
Value Diffusion Reinforcement Learning

Xiaoliang Hu1 Fuyun Wang1 Tong Zhang1∗ Zhen Cui2∗
1 School of Computer Science and Engineering, Nanjing University of Science and Technology

2 School of Artificial Intelligence, Beijing Normal University
{peter_hu_xl, fyw271828}@njust.edu.cn

Abstract

Model-free reinforcement learning (RL) combined with diffusion models has
achieved significant progress in addressing complex continuous control tasks. How-
ever, a persistent challenge in RL remains the accurate estimation of Q-values,
which critically governs the efficacy of policy optimization. Although recent ad-
vances employ parametric distributions to model value distributions for enhanced
estimation accuracy, current methodologies predominantly rely on unimodal Gaus-
sian assumptions or quantile representations. These constraints introduce distribu-
tional bias between the learned and true value distributions, particularly in some
tasks with a nonstationary policy, ultimately degrading performance. To address
these limitations, we propose value diffusion reinforcement learning (VDRL), a
novel model-free online RL method that utilizes the generative capacity of diffusion
models to represent multimodal value distributions. The core innovation of VDRL
lies in the use of the variational loss of diffusion-based value distribution, which
is theoretically proven to be a tight lower bound for the optimization objective
under the KL-divergence measurement. Furthermore, we introduce double value
diffusion learning with sample selection to enhance training stability and further
improve value estimation accuracy. Extensive experiments conducted on the Mu-
JoCo benchmark demonstrate that VDRL significantly outperforms some SOTA
model-free online RL baselines, showcasing its effectiveness and robustness.

1 Introduction

Recent advancements in model-free reinforcement learning (RL) integrated with diffusion models [1,
2, 3, 4, 5, 6, 7] have demonstrated remarkable success in solving practical decision-making tasks, such
as robotic locomotion control [8], robotic navigation [9], and robot arm manipulation [10, 11, 12].
By harnessing the expressive power of diffusion models [13, 14, 15], these works focus on enhancing
the exploration efficiency of policy by effectively capturing the expressiveness and multimodality of
policy beyond traditional action distribution assumption (e.g., unimodal Gaussian) [16]. However, a
core challenge in RL remains the accurate estimation of state-action values (i.e., Q-values), which is
fundamental to both policy evaluation and improvement [17]. Despite their enhanced exploration
capabilities, RL methods combined with diffusion policies often suffer from value estimation errors,
particularly overestimation [18], leading to suboptimal solutions [19].

To mitigate value overestimation, some techniques like double Q-network [20] and approximate
upper-bound [21] have been incorporated into prominent RL algorithms, such as twin delayed deep
deterministic policy gradient (TD3) [22] and soft actor-critic (SAC) [23], achieving significant perfor-
mance improvements. Nevertheless, these methods may introduce a considerable underestimation
bias and increase the computation cost for each iteration [24]. Therefore, inaccuracies in value
estimation remain a limiting factor for further advancements in policy learning [25].

∗Corresponding author <zhen.cui@bnu.edu.cn, tong.zhang@njust.edu.cn>.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

On the other hand, distributional RL [26], rooted in the idea of modeling the value distribution
rather than estimating only the expected return (i.e., Q-value), has emerged as a novel and promising
avenue for improving the accuracy of value estimation. Building on this concept, some early
works [27, 28, 29, 30, 31] leverage quantile functions to represent the value distribution. However,
these approaches are limited to discrete or low-dimensional action spaces. To address this challenge,
the recent representative works such as DSAC [24] and DSACT [32] learn a continuous Gaussian
value distribution and provide solid theoretical insights into how value distribution learning reduces
overestimation. Despite the reduction in value overestimation, the parametric value distributions of
these methods are constrained by the assumption (i.e., unimodal Gaussian), which may introduce bias
between the approximated and true value distributions in tasks with non-stationary policies, where
the true value distribution often exhibits multimodal characteristics. Consequently, this bias leads to
imprecise value estimation, yielding a degraded performance. The above limitation motivates a key
question: Can we develop a universal value distribution representation of RL that simultaneously
achieves multimodal expressiveness and flexibility for complex continuous control tasks?

Inspired by the considerable success of diffusion models applied in RL [4, 5, 6, 7], we propose Value
Diffusion Reinforcement Learning (VDRL), a novel model-free online RL method. To the best of
our knowledge, this is the first work to integrate diffusion models into distributional RL, enabling
precise value estimation. The core idea of VDRL is conceptually elegant yet highly effective: we
harness diffusion models to generate more expressive and multimodal distributions for representing
value distributions. Our key theoretical insight reveals that the optimization objective of value
distribution learning for distributional RL, under the KL-divergence measure, can be reformulated as
the variational bound objective of the diffusion model. To mitigate variance introduced by iterative
diffusion sampling, we introduce double value diffusion learning with adaptive sample selection,
ensuring stable training while preserving distributional fidelity. In summary, the key contributions of
this work are as follows:

i) To improve the accuracy of value estimation, we propose the value diffusion reinforcement
learning (VDRL) method. VDRL leverages the capability of the diffusion model to fit more
expressive and multimodal value distributions. More importantly, we theoretically prove that
the variational loss of diffusion-based value distribution is a tight bound for the optimization
objective of value distribution learning under the KL-divergence measurement.

ii) To address the challenge of unstable learning introduced by iterative diffusion sampling, we
propose the double value diffusion learning with sample selection for value distributions.
This mechanism can further reduce the value overestimation bias and might introduce a minor
value underestimation, which enhances learning stability and promotes better performance.

iii) We perform extensive experiments on eight popular MuJoCo [33] benchmark tasks, compar-
ing the performance of VDRL to eleven model-free online RL baselines, including traditional
RL, distributional RL, and diffusion-based policy RL methods. The experimental results
demonstrate that VDRL achieves stable and consistently superior performance across most
evaluated tasks, highlighting its robustness and effectiveness.

2 Preliminaries

2.1 Problem Formulation

The standard RL task could be regarded as a Markov decision process (MDP) [17]. Formally, the
task can be formulated as a tupleM = ⟨S,A,P, R, γ⟩, where each element is defined as follows:

- S: a finite set of states. Given a current state s ∈ S , we often denote the next state as s′ ∈ S .

- A: a set of actions. Note that the action may be discrete or continuous.

- P(s′|s, a): the state transition function, which usually denotes the probability from the
current state s to the next state s′ when the agent selects the action a.

- R(s, a): the reward function. After the agent performs an action a under the environment
state s, the agent will receive an immediate global reward r = R(s, a). Notably, in this
work, the reward is explicitly treated as a random variable.

- γ ∈ (0, 1]: the discount factor used in the computation of cumulative return.

2

Further, the behavior of the agent is defined by a stochastic policy π(a|s), which maps a given state
to a probability distribution over actions. The state-action value function Qπ(s, a) associated with a
given policy π denotes the expectation of cumulative state-action return when the agent taking the
action a ∈ A under the state s ∈ S, i.e., Qπ(s, a) := Eπ

[∑∞
k=0 γ

kR(sk, ak)|s0 = s, a0 = a
]
.

2.2 Distributional Reinforcement Learning

Distributional Reinforcement Learning [26, 34, 29] learns the full probability distribution of the
cumulative state-action return Z(·|s, a) instead of the expected return, i.e., a single scalar Q-value
Q(s, a), which behaves better than traditional RL methods in terms of learning stability and per-
formance. In specific, the cumulative state-action return Zπ(s, a) associated with a given policy
π is the sum of discounted rewards along the trajectory of interactions with the environment, i.e.,
Zπ(s, a) =

∑∞
k=0 γ

kR(sk, ak). Note that the cumulative state-action return is a random variable,
which describes the intrinsic randomness of the agent’s interactions with its environment, i.e., the
randomness of state transition P (s′|s, a), reward R(s, a), and next state-action return Z(s′, a′) [26].
The distribution of the cumulative state-action return Zπ(·|s, a) 2 is a mapping from state-action
pairs to distribution over the random return, i.e., Zπ(s, a) ∼ Zπ(·|s, a). Significant to distributional
RL is the use of the distributional Bellman operator to describe the value distribution, defined by

T πZ(s, a)
D
:= R(s, a) + γPπZ(s′, a′), (1)

where the equation X
D
:= Y represents that the random variable X is distributed according to the

same law with Y , s′ ∼ P (·|s, a), a′ ∼ π(·|s′), and T πZ(s, a) is a new random variable, whose
distribution is defined as T πZ(·|s, a).
Distributional Soft Actor-Critic. In most previous distributional RL methods, the value distribution
is commonly modeled by a discrete probability density function [26, 30, 29] or a quantile function [27,
28, 35] due to its highly expressive advantage [36]. However, these functions restrict direct access to
the mean value, necessitating its approximation via a weighted sum of finite quantiles. To overcome
this issue, the recent work [24] proposed the distributional soft actor-critic (DSAC) method by directly
learning a continuous parameterized probability density function (Gaussian) for the random return
Z(s, a), i.e., Zθ(·|s, a) = N (Qθ(s, a), σ

2
θ(s, a)). The parameter θ can be updated by optimizing

the Kullback-Leibler (KL) divergence between the target value distribution T πZ(·|s, a) and value
distribution Zπ(·|s, a) via gradient descent, i.e.,

JDSAC
Z (θ) = E(s,a)∼B [DKL(T πϕ̄Zθ̄(·|s, a) ∥ Zθ(·|s, a))] , (2)

where B is a replay buffer of previously sampled experience, θ̄ and ϕ̄ represent the parameters of the
target value distribution and policy functions.

2.3 Diffusion Model

Diffusion models [13, 14] are highly powerful tools that learn to generate data by gradually denois-
ing a normally distributed variable, which have achieved superior expressiveness in representing
complex probability distributions, particularly in image and video generation [37, 38, 39, 40, 41]. A
representative algorithm is the well-known denoising diffusion probabilistic models (DDPM) [15],
which synthesizes data by learning to reverse a predefined noising process, i.e., forward process,
through iterative denoising steps modeled by a neural network, i.e., reverse process. Given the real
data x0 samples from the date distribution x0 ∼ q(x0), DDPM uses a parameterized latent variable
model, i.e., pθ(x0) =

∫
pθ(x0:T)dx1:T , to model how the isotropic Gaussian noise xT ∼ N (0, I) is

denoised into real data x0, where xt denotes the step of diffusion process and T represents the total
number of diffusion steps. The forward process is a Markov chain that gradually adds Gaussian noise
to the data according to a variance schedule β1, · · · , βT , expressed by

q(x1:T |x0) =

T∏
t=1

q(xt|xt−1), q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI). (3)

The reverse process reconstructs data distribution starting at p(xT) = N (xT ;0, I), represented as

pθ(x0:T) = p(xT)

T∏
t=1

pθ(xt−1|xt), pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)), (4)

2For notational simplicity, this distribution is called as value distribution in this work.

3

where µθ(xt, t) denotes the mean function approximator, and Σθ(xt, t) is set σ2
t I to untrained time

dependent constants. Inspired by VAE [42], the variational lower bound (VLB) is utilized to optimize
the negative log likelihood as the training objective of DDPM:

JVLB(θ) = Ex0∼p0,x1:T∼q

[
log

pθ(x0:T)

q(x1:T |x0)

]
. (5)

To this end, the diffusion model is trained by minimizing the simplified loss function:

LDDPM(θ) = Et∼[1,T],x0,ϵ

[
∥ϵ− ϵθ(

√
ᾱtx0 +

√
1− ᾱtϵ, t)∥

2
]
, (6)

where ᾱt =
∏t

s=1 αs, αt = 1− βt and ϵ is sampled from N (0, I).

3 Method

In this section, we propose a novel model-free online RL method called value diffusion reinforcement
learning (VDRL) to improve the accuracy of value estimation. The key innovation of VDRL is the
use of the variational loss of diffusion-based value distribution, which can be theoretically proven
as a tight lower bound for the optimization objective of value distribution learning under the KL-
divergence measurement. Furthermore, we introduce double value diffusion learning with sample
selection to stabilize training and further enhance estimation accuracy.

3.1 Variational Objective for Value Diffusion Learning

According to the distributional Bellman operator in Eq. (1), the optimization objective of value
distribution learning in distributional RL is to minimize the distance between the target value
distribution, i.e.,Ztar(·|s, a), and the current value distribution, i.e.,Zcur(·|s, a), formally,

min
Zcur

{
E

(s,a)∼B

[
d(Ztar(·|s, a),Zcur(·|s, a))

]}
, (7)

where Ztar(·|s, a) = T πZold(·|s, a) and d is the distance metric for measuring two probability
distributions, such as Kullback-Leibler (KL) divergence, Wasserstein distance.

To optimize the objective in Eq. (7), in practice, we need to choose a tractable approximating
distribution for modeling the value distribution. For instance, the value distribution is modeled as a
unimodal Gaussian distribution in DSAC [24] and DSACT [32]. However, as highlighted in [43],
the unimodal Gaussian approximation fails to capture the inherent expressiveness and multimodality
of value distributions, which may introduce bias between the approximated and true distributions in
tasks with non-stationary policies, leading to imprecise value estimation and then yielding degraded
performance. More importantly, we find that when the value distribution is modeled by a diffusion
model, the optimization objective under the KL-divergence measurement can be reformulated and
simplified into a variational bound objective, which is formalized as follows:
Theorem 1. (Lower Bound of Learning Objective for Value Distribution) If the value distribution
is modeled by a diffusion model, the variational bound objective

E(s,a,r,s′)∼B,a′∼πϕ̄,

Z(s′,a′)∼Zθ̄(·|s
′,a′)

[
ET πZ1:T∼q(T πZ1:T |s,a,T πZ0)

[
log

Pθ(T πZ0:T |s, a)
q(T πZ1:T |s, a, T πZ0)

]]
, (8)

is the tight lower bound of the optimization objective of value distribution learning for distributional
RL under the KL-divergence measurement

E(s,a)∼B [DKL(T πZθ̄(·|s, a) ∥ Zθ(·|s, a))] , (9)

where Zθ(·|s, a) denotes the value distribution to be optimized and Zθ̄(·|s, a) is the parameterized
target value distribution, and the equality holds when the policy converges.

Proof. The proof is deferred to Appendix A.

Remark 1. Although the variational lower bound objective in our method (VDRL), as shown in
Eq. (8), appears similar to QVPO [6], they differ fundamentally in both derivation and formulation:

4

• Derivation: Our variational lower bound is derived from the optimization objective of the
value distribution, whereas QVPO derives its lower bound from the policy objective in RL.

• Formulation: The variational lower bound objective of QVPO incorporates Q-value under
the specific condition, i.e., Q(s, a) ≥ 0, while our method maintains a straightforward form
without introducing additional constraints.

According to Theorem 1, we can derive the variational loss function of value diffusion learning as
Eq. (10), which can be applied to value distribution optimization for distributional RL.

L(θ) = E (s,a,r,s′)∼B,a′∼πϕ̄,

Z(s′,a′)∼Zθ̄(·|s
′,a′),ϵ,t

[∥∥ϵ− ϵθ
(√

ᾱtT πZ +
√
1− ᾱtϵ, s, a, t

)∥∥2] , (10)

Where T πZ(s, a) = R(s, a) + γZ(s′, a′)|Z(s′,a′)∼Zθ̄(·|s′,a′).

3.2 Double Value Diffusion Learning with Sample Selection

While the value diffusion learning captures the inherent expressiveness and multimodality of the
true value distribution, it also introduces a large variance, which may lead to unstable learning
processes in some tasks. To address this problem, we propose double value diffusion learning with
sample selection for value distribution Z(·|s, a). Specifically, we parameterize two value distribution
functions Zθi(·|s, a), then choose sample with lower random return Z(s′, a′) to calculate the target
random return T πZ(s, a), formally,

T πZ(s, a) = R(s, a) + γ min
i=1,2

Z(s′, a′)|Z(s′,a′)∼Zθ̄i
(·|s′,a′). (11)

Furthermore, as shown in Table 2, this mechanism for value distribution can further reduce the value
overestimation, and might induce a relatively minor value underestimation. In fact, as discussed in
TD3 [22], the slight value underestimation is preferable to value overestimation, as unlike overesti-
mation, underestimated value do not propagate explicitly through policy update during training.

3.3 Value Diffusion Reinforcement Learning

According to the above introduction, we present a practical model-free online off-policy RL algo-
rithm called value diffusion reinforcement learning (VDRL), which includes two value distribution
functions Z(·|s, a) and a policy function π(a|s). To that end, we use function approximators for
both the value distribution and the policy, and alternate between optimizing both networks with
stochastic gradient descent. Specifically, we consider two parameterized value distribution func-
tions Zθ1(·|s, a),Zθ2(·|s, a) and a parameterized policy function πϕ(a|s). The parameters of these
networks are θ1, θ2, and ϕ, respectively. Furthermore, we employ the idea of a target network,
where parameters of the target network can be an exponentially moving average of the main network
weights, which has been shown to stabilize training in DQN [44]. According to the theorem 1 in
section 3.1, the value distribution functions can be trained to minimize the variational objective,

JZ(θi) = E (s,a,r,s′)∼B,a′∼πϕ̄,

Z(s′,a′)∼Zθ̄i
(·|s′,a′)

[
ET πZ1:T∼q(T πZ1:T |s,a,T πZ0)

[
log

Pθi(T πZ0:T |s, a)
q(T πZ1:T |s, a, T πZ0)

]]
,

(12)
Then, the policy function parameters can be learned by directly maximizing the expected cumulative
state-action return Z(s, a), formally,

Jπ(ϕ) = Es∼B,a∼πϕ

[
min
i=1,2

EZ(s′,a′)∼Zθ̄i
(s′,a′) [Z(s, a)]

]
. (13)

In implementation, we employ Monte Carlo estimation to approximate the expectation of each value
distributions, i.e., EZ(s′,a′)∼Zθ̄i

(s′,a′) [Z(s, a)]. For the sake of comprehensiveness, we provide a
complete training process of the proposed VDRL method, as shown in Algorithm 1.

4 Related Work

In this section, we will look over existing works that are the most relevant to our proposed method. We
divide our surveys into two main parts. Firstly, we provide an overview of distributional reinforcement

5

Algorithm 1 Value Diffusion Reinforcement Learning
Input: Diffusion-based value distribution networks {Zθi(Z|s, a)}2i=1, target diffusion-based value

distribution networks {Zθi
(Z|s, a)}2i=1, policy network πϕ(a|s), target policy network πϕ(a|s),

the learning rate of value distribution and policy lrθ, lrϕ, the momentum coefficient τ
1: Initializing: all networks parameters θ1 ← θ1, θ2 ← θ2, ϕ← ϕ;
2: for each iteration do
3: Initialize the environment;
4: for each sampling step do
5: Select action a ∼ πϕ(s, a);
6: Execute action a to obtain the reward r and the next state s′;
7: Store (s, a, r, s′, done) in replay buffer B;
8: end for
9: for each optimization step do

10: Sample a random minibatch of N samples from replay buffer:(s, a, r, s′, done);
11: Update the parameters of diffusion-based value distribution networks {θi}2i=1: θi ← θi −

βθ∇θiJZ(θi);
12: Update the parameters of policy network ϕ: ϕ← ϕ+ βϕ∇ϕJπ(ϕ);
13: Update the parameters of target diffusion-based value distribution networks θi = τθi+(1−

τ)θi for i = {1, 2};
14: Update the parameters of target policy network ϕ = τϕ+ (1− τ)ϕ;
15: end for
16: end for

learning. Secondly, we discuss the diffusion-based RL methods that use diffusion models as polices
for model-free online RL setups.

Distributional Reinforcement Learning. Recent interest in distributional methods [45, 46, 43] for
RL has grown with the introduction of deep RL approaches for learning the value distribution. This
paradigm was first formalized in the seminal work [26], which introduced the Categorical DQN
(C51) algorithm that approximates the value distribution using a fixed categorical distribution over
discrete support points and applies a distributional Bellman operator. Building on this foundation,
subsequent works [27, 28, 29, 30, 31] leveraged quantile functions to represent the value distribution,
enabling significant advancements. However, these approaches are inherently limited to discrete
and low-dimensional action spaces. In order to deal with continuous control settings, methods such
as [34, 35, 47, 48] have been proposed in recent years. Nevertheless, these approaches approximate
the mean value through a weighted average of finite quantiles, which may reduce the accuracy of
the mean value estimation, leading to suboptimal performance in some tasks. The distributional soft
actor-critic (DSAC) [24] addressed the above limitation by learning a continuous Gaussian value
distribution with the Q-value directly parameterized by the critic network, improving value estimation
accuracy. Despite its effectiveness, DSAC suffers from training instability and sensitivity. To alleviate
these issues, the term DSAC with three refinements (DSACT) [32] introduces three key refinements
to refine Q-value estimation. However, both DSAC and DSACT constrain the value distribution
and stochastic policy space to unimodal Gaussian distributions, which hinders exploration efficiency
and learning performance, particularly in tasks with multiple goals or complex dynamics, where
the true distribution often exhibits multimodality. In contrast, the proposed VDRL method employs
diffusion models to capture more expressive and multimodal representations of the value distribution,
which further enhances value estimation and learning performance in tasks requiring sophisticated
modeling of uncertainty and dynamics.

Diffusion Models for Model-free Online Reinforcement Learning. Recently, numerous works [1,
49, 50, 51, 52, 53, 54, 2, 3] have employed diffusion models as the policy class in model-free offline
RL to tackle decision-making tasks, due to their superior expressive richness in representing complex
distributions. In contrast, diffusion policies have been less widely explored in model-free online
RL, owing to the noisier and policy-varying nature of value estimations [16]. To date, only several
studies [4, 5, 6, 7] have investigated the application of diffusion models for online RL. The pioneering
work, DIPO [4], provided a solid convergence guarantee for diffusion policies and facilitated policy
improvement by updating the action via the action gradient of the Q-value. However, fully learning of
action gradient not only presents a significant challenge but also introduces additional computational

6

costs. Unlike DIPO, Q-score matching (QSM) [5] proposed a novel policy update mechanism
by aligning the score of the learned diffusion model, i.e., ∇alog(π(a|s)) with the action gradient
of the Q-value. Unfortunately, it neglects inaccuracies in the value function gradient and biases
introduced during the alignment process when updating the policy. To mitigate these limitations,
Q-weighted variational policy optimization (QVPO) [6] introduced the Q-weighted variational lower
bound (VLO) loss, and then designed a tailored entropy regularization term for diffusion polices.
Concurrently, Wang et al. [7] proposed the diffusion actor-critic with entropy regulator (DACER)
method, and employed Gaussian mixture models for entropy estimation. Despite these great advances,
fundamental challenges persist: approximation inaccuracies and computational inefficiencies continue
to constrain the effectiveness of diffusion models in model-free online RL. Different from all existing
model-free online RL methods with diffusion policy, from the value perspective, the proposed VDRL
method utilizes diffusion models to represent value distributions, which enhances the accuracy of
value estimation, yielding significantly improved performance.

5 Experiments

In this section, we empirically validate the effectiveness of the proposed algorithm on different
decision-making tasks and with various hyperparameters. With these experimental results, we aim to
answer the following questions: 1) How does VDRL compare to traditionally canonical and existing
diffusion-based model-free online RL methods? 2) What contributes to the performance improvement
of VDRL on the continuous locomotion tasks? Note that all experiments are conducted on a 2.90GHz
Intel Core i7-10700 CPU, 64G RAM, and NVIDIA GeForce RTX 3090 GPU.

5.1 Experimental Setup

Evaluation Environment. In this work, we use eight different level tasks of the popular MuJoCo [33]
benchmark 3 to evaluate the performance of all methods, including Ant-v3, HalfCheetah-v3, Hopper-
v3, Humanoid-v3, Inverted2Pendulum-v2, Pusher-v2, Swimmer-v3, and Walker2d-v3. The more
details of these tasks and the MuJoCo benchmark are deferred to Appendix B.

Compared Baselines. We evaluate the performance of VDRL against eleven model-free online RL
algorithms, categorized into three groups. The first group comprises traditional model-free RL
baselines, including two on-policy methods (PPO [55] and SPO [56]) and three off-policy algorithms
(DDPG [57], TD3 [22], and SAC [23]). The second group focuses on distributional RL approaches,
represented by DSAC [24] and DSACT [32]. Finally, the third group consists of advanced diffusion-
based policy RL methods, including DIPO [4], QSM [5], QVPO [6], and DACER [7]. The more
details of implementation and hyperparameters for all baselines are deferred to Appendix D.

Methodology for Reported Metrics. For the proposed method and all baselines, all experiments
are conducted over 800,000 training interaction steps with four runs and different random seeds
(0, 50, 100, 200), with each performing one evaluation rollout every 10,000 interaction steps. In
particular, each evaluation result is the average of ten episodes. The mean return, standard deviation,
and average highest return are logged as the performance of methods.

5.2 Details of Implementation

The value distribution is modeled using the reverse process of a conditional diffusion model, parame-
terized similarly to DDPM [15], as detailed in Section 2.3. The effects of reverse diffusion steps and
noise schedules are analyzed in Section 5.4. For the policy, a Gaussian distribution with a mean and
diagonal covariance is adopted. The policy network architecture consists of two hidden layers, each
with 256 units and GeLU activation functions. Parameter updates are performed using the Adam
optimizer. A detailed description of all training hyperparameters is deferred to Appendix C.

5.3 Comparative Evaluation

The best performance of the proposed method (VDRL) and all baselines across eight MuJoCo
benchmark tasks is presented in Table 1. VDRL achieves results comparable to baseline methods

3The version of MuJoCo utilized in all experiments of this work is mujoco210, which is the same version
used as DSAC [24], QVPO [6], DACER [7], and DSACT [32].

7

Table 1: Performance on eight tasks of OpenAI Gym MuJoCo benchmark. The results show the best
mean returns and standard deviations over 800,000 training interaction steps and four random seeds.

METHOD ANT-V3 HALFCHEETAH-V3 HOPPER-V3 HUMANOID-V3

Traditional
Model-Free RL

PPO [55] 2129.33± 98.68 1757.57± 25.86 3291.76± 18.28 612.15± 117.34
SPO [56] 2019.02± 46.91 4725.37± 102.64 3480.20± 92.66 749.70± 131.01
DDPG [57] 1124.35± 51.49 8993.40± 140.39 3326.17± 12.22 597.52± 104.79
TD3 [22] 2836.68± 41.87 8306.89± 82.31 3497.59± 4.39 5000.91± 13.38
SAC [23] 4270.41± 130.00 10214.06± 98.44 3380.51± 8.14 5314.84± 43.05

Distributional RL DSAC [24] 4264.95± 215.50 11610.33± 135.05 3436.95± 13.14 5009.60± 271.94
DSACT [32] 5313.04± 122.46 11670.82± 131.81 3654.39± 7.06 5087.93± 165.00

Diffusion-based
Policy RL

DIPO [4] 6224.93± 82.27 10052.71± 49.81 3454.60± 37.90 5266.87± 5.93
QSM [5] 839.53± 510.14 9204.16± 85.61 3513.23± 22.65 1950.42± 1270.96
QVPO [6] 5222.62± 78.02 9067.63± 72.47 3369.51± 439.56 5252.72± 13.75
DACER [7] 5506.40± 99.67 11350.96± 119.48 3488.54± 2.79 4447.02± 750.42

VDRL (Ours) 7236.67± 89.44 11815.20± 142.04 3679.41± 7.47 5497.15± 48.58

METHOD PUSHER-V2 SWIMMER-V3 WALKER2D-V3 INVERTED2PENDULUM-V2

Traditional
Model-Free RL

PPO [55] −22.92± 3.47 137.59± 1.35 3168.82± 104.73 9359.67± 0.21
SPO [56] −22.29± 4.99 136.06± 1.41 3849.82± 245.47 9359.53± 0.35
DDPG [57] −35.53± 4.94 42.64± 1.70 3478.72± 1185.37 9359.74± 0.22
TD3 [22] −23.06± 2.33 75.78± 0.86 3834.99± 64.33 92.13± 17.69
SAC [23] −20.28± 1.62 77.49± 3.07 4486.88± 42.63 9359.83± 0.15

Distributional RL DSAC [24] −31.43± 3.93 140.76± 9.20 4819.56± 171.21 9359.83± 0.08
DSACT [32] −25.65± 2.63 134.46± 1.96 5134.79± 22.68 9359.75± 0.11

Diffusion-based
Policy RL

DIPO [4] −39.60± 5.50 55.10± 2.01 4508.09± 10.41 9359.85± 0.16
QSM [5] −46.69± 3.41 105.04± 2.77 3897.01± 721.01 2475.43± 89.95
QVPO [6] −38.52± 5.74 124.14± 1.44 4198.86± 46.44 9354.38± 0.86
DACER [7] −24.91± 3.23 151.55± 1.04 4053.14± 62.19 9359.79± 0.14

VDRL (Ours) −26.92± 3.95 144.40± 2.27 5223.77± 10.30 9359.89± 0.16

on simpler tasks such as Pusher-v2, Swimmer-v3, and InvertedPendulum-v2, while significantly
outperforming them on more complex locomotion tasks, including Ant-v3, Hopper-v3, Humanoid-v3,
and Walker2d-v3. The Figure 1 illustrates the learning curves of all algorithms, further demonstrating
that VDRL delivers stable and consistently high performance across all evaluated tasks, highlighting
its superior robustness. In contrast, baseline methods struggle with poor performance on one or more
tasks, emphasizing the limitations of existing approaches.

(a) Ant-v3 (b) HalfCheetah-v3 (c) Hopper-v3 (d) Humanoid-v3

(e) Pusher-v2 (f) Swimmer-v3 (g) Walker2d-v3 (h) Inverted2Pendulum-v2

Figure 1: Learning curves of the proposed method and all baselines on 8 continuous tasks of MuJoCo
benchmark over 10 evaluation episodes every 10k iterations, where the solid lines correspond to the
mean and the shaded regions to standard deviations over 4 different random seeds.

Table 2 shows the average value estimation bias, i.e., the difference between the estimated Q-value and
the true Q-value, for VDRL and some baselines, including traditional model-free online RL methods
and distributional RL approaches. The true Q-value is approximated by the average actual discounted
cumulative return across states over ten episodes, evaluated every 10,000 iterations. Notably, the

8

value estimation bias for the InvertedPendulum-v2 task is excluded, as effective policies are learned
before the value function converges. The experimental results yield several key insights. First,
compared to conventional RL algorithms, both VDRL and distributional RL baselines demonstrate
reduced value estimation bias in most tasks, underscoring the effectiveness of value distribution
learning in mitigating estimation inaccuracies. Second, VDRL consistently achieves lower bias
than DASC and DSACT, highlighting the advantages of leveraging diffusion models to capture
multimodal and complex value distributions for improved estimation accuracy. Last, even when
compared to on-policy RL methods such as PPO and SPO, VDRL exhibits a significant advantage in
value estimation accuracy across most tasks, further validating its effectiveness.

Table 2: Average value estimation bias over four runs for the proposed VDRL method, conventional
model-free RL, and distributional RL baselines on eight tasks of MuJoCo benchmark. In particular,
the bias is calculated as the difference between the estimated Q-value Qest and the true Q-value Qtrue,
i.e., Qest−Qtrue, where the true Q-value is accessed based on the discounted accumulation of rewards.
Furthermore, the name of each task are simplified because of the space limitation.

METHOD ANT3 HAL3 HOP3 HUM3 PUS2 SWI3 WAL3

Traditional
on-policy RL

PPO [55] 9.45 320.36 271.29 16.74 −18.05 0.94 2.51
SPO [56] 11.52 182.19 275.74 15.26 −21.35 0.88 3.60

Conventional
off-policy RL

DDPG [57] 94.63 37.27 476.89 49.08 7.93 12.30 126.04
TD3 [22] −373.20 −372.05 −929.33 −225.06 −19.76 −3.07 −58.56
SAC [23] −27.94 −6.28 251.92 −92.48 −13.51 −1.06 −3.14

Distributional RL DSAC [24] 37.94 83.47 2264.98 65.72 −5.15 1.84 69.93
DSACT [32] −25.17 36.76 −181.54 −59.24 −4.73 −1.13 −9.80

VDRL (Ours) −7.36 −4.13 −113.70 −12.69 −6.85 0.42 −0.95

5.4 Sensitivity Analysis

We perform sensitivity analysis on different diffusion steps and diffusion noise schedule, using the
Ant-v3 and Humanoid-v3 tasks as examples.

Diffusion Steps. We evaluate the performance of VDRL under varying diffusion steps (T =
5, 10, 20, 30), as shown in Figure 2(a)-2(b). The results indicate that the performance does not
improve monotonically with an increasing number of diffusion steps. Adopting larger diffusion
steps degrades the performance of VDRL, potentially due to gradient vanishing or exploding issues.
Additionally, larger diffusion steps will lead to increased training and evaluation costs. To balance
the performance and computational efficiency, we choose 10 diffusion steps for all tasks.

Diffusion Noise Schedule. Figure 2(c)-2(d) illustrates the performance of VDRL with distinct
diffusion noise schedules. It can be observed that the cosine and variance preserve schedule obtain
comparable results, and both outperform the linear schedule. Thus, we select the cosine schedule for
all experiments.

(a) Diffusion Steps (b) Diffusion Steps (c) Noise Schedule (d) Noise Schedule

Figure 2: Ablation learning curves for different diffusion steps and diffusion noise schedule on
Ant-v3 and Humanoid-v3 tasks, where the solid lines correspond to the mean and the shaded regions
to standard deviations over 4 different random seeds.

9

6 Conclusion and Discussion

In this work, we presented a novel model-free online RL method called value diffusion reinforcement
learning (VDRL) to overcome the representational limitations of learned value distributions. By
harnessing the inverse denoising process of diffusion models, VDRL captures expressive, multimodal
value distributions, thereby substantially improving value estimation. The theoretical cornerstone of
VDRL lies in its diffusion-based variational loss, which we rigorously establish as a tight variational
lower bound for optimizing value distributions under the KL-divergence measurement. Furthermore,
to improve the training stability and further enhance value estimation, we introduce double value
diffusion learning with sample selection. Comprehensive experiments on eight continuous control
tasks from the MuJoCo benchmark demonstrate the effectiveness and robustness of VDRL.

Limitations. While value diffusion learning presents a promising advance, its application to online
RL faces several unresolved challenges. For instance, the reliance on iterative value diffusion
sampling incurs significantly increased computational costs than traditional model-free RL and
distributional RL methods, especially in high-dimensional action spaces. In addition, this work is
evaluated primarily on MuJoCo benchmarks, leaving its scalability to real-world robotics applications
with partial observability and sensor noise as an open question.

Future Work. In our future research, we will pursue two key avenues to advance this paradigm.
First, we will develop lightweight diffusion models, potentially through knowledge distillation, to
reduce the training and inference latency. Second, we will explore hybrid methods that integrate
value diffusion with model-based planning, aiming to tackle the challenges of complex, long-horizon
tasks and thereby unlock further performance gains in online RL.

Acknowledgement

This work was supported by the National Natural Science Foundation of China (Grants No. 62476133)
and the Fundamental Research Funds for the Central Universities (Grant No. 11300-312200502507).

References
[1] Michael Janner, Yilun Du, Joshua Tenenbaum, and Sergey Levine. Planning with diffusion

for flexible behavior synthesis. In International Conference on Machine Learning, pages
9902–9915. PMLR, 2022.

[2] Bogdan Mazoure, Walter Talbott, Miguel Angel Bautista, Devon Hjelm, Alexander Toshev, and
Josh Susskind. Value function estimation using conditional diffusion models for control. arXiv
preprint arXiv:2306.07290, 2023.

[3] Zhengbang Zhu, Minghuan Liu, Liyuan Mao, Bingyi Kang, Minkai Xu, Yong Yu, Stefano
Ermon, and Weinan Zhang. Madiff: Offline multi-agent learning with diffusion models. In
Advances in Neural Information Processing Systems, volume 37, pages 4177–4206, 2024.

[4] Long Yang, Zhixiong Huang, Fenghao Lei, Yucun Zhong, Yiming Yang, Cong Fang, Shiting
Wen, Binbin Zhou, and Zhouchen Lin. Policy representation via diffusion probability model for
reinforcement learning. arXiv preprint arXiv:2305.13122, 2023.

[5] Michael Psenka, Alejandro Escontrela, Pieter Abbeel, and Yi Ma. Learning a diffusion model
policy from rewards via q-score matching. In International Conference on Machine Learning,
pages 41163–41182. PMLR, 2024.

[6] Shutong Ding, Ke Hu, Zhenhao Zhang, Kan Ren, Weinan Zhang, Jingyi Yu, Jingya Wang, and
Ye Shi. Diffusion-based reinforcement learning via q-weighted variational policy optimization.
In Advances in Neural Information Processing Systems, volume 37, pages 54183–54204, 2024.

[7] Yinuo Wang, Likun Wang, Yuxuan Jiang, Wenjun Zou, Tong Liu, Xujie Song, Wenxuan Wang,
Liming Xiao, Jiang Wu, Jingliang Duan, et al. Diffusion actor-critic with entropy regulator. In
Advances in Neural Information Processing Systems, volume 37, pages 54183–54204, 2024.

10

[8] Xiaoyu Huang, Yufeng Chi, Ruofeng Wang, Zhongyu Li, Xue Bin Peng, Sophia Shao, Borivoje
Nikolic, and Koushil Sreenath. Diffuseloco: Real-time legged locomotion control with diffusion
from offline datasets. arXiv preprint arXiv:2404.19264, 2024.

[9] Gengyu Zhang, Hao Tang, and Yan Yan. Versatile navigation under partial observability via
value-guided diffusion policy. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 17943–17951, 2024.

[10] Cheng Chi, Zhenjia Xu, Siyuan Feng, Eric Cousineau, Yilun Du, Benjamin Burchfiel, Russ
Tedrake, and Shuran Song. Diffusion policy: Visuomotor policy learning via action diffusion.
The International Journal of Robotics Research, page 02783649241273668, 2023.

[11] Tsung-Wei Ke, Nikolaos Gkanatsios, and Katerina Fragkiadaki. 3d diffuser actor: Policy
diffusion with 3d scene representations. arXiv preprint arXiv:2402.10885, 2024.

[12] Paul Maria Scheikl, Nicolas Schreiber, Christoph Haas, Niklas Freymuth, Gerhard Neumann,
Rudolf Lioutikov, and Franziska Mathis-Ullrich. Movement primitive diffusion: Learning
gentle robotic manipulation of deformable objects. IEEE Robotics and Automation Letters,
2024.

[13] Jascha Sohl-Dickstein, Eric A Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep
unsupervised learning using nonequilibrium thermodynamics. In International conference on
machine learning, volume 37, pages 2256–2265. PMLR, 2015.

[14] Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data
distribution. In Proceedings of the 33rd International Conference on Neural Information
Processing Systems, volume 32, pages 11918–11930, 2019.

[15] Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Pro-
ceedings of the 34rd International Conference on Neural Information Processing Systems,
33:6840–6851, 2020.

[16] Zhengbang Zhu, Hanye Zhao, Haoran He, Yichao Zhong, Shenyu Zhang, Haoquan Guo,
Tingting Chen, and Weinan Zhang. Diffusion models for reinforcement learning: A survey,
2024.

[17] Richard S Sutton, Andrew G Barto, et al. Reinforcement learning: An introduction. MIT press
Cambridge, 1998.

[18] Hado van Hasselt. Double q-learning. In Proceedings of the 24th International Conference on
Neural Information Processing Systems-Volume 2, pages 2613–2621, 2010.

[19] Sebastian Thrun and Anton Schwartz. Issues in using function approximation for reinforcement
learning. In Proceedings of the 1993 connectionist models summer school, pages 255–263,
1993.

[20] Hado Van Hasselt, Arthur Guez, and David Silver. Deep reinforcement learning with double
q-learning. In Proceedings of the AAAI conference on artificial intelligence-Volume 30, pages
2094–2100, 2016.

[21] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In International conference on machine learning, pages 1587–1596.
PMLR, 2018.

[22] Scott Fujimoto, Herke Hoof, and David Meger. Addressing function approximation error
in actor-critic methods. In International conference on machine learning, pages 1587–1596.
PMLR, 2018.

[23] Tuomas Haarnoja, Aurick Zhou, Pieter Abbeel, and Sergey Levine. Soft actor-critic: Off-
policy maximum entropy deep reinforcement learning with a stochastic actor. In International
conference on machine learning, pages 1861–1870. PMLR, 2018.

[24] Jingliang Duan, Yang Guan, Shengbo Eben Li, Yangang Ren, Qi Sun, and Bo Cheng. Distribu-
tional soft actor-critic: Off-policy reinforcement learning for addressing value estimation errors.
IEEE transactions on neural networks and learning systems, 33(11):6584–6598, 2021.

11

[25] Xiangkun He, Wenhui Huang, and Chen Lv. Toward trustworthy decision-making for au-
tonomous vehicles: A robust reinforcement learning approach with safety guarantees. Engi-
neering, 33:77–89, 2024.

[26] Marc G Bellemare, Will Dabney, and Rémi Munos. A distributional perspective on reinforce-
ment learning. In International conference on machine learning, pages 449–458. PMLR,
2017.

[27] Will Dabney, Georg Ostrovski, David Silver, and Rémi Munos. Implicit quantile networks for
distributional reinforcement learning. In International conference on machine learning, pages
1096–1105. PMLR, 2018.

[28] Will Dabney, Mark Rowland, Marc Bellemare, and Rémi Munos. Distributional reinforce-
ment learning with quantile regression. In Proceedings of the AAAI conference on artificial
intelligence-Volume 32, pages 2892–2901, 2018.

[29] Borislav Mavrin, Hengshuai Yao, Linglong Kong, Kaiwen Wu, and Yaoliang Yu. Distributional
reinforcement learning for efficient exploration. In International conference on machine
learning, pages 4424–4434. PMLR, 2019.

[30] Mark Rowland, Robert Dadashi, Saurabh Kumar, Rémi Munos, Marc G Bellemare, and Will
Dabney. Statistics and samples in distributional reinforcement learning. In International
Conference on Machine Learning, pages 5528–5536. PMLR, 2019.

[31] Daniel Brown, Scott Niekum, and Marek Petrik. Bayesian robust optimization for imitation
learning. In Advances in Neural Information Processing Systems, volume 33, pages 2479–2491,
2020.

[32] Jingliang Duan, Wenxuan Wang, Liming Xiao, Jiaxin Gao, Shengbo Eben Li, Chang Liu,
Ya-Qin Zhang, Bo Cheng, and Keqiang Li. Distributional soft actor-critic with three refinements.
IEEE Transactions on Pattern Analysis and Machine Intelligence, 47(5):3935–3946, 2025.

[33] Emanuel Todorov, Tom Erez, and Yuval Tassa. Mujoco: A physics engine for model-based
control. In 2012 IEEE/RSJ international conference on intelligent robots and systems, pages
5026–5033. IEEE, 2012.

[34] Gabriel Barth-Maron, Matthew W Hoffman, David Budden, Will Dabney, Dan Horgan,
TB Dhruva, Alistair Muldal, Nicolas Heess, and Timothy Lillicrap. Distributed distributional
deterministic policy gradients. In International Conference on Learning Representations, 2018.

[35] Chen Tessler, Guy Tennenholtz, and Shie Mannor. Distributional policy optimization: an
alternative approach for continuous control. In Advances in Neural Information Processing
Systems, volume 32, pages 1352–1362, 2019.

[36] Aäron Van Den Oord, Nal Kalchbrenner, and Koray Kavukcuoglu. Pixel recurrent neural
networks. In International conference on machine learning, pages 1747–1756. PMLR, 2016.

[37] Prafulla Dhariwal and Alex Nichol. Diffusion models beat gans on image synthesis. In Advances
in Neural Information Processing Systems, pages 8780–8794, 2021.

[38] Andreas Blattmann, Tim Dockhorn, Sumith Kulal, Daniel Mendelevitch, Maciej Kilian, Do-
minik Lorenz, Yam Levi, Zion English, Vikram Voleti, Adam Letts, et al. Stable video diffusion:
Scaling latent video diffusion models to large datasets. arXiv preprint arXiv:2311.15127, 2023.

[39] William Peebles and Saining Xie. Scalable diffusion models with transformers. In IEEE/CVF
international conference on computer vision, pages 4195–4205, 2023.

[40] Yuanzhi Wang, Yong Li, and Zhen Cui. Incomplete multimodality-diffused emotion recognition.
Advances in Neural Information Processing Systems, 36:17117–17128, 2023.

[41] Yuanzhi Wang, Yong Li, Mengyi Liu, Xiaoya Zhang, Xin Liu, Zhen Cui, and Antoni B Chan.
Re-attentional controllable video diffusion editing. In Proceedings of the AAAI Conference on
Artificial Intelligence, volume 39, pages 8123–8131, 2025.

12

[42] Diederik P Kingma and Max Welling. Auto-encoding variational bayes, 2022.

[43] Liming Xiao, Yao Lyu, Fawang Zhang, Liangfa Chen, Guangyuan Yu, Shengbo Eben Li, Fei
Ma, and Jingliang Duan. Multi-style distributional soft actor-critic: Learning a unified policy
for diverse control behaviors. IEEE Transactions on Intelligent Vehicles, pages 1–12, 2024.

[44] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Andrei A Rusu, Joel Veness, Marc G
Bellemare, Alex Graves, Martin Riedmiller, Andreas K Fidjeland, Georg Ostrovski, et al.
Human-level control through deep reinforcement learning. nature, 518(7540):529–533, 2015.

[45] Will Dabney, Zeb Kurth-Nelson, Naoshige Uchida, Clara Kwon Starkweather, Demis Hassabis,
Rémi Munos, and Matthew Botvinick. A distributional code for value in dopamine-based
reinforcement learning. Nature, 577(7792):671–675, 2020.

[46] Marc G Bellemare, Will Dabney, and Mark Rowland. Distributional reinforcement learning.
MIT Press, 2023.

[47] Yangang Ren, Jingliang Duan, Shengbo Eben Li, Yang Guan, and Qi Sun. Improving general-
ization of reinforcement learning with minimax distributional soft actor-critic. In 2020 IEEE
23rd International Conference on Intelligent Transportation Systems (ITSC), pages 1–6. IEEE,
2020.

[48] Yash Chandak, Scott Niekum, Bruno da Silva, Erik Learned-Miller, Emma Brunskill, and
Philip S Thomas. Universal off-policy evaluation. In Advances in Neural Information Processing
Systems, volume 34, pages 27475–27490, 2021.

[49] Wenhao Li, Xiangfeng Wang, Bo Jin, and Hongyuan Zha. Hierarchical diffusion for offline
decision making. In International Conference on Machine Learning, volume 202, pages
20035–20064. PMLR, 2023.

[50] Fei Ni, Jianye Hao, Yao Mu, Yifu Yuan, Yan Zheng, Bin Wang, and Zhixuan Liang. Metadiffuser:
Diffusion model as conditional planner for offline meta-rl. In International Conference on
Machine Learning, pages 26087–26105. PMLR, 2023.

[51] Zhixuan Liang, Yao Mu, Mingyu Ding, Fei Ni, Masayoshi Tomizuka, and Ping Luo. Adaptd-
iffuser: Diffusion models as adaptive self-evolving planners. In International Conference on
Machine Learning, pages 20725–20745. PMLR, 2023.

[52] Zhendong Wang, Jonathan J Hunt, and Mingyuan Zhou. Diffusion policies as an expressive
policy class for offline reinforcement learning. In International Conference on Learning
Representations, 2023.

[53] Philippe Hansen-Estruch, Ilya Kostrikov, Michael Janner, Jakub Grudzien Kuba, and Sergey
Levine. Idql: Implicit q-learning as an actor-critic method with diffusion policies. arXiv preprint
arXiv:2304.10573, 2023.

[54] Huayu Chen, Cheng Lu, Chengyang Ying, Hang Su, and Jun Zhu. Offline reinforcement learning
via high-fidelity generative behavior modeling. In International Conference on Learning
Representations, 2023.

[55] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal
policy optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

[56] Zhengpeng Xie, Qiang Zhang, Fan Yang, Marco Hutter, and Renjing Xu. Simple policy
optimization. arXiv preprint arXiv:2401.16025, 2025.

[57] David Silver, Guy Lever, Nicolas Heess, Thomas Degris, Daan Wierstra, and Martin Riedmiller.
Deterministic policy gradient algorithms. In International conference on machine learning,
pages 387–395. PMLR, 2014.

[58] Prafulla Dhariwal, Christopher Hesse, Oleg Klimov, Alex Nichol, Matthias Plappert, Alec
Radford, John Schulman, Szymon Sidor, Yuhuai Wu, and Peter Zhokhov. Openai baselines.
https://github.com/openai/baselines, 2017.

13

https://github.com/openai/baselines

A Proof

Theorem 1. (Lower Bound of Learning Objective for Value Distribution) If the value distribution
is modeled by a diffusion model, the variational bound objective

E(s,a,r,s′)∼B,a′∼πϕ̄,

Z(s′,a′)∼Zθ̄(·|s
′,a′)

[
ET πZ1:T∼q(T πZ1:T |s,a,T πZ0)

[
log

Pθ(T πZ0:T |s, a)
q(T πZ1:T |s, a, T πZ0)

]]
, (14)

is the tight lower bound of the optimization objective of value distribution learning for distributional
RL under the KL-divergence measurement

E(s,a)∼B [DKL(T πZθ̄(·|s, a) ∥ Zθ(·|s, a))] , (15)

where Zθ(·|s, a) denotes the value distribution to be optimized and Zθ̄(·|s, a) is the parameterized
target value distribution, and the equality holds when the policy converges.

Proof. The optimization objective of value distribution learning under the KL-divergence measure-
ment is

min
θ

{
E

(s,a)∼B
[DKL(T πZθ̄(·|s, a) ∥ Zθ(·|s, a))]

}
, (16)

where B is the replay buffer of historical samples, Zθ(·|s, a)) denotes the value distribution to be
optimized, and Zθ̄(·|s, a)) is the parameterized target value distribution. According to the definition
of KL-divergence, we can show that

JZ(θ) = E
(s,a)∼B

[DKL(T πZθ̄(·|s, a) ∥ Zθ(·|s, a))]

= E
(s,a)∼B

[∫
T πZ(s,a)

Pθ̄(T πZ(s, a))log
Pθ̄(T πZ(s, a))

Pθ(T πZ(s, a))

]

=− E
(s,a)∼B

[∫
T πZ(s,a)

Pθ̄(T πZ(s, a))logPθ(T πZ(s, a))

]
+ c

=− E
(s,a)∼B

[
ET πZ(s,a)∼T πZθ̄(·|s,a) [logPθ(T πZ(s, a))]

]
+ c

=− E
(s,a,r,s′)∼B,a′∼πϕ̄,

Z(s′,a′)∼Zθ̄(·|s
′,a′)

[logPθ(T πZ(s, a))] ,

(17)

where the constant c denotes the term independent of θ, πϕ̄ denotes the parameterized target policy,
and T πZ(s, a) = R(s, a) + γZ(s′, a′). For simplicity of exposition, we let Y denotes T πZ(s, a).
Thus, the optimization objective of value distribution learning can be formalized as follows:

max
θ

 E
(s,a,r,s′)∼B,a′∼πϕ̄,

Z(s′,a′)∼Zθ̄(·|s
′,a′)

[logPθ(Y)]

 . (18)

If Zθ(·|s, a) is a diffusion-based value distribution, we have

logPθ(Y) =EY1:T∼q(Y1:T |s,a,Y0)

[
log

Pθ(Y1:T |s, a, Y0)

Pθ(Y1:T |s, a, Y0)
Pθ(Y0)

]
=EY1:T∼q(Y1:T |s,a,Y0)

[
log

Pθ(Y0:T |s, a, Y0)Pθ(Y0)

Pθ(Y1:T |s, a, Y0)

]
=EY1:T∼q(Y1:T |s,a,Y0)

[
log

Pθ(Y0:T |s, a)
q(Y1:T |s, a, Y0)

q(Y1:T |s, a, Y0)

Pθ(Y1:T |s, a, Y0)

]
=EY1:T∼q(Y1:T |s,a,Y0)

[
log

Pθ(Y0:T |s, a)
q(Y1:T |s, a, Y0)

]
+DKL(q(Y1:T |s, a, Y0) ∥ Pθ(Y1:T |s, a, Y0)).

(19)

14

According to the inequality of Jensen, the term DKL(q(Y1:T |s, a, Y0) ∥ Pθ(Y1:T |s, a, Y0)) in Eq. (19)
can be shown that

DKL(q(Y1:T |s, a, Y0) ∥ Pθ(Y1:T |s, a, Y0)) =EY1:T∼q(Y1:T |s,a,Y0)

[
log

q(Y1:T |s, a, Y0)

Pθ(Y1:T |s, a, Y0)

]
=EY1:T∼q(Y1:T |s,a,Y0)

[
−logPθ(Y1:T |s, a, Y0)

q(Y1:T |s, a, Y0)

]
≥− log

(
EY1:T∼q(Y1:T |s,a,Y0)

[
Pθ(Y1:T |s, a, Y0)

q(Y1:T |s, a, Y0)

])
.

(20)

When the learning policy converges, the term Pθ(Y1:T |s,a,Y0)
q(Y1:T |s,a,Y0)

is equal to 1, and we can show that

JZ(θ) = E
(s,a)∼B

[DKL(T πZθ̄(·|s, a) ∥ Zθ(·|s, a))]

=− E
(s,a,r,s′)∼B,a′∼πϕ̄,

Z(s′,a′)∼Zθ̄(·|s
′,a′)

[logPθ(Y)]

≥− E
(s,a,r,s′)∼B,a′∼πϕ̄,

Z(s′,a′)∼Zθ̄(·|s
′,a′)

[
EY1:T∼q(Y1:T |s,a,Y0)

[
log

Pθ(Y0:T |s, a)
q(Y1:T |s, a, Y0)

]] (21)

Thus, the variational bound objective

E(s,a,r,s′)∼B,a′∼πϕ̄,

Z(s′,a′)∼Zθ̄(·|s
′,a′)

[
ET πZ1:T∼q(T πZ1:T |s,a,T πZ0)

[
log

Pθ(T πZ0:T |s, a)
q(T πZ1:T |s, a, T πZ0)

]]
, (22)

is the tight lower bound of the learning objective of value distribution for distributional RL under the
KL-divergence measurement

E(s,a)∼B [DKL(T πZθ̄(·|s, a) ∥ Zθ(·|s, a))] . (23)

This completes the proof of Theorem 1.

B Environmental Details

MuJoCo (Multi-Joint dynamics with Contact) [33] is a high-performance physics engine widely used
in robotics and biomechanics simulations, renowned for its efficiency and accuracy in modeling
complex dynamics. It provides a versatile platform for developing and benchmarking reinforcement
learning (RL) algorithms, enabling the simulation of articulated bodies with intricate interactions,
including friction, contact, and soft constraints. These features make it particularly suitable for tasks
involving multi-joint movement and physical interactions.

In this work, we use eight MuJoCo benchmark tasks, categorized into three classes based on their
dynamics and objectives: locomotion, control, and navigation. Specifically, the locomotion tasks
focus on the ability of agents to move efficiently across a terrain, including Ant-v3, HalfCheetah-v3,
Hopper-v3, Humanoid-v3, and Walker2d-v3. The control tasks, such as Inverted2Pendulum-v2 and
Pusher-v2, require agents to manipulate objects or maintain certain positions. The navigation task,
exemplified by Swimmer-v3, evaluates the agent’s ability to move through a fluid medium. Figure 3
shows the visualization of all tasks used in this study. Furthermore, these tasks are detailed as follows:

• Ant-v3: (s× a) ∈ R111 × R8, a four-legged robot learns to navigate and cover distance by
coordinating its legs, with key challenges in balancing and adapting to varying terrains.

• HalfCheetah-v3: (s× a) ∈ R17 × R6, a bipedal robot emulates the running motion of a
cheetah, with the objective to maximize forward speed while maintaining stability.

• Hopper-v3: (s× a) ∈ R11 × R3, a single-legged robot learns to hop forward efficiently,
focusing on balance and joint control to maximize distance.

• Humanoid-v3: (s × a) ∈ R376 × R17, a humanoid robot must learn to walk and run,
tackling the complex challenge of maintaining balance during motion.

15

(a) Ant-v3 (b) HalfCheetah-v3 (c) Hopper-v3 (d) Humanoid-v3

(e) Pusher-v2 (f) Swimmer-v3 (g) Walker2d-v3 (h) Inverted2Pendulum-v2

Figure 3: The screenshots of MuJoCo tasks utilized in this work.

• Walker2d-v3: (s×a) ∈ R17×R6, a two-legged robot learns to walk forward, emphasizing
coordination and adaptability in dynamic environments.

• Inverted2Pendulum-v2: (s×a) ∈ R6×R1, a classic control task where the agent balances
an inverted pendulum on a pivot, requiring precise application of forces to maintain stability.

• Pusher-v2: (s× a) ∈ R23 × R7, the agent controls a robot arm to push a block to a target
location, testing precision in force application and obstacle navigation.

• Swimmer-v3: (s × a) ∈ R8 × R2, a two-dimensional swimmer propels itself forward
by coordinating body segments, emphasizing control over body dynamics in a fluid-like
environment.

C Hyperparameters

The setting of all hyperparameters for the training is presented in Table 3.

Table 3: Hyperparameters for training.

name Value Description
Optim Adam the optimizer of method

n_iteration 8× 105 Maximum iteration steps until the end of training
buffer_size 1× 106 capacity of replay buffer
batch_size 256 number of samples from each update

evaluate_cycle 10000 how often to evaluate the model
No. of hidden layers 2 the number of hidden layers
No. of hidden nodes 256 the number of hidden nodes

Activation_π GeLU the activation of policy
Activation_Zi Mish the activation of value distributions

lrϕ 3× 10−4 learning rate for policy
lrθi 3× 10−4 learning rate for value distributions
τ 0.005 the target momentum coefficient
γ 0.99 discount factor
T 10 diffusion step

16

D Details of the baseline methods

In this section, we discuss details of the baseline methods with which we compare our method,
including the implementation and hyperparameters of each algorithm.

DDPG [57] We use the high-quality implementations of reinforcement learning algorithms, i.e.,
OpenAI Baselines [58]

https://github.com/openai/baselines

with configuration baselines/ddpg/ddpg.py to evaluate the DDPG baseline on the MuJoCo
benchmark.

PPO [55]. We use the code from the authors’ repository

https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail

for their evaluation in continuous control tasks, i.e., the MuJoCo benchmark. We employ their
configuration /a2c_ppo_acktr/arguments.py.

TD3 [22]. We use the official code from

https://github.com/sfujim/TD3

with hyper-parameters from main.py for the MuJoCo experiments.

SAC [23]. We utilize the code from

https://github.com/toshikwa/soft-actor-critic.pytorch

with their configuration code/main.py for the MuJoCo continuous control tasks in OpenAI gym,
which is the PyTorch implementation of Soft Actor-Critic.

DSAC [24]. We use the code from

https://github.com/Jingliang-Duan/DSAC-v1

with their configuration example_train/main.py for the evaluation of MuJoCo continuous control
tasks, which is the PyTorch implementation of Distributional Soft Actor-Critic.

DSACT [23]. We utilize the code from

https://github.com/Jingliang-Duan/DSAC-v2

with their configuration example_train/dsacv2_mlp_mujoco_offserial.py for the MuJoCo
benchmark, which is the PyTorch implementation of Distributional Soft Actor-Critic with Three
Refinements.

SPO [56]. We use the official code from

https://github.com/MyRepositories-hub/Simple-Policy-Optimization

with hyper-parameters from mujoco/main.py.

DIPO [4]. We utilize the code from the authors’ repository

https://github.com/BellmanTimeHut/DIPO

with hyper-parameters from main.py.

QSM [5]. We provide a PyTorch implementation of the QSM baseline based on the authors’
repository, which is built on top of a re-implementation of the JAXRL framework

https://github.com/Alescontrela/score_matching_rl

with hyper-parameters from examples/states/configs/score_matching_config.py.

QVPO [6]. We use the official code from

17

https://github.com/openai/baselines
https://github.com/ikostrikov/pytorch-a2c-ppo-acktr-gail
https://github.com/sfujim/TD3
https://github.com/toshikwa/soft-actor-critic.pytorch
https://github.com/Jingliang-Duan/DSAC-v1
https://github.com/Jingliang-Duan/DSAC-v2
https://github.com/MyRepositories-hub/Simple-Policy-Optimization
https://github.com/BellmanTimeHut/DIPO
https://github.com/Alescontrela/score_matching_rl

https://github.com/wadx2019/qvpo

with hyper-parameters from main.py.

DACER [7]. For a fair comparison, we provide an implementation of the DACER method with
PyTorch, which is based on the official code (JAX) from

https://github.com/happy-yan/DACER-Diffusion-with-Online-RL

with hyper-parameters from scripts/train_mujoco.py.

E Training and Inference Time

The training and inference time of VDRL and all baselines on three tasks of MuJoCo, i.e., Ant-v3,
Humanoid-v3, and Walker2d-v3, are shown in the Table 4-5. In particular, Notably, the official
code of the QSM and DACER methods is based on the JAX framework, but the implementation of
other baselines and our method is based on PyTorch. In practice, the algorithm realized with JAX
is 6-10 times faster than that realized with PyTorch [6]. To ensure a fair comparison, we utilize the
implementation of the QSM and DACER methods with PyTorch, which is based on the official code
(JAX). Furthermore, the number of diffusion steps for all diffusion-based online RL baselines (DIPO,
QSM, QVPO, and DACER) is set to 20.

Table 4: The training time (h) comparison on three tasks of MuJoCo Benchmarks.

VDRL DIPO QSM QVPO DACER DSAC DSACT PPO SAC
Ant-v3 7.9 11.1 10.2 9.1 9.8 5.3 5.8 0.4 3.8

Humanoid-v3 8.2 11.5 10.7 9.4 10.1 5.5 6.1 0.5 3.9
Walker2d-v3 7.8 11.0 9.9 8.9 9.6 5.2 5.7 0.4 3.8

Table 5: The inference time (ms) comparison on three tasks of MuJoCo Benchmarks.

VDRL DIPO QSM QVPO DACER DSAC DSACT PPO SAC
Ant-v3 3.6 5.8 6.4 6.2 5.4 1.9 2.1 0.2 0.4

Humanoid-v3 3.7 6.0 6.5 6.3 5.5 2.0 2.2 0.2 0.5
Walker2d-v3 3.6 5.7 6.3 6.1 5.3 1.9 2.1 0.2 0.4

From the results of the above tables, we can observe:

i) The training and inference time of VDRL is faster than the diffusion-based online RL methods
(i.e., DIPO, QSM, QVPO, and DACER), because the lower diffusion steps of VDRL (T=10)
compared with diffusion-based RL baselines (T=20) reduce the computational complexity.

ii) All diffusion-based RL methods are slower than distributional (i.e., DSAC and DSACT) or
traditional (i.e., SAC and PPO) ones, due to the iterative denoising process with some steps.
Although VDRL is slower than the traditional or distributional RL methods in inference,
the inference times (3.7ms) are still tolerable in a real-time application. As discussed in
QVPO [6], most existing real robots only require a 50-Hz control policy, i.e., output action per
20 ms. Moreover, the training and inference time of VDRL can be further reduced by using
the JAX framework if it is necessary, like the official code of QSM and DACER methods.
Hence, the inference time is not a bottleneck to applying our method to real-time applications.

Overall, the performance improvements of VDRL are relatively worth it with appropriate longer
training and inference time.

18

https://github.com/wadx2019/qvpo
https://github.com/happy-yan/DACER-Diffusion-with-Online-RL

NeurIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

• You should answer [Yes] , [No] , or [NA] .

• [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While "[Yes] " is generally preferable to "[No] ", it is perfectly acceptable to answer "[No] " provided a
proper justification is given (e.g., "error bars are not reported because it would be too computationally
expensive" or "we were unable to find the license for the dataset we used"). In general, answering
"[No] " or "[NA] " is not grounds for rejection. While the questions are phrased in a binary way, we
acknowledge that the true answer is often more nuanced, so please just use your best judgment and
write a justification to elaborate. All supporting evidence can appear either in the main paper or the
supplemental material, provided in appendix. If you answer [Yes] to a question, in the justification
please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist",

• Keep the checklist subsection headings, questions/answers and guidelines below.
• Do not modify the questions and only use the provided macros for your answers.

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: The contributions and scope of this paper are clearly delineated in the abstract
and introduction sections.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

19

Justification: The limitations of this work are discussed in Section 6.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
Answer: [Yes]
Justification: The complete proof is deferred to Appendix A.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The proposed algorithm of the training process is presented in Section 3.3. The
intricate implementation details of and training hyperparameters are deferred to Section 5.2
and Appendix C.
Guidelines:

20

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. Releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [No]

Justification: The proposed algorithm of the training process is presented in Section 3.3. The
intricate implementation details of and training hyperparameters are deferred to Section 5.2
and Appendix C.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

21

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental setting/details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The intricate implementation details of and training hyperparameters are
deferred to Section 5.2 and Appendix C. The more details of MuJoCo are introduced
in Appendix B.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment statistical significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: All experimental results are based on four training runs with different random
seeds in the experiments.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g., negative
error rates).

• If error bars are reported in tables or plots, the authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

22

Justification: The information on computer resources needed to reproduce the experiments
is provided in Section 5. Specifically, the all experiments are conducted on a 2.90GHz Intel
Core i7-10700 CPU, 64G RAM, and NVIDIA GeForce RTX 3090 GPU.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more computing

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code of ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: In every respect, the research conducted in the paper conforms with the
NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]

Justification: This paper is foundational research and not tied to particular applications.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

23

https://neurips.cc/public/EthicsGuidelines

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper poses no such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: This work cites the original paper that produced the code package. The details
are deferred to Appendix D.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: There are no new assets in this paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

24

paperswithcode.com/datasets

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and research with human subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional review board (IRB) approvals or equivalent for research with human
subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

16. Declaration of LLM usage
Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.
Answer: [NA]
Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.
Guidelines:

• The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

25

https://neurips.cc/Conferences/2025/LLM

	Introduction
	Preliminaries
	Problem Formulation
	Distributional Reinforcement Learning
	Diffusion Model

	Method
	Variational Objective for Value Diffusion Learning
	Double Value Diffusion Learning with Sample Selection
	Value Diffusion Reinforcement Learning

	Related Work
	Experiments
	Experimental Setup
	Details of Implementation
	Comparative Evaluation
	Sensitivity Analysis

	Conclusion and Discussion
	Proof
	Environmental Details
	Hyperparameters
	Details of the baseline methods
	Training and Inference Time

