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Summary
Recent trends in Reinforcement Learning (RL) highlight the need for agents to learn from

reward-free interactions and alternative supervision signals, such as unlabeled or incomplete
demonstrations, rather than relying solely on explicit reward maximization. Developing gener-
alist agents that can adapt efficiently in real-world environments often requires leveraging these
reward-free signals to guide learning and behavior. While intrinsic motivation techniques pro-
vide a means for agents to seek out novel or uncertain states in the absence of explicit rewards,
they are often challenged by dense reward environments or the complexity of high-dimensional
state and action spaces. Furthermore, most existing approaches rely directly on the unprocessed
intrinsic reward signals, which can make it difficult to shape or control the agent’s exploration
effectively. We propose an approach that can effectively utilize expert demonstrations, even
when they are incomplete and imperfect. By applying a mapping function to transform the
similarity between an agent’s state and expert data into a shaped intrinsic reward, our method
allows for flexible and targeted exploration of expert-like behaviors. We employ a Mixture
of Autoencoder Experts to capture a diverse range of behaviors and accommodate missing in-
formation in demonstrations. Experiments show our approach enables robust exploration and
strong performance in both sparse and dense reward environments, even when demonstrations
are sparse or incomplete. This provides a practical framework for RL in realistic settings where
optimal data is unavailable and precise reward control is needed.

Contribution(s)
1. This paper introduces MoE-GUIDE, an RL framework that learns from incomplete, unla-

beled, and imperfect expert demonstrations by using a Mixture of Autoencoders as a simi-
larity model.
Context: Prior work on leveraging demonstrations in RL typically assumes complete and
high-quality demonstrations, making them less applicable to realistic scenarios with partial
or noisy data.

2. We propose a mapping function that transforms state similarity with expert data into a
shaped intrinsic reward, enabling flexible and targeted exploration.
Context: Existing intrinsic motivation approaches often rely on unprocessed intrinsic re-
wards, which can make exploration hard to control or insufficiently focused.

3. We demonstrate that MoE-GUIDE enables robust exploration and strong performance in
both sparse and dense reward environments, even when expert data is limited, incomplete,
or partially observed.
Context: Prior methods tend to degrade in performance when provided with sparse or
imperfect demonstrations, whereas our method maintains effectiveness across a range of
challenging settings.
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Abstract

Recent trends in Reinforcement Learning (RL) highlight the need for agents to learn1
from reward-free interactions and alternative supervision signals, such as unlabeled or2
incomplete demonstrations, rather than relying solely on explicit reward maximization.3
Developing generalist agents that can adapt efficiently in real-world environments of-4
ten requires leveraging these reward-free signals to guide learning and behavior. While5
intrinsic motivation techniques provide a means for agents to seek out novel or uncer-6
tain states in the absence of explicit rewards, they are often challenged by dense reward7
environments or the complexity of high-dimensional state and action spaces. Further-8
more, most existing approaches rely directly on the unprocessed intrinsic reward sig-9
nals, which can make it difficult to shape or control the agent’s exploration effectively.10
We propose an approach that can effectively utilize expert demonstrations, even when11
they are incomplete and imperfect. By applying a mapping function to transform the12
similarity between an agent’s state and expert data into a shaped intrinsic reward, our13
method allows for flexible and targeted exploration of expert-like behaviors. We em-14
ploy a Mixture of Autoencoder Experts to capture a diverse range of behaviors and15
accommodate missing information in demonstrations. Experiments show our approach16
enables robust exploration and strong performance in both sparse and dense reward17
environments, even when demonstrations are sparse or incomplete. This provides a18
practical framework for RL in realistic settings where optimal data is unavailable and19
precise reward control is needed.20

1 Introduction21

The pursuit of intelligent, adaptive agents in reinforcement learning (RL) increasingly requires meth-22
ods that go beyond traditional reward maximization. In many real-world settings, agents must23
learn and generalize from limited or ambiguous feedback, such as sparse environmental rewards,24
incomplete demonstrations, or unlabeled experience. These scenarios highlight the need for RL ap-25
proaches that can leverage alternative signals, whether from the environment or from human guid-26
ance, to form robust representations and discover useful behaviors.27

A key strategy for enabling learning in such settings has been the use of intrinsic motivation, which28
encourages agents to seek out novel, uncertain, or otherwise informative states. Techniques such as29
curiosity-driven exploration Pathak et al. (2017) and Random Network Distillation (RND) Burda30
et al. (2018) provide intrinsic rewards based on prediction errors or novelty estimates, guiding31
agents through unfamiliar regions of the state space. More recently, autoencoder-based methods32
have emerged as powerful tools for quantifying state familiarity, using reconstruction loss to identify33
and reward visits to underexplored or novel states Klissarov et al. (2019); Kubovčík et al. (2023);34
Yan et al. (2024); Liu et al. (2019). While these approaches have demonstrated effectiveness in35
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sparse-reward environments, they depend critically on learning meaningful representations, which36
can be challenging in high-dimensional, continuous environments Aubret et al. (2019).37

Demonstrations can hold valuable information, and therefore, approaches like Behavior Cloning38
Pomerleau (1989) directly imitate expert trajectories but lack the flexibility to improve beyond sub-39
optimal data. Inverse reinforcement learning (IRL) Ng et al. (2000) and guided exploration methods40
Ho & Ermon (2016) infer reward functions or policies from demonstrations, allowing for some au-41
tonomy; however, they most of the time do not utilize extrinsic rewards and struggle to outperform42
the expert. Demonstrations are also used in RL to improve performance by adding them to the re-43
play buffer Paine et al. (2019); Rajeswaran et al. (2017) or by leveraging BC to jump-start the policy44
or as a guide during the training process Paine et al. (2019); Rajeswaran et al. (2017). Importantly,45
these approaches typically assume access to complete trajectory data, including actions and next46
states. In practice, however, obtaining such complete datasets is challenging. Technical limitations,47
privacy concerns, and sensor issues frequently result in missing, incomplete, or noisy demonstration48
data Rao et al. (2018); Zhao & Zhang (2019); Cao et al. (2023). This is common in domains like49
robotics and traffic modeling, where actions or states may only be partially observed or where data50
is sparse due to sensor failures or limited coverage Torabi et al. (2018a); Wei et al. (2020); Sun & Ma51
(2019); Xu et al. (2021). Collecting high-quality, dense expert data is often costly, time-consuming,52
or impossible, and may still yield imperfect demonstrations Camacho et al. (2021). Demonstrations53
may also be sparse or imperfect, such as those from low-bitrate videos. Consequently, methods54
that require fully observable, dense demonstrations may perform poorly in real applications. This55
highlights the need for research on methods that can learn effectively from incomplete, state-only,56
or imperfect demonstrations. This is a much more challenging but realistic scenario.57

Although state-only IL and IRL methods can be used to enrich extrinsic rewards with incomplete58
and unlabeled data, guiding the agent to regions in the observation space, these reward models will59
be computationally expensive to obtain, as they require numerous interactions with the environment60
Zare et al. (2024). Therefore, our method utilizes expert demonstrations to train a model, such as61
an autoencoder, density estimator, or RND, that measures the similarity between current states and62
expert behavior, thereby producing a loss landscape over the observation space. We introduce a63
mapping function that normalizes model loss into an intrinsic reward, ranging from 0 to 1. States64
with losses below the minimum threshold are considered expert-like and receive the highest reward.65
States with losses above the maximum threshold receive zero reward. The reward is calculated using66
a chosen mapping function, such as linear or exponential, for losses in between. This approach67
enables precise control over the reward structure, allowing us to eliminate undesirable local minima68
and encourage exploration in regions likely to yield expert-like outcomes.69

An essential aspect of this framework is the similarity model’s ability to distinguish expert behavior70
from random states. Our research found that standard autoencoders with narrow bottlenecks can71
be highly selective for expert data, as they focus solely on extracting useful features to optimize72
reconstruction of the expert behavior. However, as in the case of autoencoders, a single similarity73
model may still struggle to capture the full diversity of expert demonstrations. To address this, we74
introduce Mixture of Experts Guidance using Unlabeled and Incomplete Data for Exploration (MoE-75
GUIDE), a mixture-of-experts model using several similarity models, each specializing in different76
features or modes of the expert data. A gating network combines its outputs, dynamically weighting77
each expert for a given state. This forms well-defined regions in the observation space, similar to78
expert-like states. By converting this landscape into an intrinsic reward, the agent is guided toward79
regions aligned with expert experience, thereby improving exploration efficiency.80

2 Background81

2.1 Reinforcement Learning Beyond Rewards82

Traditional Reinforcement Learning (RL) is grounded in the Markov Decision Process (MDP)83
framework, where an agent interacts with an environment by observing states s ∈ S, selecting84
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actions a ∈ A, and receiving rewards r ∈ R defined by a reward function R : S × A → R Sutton85
et al. (1998). The agent’s objective is typically to maximize the expected cumulative discounted86
return:87

Eπ

[ ∞∑
t=0

γtr(st, at)

]
, (1)

where γ ∈ [0, 1) is the discount factor.88

However, real-world environments often lack well-specified, dense, or even meaningful reward sig-89
nals. This has motivated a growing body of research on reward-free RL Jin et al. (2020), where90
agents learn from alternative forms of supervision, such as unlabeled interaction data, expert demon-91
strations, preferences, or implicit human feedback. Reward-free RL aims to develop agents that can92
acquire generalizable skills and representations from environmental structure or diverse signals,93
thereby facilitating rapid adaptation when task rewards become available or when rewards are diffi-94
cult to specify.95

2.2 Representation Learning and Intrinsic Motivation96

A core challenge in reward-free RL is learning meaningful representations and skills from unlabeled97
data. Intrinsic motivation offers one solution, providing internal reward signals that incentivize98
exploration, skill development, or the acquisition of predictive representations.99

Prediction- and surprise-based methods reward the agent for visiting novel or unpredictable100
states. The Intrinsic Curiosity Module (ICM) Pathak et al. (2017) measures the prediction error101
of a learned forward model as an intrinsic reward, thereby encouraging the agent to seek out transi-102
tions that are difficult to predict. Similarly, Random Network Distillation (RND) Burda et al. (2018);103
Yang et al. (2024) assesses state novelty by comparing the output of a fixed random network to that104
of a predictor network, guiding exploration toward poorly represented states.105

Novelty- and count-based strategies encourage agents to visit rarely encountered states, either106
through explicit state visitation counts in discrete domains or via pseudo-counts and density models107
in high-dimensional spaces Bellemare et al. (2016); Ostrovski et al. (2017); Zhao & Tresp (2019).108
These approaches increase the diversity of experiences and can improve sample efficiency in sparse-109
reward environments.110

2.3 Learning from Demonstrations and Alternative Signals111

When reward functions are ill-defined or unavailable, demonstrations and other human-centric sig-112
nals can serve as crucial supervisory information. Demonstration-driven techniques, such as imi-113
tation learning Ho & Ermon (2016), inverse reinforcement learning Ng et al. (2000), and learning114
from observation Torabi et al. (2018b); Zhu et al. (2020), leverage expert trajectories or behavioral115
cues to shape agent behavior. These methods can guide the learning process of an agent.116

Recent advances have addressed challenges such as incomplete, suboptimal, or action-free demon-117
strations Wei et al. (2020); Xu et al. (2021); Camacho et al. (2021); Fu et al. (2017). However,118
these methods do not account for extrinsic rewards, and therefore, demonstrations have also been119
integrated into off-policy RL via replay buffers Paine et al. (2019); Rajeswaran et al. (2017). Other120
methods use hand-crafted reward terms based on demonstrations Peng et al. (2018) and leverage BC121
to pretrain the policy or to guide the learning process Nair et al. (2018); Rajeswaran et al. (2017).122
However, these methods assume complete data that exhibits near-perfect behavior. Therefore, our123
method proposes a framework to guide the learning process of an agent with incomplete, unlabeled,124
and imperfect demonstrations.125

2.4 Soft Actor-Critic126

Our method builds upon the Soft Actor-Critic (SAC) framework Haarnoja et al. (2018a;b), an off-127
policy actor-critic algorithm that augments the reward maximization objective with an entropy max-128

3



Under review for RLC 2025, to be published in RLJ 2025

imization term. This encourages diverse behavior and robust exploration:129

J(π) = Eτ∼ρπ

[
T∑

t=0

r(st, at) + αH(π(·|st))

]
, (2)

where H is the policy entropy and α controls the trade-off between reward and entropy. In this130
work, we extend SAC with intrinsic rewards derived from expert demonstrations, allowing the agent131
to benefit from both reward-free guidance and extrinsic rewards when available.132

3 Methods133

This work introduces Mixture of Experts Guidance using Unlabeled and Incomplete Data for Ex-134
ploration (MoE-GUIDE), a novel method for RL that learns representations from unlabeled data135
while addressing the challenges posed by the limited information available in expert demonstra-136
tions, specifically the presence of gaps in the data and lack of access to actions and next states.137
These limitations make it infeasible to rely on the conventional techniques, such as demo replay138
buffers, and leveraging BC. However, expert demonstrations offer valuable insights into desirable139
trajectories within the environment, even if they are imperfect or limited in scope. We convert these140
demonstrations into an intrinsic reward, which guides the agent to regions the expert has likely vis-141
ited. This intrinsic reward can be used alone or as an exploration bonus, allowing the agent to deviate142
from expert behavior when discovering higher extrinsic rewards. The environment’s reward can pre-143
vent the agent from becoming confined to suboptimal behaviors, and a decay function can gradually144
reduce the influence of expert demonstrations over time. Importantly, since the intrinsic reward is a145
function of state only, its inclusion does not alter the set of optimal policies for the original environ-146
ment reward (Ng et al., 1999). This ensures that while the agent benefits from guided exploration147
early in training, the optimal solution with respect to the environment’s objective remains unchanged148
if the intrinsic reward is decayed to 0. We provide a formal argument in Appendix A.149

Pretraining the agent by resetting the simulator to states from expert demonstrations exposes it to150
regions of the environment visited by the expert, making it easier for the agent to discover and re-151
visit promising areas during training; however, this technique relies on the simulator supporting such152
resets, which may not be possible in environments with image-based observations or partial observ-153
ability, and with suboptimal demonstration you may guide the agent to unwanted local minima.154

In this research, we utilize autoencoders as a similarity model, as their bottleneck enables the ef-155
fective detection of expert behavior, focusing solely on extracting useful features to optimize the156
reconstruction of expert behavior. We chose autoencoders over variational autoencoders (VAEs)157
because our tests showed that autoencoders were better at distinguishing expert behavior from other158
trajectories, while VAEs, likely due to their probabilistic nature, generalized too much and struggled159
to separate expert from non-expert behavior. To model expert demonstrations, we employ a mixture160
of autoencoder experts (MoE) as shown in Figure 1. Rather than relying on the reconstruction loss161
of a single autoencoder, the experts collectively reconstruct the input as accurately as possible. The162
MoE model includes two main components: a set of autoencoders (experts) and a gating network,163
which dynamically assigns a weight to each expert’s output, allowing each autoencoder to specialize164
in distinct features or patterns of expert behavior.165

The final reconstruction is computed as a weighted sum of the outputs of all active experts. For a166
given input x, each expert we produces a reconstruction experti(x), and the gating network assigns167
a weight weighti(x) to that expert. The final reconstruction x̂ is then given by:168

x̂ =

N∑
i=1

weighti(x) · experti(x), (3)

where N is the number of experts. By enabling the experts to specialize and collaborate, the MoE169
effectively captures the diverse characteristics of the expert behavior.170
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Figure 1: Diagram of the Mixture of Experts framework structure, consisting of n experts and a
gating network. The gating network dynamically assigns weights to experts based on the input
state X , enabling collaborative reconstruction of the input through a weighted combination of active
experts’ outputs. The reconstruction loss L is normalized and converted into a reward signal r by
the mapping function g(L), which is then used for guidance.

To guide exploration, we convert the loss induced by the similarity model into an intrinsic reward171
signal for the agent. Specifically, we define a mapping function g that transforms the reconstruction172
loss at each state, denoted by L, into a normalized reward within [0, 1]. This process effectively173
translates the structure of the loss landscape, reflecting the agent’s similarity to expert-like states,174
into intrinsic motivations that can complement the environment’s extrinsic reward.175

For a given reconstruction loss L, the mapping function g(L) assigns a reward of 1 when the loss is176
below a minimum threshold Lmin, and a reward of 0 when the loss exceeds a maximum threshold177
Lmax. In between the values are normalized between 0 and 1, and a monotonically increasing178
function f : [0, 1] → R is applied, which determines how fast the rewards drop off. The mapping179
function is defined as180

g(L) = κ · clip
(
f

(
L− Lmin

Lmax − Lmin

)
, 0, 1

)
, (4)

where κ is a scaling factor. In this research, we use an exponential function,181

f(x) = 1− exp(−sx), (5)

where s is a steepness parameter controlling how sharply the reward increases as the loss approaches182
Lmin. This mapping provides high rewards for being close to Lmin but extremely low rewards when183
close to Lmax.184

The exploration bonus can, for example, be integrated into the Q-function update equation as fol-185
lows:186

Q′(s, a) = Q(s, a) + α
(
r + γmax

a′
Q(s′, a′)−Q(s, a)

)
+ β ·Rsim(s), (6)

where a is a given action, s is a state, α is the learning rate, γ is the discount factor, and Rsim(s) is the187
intrinsic reward derived from the loss. Since Rsim(s) stays unchanged during the training process,188
it can be calculated once and added to the replay buffer, limiting the computational overhead of this189
method. The parameter β controls the influence of the intrinsic reward and can decay over time190
according to a predefined schedule, such as:191

βt = β0 · exp(−λt), (7)

where β0 is the initial value of β, λ is the decay rate, and t is the training step. This decay mechanism192
ensures that the agent relies more heavily on the expert demonstrations during the early stages of193
training, gradually shifting toward autonomous learning as training progresses.194
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4 Experiments195

We evaluate MoE-GUIDE combined with Soft Actor-Critic (SAC) on five MuJoCo continuous con-196
trol benchmarks: Swimmer, Hopper, Walker2d, HalfCheetah, and Ant. Each environment is pro-197
vided with a limited set of expert demonstrations: one for Swimmer, four for Hopper, and ten for198
Walker2d, HalfCheetah, and Ant. Demonstrations are sparsely sampled by recording states every199
four steps, resulting in incomplete coverage. Additional details on data collection, environment200
setup, and hyperparameters, as well as tables listing the final mean rewards for each figure, are201
provided in the Appendix.202

4.1 Main Evaluation Results203

We compare the following approaches using the average mean reward over 100 episodes: (1) using204
only extrinsic rewards (ER-only), (2) combining extrinsic rewards with pretraining on demonstration205
data without having guidance afterwards (ER+pretraining), (3) using the intrinsic reward from the206
MoE-GUIDE model with pretraining (IR+pretraining), and (4) combining extrinsic and intrinsic re-207
wards (MoE-GUIDE), with pretraining used where applicable. For completeness, we also evaluated208
RND and ICM baselines; however, these methods performed poorly in dense reward environments,209
and their results are reported in the Appendix.210

Figure 2: A comparison of (1) learning with only extrinsic rewards (ER-only), (2) combining extrin-
sic rewards with pretraining (ER+pretraining), (3) using only the intrinsic reward with pretraining
(IR+pretraining), and (4) combining extrinsic and intrinsic rewards (MoE-GUIDE) using expert be-
havior that achieves high rewards.

The first experiment aimed to find demonstrations of strong experts that took longer than 1 million211
time steps to train, to see if guided exploration could make them perform similarly within the 1 mil-212
lion time steps. The results are shown in Figure 2. In Swimmer, Walker2d, and Ant, MoE-GUIDE213
reliably improves over using only extrinsic rewards. In Hopper, both IR-only and MoE-GUIDE214
reach expert-level performance during training, demonstrating that the intrinsic reward provides215
particularly effective guidance in this environment. By contrast, HalfCheetah has extrinsic rewards,216
which effectively guide the regions that yield high rewards, making it challenging to improve upon217
this by adding intrinsic rewards. We observe that the intrinsic reward alone, apart from HalfCheetah,218
is sufficient to surpass using only the extrinsic reward. However, pretraining on demonstration data219
does not always lead to better final performance compared to using only extrinsic rewards; once the220
pre-training is over, the agent may not be able to follow the expert behavior without the guidance221
from MoE-GUIDE.222

In the HalfCheetah environment, our model recognizes expert-like behavior in the initial region and223
after a certain gap, but struggles in the intermediate states just beyond the start. As a result, the224
agent tends to remain near the initial states. Lowering the Lmax threshold can eliminate the few225
well-recognized initial states, but at the cost of further widening the gap to the next expert-like226
region, making it more challenging to reach those regions. To address this, extra intrinsic motivation227
could be added to encourage the agent to explore after the initial states, such as an episodic reward228
to promote novel exploration, or simply an additional intrinsic reward signal.229
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Figure 3: A comparison of (1) learning with only extrinsic rewards (ER-only), (2) combining extrin-
sic rewards with pretraining (ER+pretraining), (3) using only the intrinsic reward with pretraining
(IR+pretraining), and (4) combining extrinsic and intrinsic rewards (MoE-GUIDE) using imperfect
expert behavior.

In the second experiment, we investigated whether MoE-GUIDE can improve upon imperfect230
demonstrations generated by below-average SAC agents that did not get stuck in particularly bad231
local minima, which were trained for 1 million time steps. However, in the Halcheetah environ-232
ment, a very poor performing expert was used to see if leveraging very poor demonstrations could233
still hold value. Here, we specifically leveraged the decaying influence of MoE-GUIDE’s guidance234
over time. As shown in Figure 3, MoE-GUIDE improved upon the imperfect expert in all cases.235
However, for HalfCheetah, while MoE-GUIDE did not outperform the extrinsic reward baseline, it236
achieved comparable and notably more stable results.237

Figure 4: A comparison of (1) learning with only extrinsic rewards (ER-only), (2) learning from
extrinsic rewards combined with intrinsic rewards from ICM or RND, (3) combining extrinsic
rewards with pretraining (ER+pretraining), (4) using only the intrinsic reward with pretraining
(IR+pretraining), and (5) combining extrinsic and intrinsic rewards (MoE-GUIDE) in a sparse par-
tially observable environment.

Previous experiments used dense-reward environments that effectively guided agents. To create238
a more challenging exploration setting, MuJoCo environments were modified to provide rewards239
only for reaching checkpoints at fixed intervals. These intervals were chosen based on distances240
achievable by ICM, RND, and ER-only, since larger intervals would make it impractical to reach241
checkpoints within a reasonable time. Early termination results in a total reward of -1, which only242
applies to Walker2d and Ant, so only safe exploration is rewarded. The agent’s current position is243
not included in the state or demonstrations, which makes the environment partially observable. As a244
result, agents never cross checkpoints during pretraining. Figure 4 also shows that in sparse-reward245
settings, MoE-GUIDE significantly outperforms baselines, even though demonstrations lack com-246
plete information about the environment. We can observe that early on, utilizing extrinsic rewards247
speeds up learning, but later in the training process, they can harm the learning.248
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4.2 Ablation Studies249

This section presents an ablation study examining the impact of the gap and number of demon-250
strations, the Lmin threshold, the number of experts, and different decay rates for intrinsic reward251
guidance on the performance of MoE-GUIDE.252

4.2.1 Demonstration sparsity253

We investigate the impact of demonstration sparsity by varying the number of demonstration254
episodes and the interval between recorded points, reducing the total number of available samples.255
As the demonstrations become sparser, we observe a general slight decline in agent performance;256
however, our method continues to provide meaningful exploration guidance even in these challeng-257
ing scenarios. Notably, the agents using a single demonstration did not employ pretraining, and our258
approach still demonstrates robustness in this scenario, with significant gaps resulting in very few259
demonstration points. It can outperform baselines that rely solely on extrinsic rewards. These results260
highlight the effectiveness of our method in leveraging even highly limited or imperfect demonstra-261
tion data to improve exploration.262

Figure 5: Demonstration size and gap robustness comparison by varying both the number of demon-
stration episodes provided to the model, denoted as l, and the gap parameter g, which controls how
many samples are skipped between recorded demonstration points. Notably, the agents using a sin-
gle demonstration did not employ pretraining.

4.2.2 Number of experts263

We introduce a 3D grid world environment to visualize how our model learns from an expert path.264
The loss landscape is shown as in Figure 6 with heatmaps indicating the loss at fixed intervals. To265
highlight model behavior around the expert path, we apply a linear transformation to the loss data266
using a predefined Lmax. In this controlled setting, we perform ablation studies on the number of267
experts. The results illustrate that increasing the number of experts improves the model’s ability268
to detect expert behavior, but also increases the risk of misclassifying other areas as expert-like.269
This effect is especially visible with 5 and 11 experts. Notably, the largest improvement is usually270
observed when increasing from 1 to 2 experts. Based on these findings, we focus on using a low271
number of experts in our main experiments.272

4.2.3 Decay Rates273

In Figure 7, we compare different decay rates for the intrinsic reward. In our implementation, the274
intrinsic reward is decayed at every time step, so the specified λ value is applied at each step, start-275
ing from 1. For Walker2d and Ant, a lower decay rate allows the expert’s influence to persist longer276
during training, resulting in learning behavior and performance that is close to that of a standard277
agent. In contrast, a higher decay rate is preferred for cases such as HalfCheetah, where the expert278
performs significantly worse. This enables the agent to benefit from the imperfect expert primarily279
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Figure 6: Visualization of the loss landscape in the 3D grid world environment. The heatmaps show
the loss values at fixed intervals after applying a linear transformation with lossmax. Results are
presented for varying numbers of experts, illustrating both the enhanced capacity to identify expert
behavior and the increased risk of misclassification as the number of experts increases.

in the early stages, before quickly transitioning to rely on its own learned policy. Decay rates signifi-280
cantly impact the agent’s performance; however, by leveraging intuition about the known strength of281
the expert behavior, they can be estimated accurately. For instance, in the case of HalfCheetah, we282
knew we had a very weak expert, so high decay rates were chosen. In contrast, Walker2d performed283
slightly worse than an average extrinsic reward-only agent, thus requiring a low decay rate.284

Figure 7: Learning curves for different intrinsic reward decay rates (λ). The intrinsic reward is
decayed at every timestep using the specified λ value. A lower decay rate (λ closer to 1) maintains
expert influence longer, while a higher decay rate quickly reduces the contribution from the expert,
allowing the agent to rely more on its own learning.

4.2.4 Mapping function sensitivity285

The choice of values for the mapping function plays a crucial role in the performance effectiveness286
and exploration of MoE-GUIDE, as demonstrated by different Lmin values in Figure 8. Setting the287
threshold too high (e.g., 0.3) causes the agent to interpret too many states as expert-like, resulting288
in suboptimal behavior and lower extrinsic rewards while almost reaching the maximum intrinsic289
reward possible. In our experiments, lower values such as 0.01, 0.008, and 0.006 all result in strong290
extrinsic performance, with the lowest value providing the best results. However, setting Lmin too291
low can also be detrimental, as the agent is unable to find the expert-like regions. For instance, during292
pretraining, the agent can still locate some expert-like regions, but after pretraining, it is unable to293
reach them on its own. The choice of values also depends on whether pretraining is applied. As294
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with pretraining, the expert-like regions can be narrowed down since the agent visits them during295
the pretraining process. Therefore, without pretraining, the expert-like regions must be larger for296
the agent to locate them independently. Even though the results show that the Lmin value is very297
sensitive, by testing different parameters and observing how well the similarity model represents the298
expert data, it is easily detectable when setting Lmin or Lmax too low when the model is not able to299
represent the expert behavior, but there might also be too few experts. If random trajectories can be300
sampled from the environment and the model represents them well, Lmin or Lmax is probably too301
large.302

Figure 8: Impact of the mapping threshold Lmin on MoE-GUIDE’s performance. High thresholds
(e.g., Lmin = 0.3) cause the agent to misidentify many states as expert-like, resulting in high intrin-
sic but low extrinsic rewards. Lower thresholds (0.01, 0.008, 0.006) yield better extrinsic returns,
though setting Lmin too low can make it harder for the agent to find expert-like regions after pre-
training.

5 Conclusion & future works303

We present MoE-GUIDE, a method for directed exploration in Reinforcement Learning that uses a304
mixture of similarity models trained on expert demonstrations to construct a loss landscape, which305
resembles the similarity of each state to expert behavior. This loss is then transformed into an306
intrinsic reward through a mapping function, guiding the agent towards expert-like states. MoE-307
GUIDE is effective in both dense and sparse reward environments, demonstrating versatility across308
a range of exploration challenges. The method operates successfully with demonstrations that are309
unlabeled, incomplete, or imperfect. Our results show that agents benefit from MoE-GUIDE, even310
with limited data that contains gaps. One limitation of our method is the need for manual selection of311
the similarity model and mapping function. In environments where extrinsic rewards already provide312
sufficient guidance, the additional intrinsic reward may be less beneficial and can lead to suboptimal313
exploration. Future work could incorporate episodic intrinsic motivation to prevent the agent from314
repeatedly visiting similar states and explore alternative or adaptive similarity models. In this work,315
we have only tested autoencoders and variational autoencoders; however, other methods, such as316
density estimation, ICM, and RND, could also be considered for future research. Additionally,317
being able to inspect the loss landscape for expert-behavior representation and misclassifications318
would enable more efficient and effective mapping functions.319
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A Properties and pitfalls of state-only intrinsic motivation320

A.1 Proof that state-only intrinsic motivation does not change the optimal policy321

Let renv(s, a) denote the environment (extrinsic) reward, and let rint(s) denote an intrinsic reward322
that depends only on the state s. The agent receives the total reward:323

rtotal(s, a) = renv(s, a) + rint(s).

Let V π
env(s) be the value function under policy π and reward renv, and V π

total(s) under rtotal:324

V π
env(s) = E[∑∞

t=0 γtrenv(st,at)|s0=s],

325
V π

total(s) = E[∑∞
t=0 γt(renv(st,at)+rint(st))|s0=s].

Expanding V π
total(s), we get:326

V π
total(s) = E[∑∞

t=0 γtrenv(st,at)+
∑∞

t=0 γtrint(st)|s0=s]

= V π
env(s) + V π

int(s),

where327

V π
int(s) = E[∑∞

t=0 γtrint(st)|s0=s].

The set of optimal policies under renv is328

Π∗
env = arg max

π
env(s), ∀s.

Under rtotal,329

Π∗
total = arg max

π
total(s).

Observation: The difference in value between any two policies π1 and π2 is the same under V π
env330

and V π
total:331

V π1

total(s)− V π2

total(s) = (V π1
env (s)− V π2

env (s)) + (V π1

int (s)− V π2

int (s))

However, V π
int(s) depends only on the state visitation distribution induced by π. Since rint(s) does332

not depend on actions, optimizing V π
total(s) is equivalent to optimizing V π

env(s), as V π
int(s) is additive333

and does not affect the relative ordering of policies with respect to V π
env(s).334

Conclusion: The set of optimal policies is unchanged. That is,335

Π∗
env = Π∗

total.

Thus, adding a state-only intrinsic reward does not alter the optimal policy for the original environ-336
ment reward.337

This result follows the classic reward shaping theory as discussed in Ng et al. (1999). For complete-338
ness, we reproduce the argument here.339

□340
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A.2 Illustrative example of possible pitfalls341

We now show an example of a pitfall of using state-only intrinsic motivation. When intrinsic re-342
wards depend solely on visiting specific states, the agent can become overly focused on those states343
that provide intrinsic reward, rather than exploring the environment for potentially higher extrinsic344
rewards. This can lead to undesirable behavior where the agent repeatedly visits or remains within345
rewarding states, effectively becoming “stuck” in these regions. As a result, the agent may fail to346
discover more optimal strategies or reach states with significant extrinsic rewards.347

If the observation includes velocity or frame-stacked states, the agent is still incentivised to move,348
as trying to match the velocity of the expert will encourage the agent to traverse the environment349
rather than remain in a single region.350

Table 1 details the intrinsic and extrinsic rewards for each state in an example Markov Decision351
Process (MDP). The agent receives an intrinsic reward of +1 for visiting states S1, S2, and S6.352
The terminal state S6 also provides a larger extrinsic reward of +10. Table 2 explains the possible353
actions.354

Figure 9 shows the transition structure of this environment. At each state, the agent can execute355
action a0 (move right) or a1 (move left). If the immediate intrinsic reward primarily drives the356
agent’s policy, it may become trapped, oscillating between the early rewarding states (S1, S2, S3),357
and fail to reach the high extrinsic reward at S6.358

Table 1: Intrinsic and extrinsic rewards for each state in the environment.

State Intrinsic Reward Extrinsic Reward

S1 +1 0
S2 +1 0
S3 +1 0
S4 0 0
S5 0 0
S6 +1 +10

Table 2: Action meanings in the MDP.

Action Description

a0 Move one state to the right
a1 Move one state to the left

S1 S2 S3 S4 S5 S6

a0 a0 a0 a0 a0

a1 a1 a1 a1 a1

Figure 9: MDP transition graph. States S1 to S6 are connected by curly arrows denoting actions a0
(right) and a1 (left).

To mitigate this, intrinsic reward schemes can be enhanced in several ways:359

• Global intrinsic rewards decay: After every episode or time step, β can be decayed so that the360
agent focuses more on maximizing the extrinsic rewards over time.361

• State/region-specific intrinsic rewards decay: A more advanced way of decaying the intrin-362
sic reward is to decay the intrinsic rewards for a specific state or region either within an episode363
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(episodic novelty) or across all episodes (lifetime novelty), reducing the incentive to revisit famil-364
iar states, while not decaying the intrinsic rewards for unvisited states.365

• Exploration Bonuses: Methods such as Random Network Distillation (RND) or Intrinsic Cu-366
riosity Module (ICM) provide additional motivation for exploration by rewarding the agent for367
encountering novel or unpredictable states.368

Careful design of intrinsic motivation is crucial to avoid behaviors where agents are incentivized to369
remain in suboptimal regions, thereby detracting from overall task performance.370

B Experimental settings371

B.1 Soft Actor-Critic372

Table 3: Key hyperparameters for Soft Actor-Critic (SAC) in RLlib. All settings are default unless
noted. Replay buffer size for Swimmer is 100,000; for all other environments, it is 1,000,000.

Parameter Value

Discount factor (γ) 0.99
Actor learning rate 0.0003
Critic learning rate 0.0003
Entropy learning rate 0.0003
Optimizer Adam
Target smoothing coefficient (τ ) 0.005
Target network update frequency 0
Replay buffer size 1,000,000 (100,000 for Swimmer)
Batch size 256
Number of hidden layers 2
Hidden layer size 256
Activation function ReLU
Target entropy auto
N-step returns 1
Action normalization True

B.2 Mixture of autoencoders hyperparameters and training details373

Tables 4–9 present all the hyperparameters for the models used in Section 4 of this paper. These374
tables comprehensively document the configuration for each environment and model variant (Ta-375
ble 4), the parameters for the sparse environment (Table 5), the decay parameter settings (Table 6),376
additional configurations for iterative mask pruning (IMP) experiments (Table 7), the loss values377
explored (Table 8), and ablations on gap hyperparameters (Table 9).378

All models are trained using the Adam optimizer with a learning rate of 0.001 for 3000 epochs. The379
choice of 3000 training epochs is motivated by the need to balance the models’ ability to closely fit380
the expert demonstrations with their ability to generalize to unseen states. We observed that increas-381
ing the number of training epochs consistently decreased the reconstruction error on the training382
data; however, excessively long training can reduce the model’s ability to generalize, as it may383
overfit to the expert data. Thus, 3000 epochs were selected as a compromise between accurate384
representation of the expert trajectories and generalization performance.385

B.3 RND & ICM386

For our experiments involving intrinsic motivation, we implemented Intrinsic Curiosity Module387
(ICM) and Random Network Distillation (RND) as auxiliary reward signals. The design and hyper-388
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Table 4: Hyperparameter configurations for the perfect agents experiment for each environment and
model variant.

Environment Model Bottleneck Num Ex-
perts

Lmin Lmax Mapping
Function

Steepness Scale fac-
tor

Swimmer MoE-GUIDE 3 1 0.01 0.1 Exponential 20 1
IR+pretraining 3 1 0.01 0.1 Exponential 20 1

Hopper MoE-GUIDE 4 2 0.03 0.05 Exponential 100 2
IR+pretraining 4 2 0.03 0.05 Exponential 200 2

HalfCheetah MoE-GUIDE 7 4 0.1 0.9 Exponential 100 1
IR+pretraining 7 4 0.1 0.9 Exponential 200 1

Walker2d MoE-GUIDE 7 3 0.04 0.5 Exponential 100 2
IR+pretraining 7 3 0.04 0.5 Exponential 200 2

Ant MoE-GUIDE 10 2 4×10−5 0.1 Exponential 100 2
IR+pretraining 10 2 4×10−5 0.1 Exponential 200 2

Table 5: Hyperparameter configurations for the agents trained in the sparse environment for each
environment and model variant.

Environment Model Bottleneck Num Ex-
perts

Lmin Lmax Mapping
Function

Steepness Scale fac-
tor

HalfCheetah MoE-GUIDE 7 4 0.1 0.9 Exponential 200 0.01
IR+pretraining 7 4 0.1 0.9 Exponential 200 1

Walker2d MoE-GUIDE 7 3 0.04 0.5 Exponential 100 0.01
IR+pretraining 7 3 0.04 0.5 Exponential 200 2

Ant MoE-GUIDE 10 2 4×10−5 0.1 Exponential 200 0.01
IR+pretraining 10 2 4×10−5 0.1 Exponential 200 0.01

Table 6: Decay parameter configurations for the decay ablation study for Ant, HalfCheetah, and
Walker2d.

Env Decay Model Bottleneck Experts Lmin Lmax Map Fn Steepness Scale

Ant 0.999995 MoE-GUIDE 10 3 6 × 10−4 0.01 Exp 100 5
0.999996 MoE-GUIDE 10 3 6 × 10−4 0.01 Exp 100 5
0.999997 MoE-GUIDE 10 3 6 × 10−4 0.01 Exp 100 5
0.999998 MoE-GUIDE 10 3 6 × 10−4 0.01 Exp 100 5
0.999999 MoE-GUIDE 10 3 6 × 10−4 0.01 Exp 100 5

HalfCheetah 0.999995 MoE-GUIDE 7 4 0.1 0.8 Exp 100 5
0.999996 MoE-GUIDE 7 4 0.1 0.8 Exp 100 5

Walker2d 0.999997 MoE-GUIDE 7 4 0.03 0.5 Exp 100 5
0.999998 MoE-GUIDE 7 4 0.03 0.5 Exp 100 5
0.999999 MoE-GUIDE 7 4 0.03 0.5 Exp 100 5

Table 7: Hyperparameter configurations for the experiment using imperfect experts for Ant,
HalfCheetah, and Walker2d.

Environment Model Bottleneck Num Ex-
perts

Lmin Lmax Mapping
Function

Steepness Scale fac-
tor

HalfCheetah MoE-GUIDE 7 4 0.1 0.8 Exponential 100 1
IR+pretraining 7 4 0.1 0.8 Exponential 200 1

Walker2d MoE-GUIDE 7 4 0.03 0.5 Exponential 100 2
IR+pretraining 7 4 0.03 0.5 Exponential 200 2

Ant MoE-GUIDE 10 3 6×10−4 0.01 Exponential 100 1
IR+pretraining 10 3 6×10−4 0.01 Exponential 200 1

Table 8: Max loss values explored in the Ant environment, with all hyperparameter columns.

Loss Value Model Bottleneck Num Ex-
perts

Lmax Mapping
Function

Steepness Scale factor

0.01 IR+pretraining 6 2 0.1 Exponential 100 1
0.03 IR+pretraining 6 2 0.1 Exponential 100 1
0.006 IR+pretraining 6 2 0.1 Exponential 100 1
0.008 IR+pretraining 6 2 0.1 Exponential 100 1
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Table 9: Gaps for different configurations in the Ant environment, with all hyperparameter columns.

Name Model Bottleneck Num Ex-
perts

Lmin Lmax Mapping
Function

Steepness Scale fac-
tor

l10_s5 MoE-GUIDE 10 2 4 × 10−5 0.1 Exponential 100 2
l10_s5 IR+pretraining 10 2 4 × 10−5 0.1 Exponential 200 2
l10_s10 IR+pretraining 10 3 8 × 10−4 0.1 Exponential 200 1
l10_s15 MoE-GUIDE 10 3 3 × 10−4 0.05 Exponential 100 2
l10_s25 MoE-GUIDE 10 3 1 × 10−4 0.05 Exponential 100 2
l1_s10 MoE-GUIDE 10 10 0.0001 0.08 Exponential 100 1
l1_s20 IR+pretraining 10 5 0.01 0.05 Exponential 200 1

parameter selection for these methods was guided by the original works Pathak et al. (2017); Burda389
et al. (2018), as well as by Yuan et al. (2024), which provides extensive discussion of architectural390
choices, normalization strategies, and practical recommendations. In particular, Yuan et al. (2024)391
informed our choices of network size, orthogonal initialization, and state normalization. Addition-392
ally, following the findings of Li et al. (2019), we use only the forward model in off-policy settings,393
as it was shown to be sufficient for effective curiosity-driven exploration.394

The following choices and hyperparameters were used consistently for both ICM and RND:395

• State Normalisation: All states were normalised before being fed to the intrinsic modules.396

• Reward Normalisation: Intrinsic rewards were normalised online using a running mean and397
standard deviation (RMS).398

• Optimizer: Adam optimizer with a learning rate of 0.0003.399

• Feature Dimension: 128-dimensional feature space for the learned or random embeddings.400

• Hidden Dimension: All multi-layer perceptrons (MLPs) used in the intrinsic modules had hidden401
layers of size 256.402

• Weight Initialization: All networks were initialized using orthogonal initialization.403

• β: was chosen to provide a small exploration bonus of around 1% of the extrinsic reward.404

C Data Source Selection Rationale405

The selection of data sources for both the perfect and imperfect experts was guided by the need to406
provide a comprehensive evaluation of the agent’s learning capabilities under varying supervision407
qualities. For the perfect experts, we prioritized the best available baselines, ensuring that the408
guidance provided to the agents represented near-optimal behavior. This allowed for a stringent409
assessment of whether agents could, with the aid of such expert data, achieve or approximate top-410
tier performance within a limited training budget of 1 million timesteps.411

For the imperfect experts, we aimed to supply the agents with guidance that, while informative,412
did not represent optimal behavior. Specifically, we selected agents that performed slightly below413
the average Soft Actor-Critic (SAC) agent but were not trapped in poor local optima, thereby pro-414
viding learning signals that were sub-optimal yet still constructive. An exception was made for the415
HalfCheetah environment, where we intentionally included a particularly poorly performing agent.416
This choice was made to test whether even data from significantly subpar agents can be rigorously417
could contribute positively to the learning process when combined with the proposed guidance.418

Together, these selections facilitate a thorough investigation into the robustness and effectiveness of419
the learning algorithms when exposed to both high-quality and imperfect supervision.420
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Table 10: Data sources used for training models, categorized by expert quality.

Category Environment Source/Description
Perfect Expert Swimmer Standard settings Open-Loop Baseline Raffin

et al. (2023)
Hopper CILO paper dataset Gavenski et al. (2024)
Walker2d Good performing SAC agent after 2M timesteps
HalfCheetah Good performing SAC agent after 2M timesteps
Ant CILO paper dataset Gavenski et al. (2024)

Imperfect Expert Walker2d Below average SAC agent after 1M timesteps
HalfCheetah CILO paper dataset Gavenski et al. (2024)
Ant Slightly below average performing SAC agent af-

ter 1M timesteps that is not stuck in a bad local
minima

D Environment details421

We employ five standard continuous control environments from the MuJoCo suite: Swimmer, Hop-422
per, Walker2d, HalfCheetah, and Ant. These environments are widely used to benchmark reinforce-423
ment learning algorithms in simulated robotic locomotion. In Table 11, details about the action and424
state spaces can be found, and Figure 10 visualizes the environments.425

(a) Swimmer (b) Hopper (c) Walker2d (d) HalfCheetah (e) Ant

Figure 10: Screenshots of the MuJoCo environments used as baselines for locomotion experiments.

Table 11: Observation and action space dimensions for MuJoCo environments. Here, S denotes the
state (observation) space and A denotes the action space.

Environment dim(S) dim(A)

Swimmer-v2 8 2
Hopper-v2 11 3
Walker2d-v2 17 6
HalfCheetah-v2 17 6
Ant-v2 111 8

For our experiments requiring sparse rewards, we modified the MuJoCo environments so that agents426
receive rewards only upon reaching checkpoints at fixed intervals, 2.5 for Walker2d, 5 for Ant, and427
11 for HalfCheetah. These intervals were chosen to ensure that checkpoints are reachable, while428
still presenting a challenging exploration problem for the agent. Early episode termination results in429
a total reward of −1, incentivizing safe and deliberate exploration. HalfCheetah does not terminate430
early so this makes the exploration easier.431

In the sparse-reward setup, the agent’s position is not included in the state or demonstrations, making432
the environment partially observable. Additionally, the environment cannot be reset to the agent’s433
exact demonstration location; instead, the agent is respawned at the initial starting point but initial-434
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ized with the expert’s joint angles and velocities. This setup exposes the agent to expert behavior435
without providing immediate extrinsic rewards.436

E Traditional intrinsic reward methods baseline437

In this section, we investigate the impact of various intrinsic motivation methods, using both stan-438
dard and normalized rewards. Specifically, Intrinsic Curiosity Module (ICM), Random Network439
Distillation (RND), and an autoencoder-based intrinsic reward, on agent performance in a dense440
reward environment. While these intrinsic rewards are designed to encourage exploration in sparse441
settings, we observe in Figure 11 that in environments with dense rewards, they can hinder the442
learning process. In Halcheetah, ER+ICM has a strange shape, but this is due to the highly unstable443
learning curves of all the runs.444

Figure 11: Performance comparison of agents trained with standard intrinsic rewards (ICM, RND,
and autoencoder-based) and normalized rewards versus extrinsic rewards in a dense environment.
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550

F Grid world551

We present qualitative results in a gridworld with random walls, where the agent can move in any552
direction. The agent always selects randomly among actions that yield the highest intrinsic reward.553
For our method (MoE-GUIDE), intrinsic rewards are only given once per state to prevent the agent554
from getting stuck revisiting the same locations. In all visualizations, the green star indicates the555
start state, the red star marks the goal, and blue dots represent demonstration states.556

Figure 12 visualizes the exploration patterns produced by different intrinsic motivation methods:557
random, count-based, ICM, RND, and MoE-GUIDE. This comparison highlights the distinct be-558
haviors and exploration strategies induced by each method.559

Figure 13 compares MoE-GUIDE’s behavior under different amounts of missing data in the demon-560
strations. Each subplot corresponds to a different gap size G, where G = NUMBER indicates the561
number of samples skipped between demonstration points. It is clearly visible that the agent at-562
tempts to explore regions where demonstration states are present, even when the demonstration data563
is sparse due to gaps.564

Figure 12: Exploration patterns in a gridworld with random walls for different intrinsic motivation
methods: random, count-based, ICM, RND, and MoE-GUIDE. The agent always chooses among
actions with the highest intrinsic reward, illustrating the characteristic exploration behavior of each
method. For MoE-GUIDE, intrinsic rewards are only provided once per state to prevent the agent
from getting stuck. The green star is the start state, the red star is the goal, and blue dots indicate
demonstration states.
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Figure 13: Effect of gaps in demonstration data on MoE-GUIDE’s exploration in gridworld. Each
subplot corresponds to a different gap size G, where G = NUMBER indicates the number of
samples skipped between demonstration points. The agent clearly attempts to explore regions where
demonstration states are present, even as the demonstration data becomes increasingly sparse. The
green star is the start state, the red star is the goal, and the blue dots indicate demonstration states.

G Tables of final mean results565

This section provides tables summarizing the final mean rewards and standard deviations for differ-566
ent experimental settings and hyperparameters. The results are presented to facilitate comparison567
between methods and configurations.568

Table 12: Final mean rewards ± standard deviation for each method in the perfect expert experiment.

Method Swimmer Hopper Walker2d HalfCheetah Ant

ER+pretraining 86.59 ± 15.25 2556.55 ± 551.80 3746.44 ± 1953.40 2112.67 ± 2250.98 4815.93 ± 324.09
IR+pretraining 321.32 ± 3.26 2994.18 ± 947.20 4841.49 ± 55.06 -325.95 ± 147.75 4611.79 ± 140.51
ER-only 100.66 ± 38.36 2946.26 ± 672.87 4201.02 ± 646.91 11216.96 ± 508.09 3603.56 ± 1704.07
MoE-GUIDE 329.50 ± 1.70 3642.78 ± 196.37 4776.34 ± 168.72 9867.41 ± 907.54 5282.29 ± 222.13

Table 13: Final mean rewards ± standard deviation for each method in the imperfect expert experi-
ment.

Method Walker2d HalfCheetah Ant

ER-only 4200.66 ± 646.93 11225.46 ± 505.78 3603.56 ± 1704.66
MoE-GUIDE 5046.87 ± 162.36 10829.20 ± 565.04 5020.49 ± 240.66
IR+pretraining 4557.89 ± 120.08 5274.66 ± 3884.78 3865.11 ± 279.42
ER+pretraining 4103.49 ± 1509.36 7564.65 ± 1229.63 4595.19 ± 513.56
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Table 14: Final mean rewards ± standard deviation for different decay rates.

Method / Decay Walker2d HalfCheetah Ant

0.999995 — 10829.20 ± 565.04 4651.73 ± 424.67
0.999996 — 9377.68 ± 1383.32 4803.90 ± 375.54
0.999997 4188.21 ± 1669.04 — 4935.50 ± 349.51
0.999998 4439.23 ± 1704.39 — 4877.52 ± 383.50
0.999999 5047.04 ± 162.74 — 4951.07 ± 121.43
ER-only 4200.63 ± 646.91 11223.27 ± 508.42 3603.59 ± 1704.69

Table 15: Final mean rewards ± standard deviation for different Lmin values.

Lmin Extrinsic Reward Intrinsic Reward

0.006 4139.03 ± 93.31 919.57 ± 13.74
0.008 3812.84 ± 294.02 923.57 ± 73.03
0.01 3372.02 ± 869.04 892.51 ± 158.13
0.03 -1812.56 ± 933.01 916.76 ± 114.37

Table 16: Final mean rewards ± standard deviation for different gap sizes and number of demon-
strations.

Setting Intrinsic Reward + pretraining MoE-GUIDE

l1_g9 — 4199.43 ± 338.67
l1_g19 3010.78 ± 34.19 4271.73 ± 615.61
l10_g4 4611.81 ± 140.51 5282.29 ± 222.68
l10_g9 3871.64 ± 203.34 —
l10_g14 — 5208.85 ± 212.66
l10_g24 4177.66 ± 191.29 5050.68 ± 225.26
ER-only 3604.23 ± 1704.66

Table 17: Final mean rewards ± standard deviations for each method in the sparse environment.

Method Walker2d HalfCheetah Ant

ER-only 23.50± 11.85 89.26± 29.96 4.33± 8.47
ER+pretraining 23.04± 16.13 13.04± 8.31 76.39± 157.01
IR+pretraining 48.83± 7.77 263.42± 147.87 530.58± 35.52
MoE-GUIDE 34.95± 48.01 127.90± 174.62 526.62± 5.14
ER+RND 14.16± 28.72 52.79± 24.78 −0.23± 0.43
ER+ICM −0.22± 0.10 56.64± 67.66 −0.12± 0.09
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