistic
noise when combined with the sign-based com-
pressor and may be more suitable for distributed
learning with heterogeneous data. Then, we fur-
ther establish the convergence of Noisy SIGNSGD.
Finally, extensive experiments are conducted to
validate the theoretical results.

1College of Information Science and Electronic Engineer-
ing, Zhejiang University, Hangzhou, China. 2Department of
Electrical and Computer Engineering, North Carolina State Uni-
versity, Raleigh, NC, USA.. Correspondence to: Richeng Jin
<richengjin@zju.edu.cn>.

Proceedings of the 42nd International Conference on Machine
Learning, Vancouver, Canada. PMLR 267, 2025. Copyright 2025
by the author(s).

1. Introduction
Nowadays, deep learning has been playing a vital role in
various applications, which is fundamentally reshaping the
development of our modern society. With the tremendous
growth of neural network size, it is unlikely, if not impos-
sible, to store all the training data on a single machine and
perform centralized training. Therefore, distributed learning
has become the most prevalent training paradigm. In the
typical parameter server framework, a set of workers (or
equivalently clients) collaboratively train a global model un-
der the coordination of a server. In the celebrated distributed
stochastic gradient descent (SGD) algorithm (Bertsekas &
Tsitsiklis, 2015), the server maintains a model that is up-
dated iteratively by aggregating the stochastic gradients
derived on the local datasets from the workers.

Distributed SGD faces two critical challenges. As the sizes
of neural networks grow, the communication overhead in-
curred for the transmission of gradients becomes the major
bottleneck. For instance, modern large language models
may have billions of model parameters, and sharing the
gradients leads to prohibitive communication overhead. In
the meantime, in applications like federated learning, the
local training data may contain sensitive information about
the workers, which renders them unwilling to participate in
training. Particularly, it has been shown that training data
can be effectively reconstructed from the gradients (Wang
et al., 2019; Zhu et al., 2019; Yue et al., 2023), resulting in
privacy concerns.

To address communication efficiency concern, SIGNSGD,
which allows the workers to transmit the signs of gradients
and enables an improvement of 32× in communication ef-
ficiency, is proposed (Bernstein et al., 2018; 2019). One
major concern that prevents the application of the vanilla
SIGNSGD is the non-convergence issue in the presence of
data heterogeneity across workers. Therefore, various meth-
ods, including error compensation (Karimireddy et al., 2019;
Zheng et al., 2019), stochastic sign compressor (Chen et al.,
2020b; Safaryan & Richtárik, 2021; Jin et al., 2024; Tang
et al., 2024), variance reduction (Chzhen & Schechtman,
2023), local momentum (Sun et al., 2023), and adaptive
methods (Crawshaw et al., 2022), have been proposed to
address the non-convergence issue.

Among these approaches, a simple and elegant fix is adding

1



Noisy SIGNSGD Is More Differentially Private Than You (Might) Think

Gaussian noise to the gradients before taking the signs,
which leads to the G-NoisySign compressor and the corre-
sponding Noisy SIGNSGD algorithm (Chen et al., 2020b).
Meanwhile, adding Gaussian noise is the de facto method
for preserving differential privacy (DP) in distributed learn-
ing, which has been shown to be order-optimal (Cai et al.,
2021). Thanks to the post-processing property of differential
privacy, the privacy guarantee is preserved after taking the
signs of the perturbed gradients (Jin et al., 2020). (Chaud-
huri et al., 2022) and (Guo et al., 2023) empirically observe
that Noisy SIGNSGD achieves a comparable performance
to the classic Gaussian mechanism without compression.
Recently, (Jang et al., 2024) shows that logistic noise (with
the corresponding compressor denoted by L-NoisySign) is
more appropriate than Gaussian noise for sign-based gradi-
ent descent methods. However, these works do not account
for the potential privacy amplification effect of sign(·). In-
tuitively, discarding the magnitudes of the noisy gradients
further incurs information loss, which may potentially im-
prove privacy preservation. In this work, we make this
intuition rigorous by theoretically deriving the differential
privacy guarantee of the generic NoisySign compressors
and investigating their performance in distributed learning.
In particular, this paper makes the following contributions.

• We theoretically analyze the differential privacy guar-
antee of the generic NoisySign compressor that cap-
tures G-NoisySign and L-NoisySign as special cases
and show the privacy amplification effect of the sign(·)
compressor through the lens of f -DP. Particularly, for
the scalar case, the derived privacy guarantee is tight,
in the sense that it cannot be improved in general.

• Based on the theoretical results, we further show that
given the same privacy guarantee, G-NoisySign enjoys
a smaller estimation error than L-NoisySign and may
be more suitable for distributed learning scenarios with
heterogeneous data.

• We establish the convergence of Noisy SIGNSGD with
two aggregation schemes: averaging and majority vot-
ing. Extensive numerical and experimental results vali-
date our theoretical findings.

2. Related Work
Sign-based Gradient Quantization: The idea of sharing
the signs of gradients in SGD can be traced back to 1-bit
SGD (Seide et al., 2014). Despite that sign-based quantiza-
tion is biased in nature, (Carlson et al., 2015) and (Bernstein
et al., 2018; 2019) show theoretical and empirical evidence
that sign-based gradient descent schemes converge well in
the homogeneous data distribution scenario. (Safaryan &
Richtárik, 2021) shows the convergence of SIGNSGD given
the assumption that the probability of wrong aggregation is
less than 1/2. In the heterogeneous data distribution case,

(Chen et al., 2020b) shows that the convergence of SIGNSGD
is not guaranteed and proposes to add carefully designed
noise to ensure a convergence rate of O(d

3
4 /T

1
4 ). (Jin et al.,

2024) proposes a stochastic-sign compressor to address the
non-convergence issue. However, none of these works takes
privacy into consideration.

Differential Privacy Mechanism: To improve communica-
tion efficiency over the classic DP-SGD (Abadi et al., 2016),
significant research efforts have been devoted to develop-
ing discrete mechanisms. (Agarwal et al., 2018) extends
the one-dimensional binomial noise scheme (Dwork et al.,
2006a) to the general d-dimensional case with more compre-
hensive analysis in terms of (ϵ, δ)-DP. (Canonne et al., 2020;
Kairouz et al., 2021) study the DP guarantees of discrete
Gaussian noise. (Agarwal et al., 2021) and (Chen et al.,
2022) propose the Skellam mechanism and the Poisson bi-
nomial mechanism, respectively, with Rényi DP guarantees.
(Chaudhuri et al., 2022; Guo et al., 2023) propose privacy-
aware compression through numerical mechanism design,
and (Zhu & Blaschko, 2023) studies the impact of random
sparsification on DP-SGD. (Chen et al., 2020a) proposes
the subsampled and quantized Kashin’s response (SQKR)
mechanism that achieves order-optimal estimation error in
distributed mean estimation. (Chen et al., 2023) studies
privacy amplification by compression for central (ϵ, δ)-DP,
while (Jin et al., 2023) considers the privacy amplification
of random sparsification through the lens of f -DP.

The most related work to this paper is (Jang et al., 2024),
which finds that logistic noise is more appropriate than
Gaussian noise when combined with the sign-based com-
pressor. It is shown that, given the same privacy guaran-
tee, L-NoisySign has a lower sign-flipping probability than
G-NoisySign. However, the sign-flipping probability may
not be the best performance indicator considering that the
vanilla SIGNSGD has a sign-flipping probability of 0 but fails
to converge with heterogeneous data. In sharp contrast, by
accounting for the privacy amplification effect of the sign(·)
compressor, we show that G-NoisySign enjoys a smaller
estimation error given the same privacy guarantee, which
leads to a smaller probability of wrong aggregation in the
distributed sign estimation scenario with data heterogeneity.
In addition, we adopt the emerging f -DP framework (Dong
et al., 2021), which enjoys a better composition property
than the classic (ϵ, δ)-DP considered in (Jang et al., 2024).

Compression of Differential Privacy Mechanism: An-
other line of research considers the compression of differen-
tially private mechanisms (Bassily & Smith, 2015; Triastcyn
et al., 2021; Feldman & Talwar, 2021; Shah et al., 2022;
Liu et al., 2024), which aims to compress and simulate the
distribution of the DP optimizer, usually in the presence of
some shared randomness. The resulting compressed mech-
anisms have a smaller communication cost compared to
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the original mechanism while retaining the (or weakened)
privacy guarantee. In this work, we investigate the privacy
amplification of the sign-based compressor.

3. Problem Setup and Preliminaries
3.1. Problem Setup

We consider the classical parameter-server distributed learn-
ing framework, comprising M workers (denoted by H) and
a central server. Each worker is equipped with a local dataset
Dm, and the collective objective is to minimize the finite-
sum function:

min
w∈Rd

F (w)
def
=

1

M

∑
m∈H

fm(w), (1)

where fm(w) represents the local loss function associated
with worker m, defined by Dm and the parameter vector
w ∈ W . Specifically, fm(w) = 1

|Dm|
∑

s∈Dm
l(w; s)

where |Dm| is the size of Dm and l : W × D → R is
the loss function that quantifies the error of prediction on a
data point s ∈ Dm made with w.

3.2. Differential Privacy

Differential privacy is a rigorous mathematical framework
for quantifying and ensuring privacy in data analysis. At
its core, DP guarantees that the output of a mechanism
remains statistically indistinguishable for two neighboring
input datasets that differ in only one record. Formally, it is
defined as follows.

Definition 1 ((ϵ, δ)-DP (Dwork et al., 2006a)). A random-
ized mechanism M is (ϵ, δ)-differentially private if for all
neighboring datasets S and S′ and all O ⊂ O in the range
of M, we have

P (M(S) ∈ O) ≤ eϵP (M(S′) ∈ O) + δ, (2)
in which ϵ, δ ≥ 0 are the parameters that characterize the
level of differential privacy.

The application of differential privacy can be largely divided
into two categories: (1) Central differential privacy (CDP)
(Dwork et al., 2006b) requires a trusted central server to
randomize the collected data from the workers and release
a private version of the aggregated results; (2) Local differ-
ential privacy (LDP) (Kasiviswanathan et al., 2011) does
not assume a trusted central server. Instead, the workers
perturb the data before sharing them with the central server.
In this work, similar to (Jang et al., 2024), we mainly focus
on LDP.

3.3. f -Differential Privacy

Consider two neighboring datasets S and S′, from the hy-
pothesis testing perspective, there are two hypotheses

H0 : the underlying dataset is S,
H1 : the underlying dataset is S′.

(3)

Let P and Q denote the probability distribution of M(S)
and M(S′), respectively. Following the formulation in
(Dong et al., 2021), the task of distinguishing the two hy-
potheses can be described as a tradeoff between the achiev-
able type I and type II error rates. Specifically, for a rejection
rule 0 ≤ ϕ ≤ 1, the type I and type II error rates are defined
as αϕ = EP [ϕ] and βϕ = 1 − EQ[ϕ], respectively. f -DP
characterizes the tradeoff between these two error rates by a
tradeoff function formally defined as follows.
Definition 2 (Tradeoff function). For any two probability
distributions P and Q on the same space, the tradeoff func-
tion T (P,Q) : [0, 1] → [0, 1] is defined as T (P,Q)(α) =
inf{βϕ : αϕ ≤ α}, where the infimum is taken over all
(measurable) rejection rule ϕ.
Definition 3 (f -DP). Let f be a tradeoff function. With a
slight abuse of notation, a mechanism M is f -differentially
private if T (M(S),M(S′)) ≥ f for all neighboring
datasets S and S′, which suggests that the attacker can-
not achieve a type II error rate lower than f(α).

f -DP can be converted to (ϵ, δ)-DP in a lossless way as
follows.
Lemma 1. (Dong et al., 2021) A mechanism is f(α)-
differentially private if and only if it is (ϵ, δ)-differentially
private with

f(α) = max{0, 1− δ − eϵα, e−ϵ(1− δ − α)}. (4)

We further introduce a special instance of f -DP with
f(α) = Φ(Φ−1(1 − α) − µ), referred to as µ-GDP. In
this case, µ-GDP corresponds to the tradeoff function of
two normal distributions with mean 0 and µ, respectively,
and unit variance. It has the following composition property.
Lemma 2. The T -fold composition of µt-GDP mechanisms
is
√
u2
1 + u2

2 + · · ·+ u2
T -GDP.

4. Differential Privacy of Noisy SIGNSGD
4.1. DP Guarantees of Generic Sign-based Compressors

In this section, we consider a generic sign-based compressor
and investigate its privacy guarantee through the lens of f -
DP, starting with the scalar case and extending it to the
vector case in Section 4.3.
Definition 4 (Generic Sign-based Compressor). For any
given x ∈ [−c, c], the generic noisy sign-based compressor
outputs NoisySign(x, p+1, p−1), which is given by

NoisySign(x, p+1, p−1) =

 1, with probability p+1(x),

−1,with probability p−1(x),

(5)
where p+1(x), p−1(x) ∈ [pmin, pmax], p+1(x)+p−1(x) =
1, and 0 ≤ pmin ≤ pmax ≤ 1.

In the following, we show the f -DP of the sign-based com-
pressor. We provide a sketch of proof, and the complete
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proof is given in Appendix A. It is worth mentioning that
the result is tight and cannot be improved in general since
no relaxation is involved.

Theorem 1. Suppose that pmax + pmin = 1, and
p+1(x) > p+1(y),∀x > y. The sign-based compressor
is fNoisySign(α)-differentially private with

fNoisySign(α) =

 1− pmax

pmin
α, for α ∈ [0, pmin],

pmin

pmax
− pmin

pmax
α, for α ∈ [pmin, 1].

(6)

Sketch of Proof. The proof of Theorem 1 utilizes the
Neyman-Pearson Lemma (Lehmann et al., 2005), which
states that the most powerful test for the hypothesis
testing problem (i.e., whether the input is x or x′) at
a given type I error rate α is threshold-based, which
reduces the problem to determining the corresponding
threshold. Without loss of generality, assume that x >
x′ and let Y = NoisySign(x′, p+1, p−1) and X =
NoisySign(x, p+1, p−1).

We may set the threshold h = p−1(x
′)

p−1(x)
for α ∈ [0, p−1(x)],

i.e., if the likelihood ratio P (Y=k)
P (X=k) is larger than/equal

to/smaller than h, the hypothesis that the true data is x
will be rejected with probability 1/γ/0, where k ∈ {−1, 1}
is the observed output of the sign-based compressor. In
this case, observing that P (Y=−1)

P (X=−1) > 1 > P (Y=1)
P (X=1) since

p+1(x) > p+1(y),∀x > y, we can derive the type I and
type II error rates as follows.

EP [ϕ] = γP (X = −1) = γp−1(x) = α, (7)

1− EQ[ϕ] = 1− γP (Y = −1) = 1− γp−1(x
′)

= 1− p−1(x
′)

p−1(x)
α.

(8)

Similarly, when α ∈ [p−1(x), 1], we set h = P (Y=1)
P (X=1) , and

therefore
EP [ϕ] = P (X = −1) + γP (X = 1)

= p−1(x) + γp+1(x) = α,
(9)

and
1− EQ[ϕ] = 1− P (Y = −1)− γP (Y = 1)

= p+1(x
′)− γp+1(x

′)

= p+1(x
′)− α− p−1(x)

p+1(x)
p+1(x

′).

(10)

In summary, the type II error rate is given by

βϕ(α) =

 1− p−1(x
′)

p−1(x)
α, for α ∈ [0, p−1(x)],

p+1(x
′)

p+1(x)
− p+1(x

′)
p+1(x)

α, for α ∈ [p−1(x), 1].

(11)

The infimum of βϕ(α) is attained when p−1(x
′) = pmax

and p−1(x) = pmin, which completes the proof.

4.2. Privacy Amplification of deterministic sign(·)

Given the privacy guarantee of the generic sign-based com-
pressor in Section 4.1, we examine the privacy amplifica-
tion effect of the deterministic sign(·) compressor. Intu-
itively, the sign(·) operator does not provide differential
privacy guarantees on its own due to its deterministic na-
ture, and the adversary can distinguish x from x′ given
sign(x) or sign(x′) if xx′ < 0. However, when com-
bined with differentially private mechanisms, discarding
the magnitude is expected to improve the privacy guar-
antees. Specifically, we consider the noisy sign-based
compressor combined with Gaussian noise, denoted by G-
NoisySign, given in Algorithm 1. The G-NoisySign com-

Algorithm 1 G-NoisySign Compressor (Chen et al., 2020b)

Input: c > 0, x ∈ [−c, c], Gaussian noise n with zero
mean and variance σ2

DP .
Privatization: Z ≜ sign(x+ n).

pressor first perturbs the input x with a Gaussian noise n
with zero mean and a variance of σ2

DP and then returns
the sign of the noisy result. According to (Dong et al.,
2021), it is known that directly releasing x + n gives µ-
GDP with µ = 2c

σDP
, which further suggests (ϵ, δ)-DP with

δ(ϵ) = Φ(− ϵ
µ + µ

2 )− eϵΦ(− ϵ
µ − µ

2 ) for any ϵ ≥ 0. If we
measure the µ-GDP and (ϵ, δ)-DP in terms of tradeoff func-
tions, we have fGaussian

µ (α) = Φ(Φ−1(1 − α) − µ) and
fGaussian
ϵ,δ (α) = max{0, 1 − δ − eϵα, e−ϵ(1 − δ − α)},

respectively. In the following, we prove that releasing
sign(x + n) instead of x + n adds another level of pri-
vacy protection. Utilizing Theorem 1, we readily obtain the
f -DP guarantee of G-NoisySign as follows.
fGNS(α)

=


1−

Φ( c
σDP

)

Φ(− c
σDP

)α, for α ∈ [0,Φ(− c
σDP

)],

Φ(− c
σDP

)

Φ( c
σDP

) −
Φ(− c

σDP
)

Φ( c
σDP

) α, for α ∈ [Φ(− c
σDP

), 1].

(12)

Figure 1 compares the privacy guarantees of the G-
NoisySign mechanism with the Gaussian mechanism (i.e.,
directly releasing x+n) given c = 1 and σDP = 2. It can be
observed that fGNS(α) ≥ fGaussian

µ (α) ≥ fGaussian
ϵ,δ (α),

i.e., given the same type I error rate α, G-NoisySign at-
tains a larger type II error rate than the vanilla Gaussian
mechanism, which suggests that it is more difficult for the
adversary to distinguish the inputs, or equivalently, better
privacy.

Logistic Mechanism: Note that the generic sign-based
compressor in Definition 4 captures the logistic mechanism
in (Jang et al., 2024) as a special case. More specifically,
the logistic mechanism replaces the Gaussian noise n in

4



Noisy SIGNSGD Is More Differentially Private Than You (Might) Think

0.0 0.2 0.4 0.6 0.8 1.0
α

0.0

0.2

0.4

0.6

0.8

1.0

f(α
)

G-NoisySign (f-DP)
Gaussian Noise (GDP)
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Figure 1. Privacy Amplification of sign(·). For “G-NoisySign”,
the tradeoff function is given by (12) with c = 1 and σDP =
2; for “Gaussian Noise (GDP)”, the tradeoff function is given
by fGaussian

µ (α) with µ = 1; for “Gaussian Noise ((ϵ, δ)-
DP)”, the tradeoff function is given by fGaussian

ϵ,δ (α) with ϵ =

ln(
Φ( c

σDP
)

Φ(− c
σDP

)
) and δ = Φ(− ϵ

µ
+ µ

2
)− eϵΦ(− ϵ

µ
− µ

2
), in which

c = µ = 1 and σDP = 2.

Algorithm 1 with a logistic noise n ∼ Logistic(0, s) for
some hyperparameter s, which leads to p+1 = e

x
2s

e
x
2s +e−

x
2s

and p−1 = e−
x
2s

e
x
2s +e−

x
2s

, respectively. Utilizing Theorem 1
yields the following f -DP guarantee for L-NoisySign.

fLNS(α) =

 1− e
c
sα, for α ∈ [0, e−

c
2s

e
c
2s +e−

c
2s
],

e−
c
s − e−

c
sα, for α ∈ [ e−

c
2s

e
c
2s +e−

c
2s
, 1].

(13)
Comparison between G-NoisySign and L-NoisySign: It
can be readily shown that L-NoisySign attains the same

privacy guarantees as G-NoisySign when e
c
s =

Φ( c
σDP

)

Φ(− c
σDP

) ,

which means s = c/ ln(Φ( c
σDP

)/Φ(− c
σDP

)). While (Jang
et al., 2024) suggests that the logistic mechanism outper-
forms the Gaussian mechanism when the sign(·) compres-
sor is applied, we find that this is because the privacy ampli-
fication effect of discarding the magnitude is ignored. More
specifically, in the following, we show that G-NoisySign
may be better than L-NoisySign in terms of the estimation
error in distributed mean estimation. Particularly, utilizing
Taylor expansion, we have

E[sign (x+N (0, σDP ))] = Φ

(
x

σDP

)
− Φ

(
− x

σDP

)
=

1√
2π

∫ x
σDP

− x
σDP

e−
t2

2 dt =
1√
2π

∫ x
σDP

− x
σDP

∞∑
k=0

(−1)k
x2k

2kk!
dt

=
2√

2πσDP

x− 1

3
√
2πσ3

DP

x3 +O
(

x5

σ5
DP

)
,

(14)
and
E[sign (x+ Logistic(0, s))] =

1

2
(tanh(

x

2s
)− tanh(− x

2s
))

=
x

2s
− x3

24s3
+O

(
x5

s5

)
.

(15)

Therefore, we use
√
2πσDP

2 × sign (x+N (0, σDP )) and
2s × sign (x+ Logistic(0, s)) as the estimate of x for
G-NoisySign and L-NoisySign, respectively. In the high-
privacy regime (i.e., large σDP and s), the estimation errors
|∆G| and |∆L| are dominated by the second terms in (14)
and (15), respectively, which are given by

|∆G| =
|x|3

6σ2
DP

, |∆L| =
|x|3

12s2
. (16)

When s = c/ ln(Φ( c
σDP

)/Φ(− c
σDP

)), the sufficient and
necessary condition for |∆G| < |∆L| is given by

ln

(
Φ( c

σDP
)

Φ(− c
σDP

)

)
>

√
2c

σDP
. (17)

Let h(x) = ln( Φ(x)
Φ(−x) )−

√
2x, then h′(x) = ϕ(x)

Φ(x)(1−Φ(x))−√
2 = ϕ(x)

Φ(x) +
ϕ(−x)
Φ(−x) −

√
2, in which ϕ(·) is the probability

density function of the standard normal distribution. ϕ(x)
Φ(x)

is the famous inverse mills ratio for the standard normal
distribution, which is known to be strictly convex (Gasull
& Utzet, 2014), which suggests ϕ(x)

Φ(x) +
ϕ(−x)
Φ(−x) > 2 ϕ(0)

Φ(0) =
4√
2π

>
√
2. Therefore, h(x) > h(0) = 0 for x > 0, i.e.,

the inequality (17) holds for any c, σDP > 0. As a result, we
conclude that, in the high-privacy regime, G-NoisySign is
more suitable if we are more concerned with the estimation
error. This corresponds to the distributed mean estimation
scenario, which is the building block of federated learning.

Figure 2 presents numerical results that compare G-
NoisySign and L-NoisySign in terms of the ratios between
the estimation error (i.e., |∆G| and |∆L|) and the input
magnitude |x| for different σDP and x, which validate the
analytical results above.

0.50 0.75 1.00 1.25 1.50 1.75 2.00 2.25
σDP
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|Δ
/x
|
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L-NoisySign
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x
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0.16

|Δ
/x
|

G-NoisySign
L-NoisySign

Figure 2. The comparison of the ratios between the estimation error
and the input magnitude for G-NoisySign and L-NoisySign. For
the left figure, we fix c = 1 and x = 0.1 with varying σDP , while
for the right figure, we fix c = 1 and σDP = 0.5 with varying
x. For L-NoisySign, we set s = c/ ln(Φ( c

σDP
)/Φ(− c

σDP
)) to

ensure the same privacy guarantee.

Remark 1. (Jang et al., 2024) considers the error rate of
sign sampling as the performance metric. We note that
this may not be a good performance indicator for federated
learning with heterogeneous data across workers. In partic-
ular, it has been observed that the vanilla SIGNSGD, which
corresponds to the case that the error rate of sign sampling
is 0, fails to converge in the presence of data heterogeneity
(Karimireddy et al., 2019; Chen et al., 2020b; Jin et al.,
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Figure 3. The comparison of the probability of wrong aggregation
between G-NoisySign and L-NoisySign. A set of 100 workers are
considered, with xm = −0.05 for 1 ≤ m ≤ 98 and xm = 10 for
99 ≤ m ≤ 100. We set c = 10.

2024). With such consideration, we present additional nu-
merical results that evaluate the probability of wrong aggre-
gation of G-NoisySign and L-NoisySign in Figure 3. More
specifically, we consider a set of workers m ∈ H, each
with some data xm, and we are interested in the probability
of wrong aggregation, i.e., P (sign( 1

M

∑
m∈H sign(xm +

n)) ̸= sign( 1
M

∑
m∈H xm)). It can be observed in Figure

3 that, in the presence of data heterogeneity, G-NoisySign
may outperform L-NoisySign and attain a lower probability
of wrong aggregation. Note that when σDP is small, the
probability of wrong aggregation is larger than 0.5, which
confirms the results that SIGNSGD may fail with heteroge-
neous data. As σDP increases, the probability of wrong
aggregation first decreases and then increases. Considering
that SIGNSGD converges to a stationary point when the prob-
ability of wrong aggregation is less than 0.5 (Safaryan &
Richtárik, 2021), this implies that adding appropriate noise
may benefit both privacy and aggregation accuracy. How-
ever, it does not mean that G-NoisySign always outperforms
L-NoisySign. More numerical results concerning the impact
of data heterogeneity can be found in Appendix C.2.

4.3. Extending to the Vector Case

The privacy analyses in Section 4.1 are concerned with the
scalar case, which is extended to the vector case in this
section. More specifically, we consider a higher dimen-
sional hypothesis testing problem as in (Zheng et al., 2020)
and (Dong et al., 2021), and the most powerful test is also
threshold-based according to the Neyman-Pearson lemma.

Theorem 2. For any vectors x and x′ with ||x||2, ||x′||2 ≤
C, the tradeoff function fGNS(α) for the corresponding
hypothesis testing problem satisfies

fGNS(α)
d→∞−−−→ Gµ(α) = Φ(Φ−1(1− α)− µ), (18)

in which µ is the limit of µd with

µd ≤ 2C√
2πΦ

(
C√
dσ

)
Φ
(
− C√

dσ

)
σ

.
(19)

Sketch of Proof. In the vector case, we consider a higher
dimensional hypothesis testing problem given by

H0 : z ∼ P = P1 × P2 × · · · × Pd,

H1 : z ∼ Q = Q1 ×Q2 × · · · ×Qd.
(20)

Let Td(z) = log
(∏d

i=1 qi(zi)∏d
i=1 pi(zi)

)
denote the privacy loss, in

which z = [z1, z2, ...,zd] is the output of the mechanism,
pi(·) and qi(·) denote the probability density functions of
Pi and Qi given the input vectors x and x′, respectively.
Similar to (Jang et al., 2024), the maximizer of the privacy
loss is given by x′ = −x = C√

d
· 1.

According to the Neyman-Pearson lemma (Lehmann et al.,
2005), the most powerful test at level α is a thresholding
function of Td(z), and we have

f(α) → Gµ(α) = Φ(Φ−1(1− α)− µ), (21)
in which µ is the limit of µd with

µd =
EQ [Td(z)]− EP [Td(z)]√

VarQ [Td(z)]
. (22)

For G-NoisySign, we have
EQ [Td(z)]− EP [Td(z)]

=

d∑
i

[
Φ

(
x′
i

σ

)
− Φ

(xi

σ

)]
log

Φ
(

x′
i

σ

)
Φ
(
−xi

σ

)
Φ
(
−x′

i

σ

)
Φ
(
xi

σ

)


= 2d

[
Φ

(
C√
dσ

)
− Φ

(
− C√

dσ

)]
log

 Φ
(

C√
dσ

)
Φ
(
− C√

dσ

)
 ,

(23)
and
VarQ [Td(z)]

=

d∑
i

[
Φ

(
x′
i

σ

)
Φ

(
−x′

i

σ

)]
log2

Φ
(

x′
i

σ

)
Φ
(
−xi

σ

)
Φ
(
−x′

i

σ

)
Φ
(
xi

σ

)


= 4d

[
Φ

(
C√
dσ

)
Φ

(
− C√

dσ

)]
log2

 Φ
(

C√
dσ

)
Φ
(
− C√

dσ

)
 .

(24)

As a result,

µd =
EQ [Td(z)]− EP [Td(z)]√

VarQ [Td(z)]

=

[
Φ
(

C√
dσ

)
− Φ

(
− C√

dσ

)]√
d√

Φ
(

C√
dσ

)
Φ
(
− C√

dσ

) .

(25)

The mean value theorem (Rudin et al., 1964) implies that∣∣∣∣Φ(x′
i

σ

)
− Φ

(xi

σ

)∣∣∣∣ ≤ 1

σ
√
2π

|x′
i − xi| . (26)
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Algorithm 2 Differentially Private Noisy SIGNSGD

Initialization: The initial model weights w0, the batch
size b, the clipping function Clip(·), the learning rate η,
and the total number of communication rounds T .
for communication round t = 0, 1, 2, · · · , T do

The central server sends the model weights w(t) to the
workers.
for each worker i ∈ H do

Sample a mini-batch B(t)
i training examples of size

b at random from Di. Then compute and clip the
per-example gradients and average the mini-batch
gradients:

g
(t)
i =

1

b

∑
s∈B(t)

i

Clip(∇Fi(w
(t); s)) (28)

Compress and send Z
(t)
i = C(g(t)

i ) = sign(g
(t)
i +

N (0, σ2
DP · I)) back to the central server.

end for
The central server aggregates the received gradients
with two possible schemes
ĝ
(t)
A = Agg({Z(t)

i }i∈H)

=


1

|H|
∑

i∈H Z
(t)
i , Scheme I,

sign
(

1
|H|
∑

i∈H Z
(t)
i

)
, Scheme II.

(29)

The central server updates the model by
w(t+1) = w(t) − ηĝ

(t)
A . (30)

end for

Therefore,

µd ≤ 2C√
2πΦ

(
C√
dσ

)
Φ
(
− C√

dσ

)
σ

,
(27)

which completes the proof.

Remark 2. We note that the Gaussian mechanism with
variance σ has a µG-GDP guarantee with µG = 2C/σ
(Dong et al., 2019). In Theorem 2, when d and σ increase
(which corresponds to a larger neural network and more
stringent privacy requirement), the privacy guarantee of G-
NoisySign converges to µGNS = 2C/σ

√
π/2. Therefore,

there is an improvement by a factor of
√
π/2. Utilizing

the composition property in Lemma 2, for the same overall
privacy guarantee, G-NoisySign allows for π/2 more train-
ing steps than the classic Gaussian mechanism. Therefore,
while (Jang et al., 2024) claims a similar improvement (i.e.,
1.5× more training steps) when utilizing the L-NoisySign
mechanism, our result suggests that this is mainly due to
the fact that the privacy amplification effect of the sign(·)
compressor over the Gaussian mechanism is ignored.

5. Convergence of Noisy SIGNSGD
In this section, we show the convergence of Noisy SIGNSGD

with the G-NoisySign compressor, i.e., Algorithm 2. Dif-
ferent from (Jang et al., 2024) which mainly considers cen-
tralized learning, we focus on distributed learning with data
heterogeneity. To facilitate the convergence analysis, we
make the following commonly adopted assumptions.

Assumption 1. (Lower bound). For all x and some constant
F ∗, we have objective value F (x) ≥ F ∗.

Assumption 2. (Smoothness). ∀y,x, we require for some
non-negative constant L,

F (y) ≤ F (x) + ⟨∇F (x),y − x⟩+ L

2
||y − x||22, (31)

where ⟨·, ·⟩ is the standard inner product.

Assumption 3. (Variance bound). For any worker m, the
stochastic gradient oracle gives an independent unbiased
estimate gm that has coordinate-wise bounded variance:
E[gm] = ∇Fm(w),E[(gm,i−∇Fm(w)i)

2] ≤ σL,i, (32)
for a vector of non-negative constants σ̄L =
[σL,1, · · · , σL,d].

Assumption 4. (Gradient bound). For any worker m, the
stochastic gradient satisfies |gm,i| ≤ c,∀1 ≤ i ≤ d.

Note that clipping is usually applied to ensure bounded
gradients in DP-SGD (Abadi et al., 2016). In this work,
we follow the literature (e.g., (Chen et al., 2020b; Xiang
& Su, 2023)) and adopt the bounded gradient assumption,
i.e., Assumption 4, for convergence analysis. The impact of
gradient clipping is left for future work.

Theorem 3 (Convergence of Noisy SIGNSGD with Scheme
I). Suppose Assumptions 1-4 are satisfied, and the learning
rate is set as η = 1√

TLd
. Then by running Algorithm 2 for

T iterations, we have
1

T

T∑
t=1

∣∣∣∣∣∣∇F (w(t))
∣∣∣∣∣∣2
2
≤ (F (w(0))− F ∗)

√
Ld

√
2πσDP√

T

+

√
Ld

√
2πσDP

2
√
T

+O
(

c6

σ4
DP

)
.

(33)

Remark 3. Adding a Gaussian noise with variance σDP

yields µ-GDP with µ = O (1/σDP ), and the composition of
µ-GDP mechanisms in Lemma 2 suggests an overall privacy
guarantee µT = O

(√
T/σDP

)
over T communication

rounds. If we set σDP = O
(√

T/µT

)
, Theorem 3 implies

1
T

∑T
t=1

∣∣∣∣∇F (w(t))
∣∣∣∣2
2
≤ O (1/µT ) +O

(
c6µ4

T /T
2
)
, i.e.,

it converges to the neighborhood of the local optimum with
a gap O (1/µT ), which matches the state-of-the-art results
(Fang et al., 2022; Koloskova et al., 2023).

Theorem 4 (Convergence of Noisy SIGNSGD with Scheme
II). Suppose Assumptions 1-4 are satisfied, and the learning
rate is set as η = 1√

TLd
. Then by running Algorithm 2 for

7
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Table 1. Fashion-MNIST Test Accuracy for Varying Privacy Requirements Per Communication Round (α = 0.1)

µ 0.04 0.08 0.4 0.8 1.6

GAUSSIAN NOISE 43.78± 1.98% 58.69± 1.48% 73.48± 0.49% 77.17± 0.51% 79.90± 0.25%
G-NOISYSIGN 45.24± 2.51% 58.46± 2.48% 73.78± 0.57% 77.20± 0.29% 79.57± 0.57%

G-NOISYSIGN-VOTE 42.18± 4.03% 56.59± 1.91% 73.23± 0.66% 76.47± 0.61% 79.27± 0.37%
L-NOISYSIGN 42.52± 3.11% 58.39± 1.53% 73.89± 0.78% 77.18± 0.31% 79.66± 0.45%

L-NOISYSIGN-VOTE 40.46± 3.82% 53.89± 1.82% 73.23± 0.47% 76.49± 0.31% 79.24± 0.31%

Table 2. CIFAR-10 Test Accuracy for Varying Privacy Requirements Per Communication Round (α = 1)

µ 0.8 1.6 4 8 16

GAUSSIAN NOISE 40.77±1.22% 48.02±0.69% 56.73±0.60% 63.13±1.15% 67.53± 0.58%
G-NOISYSIGN 40.28±0.66% 47.80±0.97% 56.56±1.10% 62.70±1.57% 66.82±1.22%

G-NOISYSIGN-VOTE 38.10±1.24% 46.87±0.84% 55.39±1.03% 61.02±0.96% 65.70±1.14 %
L-NOISYSIGN 40.06±0.81% 47.77±0.62% 56.72±1.29% 62.46±1.38% 66.69±1.07%

L-NOISYSIGN-VOTE 37.46±0.84% 46.33±0.70% 55.53±0.90% 61.27±1.21% 65.25±0.71%

T iterations, we have
1

T

T∑
t=1

||∇F (w(t))||1 ≤ (F (w(0))− F ∗)
√
Ld√

T
+

√
Ld

2
√
T

+

[
σDP d

√
2π√

M
+

2||σ̄L||1√
M

+O
(

c3

σ2
DP

)]

≤ O
(

1√
T

)
+O

(
σDP√
M

+
||σ̄L||1√

M

)
+O

(
c3

σ2
DP

)
.

(34)

Remark 4. The bound in Theorem 4 depends on M . When
σDP = O(

√
T/µT ) and M = O(T ) (note that M is usu-

ally large in federated learning), we obtain a convergence
rate of 1

T

∑T
t=1 ||∇F (w(t))||1 ≤ O (1/µT ) +O

(
1/
√
T
)

.

6. Experimental Results
In this section, we present experimental results to validate
our theoretical analyses in the previous sections.

Datasets and Models: We evaluate the performance of
the algorithms on two commonly used benchmarks for dif-
ferentially private distributed learning: Fashion-MNIST
(Xiao et al., 2017) and CIFAR-10 (Krizhevsky et al., 2009).
We adopt a three-layer fully connected neural network for
Fashion-MNIST and the DPNASNet-CIFAR (Cheng et al.,
2022) for CIFAR-10. For Fashion-MNIST, we consider a
scenario of M = 100 workers with the training data on each
worker drawn independently with class labels following a
Dirichlet distribution Dir(α) with α = 0.1, and 50 work-
ers are sampled uniformly at random for training during
each communication round. For CIFAR-10, we consider a
scenario of M = 30 workers with α = 1, and all workers
participate in training during each communication round.
We train both neural networks from scratch with a batch

size of 32 in our experiments.

Hyperparameters: The per-example gradient clip-
ping thresholds are set to C = 1 and C = 2
for Fashion-MNIST and CIFAR-10, respec-
tively. We tune the learning rate from the set
{0.001, 0.002, 0.003, 0.005, 0.01, 0.02, 0.03, 0.05, 0.1, 0.2,
0.3, 0.5, 1, 2, 3, 5, 10} and run the algorithms for 500 com-
munication rounds. We run all the algorithms for 10 repeats
and present the mean test accuracy.

Results: We compare the Noisy SIGNSGD algorithms with
the G-NoisySign compressor and the L-NoisySign compres-
sor with the classic Gaussian mechanism (i.e., DP-SGD
(Abadi et al., 2016)). Note that the Gaussian mechanism has
been shown to be order-optimal (without considering the
communication efficiency) theoretically (Cai et al., 2021)
and achieve the state-of-the-art privacy-utility tradeoff ex-
perimentally (Guo et al., 2023). Table 1 and Table 2 show
that Noisy SIGNSGD with G-NoisySign and L-NoisySign
attain comparable performance to the classic Gaussian mech-
anism. In this sense, despite that discarding the magnitude
information by adopting the sign(·) compressor may result
in performance degradation, it leads to enhanced privacy
and achieves a comparable privacy-utility tradeoff. Note
that Noisy SIGNSGD requires only 1 bit for each coordinate
of the gradients and, therefore, provides an improvement
of 32× in communication efficiency. The results for the
convergence over communication rounds are presented in
Appendix C.2.2.

It is also worth mentioning that employing majority vote on
the server side leads to performance degradation (less than
2% in most of the examined scenarios). While the local pri-
vacy guarantees remain the same since it is independent of
the aggregation strategy on the server side, there is supposed
to be an enhancement in central differential privacy guaran-
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tees since the server releases less information by adopting
another sign(·) compressor (i.e., scheme II in (29)). Inves-
tigating the privacy amplification effect of the majority vote
mechanism remains an interesting future direction.

7. Conclusion
In this paper, we investigate the privacy amplification ef-
fect of the sign(·) compressor, based on which we further
show that the Noisy SIGN SGD algorithm achieves a conver-
gence rate and privacy-utility trade-off comparable to the
classic DP-SGD both theoretically and experimentally. The
analyses and results are expected to shed light on the devel-
opment of privacy-preserving and communication-efficient
distributed learning algorithms.
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A. Proofs
A.1. Proof of Theorem 1

Lemma 3. (Neyman-Pearson Lemma (Lehmann et al., 2005)) Let P and Q be probability distributions on Ω with densities
p and q, respectively. For the hypothesis testing problem H0 : P vs H1 : Q, a test ϕ : Ω → [0, 1] is the most powerful test at
level α if and only if there are two constants h ∈ [0,+∞] and γ ∈ [0, 1] such that ϕ has the form

ϕ(x) =


1, if q(x)

p(x) > h,

γ, if q(x)
p(x) = h,

0, if q(x)
p(x) < h,

(35)

and EP [ϕ] = α. The rejection rule suggests that H0 is rejected with a probability of ϕ(x) given the observation x.

In the following, we show the f -DP of the sign-based compressor.

Theorem 1. Suppose that pmax+pmin = 1, and p+1(x) > p+1(y),∀x > y. The sign-based compressor is fNoisySign(α)-
differentially private with

fNoisySign(α) =

 1− pmax

pmin
α, for α ∈ [0, pmin],

pmin

pmax
− pmin

pmax
α, for α ∈ [pmin, 1].

(36)

Proof. Let Y = NoisySign(x′, p+1, p−1) and X = NoisySign(x, p+1, p−1), we have
P (Y = −1)

P (X = −1)
=

p−1(x
′)

p−1(x)
,

P (Y = 1)

P (X = 1)
=

p+1(x
′)

p+1(x)
.

(37)

When x > x′, it can be observed that P (Y=−1)
P (X=−1) > 1 > P (Y=1)

P (X=1) . In this case, when α ∈ [0, p−1(x)], we set h = P (Y=−1)
P (X=−1)

in Lemma 3, and therefore
EP [ϕ] = γP (X = −1) = γp−1(x) = α, (38)

and

βx>x′

ϕ (α) = 1− EQ[ϕ] = 1− γP (Y = −1) = 1− γp−1(x
′) = 1− p−1(x

′)

p−1(x)
α. (39)

When α ∈ [p−1(x), 1], we set h = P (Y=1)
P (X=1) in Lemma 3, and therefore

EP [ϕ] = P (X = −1) + γP (X = 1) = p−1(x) + γp+1(x) = α, (40)
and

βx>x′

ϕ (α) = 1− EQ[ϕ] = 1− P (Y = −1)− γP (Y = 1) = p+1(x
′)− γp+1(x

′) = p+1(x
′)− α− p−1(x)

p+1(x)
p+1(x

′).

(41)

In summary, we have

βx>x′

ϕ (α) =

 1− p−1(x
′)

p−1(x)
α, for α ∈ [0, p−1(x)],

p+1(x
′)

p+1(x)
− p+1(x

′)
p+1(x)

α, for α ∈ [p−1(x), 1].
(42)

When x < x′, it can be observed that P (Y=−1)
P (X=−1) < 1 < P (Y=1)

P (X=1) . In this case, when α ∈ [0, p+1(x)], we set h = P (Y=1)
P (X=1) in

Lemma 3, and therefore
EP [ϕ] = γP (X = 1) = γp+1(x) = α, (43)

and

βx<x′

ϕ (α) = 1− EQ[ϕ] = 1− γP (Y = 1) = 1− γp+1(x
′) = 1− p+1(x

′)

p+1(x)
α. (44)

When α ∈ [p+1(x), 1], we set h = P (Y=−1)
P (X=−1) in Lemma 3, and therefore

EP [ϕ] = P (X = 1) + γP (X = −1) = p+1(x) + γp−1(x) = α, (45)

12



Noisy SIGNSGD Is More Differentially Private Than You (Might) Think

and

βx<x′

ϕ (α) = 1− EQ[ϕ] = 1− P (Y = 1)− γP (Y = −1) = p−1(x
′)− γp−1(x

′) = p−1(x
′)− α− p+1(x)

p−1(x)
p−1(x

′).

(46)

In summary, we have

βx<x′

ϕ (α) =

 1− p+1(x
′)

p+1(x)
α, for α ∈ [0, p+1(x)],

p−1(x
′)

p−1(x)
− p−1(x

′)
p−1(x)

α, for α ∈ [p+1(x), 1].
(47)

The infimum of βx>x′

ϕ (α) is attained when p−1(x
′) = pmax and p−1(x) = pmin, while the infimum of βx<x′

ϕ (α) is attained
when p+1(x

′) = pmax and p+1(x) = pmin. As a result, we have

fNoisySign(α) =

 1− pmax

pmin
α, for α ∈ [0, pmin],

pmin

pmax
− pmin

pmax
α, for α ∈ [pmin, 1],

(48)

which completes the proof.

A.2. Proof of Theorem 2

Theorem 2. For any vectors x and x′ with ||x||2, ||x′||2 ≤ C, the tradeoff function fGNS(α) for the corresponding
hypothesis testing problem satisfies

fGNS(α)
d→∞−−−→ Gµ(α) = Φ(Φ−1(1− α)− µ), (49)

in which µ is the limit of µd with

µd ≤ 2C√
2πΦ

(
C√
dσ

)
Φ
(
− C√

dσ

)
σ

.
(50)

Proof. In the vector case, we consider a higher dimensional hypothesis testing problem given by
H0 : z ∼ P = P1 × P2 × · · · × Pd,

H1 : z ∼ Q = Q1 ×Q2 × · · · ×Qd.
(51)

Let Td(z) = log
(∏d

i=1 qi(zi)∏d
i=1 pi(zi)

)
in which pi(·) and qi(·) denote the probability density functions of Pi and Qi, respectively,

and z = [z1, z2, ...,zd] is the output of the mechanism. Similar to (Jang et al., 2024), the maximize of the privacy loss is
given by x′ = −x = C√

d
· 1.

According to the Neyman-Pearson lemma (Lehmann et al., 2005), the most powerful test at level α is a thresholding
function of Td(z). Following the results in (Zheng et al., 2020) and (Dong et al., 2021), this is equivalent to applying some
thresholding function h(α) to the normalized statistic Td(z)−EP [Td(z)]√

VarP [Td(z)]
, i.e., H0 is rejected if

Td(z)− EP [Td(z)]√
VarP [Td(z)]

> h(α). (52)

Let Fd(·) be the CDF of Td(z)−EP [Td(z)]√
VarP [Td(z)]

when z is drawn from P , i.e., Fd(h) = PP

(
Td(z)−EP [Td(z)]√

VarP [Td(z)]
≤ h

)
. By

the Lyapunov central limit theorem, Td(z)−EP [Td(z)]√
VarP [Td(z)]

converges in distribution to the standard normal random variable

(Billingsley, 2017). Similarly, the normalized statistic Td(z)−EQ[Td(z)]√
VarQ[Td(z)]

for z ∼ Q also converges in distribution to the

standard normal random variable. Let F̃d(h) = PQ

(
Td(z)−EQ[Td(z)]√

VarQ[Td(z)]
≤ h

)
.

Given the above results at hand, the type I error rate is given by

PP

(
Td(z)− EP [Td(z)]√

VarP [Td(z)]
> h

)
= 1− Fd(h) = α, (53)
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and the type II error rate is given by

PQ

(
Td(z)− EP [Td(z)]√

VarP [Td(z)]
≤ h

)
= PQ

(
Td(z)− EQ [Td(z)]√

VarP [Td(z)]
≤ h− EQ [Td(z)]− EP [Td(z)]√

VarP [Td(z)]

)
= f(α). (54)

Since f is symmetric, we can readily find that VarP [Td(z)] = VarQ [Td(z)] (Dong et al., 2019; Zheng et al., 2020). As a
result,

f(α) = PQ

(
Td(z)− EQ [Td(z)]√

VarQ [Td(z)]
≤ h− EQ [Td(z)]− EP [Td(z)]√

VarQ [Td(z)]

)

= F̃d

(
F−1
d (1− α)− EQ [Td(z)]− EP [Td(z)]√

VarQ [Td(z)]

)
.

(55)

Since both Fd(·) and F̃d(·) converges in distribution to Φ(·) when d increases, we essentially have
f(α) → Gµ(α) = Φ(Φ−1(1− α)− µ), (56)

in which µ is the limit of µd with

µd =
EQ [Td(z)]− EP [Td(z)]√

VarQ [Td(z)]
. (57)

In the following, we consider two input vectors x and x′ such that ||x||2 ≤ C and ||x′||2 ≤ C, and z is the output of the
NoisySign compressor with z ∼ P if the input vector is x and z ∼ Q otherwise. In this case, we have

EP [Td(z)] =

d∑
i

[
Φ
(xi

σ

)
log

(
Φ

(
x′
i

σ

))
+Φ

(
−xi

σ

)
log

(
Φ

(
−x′

i

σ

))
− Φ

(xi

σ

)
log
(
Φ
(xi

σ

))
− Φ

(
−xi

σ

)
log
(
Φ
(
−xi

σ

))]
.

(58)

EQ [Td(z)] =

d∑
i

[
Φ

(
x′
i

σ

)
log

(
Φ

(
x′
i

σ

))
+Φ

(
−x′

i

σ

)
log

(
Φ

(
−x′

i

σ

))
− Φ

(
x′
i

σ

)
log
(
Φ
(xi

σ

))
− Φ

(
−x′

i

σ

)
log
(
Φ
(
−xi

σ

))]
.

(59)

Therefore,

EQ [Td(z)]− EP [Td(z)] =

d∑
i

[
Φ

(
x′
i

σ

)
− Φ

(xi

σ

)]
log

Φ
(

x′
i

σ

)
Φ
(
−xi

σ

)
Φ
(
−x′

i

σ

)
Φ
(
xi

σ

)
 . (60)

On the other hand, we have

VarQ [Td(z)] =

d∑
i

[
Φ

(
x′
i

σ

)
Φ

(
−x′

i

σ

)]
log2

Φ
(

x′
i

σ

)
Φ
(
−xi

σ

)
Φ
(
−x′

i

σ

)
Φ
(
xi

σ

)
 . (61)

As a result,

µd =
EQ [Td(z)]− EP [Td(z)]√

VarQ [Td(z)]
=

∑d
i

[
Φ
(

x′
i

σ

)
− Φ

(
xi

σ

) ]
log

Φ

(
x′
i

σ

)
Φ(−xi

σ )

Φ

(
−

x′
i

σ

)
Φ(xi

σ )


√√√√√∑d

i

[
Φ
(

x′
i

σ

)
Φ
(
−x′

i

σ

)]
log2

Φ

(
x′
i

σ

)
Φ(−xi

σ )

Φ

(
−

x′
i

σ

)
Φ(xi

σ )


. (62)

Plugging x′ = −x = C√
d
· 1 into (62) yields
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µd =
EQ [Td(z)]− EP [Td(z)]√

VarQ [Td(z)]
=

[
Φ
(

C√
dσ

)
− Φ

(
− C√

dσ

)]√
d√

Φ
(

C√
dσ

)
Φ
(
− C√

dσ

) . (63)

The mean value theorem (Rudin et al., 1964) implies that∣∣∣∣Φ(x′
i

σ

)
− Φ

(xi

σ

)∣∣∣∣ ≤ 1

σ
√
2π

|x′
i − xi| . (64)

Therefore, we conclude that

µd ≤ 2C√
2πΦ

(
C√
dσ

)
Φ
(
− C√

dσ

)
σ

,
(65)

which completes the proof.

A.3. Proof of Theorem 3

Theorem 3 (Convergence of NoisySign SGD with Scheme I). Suppose Assumptions 1-4 are satisfied, and the learning
rate is set as η = 1√

TLd
. Then by running Algorithm 2 for T iterations, we have

1

T

T∑
t=1

∣∣∣∣∣∣∇F (w(t))
∣∣∣∣∣∣2
2
≤ (F (w(0))− F ∗)

√
Ld

√
2πσDP√

T
+

√
Ld

√
2πσDP

2
√
T

+O
(

c6

σ4
DP

)
. (66)

Before proving Theorem 3, we first show the following lemma.

Lemma 4. For any x ∈ [−c, c] and σDP > c, we have

E[sign (x+N (0, σDP ))] =
2

σDP

√
2π

x+∆, (67)

and
E[|sign (x+N (0, σDP ))− E[sign (x+N (0, σDP ))]|2] ≤ 1, (68)

in which ∆ = O
(

c3

σ3
DP

)
.

Proof.
E[sign (x+N (0, σDP ))]

= Φ

(
x

σDP

)
− Φ

(
− x

σDP

)
=

1√
2π

∫ x
σDP

−∞
e−

t2

2 dt− 1√
2π

∫ − x
σDP

−∞
e−

t2

2 dt

=
1√
2π

∫ x
σDP

− x
σDP

e−
t2

2 dt

=
1√
2π

∫ x
σDP

− x
σDP

∞∑
k=0

(−1)k
x2k

2kk!
dt

=
1√
2π

∫ x
σDP

− x
σDP

1 +

∞∑
k=1

(−1)k
x2k

2kk!
dt

=
2√

2πσDP

x+
1√
2π

[ ∞∑
k=1

(−1)k
x2k+1

2kk!(2k + 1)

] x
σDP

− x
σDP

=
2

σDP

√
2π

x+O
(

c3

σ3
DP

)
,

(69)
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in which we utilize the Taylor expansion of e−
t2

2 .

Moreover,
E[|sign (x+N (0, σDP ))− E[sign (x+N (0, σDP ))]|2]

= Φ

(
x

σDP

)
|1− E[sign (x+N (0, σDP ))]|2 +Φ

(
− x

σDP

)
|1 + E[sign (x+N (0, σDP ))]|2

=

[
Φ

(
x

σDP

)
+Φ

(
− x

σDP

)] [
1 + (E[sign (x+N (0, σDP ))])

2
]

− 2

[
Φ

(
x

σDP

)
− Φ

(
− x

σDP

)]
E[sign (x+N (0, σDP ))]

= 1− (E[sign (x+N (0, σDP ))])
2 ≤ 1,

(70)

which completes the proof.

Given Lemma 4, we are ready to prove Theorem 3.

Proof. According to Assumption 2, we have
F (w(t+1))− F (w(t))

≤ ⟨∇F (w(t)),w(t+1) −w(t)⟩+ L

2
||w(t+1) −w(t)||22

= −η

〈
∇F (w(t)),

1

M

∑
m∈H

sign(g(t)
m + nm)

〉
+

L

2

∣∣∣∣∣∣∣∣η 1

M

∑
m∈H

sign(g(t)
m + nm)

∣∣∣∣∣∣∣∣2

≤ −η

〈
∇F (w(t)),

1

M

∑
m∈H

sign(g(t)
m + nm)

〉
+

Ldη2

2

(71)

Taking expectations on both sides yields
E[F (w(t+1))− F (w(t))]

≤ −ηE

[〈
∇F (w(t)),

1

M

∑
m∈H

sign(g(t)
m + nm)

〉]
+

Ldη2

2

= −ηE

[〈
∇F (w(t)),

2

σDP

√
2π

1

M

∑
m∈H

g(t)
m +

1

M

∑
m∈H

∆m

〉]
+

Ldη2

2

= −η
2

σDP

√
2π

∣∣∣∣∣∣∇F (w(t))
∣∣∣∣∣∣2
2
− ηE

[〈
∇F (w(t)),

1

M

∑
m∈H

∆m

〉]
+

Ldη2

2

= −η
2

σDP

√
2π

∣∣∣∣∣∣∇F (w(t))
∣∣∣∣∣∣2
2
+

η

2
E

 2

σDP

√
2π

∣∣∣∣∣∣∇F (w(t))
∣∣∣∣∣∣2
2
+

√
2πσDP

2

∣∣∣∣∣
∣∣∣∣∣ 1M ∑

m∈H
∆m

∣∣∣∣∣
∣∣∣∣∣
2

2

+
Ldη2

2

= − η

σDP

√
2π

∣∣∣∣∣∣∇F (w(t))
∣∣∣∣∣∣2
2
+ ηO

(
c6

σ5
DP

)
+

Ldη2

2
,

(72)

in which ∆m = [∆m,1,∆m,2, ...,∆m,d] with ∆m,i = O
(

c3

σ3
DP

)
∀i, and we utilize the fact that − < a, b >≤ 1

2 ||a||
2
2 +

1
2 ||b||

2
2. Adjusting the above inequality and averaging both sides over t = 1, 2, · · · , T , we can obtain

1

T

T∑
t=1

∣∣∣∣∣∣∇F (w(t))
∣∣∣∣∣∣2
2
≤ E[F (w(0))− F (w(t+1))]σDP

√
2π

Tη
+

Ld
√
2πησDP

2
+O

(
c6

σ4
DP

)
. (73)

16



Noisy SIGNSGD Is More Differentially Private Than You (Might) Think

Letting η = 1√
LTd

gives

1

T

T∑
t=1

∣∣∣∣∣∣∇F (w(t))
∣∣∣∣∣∣2
2

≤ E[F (w(0))− F (w(t+1))]
√
Ld

√
2πσDP√

T
+

√
Ld

√
2πσDP

2
√
T

+O
(

c6

σ4
DP

)
≤ (F (w(0))− F ∗)

√
Ld

√
2πσDP√

T
+

√
Ld

√
2πσDP

2
√
T

+O
(

c6

σ4
DP

)
.

(74)

which completes the proof.

B. Proof of Theorem 4
Theorem 4 (Convergence of NoisySign SGD with Scheme II). Suppose Assumptions 1-4 are satisfied, and the learning
rate is set as η = 1√

TLd
. Then by running Algorithm 2 for T iterations, we have

1

T

T∑
t=1

||∇F (w(t))||1 ≤ (F (w(0))− F ∗)
√
Ld√

T
+

√
Ld

2
√
T

+

[
σDP d

√
2π√

M
+

2||σ̄L||1√
M

+O
(

c3

σ2
DP

)]

≤ O
(

1√
T

)
+O

(
σDP√
M

+
||σ̄L||1√

M

)
+O

(
c3

σ2
DP

)
.

(75)

Proof. According to Assumption 2, we have
F (w(t+1))− F (w(t))

≤ ⟨∇F (w(t)),w(t+1) −w(t)⟩+ L

2
||w(t+1) −w(t)||22

= −η

〈
∇F (w(t)), sign

(
1

M

∑
m∈H

sign(g(t)
m + nm)

)〉

+
L

2

∣∣∣∣∣∣∣∣ηsign( 1

M

∑
m∈H

sign(g(t)
m + nm)

)∣∣∣∣∣∣∣∣2

≤ −η

〈
∇F (w(t)), sign

(
1

M

∑
m∈H

sign(g(t)
m + nm)

)〉
+

Ldη2

2

= −η||∇F (w(t))||1 +
Ldη2

2
+ 2η

d∑
i=1

|∇F (w(t))i| × 1
sign( 1

M

∑
m∈H sign(g

(t)
m,i+nm)) ̸=sign(∇F (w(t))i)

,

(76)

where ∇F (w(t))i is the i-th entry of the vector ∇F (w(t)) and η is the learning rate. Taking expectations on both sides
yields

E[F (w(t+1))− F (w(t))]

≤ −η||∇F (w(t))||1 +
Ldη2

2

+ 2η

d∑
i=1

E
[
|∇F (w(t))i|P

(
sign

(
1

M

∑
m∈H

sign(g
(t)
m,i + nm)

)
̸= sign(∇F (w(t))i)

)]
.

(77)
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In addition,

P

(
sign

(
1

M

∑
m∈H

sign(g
(t)
m,i + nm)

)
̸= sign(∇F (w(t))i)

)
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For each term above, we have
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and
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Plugging (78),(79),(80), and (81) into (77) yields
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Adjusting the above inequality and averaging both sides over t = 1, 2, · · · , T , we can obtain
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Letting η = 1√
LTd

and dividing both sides by η gives
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which completes the proof.

C. Details of the Implementation and Additional Results
Our experiments are mainly implemented using Python 3.8 with packages Numpy 1.19.2 and Pytorch 1.10.1.
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Figure 4. The comparison of the probability of wrong aggregation between G-NoisySign and L-NoisySign with c = 10. A set of 10
workers is considered, with xm = N (−1, 1) for m < 7 and xm = N (xheterog, 1) otherwise. For the left and right figures in the first
row, xheterog = 1 and xheterog = 3, respectively. For the left and right figures in the second row, xheterog = 5 and xheterog = 10,
respectively.

C.1. Dataset and Pre-processing

We perform experiments on the standard Fashion-MNIST (Xiao et al., 2017) and CIFAR-10 (Krizhevsky et al., 2009)
datasets. The Fashion-MNIST dataset consists of 60,000 training samples and 10,000 testing samples. Each sample is a
28×28 size gray-level image. We normalize the data by dividing it by the max RGB value (i.e., 255.0). The CIFAR-10
dataset contains 50,000 training samples and 10,000 testing samples. Each sample is a 32×32 color image. The data are
normalized with a zero-centered mean.

C.2. Additional Results

C.2.1. ADDITIONAL RESULTS FOR SECTION 4

We conduct additional experiments to examine the impact of data heterogeneity. In Figure 4, a set of 10 workers is considered,
with xm = N (−1, 1) for m < 7 and xm = N (xheterog, 1) otherwise. It can be observed that when the data distribution is
less heterogeneous (i.e., xheterog = 1), L-NoisySign outperforms G-NoisySign since the vanilla SIGNSGD converges well
and Gaussian noise tends to result in a larger variance than Logistic noise with the same privacy guarantees. When the data
distribution becomes more heterogeneous, G-NoisySign outperforms L-NoisySign for an appropriate σDP . The crossover
happens when σDP is larger for more severe data heterogeneity. This validates that G-NoisySign may be more suitable for
heterogeneous cases. We further consider a set of 10 workers, with xm = −1 for m < 7 and xm = xheterog otherwise, and
the results are presented in Figure 5, which agree with those in Figure 4.

C.2.2. ADDITIONAL RESULTS FOR SECTION 6

Figure 6 presents the convergence of the algorithms with respect to the communication rounds. Note that compared to
Gaussian noise (i.e., DP-SGD), G-NoisySign and L-NoisySign reduce the communication overhead from the workers to the
server by a factor of 32, while the majority vote variants further enjoy improvement in communication efficiency from the
server to the workers.
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Figure 5. The comparison of the probability of wrong aggregation between G-NoisySign and L-NoisySign with c = 10. A set of 10
workers is considered, with xm = −1 for m < 7 and xm = xheterog otherwise. The results agree with those in Figure 4.
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(a) µ = 0.8
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Figure 6. The convergence curve of the algorithms on CIFAR-10 with µ ∈ {0.8, 1.6}.

We note that the composition property in Lemma 2 suggests that, for the same overall privacy guarantee, utilizing the
privacy amplification effect of sign(·) allows for π

2 ≈ 1.5× training steps with the same Gaussian noise variance per step.
Therefore, in Table 3, we add two more baselines: (1) G-NoisySign without utilizing the privacy amplification analyses
(i.e., adding Gaussian noise with the same variance as DP-SGD); (2) G-NoisySign that runs 320 rounds (slightly more than
500 ∗ 2/π rounds) instead of 500 rounds. It can be observed that G-NoisySign and G-NoisySign-Vote outperform the two
additional baselines in all the examined privacy budgets, which validates that the privacy amplification indeed leads to
improvement in test accuracy.

In Table 4-5, we present the results for a less heterogeneous data distribution, with α = 100 and the remaining settings the
same as Table 1-2. In Table 6, we perform experiments on Fashion-MNIST with 5 workers selected in each communication
round. It can be observed that G-NoisySign and L-NoisySign achieve performance comparable to the Gaussian mechanism
in all the examined scenarios.
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Table 3. Fashion-MNIST Test Accuracy for Varying Privacy Requirements Per Communication Round (α = 0.1)

µ 0.04 0.08 0.4 0.8 1.6

GAUSSIAN NOISE 43.78± 1.98% 58.69± 1.48% 73.48± 0.49% 77.17± 0.51% 79.90± 0.25%
G-NOISYSIGN 45.24± 2.51% 58.46± 2.48% 73.78± 0.57% 77.20± 0.29% 79.57± 0.57%
G-NOISYSIGN
(320 ROUND) 40.94± 4.49% 54.49± 2.68% 72.71± 0.68% 76.15± 0.46% 78.70± 0.65%

G-NOISYSIGN W.O.
PRIVACY AMPLIFICATION

37.36± 4.07% 52.06± 2.54% 72.83± 0.62% 76.49± 0.43% 79.11± 0.45%

G-NOISYSIGN-VOTE 42.18± 4.03% 56.59± 1.91% 73.23± 0.66% 76.47± 0.61% 79.27± 0.37%
G-NOISYSIGN-VOTE

(320 ROUND) 35.79± 5.61% 49.85± 2.65% 71.69± 0.64% 75.17± 0.39% 78.01± 0.60%

G-NOISYSIGN-VOTE W.O.
PRIVACY AMPLIFICATION

38.00± 5.26% 49.85± 3.22% 71.64± 0.83% 75.84± 0.55% 78.52± 0.39%

L-NOISYSIGN 42.52± 3.11% 58.39± 1.53% 73.89± 0.78% 77.18± 0.31% 79.66± 0.45%
L-NOISYSIGN-VOTE 40.46± 3.82% 53.89± 1.82% 73.23± 0.47% 76.49± 0.31% 79.24± 0.31%

Table 4. Fashion-MNIST Test Accuracy for Varying Privacy Requirements Per Communication Round (α = 100)

µ 0.04 0.08 0.4 0.8 1.6

GAUSSIAN NOISE 45.47± 3.25% 59.21± 2.25% 74.29± 0.42% 77.57± 0.23% 80.31± 0.27%
G-NOISYSIGN 45.46± 3.08% 59.84± 2.40% 74.64± 0.34% 77.61± 0.44% 80.24± 0.22%

G-NOISYSIGN-VOTE 42.42± 3.40% 57.32± 3.42% 73.60± 0.29% 77.18± 0.30% 79.81± 0.28%
L-NOISYSIGN 45.26± 3.19% 59.43± 2.51% 74.91± 0.55% 77.69± 0.55% 80.28± 0.23%

L-NOISYSIGN-VOTE 42.80± 2.77% 55.42± 2.56% 73.32± 0.72% 77.00± 0.32% 79.80± 0.22%

Table 5. CIFAR-10 Test Accuracy for Varying Privacy Requirements Per Communication Round (α = 100)

µ 0.8 1.6 4 8 16

GAUSSIAN NOISE 41.24± 1.21% 48.60± 0.53% 56.44± 1.12% 63.63± 0.79% 66.35± 1.12%
G-NOISYSIGN 40.18± 0.89% 47.90± 0.64% 57.24± 1.01% 63.18± 1.27% 67.23± 1.38%

G-NOISYSIGN-VOTE 38.98± 0.75% 46.50± 0.67% 55.60± 0.68% 61.87± 0.91% 66.16± 1.00%
L-NOISYSIGN 40.39± 0.97% 48.28± 0.66% 57.73± 0.93% 62.45± 1.13% 66.82± 1.71%

L-NOISYSIGN-VOTE 38.88± 0.74% 46.76± 1.02% 55.74± 1.03% 61.65± 1.20% 65.93± 0.82%

Table 6. Fashion-MNIST Test Accuracy for Varying Privacy Requirements with 5 workers selected Per Communication Round (α = 0.1)

µ 0.04 0.08 0.4 0.8 1.6

GAUSSIAN NOISE 27.90± 3.69% 43.00± 3.63% 69.06± 0.98% 73.15± 0.60% 76.06± 0.97%
G-NOISYSIGN 28.53± 4.42% 42.67± 3.23% 68.93± 1.33% 73.26± 0.87% 76.37± 0.59%

G-NOISYSIGN-VOTE 24.39± 3.57% 37.81± 2.08% 67.20± 1.02% 72.33± 0.78% 75.60± 0.85%
L-NOISYSIGN 25.86± 4.71% 42.44± 2.95% 68.78± 1.13% 73.18± 0.96% 76.31± 0.70%

L-NOISYSIGN-VOTE 24.17± 4.75% 37.46± 4.09% 66.92± 1.25% 72.34± 1.01% 75.69± 0.55%
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