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Abstract

The burgeoning interest in Multimodal Large001
Language Models (MLLMs), such as OpenAI’s002
GPT-4V(ision), has significantly impacted both003
academic and industrial realms. These mod-004
els enhance Large Language Models (LLMs)005
with advanced visual understanding capabili-006
ties, facilitating their application in a variety of007
multimodal tasks. Recently, Google introduced008
Gemini, a cutting-edge MLLM designed specif-009
ically for multimodal integration. Despite its010
advancements, preliminary benchmarks indi-011
cate that Gemini lags behind GPT models in012
commonsense reasoning tasks. However, this013
assessment, based on a limited dataset (i.e., Hel-014
laSWAG), does not fully capture Gemini’s au-015
thentic commonsense reasoning potential. To016
address this gap, our study undertakes a thor-017
ough evaluation of Gemini’s performance in018
complex reasoning tasks that necessitate the019
integration of commonsense knowledge across020
modalities. We carry out a comprehensive anal-021
ysis of 12 commonsense reasoning datasets,022
ranging from general to domain-specific tasks.023
This includes 11 datasets focused solely on lan-024
guage, as well as one that incorporates multi-025
modal elements. Our experiments across four026
LLMs and two MLLMs demonstrate Gemini’s027
competitive commonsense reasoning capabil-028
ities. We also highlight common challenges029
faced by current LLMs and MLLMs in com-030
monsense reasoning, emphasizing the need for031
further advancements.032

1 Introduction033

Commonsense reasoning, integral to human cog-034

nition, plays a crucial role in navigating the in-035

tricacies of everyday life. Consider a scenario036

where someone decides what to wear based on the037

weather. This decision extends beyond the mere se-038

lection of attire; it involves understanding weather039

patterns, the suitability of clothing for different tem-040

peratures, and the social context of the occasion.041

It’s about synthesizing diverse pieces of knowledge:042

a forecast predicting rain, the practical necessity 043

for a raincoat, and the societal expectation of dress- 044

ing appropriately for an event. This reasoning goes 045

beyond simply processing information; it entails 046

integrating varied pieces of knowledge that humans 047

often take for granted. A major challenge in Nat- 048

ural Language Processing (NLP) research is the 049

ambiguity and under-specification of human lan- 050

guage. Individuals rely heavily on their common- 051

sense knowledge and reasoning abilities to decipher 052

these ambiguities and infer missing information. 053

Commonsense reasoning has consistently posed 054

unique challenges in NLP research (Li et al., 2021; 055

Bian et al., 2023), encompassing spatial, physical, 056

social, temporal, and psychological aspects, along 057

with an understanding of social norms, beliefs, val- 058

ues, and the nuances of predicting and interpreting 059

human behavior (Liu and Singh, 2004). Models of- 060

ten lack this innate commonsense, hindering their 061

ability to contextualize data coherently, in stark 062

contrast to the human capacity for effortlessly un- 063

derstanding everyday situations (Shwartz and Choi, 064

2020; Bhargava and Ng, 2022). 065

Recent advances in Large Language Models 066

(LLMs) have sparked unprecedented enthusiasm 067

in the NLP community and beyond, significantly 068

enhancing a wide array of applications (Min et al., 069

2021; Zhao et al., 2023; Wang et al., 2023; Kas- 070

neci et al., 2023; He et al., 2023). Building 071

on these achievements, Multimodal Large Lan- 072

guage Models (MLLMs) have emerged as a piv- 073

otal focus in the next wave of AI (Wu et al., 074

2023b), speculated to advance towards Artificial 075

General Intelligence (AGI), which aims to de- 076

velop AI systems smarter than humans and ben- 077

eficial for all of humanity (Rayhan et al., 2023). 078

The rise of MLLMs, particularly OpenAI’s GPT- 079

4V(ision) (Yang et al., 2023) and Google’s Gem- 080

ini (Team et al., 2023), marks significant progress 081

in this area. Among these developments, Gemini 082

emerges as a formidable challenger to the state- 083
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of-the-art MLLM, GPT-4V, specially engineered084

for multimodal integration. Its release has ignited085

constructive discussions about the current level of086

AGI achievement. In widely used academic bench-087

marks, Gemini has attained new state-of-the-art088

status in the majority of tasks. However, prelimi-089

nary evaluations of Gemini, especially when com-090

pared to models like the GPT series, have indi-091

cated potential shortcomings in its commonsense092

reasoning capabilities, a fundamental aspect of hu-093

man cognition. Yet, it is important to consider094

that basing the assessment of Gemini’s common-095

sense reasoning abilities solely on the HellaSWAG096

dataset (Zellers et al., 2019b) may not comprehen-097

sively reflect Gemini’s full scope in this domain.098

To address the gap in the comprehensive evalu-099

ation of Gemini’s real-world performance in com-100

monsense reasoning tasks, our study conducts ex-101

tensive experiments across 12 commonsense rea-102

soning datasets, covering a broad spectrum of do-103

mains such as general, physical, social, and tem-104

poral reasoning. The definitions of all tasks can105

be found in Appendix A. We experiment with four106

popular LLMs for the language dataset evaluation,107

including Llama2-70b (Touvron et al., 2023), Gem-108

ini Pro (Team et al., 2023), GPT-3.5 Turbo, and109

GPT-4 Turbo (OpenAI, 2023). For the multimodal110

dataset, we assess both Gemini Pro Vision and111

GPT-4V. Our key findings are summarized as fol-112

lows: (1) Overall, Gemini Pro’s performance is113

comparable to that of GPT-3.5 Turbo, demonstrat-114

ing marginally better average results across 11 lan-115

guage datasets (1.4% higher accuracy), though it116

lags behind GPT-4 Turbo by an average of 8.2% in117

accuracy. Moreover, Gemini Pro Vision exhibits118

lower performance than GPT-4V on the multimodal119

dataset, except for temporal-related questions. (2)120

Approximately 65.8% of Gemini Pro’s reasoning121

processes are evaluated as logically sound and con-122

textually relevant, indicating its potential for effec-123

tive application in various domains. (3) Gemini Pro124

encounters significant challenges in temporal and125

social commonsense reasoning, indicating key ar-126

eas for further development. (4) Our manual error127

analysis reveals that Gemini Pro often misunder-128

stands provided contextual information, accounting129

for 30.2% of its total errors. Furthermore, Gemini130

Pro Vision struggles particularly with identifying131

emotional stimuli in images, especially those in-132

volving human entities, which constitutes 32.6% of133

its total errors.134

In summary, our contributions are threefold: 135

(1) We provide the first thorough evaluation of 136

Gemini Pro’s efficacy in commonsense rea- 137

soning tasks, employing 12 diverse datasets 138

that span both language-based and multimodal 139

scenarios. 140

(2) Our study reveals that Gemini Pro exhibits 141

performance comparable to GPT-3.5 Turbo in 142

language-only commonsense reasoning tasks, 143

demonstrating logical and contextual reason- 144

ing processes. However, it lags behind GPT-4 145

Turbo in accuracy and encounters challenges 146

in temporal and social reasoning, as well as in 147

emotion recognition in images. 148

(3) Our findings lay a valuable foundation for fu- 149

ture research in the field of commonsense rea- 150

soning within LLMs and MLLMs, highlight- 151

ing the necessity to enhance specialized do- 152

mains in these models and the nuanced recog- 153

nition of mental states and emotions in multi- 154

modal contexts. 155

2 Experimental Setup 156

2.1 Datasets 157

We experiment with 12 datasets related to differ- 158

ent types of commonsense reasoning, which in- 159

clude 11 language-based datasets and one multi- 160

modal dataset. The language-based datasets en- 161

compass three main categories of commonsense 162

reasoning problems. General and Contextual 163

Reasoning: (1) CommonsenseQA (Talmor et al., 164

2019), focusing on general commonsense knowl- 165

edge; (2) Cosmos QA (Huang et al., 2019), em- 166

phasizing contextual understanding narratives, (3) 167

αNLI (Bhagavatula et al., 2019), introducing ab- 168

ductive reasoning, which involves inferring the 169

most plausible explanation; and (4) HellaSWAG, 170

centering around reasoning with contextual event 171

sequences. Specialized and Knowledge Reason- 172

ing: (1) TRAM (Wang and Zhao, 2023b), testing 173

reasoning about time; (2) NumerSense (Lin et al., 174

2020), focusing on numerical understanding; (3) 175

PIQA (Bisk et al., 2020), assessing physical inter- 176

action knowledge; (4) QASC (Khot et al., 2020), 177

dealing with science-related reasoning; and (5) Rid- 178

dleSense (Lin et al., 2021), challenging creative 179

thinking through riddles. Social and Ethical Rea- 180

soning: (1) Social IQa (Sap et al., 2019), testing 181

the understanding of social interactions; and (2) 182
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ETHICS (Hendrycks et al., 2020), evaluating moral183

and ethical reasoning. For the multimodal dataset184

(vision and language), we select VCR (Zellers et al.,185

2019a), a large-scale dataset for cognition-level vi-186

sual understanding. For datasets like TRAM and187

ETHICS, which include multiple tasks, we extract188

the commonsense reasoning part for experiments.189

We employ accuracy as the performance metric for190

all datasets. More details about each dataset, as191

well as example questions, are in Appendix B.192

2.2 Models193

We consider four popular LLMs for language-194

based dataset evaluation, including the open-195

source model Llama-2-70b-chat (Touvron et al.,196

2023) as well as the closed-source models Gemini197

Pro (Team et al., 2023), GPT-3.5 Turbo, and GPT-4198

Turbo (OpenAI, 2023). Each of these models is199

accessed using its corresponding API key. Specif-200

ically, we query Gemini through Google Vertex201

AI, the GPT models through the OpenAI API, and202

Llama2 through DeepInfra. For the multimodal203

dataset, we consider GPT-4V (gpt-4-vision-preview204

in API) and Gemini Pro Vision (gemini-pro-vision205

in API) in our experiments. Given the constraints206

of API costs and rate limitations, we randomly se-207

lect 200 examples from the validation set for each208

language-based dataset following (Wang and Zhao,209

2023b) and 50 examples from the validation set for210

the VCR dataset following (Liu and Chen, 2023).211

For all evaluations, we employ greedy decoding212

(i.e., temperature = 0) during model response gen-213

eration. Notably, there are instances where the214

models decline to respond to certain queries, partic-215

ularly those involving potentially illegal or unethi-216

cal content. Sometimes, models provide answers217

that are outside the scope of the options. In these218

cases, we categorize these unanswered questions219

as incorrect.220

2.3 Prompts221

In the evaluation of language-based datasets, we222

employ two prompting settings: (1) zero-shot223

standard prompting (SP) (Kojima et al., 2022),224

which aims to gauge the models’ inherent com-225

monsense capabilities in linguistic contexts, and (2)226

few-shot chain-of-thought (CoT) prompting (Wei227

et al., 2022), implemented to observe potential en-228

hancements in the models’ performance. For the229

multimodal dataset, we utilize zero-shot standard230

prompting to assess the authentic end-to-end visual231

commonsense reasoning abilities of MLLMs.232

3 Results 233

3.1 Overall Performance Comparison 234

Table 1 demonstrates the accuracy comparison of 235

four LLMs under zero-shot SP and few-shot CoT 236

settings on 11 language-based commonsense rea- 237

soning datasets. There are several key takeaways. 238

First, from the model perspective, GPT-4 Turbo 239

outperforms the other models across the major- 240

ity of datasets on average. Under the zero-shot 241

learning paradigm, it surpasses Gemini Pro, the 242

second-best performing model, by 7.3%, and shows 243

an even greater lead of 9.0% under the few-shot 244

learning paradigm. Gemini Pro exhibits marginally 245

higher average accuracy than GPT-3.5 Turbo, with 246

an increase of 1.3% under zero-shot SP and 1.5% 247

in the few-shot CoT scenario. It also demon- 248

strates substantially better performance than Llama- 249

2-70b. Regarding prompting methods, the CoT ap- 250

proach consistently enhances performance across 251

all datasets, with pronounced gains observed in 252

datasets such as CommonsenseQA, TRAM, and 253

Social IQa. Lastly, from a dataset standpoint, it 254

is apparent that while these models exhibit com- 255

mendable performance across a broad spectrum of 256

commonsense domains, they encounter challenges 257

in specific areas, particularly those involving tem- 258

poral (TRAM) and social (Social IQa) dimensions 259

of commonsense reasoning. 260

For the multimodal VCR dataset, we report the 261

performance of GPT-4V and Gemini Pro Vision in 262

Table 2. The VCR consists of three subtasks: (1) 263

Q → A, which involves generating an answer to a 264

question based on the visual context; (2) QA → R, 265

which requires the model to produce a rationale for 266

a given answer; and (3) Q → AR, which challenges 267

the model to both answer the question and justify 268

the response with appropriate rationales. In all sub- 269

tasks, GPT-4V demonstrates superior performance 270

compared to Gemini Pro Vision, indicating a more 271

robust capacity for integrating visual and textual 272

information to provide coherent responses. In Q → 273

AR, the relatively lower performance of both mod- 274

els, compared to the other two subtasks, suggests 275

that there is considerable room for improvement 276

in understanding the interplay between visual cues 277

and commonsense reasoning. 278

3.2 Effects of Commonsense Domain 279

Referring to Section 2.1, we have categorized 11 280

language-based datasets into three groups and pre- 281

sented the performance for each setting within each 282
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Figure 1: Average model performance across three major commonsense reasoning categories over 11 language-
based datasets, including General and Contextual Reasoning (CommonsenseQA, Cosmos QA, αNLI, HellaSWAG),
Specialized and Knowledge Reasoning (TRAM, NumerSense, PIQA, QASC, RiddleSense), and Social and Ethical
Reasoning (Social IQa, ETHICS). GPT-4 Turbo consistently exhibits superior performance in all commonsense
reasoning categories. Gemini Pro marginally surpasses GPT-3.5 Turbo in the first two categories, except for Social
and Ethical Reasoning.

group in Figure 1. Our findings indicate that GPT-4283

Turbo consistently leads in performance across all284

categories. The Llama-2-70b model demonstrates285

marginally lower accuracy in comparison to the286

other models. Gemini Pro and GPT-3.5 Turbo dis-287

play comparable performances; however, Gemini288

Pro slightly outperforms GPT-3.5 Turbo in two of289

the three categories. Notably, its performance dip290

in the Social and Ethical Reasoning group may291

stem from its tendency to refuse to answer ques-292

tions that could potentially involve unethical con-293

tent, which we have counted as incorrect in our eval-294

uation. Based on our experiments, among the 200295

samples, Gemini Pro refuses to answer 3.0% of the296

problems (6 in total) in the Social IQa dataset and297

6.5% of the problems (13 in total) in the ETHICS298

dataset. Overall, all models exhibit robust capa-299

bilities in handling Social and Ethical Reasoning300

datasets, suggesting a relatively advanced grasp of301

moral and social norms. However, there is a notable302

disparity in their performance on General and Con-303

textual Reasoning tasks, indicating a potential gap304

in their understanding of broader commonsense305

principles and their application in varied contexts.306

The Specialized and Knowledge Reasoning cate-307

gory, particularly in the realms of temporal and308

riddle-based challenges, highlights specific defi- 309

ciencies in the models’ abilities to process complex 310

temporal sequences and to engage in the abstract 311

and creative thought required to decipher riddles. 312

Regarding the multimodal dataset, Figure 2 de- 313

tails the comparative performance between GPT- 314

4V and Gemini Pro Vision across different ques- 315

tion types, in alignment with the guidelines of the 316

VCR dataset (Zellers et al., 2019a). We concen- 317

trate on the “Q → A” subtask as it most directly 318

assesses the models’ visual commonsense capabil- 319

ities. Considering the data sample for each type, 320

Gemini Pro Vision’s performance either matches or 321

is slightly lower than GPT-4V’s, except in temporal- 322

type questions, where it surpasses GPT-4V. This 323

suggests its enhanced capability not only in rec- 324

ognizing but also in contextualizing time-related 325

elements within visual scenarios. 326

3.3 Reasoning Justification within MLLMs 327

To assess the reasoning capabilities of MLLMs, 328

particularly their ability to provide not only correct 329

answers but also sound and contextually grounded 330

reasoning in matters of commonsense, we adopted 331

a systematic sampling approach. For each of the 332

11 language-based datasets evaluated with four 333

LLMs, we randomly selected 30 questions that 334
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Table 1: Performance comparison of four LLMs across 11 language-based commonsense reasoning datasets. For the
k-shot CoT setting, k is set to 5 for the majority of datasets, except HellaSWAG (k=10) and PIQA (k=1). The best
results for the k-shot setting are boldfaced, and for the 0-shot setting, underlined. GPT-4 Turbo outperforms other
models across the majority of datasets under both settings by a large margin. Gemini Pro and GPT-3.5 Turbo exhibit
comparably matched performance overall, with Gemini Pro demonstrating marginally superior commonsense
reasoning capabilities compared to GPT-3.5 Turbo on average.

Dataset
Method

Llama-2-70b Llama-2-70b Gemini Pro Gemini Pro GPT-3.5 Turbo GPT-3.5 Turbo GPT-4 Turbo GPT-4 Turbo
(0-shot, SP) (k-shot, CoT) (0-shot, SP) (k-shot, CoT) (0-shot, SP) (k-shot, CoT) (0-shot, SP) (k-shot, CoT)

CommonsenseQA 72.0 76.5 76.5 79.0 73.0 76.0 78.0 80.0
Cosmos QA 77.0 81.0 81.5 84.5 75.0 78.5 86.5 88.0

αNLI 77.5 80.5 79.5 81.5 75.5 78.0 87.0 88.0
HellaSWAG 73.0 77.0 76.0 78.5 78.0 80.0 94.0 95.0

TRAM 66.0 70.0 73.5 76.0 68.5 72.0 79.5 82.0
NumerSense 74.0 75.5 80.0 82.0 81.5 82.5 85.0 86.0

PIQA 74.0 78.5 89.0 90.5 87.0 89.5 94.5 95.5
QASC 78.0 82.0 80.0 82.5 83.0 85.0 91.5 92.5

RiddleSense 62.5 66.0 75.0 82.5 71.5 75.0 94.0 95.0
Social IQa 71.0 77.5 73.0 78.5 73.0 78.0 82.0 84.5
ETHICS 88.0 89.5 87.0 87.5 94.0 95.0 97.0 98.0

Average 73.9 77.6 79.2 82.1 78.2 80.9 88.1 89.5
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Figure 2: Performance comparison between GPT-4V
and Gemini Pro Vision on the VCR dataset, categorized
by question type, with a focus on the “Q → A” sub-
task. Within our sample of 50 questions, the distribution
across each type is as follows: activity (12), explanation
(16), hypothetical (3), mental (4), role (5), scene (4),
and temporal (6). GPT-4V matches or surpasses Gemini
Pro Vision in performance across these question types,
with the exception of the temporal category.

were correctly answered and 30 questions that were335

incorrectly answered by each LLM following (Bian336

et al., 2023). In cases where a dataset presented337

fewer than 30 incorrect answers, we included all338

available incorrect responses to ensure comprehen-339

sive analysis. After selecting these questions, we340

prompted each model to explain “What is the ra-341

tionale behind the answer to the question?” The342

reasoning processes provided by the models were343

then manually reviewed and classified as either344

True or False, based on their logical soundness and345

Table 2: Performance comparison between GPT-4V
and Gemini Pro Vision on the VCR dataset. “Q →
A” evaluates question-answering accuracy, “QA → R”
assesses answer justification, and “Q → AR” measures
the performance of both correctly answering questions
and selecting rationales. GPT-4V outperforms Gemini
Pro Vision across all subtasks.

Method Q → A QA → R Q → AR

GPT-4V 80.0 72.0 56.0
Gemini Pro Vision 74.0 70.0 48.0

relevance to the question. Figure 3 illustrates a com- 346

prehensive view of the average reasoning correct- 347

ness across the 11 datasets, in terms of the sampled 348

correct and incorrect questions. In fact, not every 349

model had 30 incorrect questions for each dataset. 350

In such scenarios, we scaled the available data up 351

to 30 questions to ensure standardized computa- 352

tion. Figure 3 shows that GPT-4 Turbo’s leading 353

performance in both correct and incorrect answers 354

highlights its advanced reasoning mechanisms and 355

its ability to maintain coherent logic, even when the 356

final answers are not accurate. Additionally, Gem- 357

ini Pro has emerged as a notably proficient model, 358

generally demonstrating commendable reasoning 359

abilities and offering a well-rounded approach to 360

commonsense reasoning. GPT-3.5, while trailing 361

slightly behind Gemini Pro, still demonstrates com- 362

petitive reasoning abilities. Appendix C presents 363

two real examples from Gemini Pro and GPT-3.5, 364
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illustrating the cases of a correct answer with a365

correct rationale and an incorrect answer with an366

incorrect rationale, respectively.367

Llama2-70b Gemini Pro GPT-3.5 Turbo GPT-4 Turbo
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Figure 3: Average reasoning correctness across 11 lan-
guage datasets. The comparison among four LLMs is
based on a random sample of 30 correct and 30 incorrect
questions per dataset. In cases where a dataset contained
fewer than 30 incorrect questions, the data were scaled
up to maintain consistency in the sample size.

Moving to the multimodal perspective, our anal-368

ysis of GPT-4V and Gemini Pro Vision on the VCR369

dataset reveals notable patterns in reasoning cor-370

rectness. With GPT-4V at 24% and Gemini Pro371

Vision at 26%, approximately one-quarter of the372

cases showed both models correctly identifying373

the answers but failing to provide appropriate ra-374

tionale. This discrepancy suggests that while the375

models can often determine the correct outcomes,376

their ability to understand or explain the underlying377

reasoning behind these answers is not consistently378

aligned. Furthermore, in the instances of incorrect379

answers, GPT-4V and Gemini Pro Vision showed380

correct rationales 16% and 22% of the time, re-381

spectively. This indicates that, despite arriving at382

incorrect conclusions, the models demonstrate a ca-383

pacity for effective reasoning or logical processing.384

However, this does not consistently translate into385

accurate outcomes, implying that while some as-386

pects of the required knowledge are captured, other387

crucial elements are likely missed.388

3.4 Case Study: Gemini Pro in Commonsense389

Reasoning390

Given our focus on evaluating the commonsense391

reasoning capabilities of the Gemini Pro model,392

we conduct a qualitative analysis to assess its per-393

formance across representative examples in four394

major categories (three language-based and one 395

multimodal), as described in Section 2.1. To en- 396

sure an authentic end-to-end capability evaluation, 397

we present examples under the zero-shot learning 398

setting, employing standard prompting techniques. 399

Due to space constraints, we present two examples 400

here; additional examples are in Appendix D. 401

General (CommonsenseQA). In the general com- 402

monsense evaluation (General and Contextual 403

Reasoning category) using the CommonsenseQA 404

dataset, consider the example question: “People are 405

what when you’re a stranger? (A) train (B) strange 406

(C) human (D) stupid (E) dangerous.” Gemini Pro 407

correctly chose (B) “strange,” and its reasoning 408

process is notable. It recognized that while all op- 409

tions relate to the concept of a “stranger”, only 410

“strange” accurately encapsulates the neutral and 411

open-ended nature of the question. The model ef- 412

fectively ruled out other options: (A) “train”, for 413

being too specific and unrelated; (C) “human”, as 414

accurate but not capturing the question’s essence; 415

(D) “stupid”, for being judgmental and offensive; 416

and (E) “dangerous”, due to its negative connota- 417

tion. This selection of “strange” indicates an under- 418

standing of the unfamiliar nature associated with 419

strangers, highlighting Gemini Pro’s capability in 420

interpreting and applying general commonsense 421

knowledge appropriately. 422

Visual (VCR). In the visual commonsense evalu- 423

ation using the VCR dataset, we analyzed Gem- 424

ini Pro Vision’s response to a scenario involving 425

physical safety and potential danger, as shown in 426

Figure 4. Presented with an image of individuals 427

on the edge of a cliff, the model was questioned: 428

“What would happen if person 4 pushed person 3 429

at this moment?” In this context, Gemini Pro Vi- 430

sion’s response mirrored the logical inference that 431

if the second person from the left (person 4) pushed 432

the third person from the left (person 3), the result 433

would be person 3 falling off the cliff, leading to a 434

fatal outcome. This example from the VCR dataset 435

underscores Gemini Pro Vision’s ability to analyze 436

visual scenes and make predictions about the poten- 437

tial consequences of actions within those scenes, a 438

crucial aspect of visual commonsense reasoning. It 439

demonstrates the model’s grasp of spatial relations 440

and physical consequences, providing evidence of 441

its capacity to process and reason about complex 442

visual information akin to human cognition. 443

Overall, the cases presented underscore the ad- 444

vanced reasoning capabilities of Gemini Pro and 445
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Figure 4: Example image from the VCR dataset.

Gemini Pro Vision, while also identifying chal-446

lenges in achieving human-like inference.447

3.5 Error Analysis448

To gain a deeper understanding of the mistakes449

made by models, we manually analyzed instances450

where a model made incorrect choices or provided451

inappropriate answers. We conducted a thorough452

examination of common error types encountered in453

commonsense reasoning tasks, with the results av-454

eraged across four LLMs. Our focus was on assess-455

ing these models in two distinct settings: zero-shot456

SP and few-shot CoT. Table 3 shows the propor-457

tions of five common error types averaged over458

four LLMs in each setting.459

Context misinterpretation emerged as the most460

frequent error, occurring more often in the zero-461

shot SP setting (28.6%) compared to the few-shot462

CoT (23.4%). This trend suggests that the addi-463

tional context in few-shot CoT helps models bet-464

ter understand scenarios, thereby reducing errors465

related to contextual misunderstanding. Logical466

errors were the second most common, accounting467

for 23.9% in zero-shot SP and slightly less in few-468

shot CoT (20.1%), indicating that extra examples469

in the latter setting aid in more consistent logical470

reasoning. Ambiguity errors, at 16.2% in zero-471

shot SP, were reduced to 11.6% in few-shot CoT,472

demonstrating the effectiveness of added context in473

resolving language ambiguities. In contrast, Over-474

generalization errors showed an increase in few-475

shot CoT (15.6%) from zero-shot SP (11.8%), pos-476

sibly due to models’ overextending patterns learned477

from the additional examples. Notably, knowledge478

errors, where models misapplied correct and nec-479

essary commonsense knowledge, saw a significant480

increase in few-shot CoT (29.3%) compared to481

zero-shot SP (19.5%). This finding suggests that482

while extra context can be beneficial, it can also483

lead to inaccuracies, particularly in complex or nu-484

anced scenarios.485

Table 3: Proportion of common error types in com-
monsense reasoning in LLM evaluation. Misinterpret.
represents misinterpretation.

Error Type Zero-shot SP Few-shot CoT
Context Misinterpret. 28.6% 23.4%
Logical Errors 23.9% 20.1%
Text Ambiguity 16.2% 11.6%
Overgeneralization 11.8% 15.6%
Knowledge Errors 19.5% 29.3%

In our analysis of the VCR dataset, we focused 486

on instances where either GPT-4V or Gemini Pro 487

Vision chose incorrect answers in the Q → A sub- 488

task. The four common error types for each model 489

are summarized in Table 4. Emotion recognition er- 490

rors were the most common, with GPT-4V encoun- 491

tering these errors in 30.1% of cases and Gemini 492

Pro Vision slightly more at 31.3%. This high inci- 493

dence suggests that both models find interpreting 494

emotional cues in visual content particularly chal- 495

lenging, underscoring the complexity of decipher- 496

ing human emotions from visual stimuli. Spatial 497

perception errors were also significant, constitut- 498

ing 22.5% of errors for GPT-4V and 25.2% for 499

Gemini Pro Vision. These figures indicate the mod- 500

els’ difficulties in accurately understanding spatial 501

relationships and the arrangement of elements in 502

images. Logical errors were another major error 503

type, more pronounced in GPT-4V (27.7%) than in 504

Gemini Pro Vision (24.9%), pointing to challenges 505

in logical reasoning within visual contexts. Context 506

misinterpretation, although less frequent, was still 507

a notable issue, with GPT-4V at 19.7% and Gemini 508

Pro Vision at 18.6%. These errors demonstrate the 509

models’ struggles with grasping the overarching 510

context or narrative depicted in the visual content. 511

Overall, error analysis sheds light on the specific 512

challenges LLMs and MLLMs face in common- 513

sense reasoning, providing valuable insights for 514

future improvements for future model refinement. 515

Table 4: Proportion of commmon error types in visual
commonsense reasoning in MLLM evaluation (GPT-4V
and Gemini Pro Vision). Misinterpret.: and E. represent
misinterpretation and errors, respectively.

Error Type GPT-4V Gemini Pro Vision
Context Misinterpret. 19.7% 18.6%
Spatial Perception E. 22.5% 25.2%
Emotion Recognition E. 30.1% 31.3%
Logical Errors 27.7% 24.9%
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4 Related Work516

Commonsense Reasoning in NLP. Commonsense517

reasoning has gained renewed attention in recent518

years, especially in the context of advancements in519

LLMs that have significantly influenced numerous520

applications in NLP. However, there is a growing521

concern about their ability to understand and rea-522

son about commonsense knowledge (Storks et al.,523

2019; Tamborrino et al., 2020; Bhargava and Ng,524

2022). This concern is echoed in various stud-525

ies that focus on evaluating the capabilities of526

LLMs in this area (Bian et al., 2023; Weng et al.,527

2023; Shen and Kejriwal, 2023). Concurrently, re-528

searchers have been exploring diverse strategies to529

enhance the commonsense reasoning of NLP sys-530

tems, from leveraging knowledge graphs to com-531

monsense knowledge transfer (Huang et al., 2023;532

Ye et al., 2023; Zhou et al., 2023). Prior to delving533

into methodological refinements, a comprehensive534

evaluation is essential to understand the authentic535

commonsense reasoning capabilities of LLMs. In536

our study, we endeavor to advance this line of in-537

quiry by examining how LLMs, particularly focus-538

ing on the Gemini model, navigate and implement539

commonsense reasoning in various NLP contexts.540

Training Paradigms in LLMs. In NLP research,541

pretraining language models on large-scale varied542

textual datasets has become essential. BERT-based543

models like BERT (Kenton and Toutanova, 2019)544

and RoBERTa (Liu et al., 2019) exemplify this,545

being applied to tasks ranging from disease predic-546

tion (Zhao et al., 2021) to text classification (Wang547

et al., 2022b) and time series analysis (Wang et al.,548

2022c). The debut of GPT-3 shifted this focus549

towards more flexible learning methods like zero-550

shot and few-shot learning, showcasing models’551

adaptability to new tasks with minimal data (Brown552

et al., 2020). This shift has spurred the develop-553

ment of novel prompting techniques to enhance554

LLMs’ reasoning and understanding capabilities,555

including CoT prompting (Wei et al., 2022), self-556

consistency with CoT (Wang et al., 2022a), tree-of-557

thought prompting (Yao et al., 2023), and metacog-558

nitive prompting (Wang and Zhao, 2023a). In this559

work, we evaluate four LLMs for language tasks560

and two MLLMs for multimodal tasks under zero-561

shot and few-shot settings to provide an in-depth562

understanding of their strengths and limitations in563

diverse commonsense reasoning tasks.564

Evaluations on MLLMs. Since the release of565

the state-of-the-art MLLM, GPT-4V, several eval- 566

uations have been conducted across diverse tasks, 567

including medical imaging (Wu et al., 2023a), vi- 568

sual question answering (Li et al., 2023; Yang 569

et al., 2023), and video understanding (Lin et al., 570

2023), focusing on either on case-by-case qualita- 571

tive analyses or on quantitative assessments across 572

diverse tasks. The recent release of Google’s Gem- 573

ini has garnered considerable attention, and early 574

experiments have been conducted to evaluate its 575

capabilities in both language understanding (Akter 576

et al., 2023) and the multimodal domain (Liu and 577

Chen, 2023; Fu et al., 2023). However, a significant 578

gap remains in fully comprehending the common- 579

sense reasoning capabilities of Gemini, a known 580

potential shortcoming since its introduction. Our 581

work comprehensively analyzes Gemini’s capabili- 582

ties in this area, comparing it with other MLLMs to 583

highlight its potential and areas for improvement. 584

5 Discussion 585

In this study, we conducted a comprehensive eval- 586

uation of state-of-the-art LLMs and MLLMs, fo- 587

cusing particularly on Gemini Pro and Gemini Pro 588

Vision, across 12 diverse commonsense reasoning 589

datasets. Our findings indicate that while these 590

models mark a significant advancement in various 591

domains, demonstrating impressive performance 592

in commonsense reasoning tasks, they still exhibit 593

limitations, particularly in tasks requiring deep con- 594

textual understanding or abstract reasoning, such as 595

those involving temporal dynamics, riddles, or intri- 596

cate social scenarios. Although significant progress 597

has been made, achieving AGI still represents a sub- 598

stantial goal on the horizon. Our work sets the stage 599

for future research in this field, highlighting both 600

the achievements and areas needing improvement 601

in commonsense reasoning. 602

Looking ahead, addressing these challenges is 603

crucial to enhance the overall effectiveness of 604

LLMs and MLLMs in commonsense reasoning. 605

Future research should aim to refine the models’ 606

capabilities in interpreting and reasoning within 607

complex contexts and abstract scenarios. Addition- 608

ally, there is an emerging need for more holistic 609

evaluation metrics and methodologies capable of 610

accurately assessing the nuances of commonsense 611

reasoning in AI systems. These metrics should 612

evaluate not only the correctness of responses but 613

also their logical coherence and context relevance. 614
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6 Limitations615

While this study offers valuable insights into the616

role of LLMs and MLLMs in commonsense reason-617

ing, there are some limitations. Firstly, our evalua-618

tion is heavily dependent on the selected questions619

and datasets used for analysis. Despite their diver-620

sity, these datasets may not cover all facets of this621

domain. As a result, the performance and capa-622

bilities of Gemini Pro and other models can vary623

in real-world scenarios or with alternative datasets.624

Additionally, our analysis is confined to English625

language datasets, limiting the generalizability of626

our findings to multilingual contexts, where cul-627

tural nuances and linguistic differences are crucial628

in commonsense reasoning. Finally, our study rep-629

resents a specific moment in the rapidly evolving630

landscape of AI, focusing on API-based systems631

that are subject to change. The introduction of632

newer models or updates to existing ones might633

lead to different performance outcomes, highlight-634

ing the need for ongoing evaluation and analysis.635
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A Commonsense Overview 899

Commonsense reasoning, a fundamental aspect of 900

human intelligence, facilitates an intuitive under- 901

standing and interpretation of the world through 902

basic and often implicit knowledge and beliefs. For 903

instance, it involves understanding that a person 904

carrying an umbrella on a cloudy day likely an- 905

ticipates rain, or inferring that a closed door in a 906

library signifies a need for quiet. In MLLMs, com- 907

monsense reasoning plays a vital role, enabling 908

these models to interact with and interpret human 909

language and visual cues in a manner that mirrors 910

human understanding. In our study, we explore a 911

variety of commonsense reasoning tasks. Defini- 912

tions for each domain are provided as follows. 913

General Commonsense. This domain entails an 914

understanding of basic, everyday knowledge about 915

the world, such as recognizing that birds typically 916

fly and fish live in water. 917

Contextual Commonsense. This domain involves 918

interpreting information within specific contexts, 919

such as understanding that a person wearing a coat 920

and shivering is likely cold. 921

Abductive Commonsense. This domain is about 922

formulating the most plausible explanations for 923

observations, such as inferring that wet streets are 924

likely due to recent rain. 925

Event Commonsense. This domain focuses on 926

understanding sequences of events and the causal 927

relationships between them, such as predicting that 928

eating spoiled food can lead to feeling sick. 929

Temporal Commonsense. This domain involves 930

understanding time-related concepts, such as the 931

fact that breakfast is typically eaten in the morning. 932

Numerical Commonsense. This domain is about 933

understanding numbers in everyday contexts, such 934

as knowing that a cube has six faces. 935
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Physical Commonsense. This domain concerns936

understanding the physical world, such as knowing937

that a glass will break if dropped on a hard floor.938

Science Commonsense. This domain involves the939

application of scientific principles in daily life, such940

as understanding that water boils at a higher tem-941

perature at sea level than in the mountains.942

Riddle Commonsense. This domain challenges943

creative thinking through riddles, such as decipher-944

ing a riddle where the answer is “a shadow”, requir-945

ing lateral thinking to associate intangible concepts946

with physical entities.947

Social Commonsense. This domain involves un-948

derstanding social interactions, such as recognizing949

that a person is likely upset if he/she is crying.950

Moral Commonsense. This domain deals with951

evaluating actions based on moral and ethical stan-952

dards, such as understanding that stealing is gener-953

ally considered wrong.954

Visual Commonsense. This domain involves in-955

terpreting and understanding visual information in956

the context of the physical and social world, such957

as deducing that a person in a photo is likely run-958

ning a race if they are wearing a number bib and959

surrounded by other runners.960

B Datasets961

We provide an overview of each dataset as well as962

example questions in Table 5.963

C Reasoning Justification Examples964

Figure 5 illustrates examples of correct and incor-965

rect answers with their corresponding rationales for966

Gemini Pro and GPT-3.5.967

D More Examples of Gemini Pro in968

Commonsense Reasoning969

We provide two more case examples for Gemini970

Pro to get a deeper understanding of its common-971

sense reasoning capabilities.972

Temporal (TRAM). In the temporal commonsense973

evaluation (Specialized and Knowledge Reasoning974

category) using the TRAM dataset, consider the975

example question: “He also promises to ‘come to’976

him. How long does it take for him to ‘come to’977

him? (A) 100 years (B) in a minute’s time (C) a978

few hours.” Lacking sufficient context, especially979

regarding the identities involved and the meaning980

of ‘come to’, Gemini Pro was unable to provide981

a definitive answer. Gemini Pro’s response high-982

lights a significant aspect of its temporal reasoning983

capabilities. It illustrates the model’s reliance on 984

specific contextual information to make accurate 985

temporal judgments. While this cautious approach 986

is prudent to avoid incorrect assumptions, it also 987

signifies a limitation in addressing ambiguous or 988

incomplete information – a frequent challenge in 989

real-world communications. This example under- 990

lines the difficulties LLMs encounter in temporal 991

reasoning tasks, especially when faced with scenar- 992

ios that offer limited or unclear context. 993

Social (Social IQa). In assessing Gemini Pro’s 994

performance in social commonsense reasoning us- 995

ing the Social IQa dataset (Social and Ethical Rea- 996

soning category), an interesting scenario was pre- 997

sented: “The people bullied Sasha all her life. But 998

Sasha got revenge on the people. What will the peo- 999

ple want to do next? (A) Do whatever Sasha says 1000

(B) Get even (C) Flee from Sasha.” The correct 1001

answer is (C), but Gemini Pro’s response is insight- 1002

ful. It chose (B) “Get even” as the most likely 1003

option, reasoning that the desire for revenge is a 1004

strong motivator and Sasha’s actions likely ignited 1005

a similar desire in them. Gemini Pro considered 1006

(A) as a less likely option, depending on whether 1007

Sasha’s revenge instilled deep fear and assumed 1008

complete submission. The least likely option, ac- 1009

cording to Gemini Pro, was (C), which it associ- 1010

ated with physical harm or an ongoing threat. This 1011

response demonstrates Gemini Pro’s nuanced un- 1012

derstanding of social dynamics and emotional mo- 1013

tivations. However, it also highlights a limitation 1014

in accurately predicting human reactions in com- 1015

plex social scenarios, where emotional responses 1016

might not always follow a logical pattern. This 1017

instance reveals the challenges LLMs face in ac- 1018

curately interpreting and responding to intricate 1019

social situations, an area that remains challenging 1020

for AI systems. 1021
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Table 5: Overview of commonsense datasets used in our experiments. “K-Way MC” signifies a multiple-choice
response format with K options. Bold text in the “Example Questions” column represents the correct answers.

Dataset Domain Answer Type Example Questions

General and Contextual Reasoning

CommonsenseQA general 5-Way MC
Where is a doormat likely to be in front of?
(A). facade; (B). front door; (C). doorway; (D). entrance porch; (E). hallway.

Cosmos QA contextual 4-Way MC
Given the context “It wasn’t time for my book to be released... I have received
about five rejection letters.” What may be the reason for your book getting rejected?
(A). None of the above choices; (B). I never...; (C). I felt...; (D). It wasn’t finished.

αNLI abductive 2-Way MC
Given the beginning of the story: Four Outlaws camped in Blood Gulch,
and the end of the story: He arrested them, what is the more plausible hypothesis:
(A). They found where the sheriff was; (B). The sheriff found where they were.

HellaSWAG event 4-Way MC

Given the context “A boy in an orange shirt is playing a video game. the scene”
and the activity label “Washing face”, which of the following endings is the most
appropriate continuation of the scenario? (A). changes to safety features;
(B). changes to the game itself; (C). switches to show...; (D). cuts to the boys...

Specialized and Knowledge Reasoning

TRAM temporal 3-Way MC
Then the green ball told the orange ball that blue ball was stupid. How long was the
green ball talking to the orange ball? (A). 5 weeks; (B). 24 hours; (C). 15 seconds.

NumerSense numerical Number
Complete the sentence by filling in <mask> with the most appropriate number.
A classical guitar has <mask> strings. → six

PIQA physical 2-Way MC
To reach the physical goal: trees, choose the more sensible solution:
(A). provide homes for people; (B). provide homes for animals.

QASC science 8-Way MC
Crabs scavanage and uses dead snail shells for what? (A). RNA; (B). homes; (C). making
holes; (D). damage; (E). a hosta; (F). Protein; (G). matter; (H). building a nest.

RiddleSense riddle 5-Way MC
Something very helpful if you want to go gently down a stream. (A). raft; (B). roll
down hill; (C). rowboat; (D). water; (E). roll over.

Social and Ethical Reasoning

Social IQa social 3-Way MC
Kai observed and improved Jan’s work. What will Kai want to do next?
(A). be effective; (B). get praise; (C). get incredible.

ETHICS moral 2-way MC
After I got the flu virus I called my friends to tell them that I had the virus.
Is this acceptable? (A). acceptable; (B). unacceptable.

Visual Understanding and Reasoning

VCR visual 4-Way MC

1. What is wrong with Person 2? (A). He
is not happy with what is being said to
him over the telephone; (B). He is feeling
depressed; (C). He is high on pot; (D).
Someone has pushed him and he’s falling.
2. Given the question: What is wrong with
Person 2?, and the answer to the question:
He is feeling depressed, what is the ratio-
nale behind this answer? (A). Person 1 is
talking to him probably trying to cheer
him up; (B). He looks sad and is drinking;
(C). He is walking with his head down;
(D). He is slumped down on bed and his
eyes are closed.
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(a) Example of a correct response and rationale explanation
from Gemini Pro.

(b) Example of an incorrect response and rationale explanation
from GPT-3.5 Pro.

Figure 5: Model reasoning correctness justification ex-
amples. The sample questions are from the QASC
dataset, with the correct answers highlighted in bold
red. In example (a), Gemini Pro exhibits methodical rea-
soning by exclusion, carefully considering all options
to reach the most logical conclusion. Conversely, ex-
ample (b) illustrates GPT-3.5 Turbo’s tendency towards
unconventional logic, which can result in imaginative
yet atypical answers. These instances emphasize the di-
verse strategies different models apply to commonsense
reasoning tasks, revealing their distinct capabilities and
limitations in such contexts.
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