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ABSTRACT

This paper introduces an effective and practical step toward approximate Bayesian
inference in on-policy actor-critic deep reinforcement learning. This step mani-
fests as three simple modifications to the Asynchronous Advantage Actor-Critic
(A3C) algorithm: (1) applying a ReLU function to advantage estimates, (2) spec-
tral normalization of actor-critic weights, and (3) incorporating dropout as a
Bayesian approximation. We prove under standard assumptions that restricting
policy updates to positive advantages optimizes for value by maximizing a lower
bound on the value function plus an additive term. We show that the additive term
is bounded proportional to the Lipschitz constant of the value function, which of-
fers theoretical grounding for spectral normalization of critic weights. Finally, our
application of dropout corresponds to approximate Bayesian inference over both
the actor and critic parameters, which enables prudent state-aware exploration
around the modes of the actor via Thompson sampling. Extensive empirical eval-
uations on diverse benchmarks reveal the superior performance of our approach
compared to existing on- and off-policy algorithms. We demonstrate significant
improvements for median and interquartile mean metrics over PPO, SAC, and
TD3 on the MuJoCo continuous control benchmark. Moreover, we see improve-
ment over PPO in the challenging ProcGen generalization benchmark.

1 INTRODUCTION

Deep Reinforcement Learning (DRL) is a paradigm for finding approximate solutions to complex
sequential decision-making problems in domains such as robotics (Ibarz et al., 2021), autonomous
driving (Kiran et al., 2021), strategy games (Mnih et al., 2015; Silver et al., 2017; Arulkumaran
et al., 2019), and human-computer interaction (Ziegler et al., 2019). In recent years, DRL algo-
rithms have achieved state-of-the-art performance on many challenging benchmarks (Young & Tian,
2019; Lange, 2022; Todorov et al., 2012; Brockman et al., 2016). However, their use in real-world
applications depends on their capacity to execute tasks while making policy updates in the face of
finite observations of a world in flux. On-policy algorithms, such as Proximal Policy Optimization
(PPO) (Schulman et al., 2017) or Asynchronous Advantage Actor-Critic (A3C) (Mnih et al., 2016),
update differentiable policies based on recent interactions with the environment. This recency bias
and the capacity to actively sample informative observations make on-policy approaches compelling
candidates for applications in dynamic real-world environments.

A key facet of active sampling is exploration. On-policy actor-critic methods typically incorpo-
rate exploration through entropy regularization or by learning a homogeneous variance parameter
for continuous action spaces (Schulman et al., 2015a; Mnih et al., 2016; Schulman et al., 2017).
While effective, such on-policy DRL exploration methods are state-agnostic, promoting exploration
equally regardless of the novelty or familiarity of a given state. This work is motivated by a de-
sire to introduce effective and grounded uncertainty-aware exploration to the on-policy actor-critic
framework. Approximate Bayesian inference over actor weights would enable principled explo-
ration, but it is not straightforward due to the policy-gradient objective for optimizing the actor.
Thus, we ask, ”What is the minimal step we can take toward approximate Bayesian inference,”
and present VSOP (which stands for Variational [b]ayes, Spectral-normalized, On-Policy reinforce-
ment learning). VSOP consists of three simple modifications to the A3C algorithm: (1) applying
a ReLU function to advantage estimates, (2) spectral normalization of actor-critic weights, and (3)
incorporating dropout as a Bayesian approximation (Gal & Ghahramani, 2016). Under standard
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assumptions, we prove that restricting policy updates to positive advantages maximizes value by
maximizing a lower bound on the value function plus an additive term. We show that the additive
term is bounded proportional to the Lipschitz constant of the value function, grounding the use of
spectral normalization as a Lipschitz constant regularizer. Lastly, we show how dropout corresponds
to approximate Bayesian inference over the actor and critic parameters, which enables state-aware
exploration via Thompson sampling.

Through our thorough empirical assessments on the Gymnasium and Brax MuJoCo benchmarks
for continuous control (Brockman et al., 2016; Freeman et al., 2021), we show that VSOP can
significantly outperform existing DRL algorithms such as A3C, PPO, SAC, and TD3 for median and
interquartile mean (ICM) metrics (Agarwal et al., 2021). Moreover, VSOP significantly outperforms
PPO on the challenging ProcGen generalization benchmark, demonstrating improved performance
when deployed under distribution shift.

2 BACKGROUND

Notation. We consider a discounted, T-horizon Markov Decision Process (MDP) defined by the
tuple (S,A,P, r, γ), where S is the state space, A is the action space, P is the state transition
probability, r is the immediate reward upon transitioning from state s to state s′ under action a,
and γ ∈ [0, 1] is the discount factor. MDPs provide a framework for modeling sequential decision-
making problems, where an agent interacts with an environment over discrete time steps to achieve
a goal (Puterman, 2014). Following the notation of Sutton & Barto (2018), we define states at time
t ∈ T by the d-dimensional, real-valued, random variable, St : Ω → S ⊆ Rd, with observable
instances st = St(ωt) : ∀ωt ∈ Ω. We define actions by the m-dimensional random variable
At : Ω → A, with observable instances, at = At(ωt) : ∀ωt ∈ Ω. Rewards are defined by the
continuous-valued random variable, Rt : Ω → R ⊆ R, with observable instances, rt = Rt(ωt) :

∀ωt ∈ Ω. Let the random variable, Gt :=
∑T

k=t+1 γ
k−1−tRk, denote the discounted return. We use

the standard definitions for the conditional action distribution/density (policy), π(a | s), the state
value function under the policy, vπ(s) := Eπ [Gt | St = s], and state-action value function under
the policy, qπ(s,a) := Eπ [Gt | St = s,At = a].

On-policy Actor-critic reinforcement learning. On-policy, Actor-critic approaches to reinforce-
ment learning are called policy-gradient methods. They directly optimize a policy function,
π(a | s,θ), differentiable with respect to parameters, θ, to maximize the expected discounted return
under the policy, vπ(s). On-policy approaches differ from off-policy approaches in that they only
use recent samples from the current policy to achieve this objective. Actor-critic methods differ
from other policy-gradient methods because they fit an approximate value function (critic), v(s,w),
to the data collected under the policy, in addition to optimizing the policy function (actor). The critic
is typically used in actor optimization but not generally for decision-making.

Deep reinforcement learning implements the actor and critic using neural network architectures,
where the function parameters correspond to network weights. We denote the parameters of the
actor and critic networks as θ and w, respectively. The output likelihood of the actor makes dis-
tributional assumptions informed by characteristics of the action space, A. A common choice for
continuous action spaces is an independent multivariate normally distributed likelihood with homo-
geneous noise variance, π(at | st,θ) ∼ N (a | µ(s,θ), Iσ2(θ)), where σ2(θ) = (σ2

1 , . . . , σ
2
m)

is the vector of inferred action noise variances. For discrete action spaces, the likelihood is of-
ten a categorical distribution, π(a | s,θ) ∼ Categorical(a | µ(s,θ)). In both cases, the mean
parameter of the likelihood, µ(s,θ), is the m-dimensional, vector-valued output of a neural net-
work architecture with parameters, θ. Critic networks are commonly fit using a mean squared
error objective, which implies a univariate normally distributed output likelihood with unit variance,
G | s,w ∼ N (g | v(s,w), 1), where the mean parameter is the approximate value function, v(s,w),
and is given by the scalar-valued output of any neural network architecture with parameters, w.

The baseline on-policy, actor-critic policy gradient algorithm performs gradient ascent with re-
spect to the “performance” function, J(θ) := vπ(s0,θ), where vπ(s0,θ) is the value function
with respect to the parameters θ. By the policy gradient theorem (Sutton et al., 1999), we have:
∇θJ(θ) = ∇θvπ(s0) ∝

∫
S ρ(s)

∫
A qπ(s,a)∇θπ(a | s,θ)dads. Sutton & Barto (2018) show that

a generalization of this result includes a comparison of the state-action value function, qπ(s,a), to
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an arbitrary baseline that does not vary with the action, a. When the baseline is the state value
function, vπ(s), we have an objective in terms of the advantage function (Schulman et al., 2015b),
hπ(s,a) := qπ(s,a) − vπ(s), namely: ∇θJ(θ) ∝

∫
S ρ(s)

∫
A hπ(s,a)∇θπ(a | s,θ)dads. This

formulation in terms of all actions can be further simplified in terms of sampled actions and states
as∇θJ(θ) ∝ Eπ [hπ(St,At)∇θ log π(At | St,θ)]. We use Eπ to denote an expectation over states
St and actions At collected under the policy π(a | s).
In general, because neither the state-action, qπ(s,a), nor the state value, vπ(s), functions are
known, we need an estimator for the advantage function. For compactness, we will focus on
the generalized advantage estimator (GAE) proposed by Schulman et al. (2015b): h(st, rt,w) =∑T

k=t+1(γλ)
k−1−tδwt−k+1, where 0 < λ ≤ 1, and δwt = rt + γv(st+1;w) − v(st;w) is the

temporal difference (TD) residual of the value function with discount, γ (Sutton & Barto, 2018).
The GAE then yields a low-variance gradient estimator for the policy function: ∇̂θJ(θ) :=
Eπ [h(St,Rt,w)∇θ log π(At | St,θ)]. Finally, the actor and critic networks are generally opti-
mized by using mini-batch stochastic gradient descent Robbins & Monro (1951) to fit the func-
tions induced by the network weights to a batch of data collected under the current policy,
Db

π = {si,ai, ri}bi=1. The parameter updates are given by,

θ ← θ − η
1

b

b∑
i=1

h(si, ri,w)∇θ log π(ai | si,θ), (1a)

w← w − η
1

b

b∑
i=1

∇w log p(g(si, ri, w̃) | si,w), (1b)

where, η, is the learning rate, g(si, ri, w̃) = h(si, ri, w̃)+v(si, w̃), and w̃ are previous parameters.

3 METHODS

This work takes a top-down approach to state-aware exploration for on-policy actor-critic DRL.
To employ principled exploration strategies, we would like to have approximate posteriors,
q(Θ | Dn−1) and q(W | Dn−1), for the weights of the actor and critic given data, Dn−1 =

{si,ai, ri}|Tn−1|
i=1 , collected under the policy, π(a | s,Θn−1), over a set of horizons, Tn−1 =

Tn−1
1 ∪ Tn−1

2 ∪ . . . . However, fastidiously Bayesian, bottom-up approaches often yield strategies
less effective than the state-of-the-art. Leaving debates on evaluation aside, we start from the A3C
algorithm and ask, “what minimum changes can we make to get close to an approximate posterior?”

Starting with the critic, v(s,w), this task seems straightforward because we train the critic with
mean squared error loss. Hence, we can use the implied likelihood, N (g | v(s,w), 1), and use the
dropout as a Bayesian approximation (Gal & Ghahramani, 2016) framework to infer an approximate
posterior density over critic weights, q(w | ŵ, pd), where ŵ is the variational parameter for the
network weights, and pd is the dropout rate. We outline the resulting optimization procedure in lines
16-17 of Algorithm 1 for a unit Normal prior over critic weights, p(w) = N (w | 0, I).
The inference task is less straightforward for the actor because the A3C objective, ∇θJ(θ) ∝
Eπ [hπ(St,At)∇θ log π(At | St,θ)], is not merely maximization of the log-likelihood. Instead,
the log-likelihoods, log π(a | s,θ), are scaled by the advantage function, hπ(s,a). The dropout as
Bayesian approximation framework estimates the integral over the log evidence lower bound ob-
jective using Monte-Carlo integration. For a single sample from the approximate posterior density,
θ ∼ q(θ | θ̂, pd), the integrand is of the general form:

L =

|D|∑
i=1

log p(· | si,θ)−KL(q(θ)||p(θ)). (2)

We make the same prior assumption, p(θ) = N (θ | 0, I), for the actor as for the critic, so we only
need to focus on the first r.h.s., log-likelihood term. Here we introduce a normal-gamma distribution
over the actions r.v., At, and a random variable Ht:

p(At,Ht | s,θ, τ, α, β) :=
{
At | Ht, s,θ, τ ∼ N

(
a | µ(s,θ), (τHt)

−1
)

Ht | α, β ∼ Gamma(α, β).
(3)
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Algorithm 1 VSOP for Dropout Bayesian Neural Networks

Require: initial state, s′, environment, p(s′, r | s,a), rollout buffer, D, initial actor parameters, θ̂,
initial critic parameters, ŵ, dopout rate, pd, learning rate, η, minibatch size, b.

1: while true do
2: D ← ∅ ▷ reset rollout buffer
3: while acting do ▷ interact with the environment
4: s← s′ ▷ update current state
5: θ ∼ q(θ | θ̂, pd) if TS else θ ← θ̂ ▷ sample actor params if Thompson sampling (TS)
6: a ∼ π(a | s,θ) ▷ sample action from policy
7: s′, r ∼ p(s′, r | s,a) ▷ sample next state and reward from environment
8: D ← D ∪ {(s,a, r)} ▷ update rollout buffer
9: w∗ ← ŵ ▷ freeze critic weights for advantage estimates

10: β ← (1− pd)/ (2|D|) ▷ set parameter precision
11: while fitting do ▷ update actor and critic
12: {si,ai, ri}bi=1 ∼ D ▷ sample minibatch from rollout buffer
13: w̃ ∼ q(w | w∗, p) if TS else w̃← w∗ ▷ sample advantage params if TS
14: θ ∼ q(θ | θ̂, pd) ▷ sample actor parameters
15: θ̂ ← θ̂ − η 1

b

∑b
i=1 h

+(si, ri, w̃)∇θ log π(ai | si,θ) + 2βθ ▷ update actor
16: w ∼ q(w | ŵ, pd) ▷ sample critic parameters
17: ŵ← ŵ − η 1

b

∑b
i=1∇w log p(g(si, ri, w̃) | si,w) + 2βw ▷ update critic

Given a dataset,D = {Ai,Si,Hi}Ni=1, and differentiating the log-likelihood of this distribution with
respect to θ, we have:

∇θ log p(At,Ht | St,θ, . . . )

=

N∑
i=1

∇θ log

(
βα
√
τ

Γ(α)
√
2π

h
α− 1

2
i exp (−βhi) exp

(
−1

2
hiτ(ai − µ(si,θ))

2

))

= −1

2

N∑
i=1

hi∇θτ (ai − µ(si,θ))
2

= −1

2

N∑
i=1

hi∇θ log π(at | st,θ).

(4)

Thus, the normal-gamma assumption allows us to recover the A3C optimization form in Equa-
tion (1a) while enabling approximate Bayesian inference over the actor parameters. However, the
advantage function, hπ(s,a), is not gamma distributed, as it can take on values in the range (−∞, 0],
so we cannot plug it directly into Equation (4). This discrepancy motivates our second, though not
strictly valid due to the introduction of zeros, minimal step of passing the advantages through a
ReLU function, enabling approximate Bayesian inference over the parameters of the actor to obtain
the approximate posterior density of the actor, q(θ | θ̂, pd). We outline the resulting optimization
procedure in lines 14-15 of Algorithm 1, where h+(si, ri, w̃) := max

(
0, h(si, ri, w̃)

)
. Note that

the clipped advantages as an actor precision modifier have a very intuitive interpretation. When
advantage estimates are low (no evidence of past good actions), the variance of the policy will be
high, indicating that the actor should explore more. Conversely, when the advantage estimates are
high (evidence of past good actions), the variance of the policy will be low, indicating that the actor
should explore less.

What function does VSOP optimize? Clipping the advantage estimates to be non-negative has
been explored in many policy-gradient contexts (Srinivasan et al., 2018; Oh et al., 2018; Petersen
et al., 2019; Ferret et al., 2020). Here, we examine how this augmentation affects the optimization
procedure in the context of on-policy actor-critic RL and offer a theoretical hypothesis to ground
both our method and the Regret Matching Policy Gradient (RMPG) method of Srinivasan et al.
(2018).
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Theorem 3.1. Let, Gt :=
∑T

k=t+1 γ
k−1−tRk, denote the discounted return. Let qπ(s,a) =

Eπ [Gt | St = s,At = a], denote the state-action value function, and vπ(s) = Eπ [Gt | St = s],
denote the state value function, under policy π(a | s,θ). Let

(
x
)+

:= max(0, x). Assume, with-
out loss of generality, that rewards, Rt, are non-negative. Assume that the gradient of the policy,
∇π(a | s,θ), is a conservative vector field. Then, performing gradient ascent with respect to,

∇θJ(θ) = Eπ

[(
qπ(St,At)− vπ(St)

)+

∇θ log π(At | St,θ)

]
, (5)

maximizes a lower-bound, v∗π(s), on the state value function, vπ(s), plus an additive term:

v∗π(s) ≤ vπ(s) + Cπ(s). (6)

Where, Cπ(s) =
∫∫ (

γvπ(s
′)− vπ(s)

)+

dP(s′ | St = s,At = a)dΠ(a | St = s), is the expected,

clipped difference in the state value function, γvπ(s′)−vπ(s), over all actions, a, and next states, s′,
under the policy given state, s. Here, we use

∫
. . . dΠ(a | s) to denote

∑
a . . . π(a | s) for discrete

action spaces and
∫
. . . π(a | s)da for continuous action spaces. Similarly, we use

∫
. . . dP(s′ | s,a)

to denote
∑

s′ . . . p(s
′ | s,a) for discrete state spaces and

∫
. . . p(s′ | s,a)ds′ for continuous state

spaces. We provide proof in Appendix C.1.

Bounding Cπ(s). For a Kπ-Lipschitz value function and γ = 1, the additive term is bounded
proportional to the expected absolute difference between states:

Cπ(s) =

∫∫ (
vπ(s

′)− vπ(s)
)+

dP(s′ | St = s,At = a)dΠ(a | St = s)

≤= 1

2

∫∫ ∣∣vπ(s′)− vπ(s)
∣∣dP(s′ | St = s,At = a)dΠ(a | St = s) Lemma C.4

≤ 1

2

∫∫
Kπ

∣∣∣∣s′ − s
∣∣∣∣dP(s′ | St = s,At = a)dΠ(a | St = s).

This interpretation motivates using spectral normalization (Miyato et al., 2018) of the value func-
tion estimator weights, v(s,w), which regulates the Lipschitz constant, Kπ , of the estimator and
can improve off-policy DRL performance (Bjorck et al., 2021; Gogianu et al., 2021). Moreover,
this bound is not vacuous for the continuous (nor the discrete) action setting. Under weak as-
sumptions, f(a, s) :=

∫
Kπ

∣∣∣∣s′ − s
∣∣∣∣dP(s′ | St = s,At = a), is finite for all a. Therefore,

f∗(s) = maxa(
∫
f(a, s)dΠ(a | St = s)), exists and is finite, and Cπ(s) ≤ 1

2f
∗(s).

We term this method VSOP for Variational [b]ayes, Spectral-normalized, On-Policy reinforcement
learning. Algorithm 1 details VSOP for dropout BNNs.

Comments. The derivation in Equation (4) assumes access to the policy precision parameter, τ =
1/σ2, and samples of Ht. In practice, we fit τ using maximum likelihood estimation and use clipped
GAEs to obtain samples of Ht. Moreover, it is only valid for continuous action spaces. We evaluate
discrete action spaces below but leave theoretical grounding for future work.

Note that while we show in Equation (4) that approximate Bayesian inference of θ under an assumed
policy that scales actor precision, τ , by clipped advantages, h+, yields an equivalent likelihood ob-
jective, we do not implement a policy, π(a | s,θ), that includes this scaling. We leave this explo-
ration to future work as it requires joint inference over τ and θ and an appropriate state conditional
advantage estimator.

Finally, the conservative vector field assumption of Theorem 3.1 assumes that the actor implements
a smooth function. This assumption is often broken in practice as non-smooth ReLU activation func-
tions see use in the baselines we compare to. We leave the investigation of using smooth activation
functions to future work.

4 RELATED WORKS

VSOP is an on-policy RL algorithm. Table 1 compares the gradient of the performance function,
∇J(θ), for VSOP with those for relevant on-policy algorithms. We discuss each algorithm below.
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Table 1: Comparison of performance functions for on-policy methods

Method ∇J(θ)
A3C Eπ [hπ(St,At)∇ log π(At | St,θ)] ; hπ(St,At) = qπ(St,At)− vπ(St)
VSOP Eπ [h

+
π (St,At)∇ log π(At | St,θ)] ; h+

π (St,At) = max
(
0, hπ(St,At)

)
RMPG Eπ

[∫
h+
π (St,a)∇dΠ(a | St,θ)

]
TRPO Eπ [hπ(St,At)∇ρ(St,At,θ)] ; ρ(St,At,θ) =

π(At|St,θ)
π(At|St,θold)

PPO Eπ

[
min

(
hπ(St,At)∇ρ(St,At,θ), clip

(
hπ(St,At)∇ρ(St,At,θ), 1− ϵ, 1 + ϵ

))]
DPO Eπ

[
∇

{(
hπ(ρ(θ)− 1)− a tanh(hπ(ρ(θ)− 1)/a)

)+
hπ(St,At) ≥ 0(

hπ log(ρ(θ))− b tanh(hπ log(ρ(θ)/b)
)+

hπ(St,At) < 0

]
CVaR Eπ

[(
να −Gt

)+∇ log π(At | St,θ)
]
; να := α-quantile of return, Gt

RSPG Eπ

[(
Gt − να

)+∇ log π(At | St,θ)
]
; Gt :=

∑T
k=t+1 γ

k−1−tRk

EPOpt Eπ

[
1
(
Gt ≤ να

)
∇J(θ,St,At)

]
; J(θ,St,At) on-policy perf. function

Mirror Learning. Proximal Policy Optimization (PPO) (Schulman et al., 2017), improves upon the
baseline policy gradient method by constraining the maximum size of policy updates. PPO employs
a clipped surrogate objective function to limit the size of policy updates. PPO simplifies the opti-
mization procedure compared to TRPO (Schulman et al., 2015a), making it more computationally
efficient and easier to implement. While PPO constrains policy updates based on the ratio between
the new and old policies, VSOP constrains policy updates according to the sign of the estimated ad-
vantage function. As such, PPO is an instance of the mirror learning framework Kuba et al. (2022),
whereas VSOP does not inherit the same theoretical guarantees. Lu et al. (2022) explores the Mirror
Learning space by meta-learning a “drift” function. They term their immediate result Learned Policy
Optimization (LPO). Through its analysis, they arrive at Discovered Policy Optimisation (DPO), a
novel, closed-form RL algorithm.

Regret Matching Policy Gradient (RMPG). Srinivasan et al. (2018) present a method inspired
by their regret policy gradient (RPG) objective, which maximizes a lower-bound on the advan-
tages: (h(s,a))+ ≤ h(s,a). RPG directly optimizes the policy for an estimator of the advantage
lower-bound, denoted as ∇θJ

RPG(θ). RMPG, being inspired by RPG, has a different objective,
∇θJ

RMPG(θ). In both cases, q(s,a,w) is a parametric estimator of the state-action value function,
qπ(s,a). RMPG has demonstrated improved sample efficiency and stability in learning compared
to standard policy gradient methods. VSOP is closely related to RMPG; however, we provide the
missing theoretical foundations to ground RMPG (Appendix C.1), extend RMPG from the all ac-
tions formulation making it more suitable for continuous control (Appendix C.2), and employ the
GAE rather than the state-action value function estimator, q(s,a,w).

Thompson Sampling in Deep Reinforcement Learning. Thompson sampling has been extensively
explored in conventional and Deep Q-Learning (Strens, 2000; Wang et al., 2005; Osband et al., 2016;
Moerland et al., 2017; Azizzadenesheli et al., 2018) to improve exploration and sample efficiency.
Clements et al. (2019) and Nikolov et al. (2018) propose similar sampling-based exploration strate-
gies for Deep Q-Learning. Jiang et al. (2023) propose a Thompson sampling strategy based on
an ensemble of quantile estimators of the state-action value distribution. In the context of policy
gradient methods, related Upper Confidence Bound (UCB) (Ciosek et al., 2019) and Hamiltonian
Monte-Carlo (HMC) (Xu & Fekri, 2022) approaches are proposed for off-policy Soft Actor-Critic
(SAC) (Haarnoja et al., 2018), and Henaff et al. (2022) proposes an elliptical episodic reward for
general use. Igl et al. (2019) propose Selective Noise Injection using fixed dropout masks to sample
policies and then actions, but stop short of formalizing this as Thompson sampling. Similarly for
Hausknecht & Wagener (2022). We believe our work is the first to formalize and show the benefit
of Thompson sampling for on-policy actor-critic methods.
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5 EXPERIMENTS

We comprehensively evaluate VSOP against on-policy RL methods across various domains, in-
cluding continuous and discrete action spaces and diverse dimensionalities in both the action and
observation spaces. In Section 5.1, we evaluate VSOP on continuous control tasks using the Gym-
nasium (Brockman et al., 2016) and Gymnax (Lange, 2022) implementations of MuJoCo (Todorov
et al., 2012). In Section 5.2, we assess the capacity of VSOP to learn policies that generalize to
unseen environments at test time using the ProcGen benchmark (Cobbe et al., 2020). We use the
rliable package to evaluate robust normalized median (Median), interquartile mean (IQM), mean
(Mean), optimality gap (OG), and probability of improvement (Prob. Improve) metrics Agarwal
et al. (2021). Additional results are provided in Appendix F.

5.1 MUJOCO

For this evaluation, we build off of Huang et al. (2022)’s CleanRL package which provides re-
producible, user-friendly implementations of state-of-the-art reinforcement learning algorithms us-
ing PyTorch (Paszke et al., 2019), Gymnasium (Brockman et al., 2016; Todorov et al., 2012), and
Weights & (Biases, 2018). We give full implementation details in Appendix E.1.

(a) Episodic return (b) Prob. Improve

(c) Area Under Return Curve (d) Prob. Improve

Figure 1: MuJoCo. Ablating the effect of the proposed mechanisms. Here we compare VSOP
to VSOP without spectral normalization (no-spectral), VSOP without Thompson sampling (no-
hompson), VSOP without advantage clipping (no-ReLU Adv.), and VSOP using all-actions policy
optimization (all actions). We see that no single mechanism contributes greater than the sum of all
changes, lending credence to the validity of our theory. These results hold for overall performance
(a-b), and sample efficiency (c-d). Metrics are computed wrt to the average episodic return of the
last 100 episodes and the area under the episodic return curve over 10 random seeds

Ablation of mechanisms. First, we investigate the influence of our four proposed mechanisms
on the performance of VSOP. For reference, the mechanisms are positive advantages, single-action
setting, spectral normalization, and Thompson sampling. To ablate each mechanism, we compare
VSOP to four variants: VSOP without advantage clipping (no-ReLU Adv.), VSOP in the all-actions
setting (all-actions), VSOP without spectral normalization (no-spectral), and VSOP without Thomp-
son sampling (no-Thompson). We hyperparameter tune each variant in accordance with the same
procedure used for VSOP (see Table 2 for details). Figure 1 summarizes these results, and we
see clearly that no single mechanism contributes greater than the sum of all changes, lending cre-
dence to our theoretical analysis. We see that positive advantages and operating in the single-action
regime impact performance on MuJoCo significantly. Spectral normalization and Thompson sam-
pling also influence performance on MuJoCo positively, especially in high-dimensional action and
observation space settings such as Humanoid, Humanoid Stand-Up, and Ant, as shown in Figure 8 of
Appendix F.2. The performance gains for spectral normalization align with results given by Bjorck
et al. (2021) and Gogianu et al. (2021) for DDPG (Lillicrap et al., 2015), DRQ (Kostrikov et al.,
2020), Dreamer (Hafner et al., 2019), DQN (Wang et al., 2016) and C51 (Bellemare et al., 2017).

Comparison to baselines. Next, we compare VSOP to baseline implementations: PPO, A3C, SAC,
and TD3. We use the CleanRL (Huang et al., 2022) implementation of PPO, SAC and TD3; the
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StableBaselines3 (Raffin et al., 2021) hyper-parameter settings for A3C. We also include compar-
isons to RMPG (adapted for continuous control) and VSPPO (PPO with spectral normalization, and
Thompson sampling via dropout). We tune RMPG and VSPPO using the same Bayesian optimiza-
tion (Snoek et al., 2012) protocol as VSOP. Figure 2 summarizes our results, where we see that
VSOP shows significant improvement over each baseline with respect to each metric, except for the
SAC and TD3’s mean scores. See Figure 9 in Appendix F.3 for training curves of these results.

Figure 2: MuJoCo. Comparison to baselines. We see that VSOP (blue) shows significant improve-
ment over each baseline with respect to the Median and IQM metrics. VSOP only trails SAC and
TD3 for the mean metric. Metrics are computed wrt to the average episodic return of the last 100
episodes over 10 random seeds

Effect of asynchronous parallelization. Following Lu et al. (2022), we also evaluate VSOP on the
Brax implementation of MuJoCo in a massively parallel setting. Where in the above experiments
we set the number of asynchronous threads to 1 and the number of steps per rollout to 2048, here we
set the number of asynchronous threads to 2048 and the number of steps to 10. We see in Figure 3
that while VSOP still outperforms A3C significantly, it trails PPO. Full training curves are shown in
Figure 13 of Appendix F.5.

Figure 3: MuJoCo. Comparison to on-policy baselines with extreme parallelization. Here we com-
pare VSOP to on-policy baselines on MuJoCo with 2048 threads and 10 steps per rollout. Metrics
are computed wrt to the average episodic return of the last 100 episodes over 20 random seeds

Interestingly, hyper-parameter tuning showed spectral normalization to be detrimental to the perfor-
mance of VSOP in this massively parallel setting. We investigate the effect of parallelization on
VSOP effectiveness and efficiency in Figure 4. Here we set the rollout size to 2048 environment
interactions and sweep the number of threads and number of steps. For each configuration, we do
a hyper-parameter sweep in MuJoCo Brax using the reacher, hoppper, and humanoid evironments
over 1 million environment interactions. We then evaluate on 10 MuJoCo environments over 3 mil-
lion environment interactions. The blue bars show metrics for VSOP with spectral normalization.
We see that VSOP is most effective and efficient with spectral normalization with a low thread count
and that for a fixed rollout size, these measures fall with increasing parallelization. For VSOP with-
out spectral normalization, the trend is less clear, but appears to be generally the opposite for a fixed
rollout size. This indicates that spectral normalization will be beneficial in applications where it is
not feasible to run many parallel agents.

5.2 PROCGEN

In lieu of finding a suitable benchmark for continuous control, we assess the capacity of VSOP
to generalize to unseen environments using ProcGen (Cobbe et al., 2020). ProcGen is a set of
16 environments where game levels are procedurally generated, creating a virually unlimited set

8



Under review as a conference paper at ICLR 2024

(a) Episodic return (b) Area under the curve

Figure 4: MuJoCo: effect of parallelization on VSOP. Naming convention: #threads/#steps/spectral
norm. We see that VSOP is most effective 4a and most efficient 4b in lower thread settings for a
fixed rollout size of 2048 steps when using spectral normalization. Metrics are computed wrt to the
average episodic return or area under the curve for the last 100 episodes over 5 random seeds

of unique levels. We follow the “easy” generalization protocol where, for a given environment,
models are trained on 200 levels for 25 million time steps and evaluated on the full distribution
of environments. We use the same architecture as PPO in the CleanRL library, and do a Bayesian
optimization hyper-parameter search using the bossfight environment. We search over the learning
rate, GAE λ, number of minibatches per epoch, number of epochs per rollout, the dropout rate,
and the entropy regularization coefficient. Full implementation details are given in Appendix E.3.
Figure 5 summarizes our results. We see broad significant improvement over PPO across both the
PPO and Min-Max normalized metrics. Furthermore, we see improvement over EDE Jiang et al.
(2023) with respect to the IQM, mean, and optimality gap metrics. These results present strong
evidence for the suitability of VSOP for deployment in non-stationary environments. See Figure 7
in of Appendix F.1 for full training and test curves.

Figure 5: ProcGen comparison to PPO. In the top pane, we see significant improvement over PPO
with respect to all metrics for the PPO normalized scores. In the middle pane, we see significant
improvement over PPO in terms of the IQM, mean and optimality gap metrics for the Min-Max
normalized scores. In the bottom pane, we include results reported by Jiang et al. (2023). It appears
as though we improve over EDE with respect to the IQM, mean, and optimality gap metrics. Metrics
are computed wrt to the average episodic return of the last 100 episodes over 5 random seeds

6 CONCLUSION

This work represents a step towards principled approximate Bayesian inference in the on-policy
actor-critic setting. Our method is realized through simple modifications to the A3C algorithm,
optimizes a lower bound on value plus an additive term and integrates exploration via Thompson
sampling. Our empirical evaluations across several diverse benchmarks confirm our approach’s
improved performance compared to existing on-policy algorithms.
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