
(In)Security of File Uploads in Node.js
Anonymous Author(s)

ABSTRACT

File upload is a critical feature incorporated by a myriad of web
applications in an effort to enable users to share and manage their
files conveniently. It has been used in many useful services such
as file-sharing and social media. While file upload is an essential
component of web applications, the lack of rigorous checks on
the file name, type, and content of the uploaded files can result in
security issues, often referred to as Unrestricted File Upload (UFU).
In this study, we analyze the (in)security of popular file upload
libraries and real-world applications in the Node.js ecosystem. To
automate our analysis, we propose and implement NodeSec– a tool
designed to analyze file upload insecurities in Node.js applications
and libraries. NodeSec generates unique payloads and thoroughly
evaluates the application’s file upload security against 13 distinct
UFU-type attacks. Utilizing NodeSec, we analyze the most popu-
lar file upload libraries and real-world applications in the Node.js
ecosystem. Our analysis results reveal that some real-world web
applications are vulnerable to UFU attacks and disclose serious
security bugs in file upload libraries. As of this writing, we received
19 CVEs and two US-CERT cases for the security issues that we re-
ported. Our findings provide strong evidence that dynamic features
of Node.js applications introduce security shortcomings and that
web developers should be cautious when implementing file upload
features in their applications. Finally, combining our responsible
disclosure experience and root cause analysis, we identified the
main causes of significant security weaknesses in file uploads in
Node.js.

CCS CONCEPTS

• Security and privacy→Web application security.

KEYWORDS

Web Security, Node.js, Unrestricted File Upload
ACM Reference Format:

Anonymous Author(s). 2024. (In)Security of File Uploads in Node.js. In
Proceedings of In Proceedings of the ACM Web Conference 2024 (’WWW).
ACM, New York, NY, USA, 14 pages. https://doi.org/XXXXXXX.XXXXXXX

1 INTRODUCTION

File upload is a critical feature incorporated by a myriad of web
applications to share and manage their files conveniently. It has
been used in many useful services such as file-sharing and social
media. While file upload is an essential part of web applications, it

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.
’WWW, May 13–17, 2024, Singapore
© 2024 Association for Computing Machinery.
ACM ISBN 978-x-xxxx-xxxx-x/YY/MM. . . $15.00
https://doi.org/XXXXXXX.XXXXXXX

also extends the attack surface in these applications by creating an
opportunity for adversaries to upload malicious payloads to web
applications. In particular, the lack of rigorous checks on the file
name, type, and content of the uploaded files can result in security
issues, often referred to as the Unrestricted File Upload (UFU) [1]. A
successfully uploaded malicious payload can cause potential code
execution on both the client side or the server side of the web
application.

The popularity of Node.js has grown significantly over the years
with over one billion downloads 1. It is especially preferred by ma-
jor companies to develop scalable high-traffic web applications [2].
In Node.js, third-party library usage has become a de facto stan-
dard among Node.js developers. In this manner, Node.js developers
frequently depend on third-party libraries to important features
such as file upload, authentication, logging, etc. that require se-
curity attention [3]. Given the sheer number of existing security
issues and implementation mistakes discovered in the third-party li-
braries [4, 5], we argue that there is a dire need to further investigate
the security of the file upload libraries in Node.js.

While previous work proposed tools for identifying UFU vul-
nerabilities in other ecosystems [6–8], there is a dire need for a
tool that is tailored for testing Node.js applications. As existing
tools face challenges when applied to Node.js applications due to
their unique features such as syntax, file handling, and distinct exe-
cution environments. Consequently, adapting these existing tools
to test Node.js applications requires significant domain expertise
and in-depth knowledge of the existing tools’ source code. More-
over, the techniques employed by other tools primarily focus on
identifying the incompleteness of the file upload checks in web
applications rather than examining potential implementation mis-
takes in security-related functions. Considering almost 93.2% of the
code in Node.js applications comes from third-party libraries [3],
a tool tailored for Node.js applications must also be capable of
detecting implementation issues in the file upload libraries.

Motivated by the urgent need, in this work, we proposeNodeSec to
analyze Node.js applications and file upload libraries against UFU
attacks. Our tool includes 13 distinct UFU-type attacks, derived
from a thorough review of previously published UFU-related CVEs
from 2002 to February 2023 OWASP resources [1, 9], and GitHub
issues [10, 11]. Furthermore, we conducted an exhaustive literature
review by examining UFU vulnerabilities across various ecosystems
and adapted these attacks to the Node.js environment, if applicable.
Finally, we examined common security mistakes made by develop-
ers [12] and previous bugs [10] to identify possible implementation
errors specific to Node.js developers. This methodology ensures
that NodeSec includes a broader range of attack vectors than ex-
isting literature and is capable of identifying UFU-related security
issues in real-world web applications and security flaws in the file
upload libraries within the Node.js ecosystem.

Based on our investigation, we identified three generic objec-
tives that a secure file upload implementation must meet to prevent

1https://nodejs.org/metrics/

https://doi.org/XXXXXXX.XXXXXXX
https://doi.org/XXXXXXX.XXXXXXX


UFU attacks. We leverage NodeSec to analyze the six most popular
server-side file upload libraries, which, on average, have two mil-
lion weekly downloads. Our findings revealed that none of these
libraries fulfilled all three objectives, as they contained implementa-
tion mistakes in their validation functions and lacked critical secu-
ritymeasures, potentially exposing them to attack vectors that allow
the uploading of malicious payloads that would affect millions of
live web applications using these libraries to implement their file up-
load feature. Moreover, we examined 11 popular real-world web ap-
plications written in Node.js using NodeSec. Our analysis revealed
that these applications are not resilient against UFU due to several
reasons: 1) they overrely on file upload libraries for security 2) they
make errors when configuring security options in the libraries, and
3) they fail to address all edge cases in their custom implementa-
tion. Our analysis also revealed that some of these real-world web
applications use additional packages or custom implementations
to prevent UFU attacks. Our findings clearly demonstrate that web
application developers should not blindly trust a file upload library
despite its popularity in the ecosystem and instead should imple-
ment their own metadata and content checks or use additional
packages that implement these security checks for uploaded files.
The demonstration of NodeSec and demo videos of our findings
are available at https://sites.google.com/view/wwwpaper/home
Contributions. Our contributions are as follows:

• Comprehensive Analysis of UFU in Node.js: For the
first time in the literature, we investigate the security pos-
ture of the Node.js file upload ecosystem. We outline three
objectives for securely handling the file upload process in
Node.js applications and present prevention methods and
mechanisms, that can be used by web application developers
to prevent file upload attacks and satisfy objectives.

• Node.js UFU Analysis Tool: We implement and open
source 2 NodeSec– a tool designed to analyze file upload
insecurities in Node.js applications and file upload libraries.
This tool will serve as a valuable resource for the community
to test their web applications and libraries against file upload
insecurities before deployment.

• Evaluation of Web Applications & Libraries: Utilizing
NodeSec, we investigate the security of the Node.js file up-
load ecosystem. Our analysis discloses that some real-world
web applications are insecure against our attacks and we
disclose serious security bugs in the popular file upload li-
braries. As of this writing, we received 19 CVEs and two
US-CERT cases for the security issues that we reported.

• Root Causes & Recommendations: Based on our knowl-
edge gained from these experiments and experience from
responsibly disclosing these security issues to developers
we enumerate root causes leading to the insecurity of the
Node.js file upload ecosystem and our recommendations.

Responsible Disclosure. We responsibly reported the security
issues we found in all of the server-side file upload libraries and
real-world web applications, resulting in 19 CVEs at the time of this
writing. We also notified the US-CERT about the issues and they
acknowledged our findings. We detail our vulnerability disclosure
process in Section 8 in the Appendix.
2We will share the link upon the acceptance of the paper.

User
HTTP(s) POST 

Multipart/form-data

Client-side of the Web Application

File Upload Request 
HTTP(s) POST

Server-side of the Web Application

Content Filtering, 
Sanitize, Validate

File Upload Library/Middleware

Figure 1: A typical scenario of file upload procedure in web

applications.

2 UNRESTRICTED FILE UPLOAD

In this section, we discuss the general file upload process and unre-
stricted file upload in Node.js applications.

2.1 File Upload in Node.js

A typical scenario of the file upload process with HTTP(S) protocol
is shown in Figure 1. First, the user picks a file and initiates the
upload process to a web application. Following that, the user’s client
machine sends an HTTP(S) request that contains a multipart/form-
data [13] form of the uploaded file to the web application server. As
shown in Figure 1, the web application can perform various checks
to validate the uploaded file both on the client and the server. For
instance, it can validate the file type by checking its MIME (i.e.,
Content) type on the server side. If the file type is not valid or
is undesired, the web application may reject the uploaded file to
prevent any unintended file on the web application server.
File Upload Library Usage inNode.js Applications. Third-party
libraries have become an integral component of the Node.js ecosys-
tem. In a typical Node.js application, over 90% of the code originates
from third-party libraries [3]. To properly handle the file upload pro-
cess, Node.js developers often utilize server-side file upload libraries
available in the Node Package Manager (npm). For example, the file
upload library formidable is downloaded over 8.6 million times
weekly and it is used by 1.5 million open-source applications [14].
These libraries serve as middleware for Node.js web applications,
providing file upload capabilities and implementing the necessary
security checks and validations to prevent any attacks that could
be exploited via uploading a file.

While using third-party libraries is convenient for developers to
develop Node.js applications, it comes with security risks [5, 15].
Recent incidents [16, 17] and studies have shown that developers
tend to assume that popular third-party libraries are safe to use,
which can result in the introduction of vulnerabilities into appli-
cations. When a vulnerability exists in a middleware or library or
it is insecure, it can transmit to a web application and potentially
impact a vast number of Internet users. Conversely, If the library
(i.e., middleware) handled the security checks, the web application
would be automatically secured, in contrast to the situation where
the checks were not done by the library. Furthermore, addressing
vulnerabilities in third-party packages can be time-consuming, and
developers may not prioritize fixes [5]. Consequently, this practice
poses a significant security threat to the entire web ecosystem.

2

https://sites.google.com/view/wwwpaper/home


1 const checkFileIsValid = (fileData, types, extensions)=>{
2 const type = fileData.mimetype;
3 if (types.includes(type) && extensions.includes(

fileData.ext)) {
4 return true; }
5 return false; };

Listing 1: A sample code snippet from the GhostCMS

implementing content-filtering checks that can lead to UFU

vulnerabilities.

2.2 Unrestricted File Upload in Node.js

Unrestricted File Upload is a type of security weakness that enables
an attacker to upload malicious files to a web application server.
Even if the target server does not immediately execute the uploaded
file, the web application can still be considered vulnerable or inse-
cure with respect to UFU. This is because the presence of malicious
files in the web application server poses a natural security risk as
malicious content in the file can later be executed in various ways,
such as exploiting other vulnerabilities in the third-party packages,
direct object references, or even tricking users/admins into execut-
ing it [1]. Once the file is executed, depending on the content of
the file, this vulnerability can lead to server-side attacks such as
RCE [18], or client-side attacks such as XSS [19].

Listing 1 shows a code snippet from the GhostCMS Node.js ap-
plication [20] that implements security checks for uploaded files
through the checkFileIsValid function. Line 3 checks if the file’s
MIME type and extension are included in the provided arrays. How-
ever, relying solely on MIME type and file extension for validation
introduces security risks, as both can be easily bypassed by an
attacker [21]. Consequently, the web application remains suscep-
tible to file upload vulnerabilities, potentially leading to arbitrary
code execution on either the client or server side. For example, an
attacker could upload a malicious client-side script (e.g., HTML)
that executes in the victim’s browser context when the file’s URL
is accessed. The primary goal of the attacker is to exploit the UFU
security weaknesses within the target Node.js application to exe-
cute malicious code on the client-side or server-side that can lead
to various types of attacks.

The consequences of UFU attacks may differ depending on the
specific features and functionalities of the programming language
of the server. For instance, languages like PHP can directly execute
code embedded in uploaded files if they are placed in an executable
path and have the executable file extension (e.g., .php) [22]. In con-
trast, as Node.js applications do not directly map URLs to file paths
by default, it does not automatically execute code from uploaded
files in response to HTTP requests [23]. Although this reduces the
likelihood of direct arbitrary code execution on the server, it does
not completely eliminate the possibility of UFU vulnerabilities, as
the presence of a malicious file in the web application server in-
troduces an inherent security weakness to the web application. As
evading security checks in a web application to upload a malicious
payload is itself unintended and exposes the application’s insecurity
and attackers can still exploit UFU vulnerabilities in various ways
as explained in Section 11 in Appendix.

3 METHODOLOGY

In this section, we outline our methodology for analyzing UFU on
file upload libraries and Node.js applications.

3.1 Attack Identification

Our research includes the following objectives: 1) identifying tech-
niques that adversaries can employ to exploit UFU 2) investigating
the common mistakes made by developers on file upload libraries
3) evaluating the effectiveness of Node.js libraries in preventing
UFU vulnerabilities. We initiated our analysis by exploring the
CVEs related to UFU. To achieve this, we developed a Python script
that utilizes the NIST National Vulnerability Database (NVD) API,
allowing us to extract all the CVEs from the NVD dataset [24].
Utilizing this script, we retrieved all CVEs ranging from the year
2002 to February 2023. This provided us with a comprehensive
dataset that includes over two decades of vulnerability data, con-
sisting of a total of 221,549 CVEs. Given the scope of this work,
we checked the descriptions and Common Weakness Enumeration
(CWE) codes of the CVEs. In particular, we checked for terms such
as ’file upload’, ’unrestricted upload’, ’arbitrary file upload’, and also
the CWE-434 ’Unrestricted Upload of Files with Dangerous Types’.
Our final dataset includes 1846 CVEs that are all related to the UFU
vulnerabilities. We also checked for any false positives or dupli-
cates and removed them from the dataset. To make our dataset more
comprehensive to identify our attacks we analyzed OWASP [9, 25]
sources and GitHub issues of the file upload libraries [10, 11] to
investigate recent techniques employed by adversaries to exploit
UFU in Node.js applications. Furthermore, we examined the com-
mon security mistakes made by the developers [12] and previous
GitHub issues of libraries to identify implementation errors. Lastly,
we conducted an exhaustive literature review on prior research
examining UFU vulnerabilities across various ecosystems [6–8],
adapting these attacks to the Node.js environment, if applicable.
From our analysis, we selected 13 different attacks, grouped into
three categories: (1) File Name-based Attacks (File Extension Injec-
tion, Null Byte Injection, Script-Named File Name, Path Traversal,
Overwrite), (2) File Type-based Attacks (Spoofing-based, Polyglot
File Attacks, Executable File Attack), and (3) File Content-based
Attacks (PDF File Attacks, SVG Upload Attack).

3.2 Attack Descriptions

In this section, we provide detailed descriptions of the attacks and
their respective categories considered in this work. We elaborate
on the impact of each attack, discuss its possible consequences, and
explain their differences.
File Name-based Attacks In this attack category, an adversary
modifies the file name to alter the intended logic of the web applica-
tion or injects malicious characters into the file name to abuse the
file upload inputs of the web application. The malicious characters
can be in the form of multiple file extensions, without file extension,
null bytes, scripts, or non-alphanumeric characters [26]. Further
details about different file naming-based attacks that are employed
by NodeSec are articulated in below.
• [A1] File Extension Injection: In this attack, an adversary modifies
the extension of the file name to exploit improper file name ex-
tension controls in the web application. For example, an attacker

3



can inject multiple file extensions to bypass the file validation
logic based on file extensions [27].

• [A2] Null Byte Injection: In this attack, the attacker inserts a null-
byte into a file name to alter the intended logic of the application.
An attacker can inject different portions of the file name to per-
form this type of attack. For example, similar to the File Extension
Injection attack (A1), an attacker injects a null byte between a for-
bidden extension and an allowed extension to alter the intended
logic of the targeted Node.js application [28].

• [A3] Script-named file name: In this attack, the attacker inserts
a script into a file name, such as an XSS payload, which may
trigger the execution of the payload in the victim’s browser if
the name of the uploaded file is not sanitized properly.

• [A4] Path Traversal: In this attack, the adversary inserts malicious
characters into the file name to achieve path traversal attacks, po-
tentially allowing them to access directories outside the restricted
directory in the Node server [29].

• [A5] Overwrite Attack: In this attack, an adversary aims to over-
write a file on a target web application server, particularly server
configuration files, to maliciously change the server settings.
With this attack, an attacker can externally control critical con-
figuration files that play a crucial role in the operation of the
target web application,

File Type-based Attacks In these attacks, an adversary modifies
the file type of the malicious payload. In the next subsections, we
explain the details of how it can be realized to create a malicious
payload.
Spoofing-based Attacks. In these attacks, the adversary bypasses
the file type validation logic of the web application by spoofing the
file content-type (MIME-type) and magic header bytes of a file [30].
These attacks can lead to the execution of malicious code on the
server or client-side, unauthorized access, and data leaks [1].
• [A6] MIME Type Spoofing: A file’s content-type represents the
file’s MIME type, which describes the file and its structure. File
upload libraries may use MIME types to validate file types. How-
ever, an attacker can easily bypass this attempt by modifying
or spoofing the content type of the file. If the target server re-
lies only on the MIME type check to validate the file content,
MIME type spoofing can enable the attacker to bypass the checks
and upload a malicious payload file, potentially leading to code
execution on the server-side.

• [A7] Magic Byte Spoofing: Another technique used to validate file
types is checking the magic header byte [31]. An attacker can
create a malicious file, such as a script, and change the magic
byte to other file types, such as a PNG file, to bypass the file type
validation checks performed by the web application. This attack
can lead to the execution of malicious code on the server.

Polyglot File Attacks. Polyglot files are files that are valid in multi-
ple different file formats, allowing adversaries to create these files to
hide malicious payloads and bypass the file type validation logic of
the web application [32, 33]. Unlike spoofing-based attacks, where
an adversary only changes the magic bytes and/or MIME type of
the file, polyglot files are constructed by merging the syntax and
semantics of multiple file formats [34]. As a result, a web appli-
cation might be resilient against spoofing-based attacks but still
be vulnerable to polyglot file attacks. Polyglot files can be used to

inject malicious scripts and bypass the content security policy of
the file upload mechanism of a web application, leading to various
types of attacks such as XSS and RCE.
• [A8] JS+JPEG Polyglot: This type of polyglot file is valid in both
JPEG and JS file formats. If the content-filtering mechanism of the
web application accepts it as a JPEG file, it will be uploaded to the
server. Once the file is uploaded to the web application server, the
attacker can execute the malicious payload by remotely accessing
the file or during the parsing it can cause to server to down [33].

• [A9] HTML+PDF Polyglot: A PDF+HTML polyglot file is valid in
both PDF and HTML file formats. It can be used by adversaries to
bypass the content security checks of web applications and insert
a malicious payload within the HTML file. Similar to the JS+JPEG
Polyglot file, the attacker can execute the malicious payload by
remotely accessing the file from the browser [35].

[A10] Executable File Upload Attack. In this attack, an attacker
uploads an executable file (e.g., EML, HTML) that is possible to be
executed on the client or server side of a web application. In this
attack, an attacker uploads an HTML payload file to a target web
application. The uploaded payload file can redirect a victim to a
malicious website or execute a JavaScript payload embedded on an
HTML file [25].
Content-based Attacks In these attacks, an adversary embeds
malicious content into a seemingly benign file, such as a PDF or
SVG. Although these types of attacks can be achieved by inserting
malicious content into different file types. We focus on PDF and
SVG files due to their popularity in the web ecosystem in general
and their potential malicious impacts.
PDF File Attacks. PDF is one of the most popular file formats used
in web applications [36]. Web applications, such as PDF editors,
may render the PDF file on the server side to display the document
to the user. Additionally, web applications used by law firms (e.g.,
DocuSign) may require users to upload necessary information in
PDF format and store it on the server side. The structure of PDF files
can be abused by adversaries by embedding a JavaScript payload
or compressing the content to exhaust the resources of the target
server [37].
• [A11] JavaScript Embedded PDF : In this attack, adversaries inject
malicious JavaScript code inside a PDF document. For instance, an
attacker can inject a JavaScript payload into a PDF document and
upload it to a web application to perform a stored XSS attack [38].

• [A12] PDF Bomb Attack: This attack involves adversaries abusing
the encoding options of a PDF file to compress the streams. Once
the malicious PDF file is uploaded to a web application server, it
decompresses the content, causing resource exhaustion on the
target server [36].

[A13] SVGFile UploadAttack. SVGfile attacks exploit the features
of SVG files, which support inline JavaScript code. In this attack, the
adversary injects a JS payload into an SVG file to achieve different
types of attacks, such as XSS [39].

3.3 Secure File Upload Validation Objectives

Our goal in this section is to enumerate a set of objectives that
should be implemented by web applications utilizing file upload
features. We enumerate these objectives by searching the follow-
ing resources: secure file upload implementation principles [1, 9],

4



prevention techniques and tools against the attacks enumerated in
Section 3.2, secure file upload implementation practices in other
ecosystems.

Our search resulted in two types of techniques: 1) Techniques
to validate the uploaded files, and 2) Techniques to minimize the
risks of malicious file uploads. The former includes efforts to iden-
tify malicious intent from the file and methods to prevent them,
while the latter includes other practices such as storing the up-
loaded files on a different server, authentication, and authorization
mechanisms, and file size and upload request limiting mechanisms
against DoS attacks. In this paper, we only study the attacks that
can be performed by modifying the uploaded files, we consider the
techniques in the latter as out of scope. In conclusion, a file upload
mechanism in the web application should satisfy the following file
upload validation objectives to prevent UFU attacks:

• Objective-1: File Name Validation: An adversary can abuse the
file name of the uploaded file to trigger a UFU vulnerability in
the web application, as given in Section 3.2. To validate the file
name, a web application can assign a randomly generated safe
string such as UUID to the file name [40]. Additionally, a web
application can also sanitize the file name of an uploaded file
by removing malicious characters before it is uploaded to the
server. The developers either implement their own sanitization
functions or integrate third-party packages [41, 42] to sanitize
the file name.

• Objective-2: File Type Validation: A web application can check the
MIME type of the uploaded file from the file upload request and
reject the uploaded files with unexpected MIME types. While
this method prevents crude file upload attacks, the MIME type of
file provided by the client cannot be trusted and it can be easily
spoofed by the attacker. Validating the file type directly from
the content of the uploaded file is robust against such spoofing
techniques. Depending on the expected file type of the web appli-
cation, the techniques for the validating file type can differ [43].
A developer can make use of open-source packages by detecting
the file type by its metadata [44, 45] or file stream [46].

• Objective-3: File Content Sanitization: An adversary can insert
malicious content (i.e., script) into a seemingly benign file to
trigger UFU vulnerability on the server or client side. To prevent
this, a web application should sanitize the malicious content in
the file. The sanitization technique can differ based on the file
type [43]. A developer can utilize open source packages [47, 48]
to sanitize the file or set security headers to prevent arbitrary
code execution [49].

Overall, implementing these techniques mitigates against UFU
attacks and ensure that only safe and authorized files are allowed
to be uploaded to the system. However, it is important to note
that there is no silver bullet solution for secure file upload, and
web applications should continually monitor and update their file
validation processes to stay ahead of new attack vectors. File size
limiting/validation can also be added to the list to prevent a DoS
attack on the server, but file size-based attacks are out of the scope
of this paper. Finally, we note that there is at least one open source
Node.js package for each objective, and if a web application sat-
isfies these objectives, it would prevent all of the thirteen attacks
explained in Section 3.2.

Malicious Payload Generator

Payload Database

Uploader

Polyglot File Generator

Extension Injector

Null-byte Injector

Script Injector

Non-alphanumeric Injector

Spoofer

Malicious PDF Generator

Seed Files Attack Payloads

Node 
Server

CONF File

Validator

Authorizator

Figure 2: The architecture of NodeSec and experiment setup

to test the security of file upload vulnerabilities in Node.js

applications.

3.4 NodeSec

To systematically analyze file upload security weaknesses in Node.js
applications and libraries, we developed NodeSec, which automat-
ically generates attack payload files for our attacks (A1-A13) and
uploads the malicious payloads to the target web application in
an automated fashion. The architecture of NodeSec is depicted in
Figure 2 and consists of five main modules. The first module, 1
Malicious Payload Generator, creates payload files to trigger the
attacks. It comprises multiple attack generator components that
transform seed files into attack payloads. The second module, 2
Payload Database, serves as a comprehensive repository for attack
payloads. 3 For authorization purposes, the Authorization module
automates the collection of essential data, such as login creden-
tials, cookie tokens, and request headers. The 4 Uploader module
then automates the process of uploading attack payload files to the
server side of the target application. Lastly, the 5 Validator module
conducts the validation process after each payload is successfully
uploaded. Due to space limitations, we give the full implementation
details of NodeSec in Appendix Section 9 and usage of NodeSec
in our demo website [50]

4 ANALYZING LIBRARIES & APPLICATIONS

In this section, we analyze the security of file upload libraries and
real-world web applications written in Node.js using NodeSec. To
create our experimental setup, we first downloaded packages from
npm containing file upload libraries and real-world web applica-
tions, then created sample web applications on our local server.
Next, we executed NodeSec to evaluate the security of these real-
world web applications and file upload libraries.

For server-side file upload libraries, we adhered to the guidelines
provided in their official documentation and employed the widely-
used Express.js framework on the server side incorporating libraries
as middleware [51]. To assess the libraries’ security against UFU,
we enforced all available security settings and conducted checks
for potential UFU attacks and possible implementation mistakes.
We further discuss the functionality of these settings and their ef-
fectiveness against UFU. Following a similar approach, we installed

5



real-world web applications according to the instructions provided
in their official documentation. Subsequently, we assessed the secu-
rity of these sample real-world web applications without modifying
their source code.

4.1 (In)Securities in File Upload Libraries

We selected the popular server-side file upload libraries based on
the following criteria: (1) It should be implemented in Node.js. (2)
It should have more than 1K stars on GitHub or received over 80K
weekly downloads from npm. Based on this criteria, we selected the
most popular six server-side file upload libraries, which, on average,
have 2 million weekly downloads from the npm. We analyzed these
libraries with NodeSec to see whether they satisfy the file upload
validation objectives presented in Section 3.3.We examined both the
availability and effectiveness of the security checks. We summarize
the results in Table 1.
Poorly Handling File Name. To fulfill the file upload validation
objective, a library must handle the file name safely. A library can
achieve this either by sanitizing or randomizing the name of the
uploaded file. While libraries such as multer, formidable, connect-
multiparty, and skipper adopt file name randomization techniques,
express-fileupload and graphql-upload employ file name saniti-
zation methods to mitigate file name-based attacks. Our analysis
revealed that some popular file upload libraries such as express-
fileupload and formidable were improperly implementing their
functions related to the uploaded file name. In express-fileupload,
implementation mistakes in its options cause both the upload of
hidden files to a web application server and incorrect trimming
of file extensions. In formidable, due to a regex implementation
issue, the function fails to correctly parse extensions with multiple
dots and does not sanitize characters between the dots, leaving
the malicious payload exposed on the application server. Please
the demo videos of these issues 3 4. Due to space limitations, we
present these issues in detail in Section 10 in Appendix.
Insufficient File Type Validation. As we defined in our second
objective, a secure file upload implementation must validate the
expected file type correctly to prevent UFU attacks. Our analysis re-
vealed that all of the file upload libraries are performing MIME type
validation for file type validation. While this technique can prevent
the executable file upload attack, it can be evaded by performing
spoofing attacks [19]. Hence, web applications using one of these
popular file upload libraries without any additional prevention
method would be insecure to all file type-based attacks.
No Malicious Content Sanitization. An adversary can insert
malicious content into a seemingly benign file to trigger the UFU
vulnerability in the web application. To prevent that, web applica-
tions can either sanitize the malicious content in the file or detect
and prevent the upload of the malicious file. Nevertheless, our anal-
ysis revealed that none of the file upload libraries in our dataset
provides a mechanism to detect or sanitize any malicious content-
embedded file. Hence, we found that any web application using one
of these popular file upload libraries as it is would be insecure to
all file content-based attacks.

3Express-fileupload: https://youtu.be/BEcZbZbkjZs
4Formidable: https://youtu.be/in1uYJ8tv7M

Table 1: The analysis of popular file upload libraries.

Library Version

Weekly

Downloads

File Name

Validation

File Type

Validation

File Content

Sanitization

express-fileupload [52] 1.2.1 276,281

multer [53] 1.4.4 4,200,142

formidable [14] 2.0.1 8,736.018

connect-multiparty [54] 2.2.0 81,248

skipper [55] 0.9.1 25,672

graphql-upload [56] 13.0.0 358,743

: Fully implemented, : Partially/Improperly implemented
: Not implemented,

4.2 (In)securities in Real world Applications

In this section, we present our analysis of real-world Node.js web
applications. We utilize NodeSec to perform experiments. We de-
picted our experiment results on in Table 2. We use output of the
NodeSec too fill our table. As explained in Section 2, Node.js servers
do not execute files in response to a upload request. So, in our anal-
ysis, we did not consider the execution of the file in the server
response regarding file execution. As our scope is only analyz-
ing Node.js applications, we consider whether the uploaded file
poses a security threat for Node.js application. ✓ indicates that the
real-world web application is secure against the attack. In other
words, the real-world web application has prevention mechanism
against the attack. On the other hand, ✗ indicates that the real-
world web application is insecure against the attack. Particularly,
the real-world web application has no security mechanism against
the attack.

Our investigation throughout this study revealed that mitigat-
ing one attack does not necessarily guarantee protection against
other attacks within the same category. For instance, during the
responsible disclosure process, in one case, after we report the
insecurity on real-world web application against Executable File
Upload Attack. The maintainer fixed the issue by implementing a
MIME-type checking which caused the application to be insecure
to other types of file type attacks. This implies that each attack
in our attack dataset require a unique consideration, and maybe a
specific prevention technique depending on the implementation.
Considering these, we decided that grouping the insecurities based
on their root causes could potentially underestimate risks and fail
to capture variations in the actual exploitation of attacks. Instead,
we adopted an approach that treats each successful attack as an
individual insecurity. In addition to analyzing real-world web ap-
plications with NodeSec, we manually examined their source code
to highlight the reasons of these insecurities and good practices
currently implemented in these applications. Below, we discuss our
findings for each real-world web application. We also provide three
demo videos for demonstrate our experiment procedure and usage
of NodeSec. 5 6 7 8

• GhostCMS: currently receives over 10k weekly downloads and
is used by more than 50k live websites [67]. It uses the multer file
upload library to handle the file upload process and it does not use
any additional package to prevent UFU. Thus, similar to multer, it

5Tiddlywiki: https://youtu.be/YP7pwBxdpXY
6Ghost:https://youtu.be/zzUcpQ2TrWI
7Strapi-1:https://youtu.be/JMlxw230ny0
8Strapi-2:https://youtu.be/XRRdylZmvtw

6

https://youtu.be/BEcZbZbkjZs
https://youtu.be/in1uYJ8tv7M
https://youtu.be/YP7pwBxdpXY
https://youtu.be/zzUcpQ2TrWI
https://youtu.be/JMlxw230ny0
https://youtu.be/XRRdylZmvtw


Table 2: Evaluation of NodeSec against 11 real-world applications.

Web Application Version Library

File Name-based

Attacks

File Type-based

Attacks

File Content-based

Attacks

A1 A2 A3 A4 A5 A6 A7 A8 A9 A10 A11 A12 A13

Strapi [57] 4.1.7 formidable ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✓

GhostCMS [20] 4.42.0 multer ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

payloadCMS [58] 0.15.1 express-fileupload ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

ButterCMS [59] 1.2.9 formidable ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Keystone [60] 4.2.1 graphql-upload ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✗ ✓

Apostrophe [61] 3.17.0 connect-multiparty ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Wikijs [62] 2.5.2 multer ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Sanity [63] 2.29.3 Custom ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

FireCMS [64] 1.0.0 Custom ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✗ ✗ ✗ ✗

Tiddlywiki [65] 5.2.2 Custom ✗ ✓ ✓ ✓ ✓ ✗ ✗ ✗ ✗ ✓ ✗ ✗ ✗

totaljs [66] 4.0.0 Custom ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✗ ✓ ✗ ✗ ✓ ✗

✓: Secure, ✗: Insecure
A1: File Extension Injection; A2: Null Byte Injection; A3: Script-named file name; A4: Path Traversal via inserting Non-Alpha; A5: Overwrite
Attack; A6: MIME Type Spoofing; A7: Modified Magic Header Bytes; A8: JS+JPEG Polyglot A9: HTML+PDF Polyglot; A10: Executable File
Upload Attack; A11: JavaScript Embedded PDF; A12: PDF Bomb Attack; A13: SVG File Upload Attack.

is also insecure to four file type-based and content-based attacks.
Interestingly, although Multer randomizes the file name by default,
instead of using Multer’s randomization function, GhostCMS im-
plements its own custom sanitization function, which causes it to
be insecure against A1 attack.

✗ Not using already existing function in the library:
Our analysis reveals that despite the availability of a security
function in the file upload library, an ineffective implementation
of a custom validation function can introduce security flaws.

• Tiddlywiki: is another popular open-source interactive wiki-like
website builder. Although Tiddlywiki implements a file name fil-
tering function to prevent four types of file name-based attacks, it
relies on the MIME type for validating the type of the file which
resulting in Tiddlywiki being insecure against all types of file type-
based and content-based attacks.
• PayloadCMS: released in 2021 and received over 12k stars from
GitHub [58] and receives over 14k weekly downloads. It makes use
of the express-fileupload library to process files uploaded to the
server. Our examination of its source code revealed that the security
options available in express-fileupload has not been utilized at all.
In addition, PayloadCMS has a custom getSafeFileName function,
which causes it to be insecure to A1 attack. However, it is also
insecure to SVG upload attack and Executable File Upload since it
does not utilize any sort of file validation method.

✗ Missing edge cases in the custom implementation:
Our analysis highlights that a custom security implementation
must address all edge cases. Consequently, they may defend
against certain attacks within an attack category, yet remain
susceptible to others from the same group.

• Strapi: is the second most popular headless CMS in the top 1M
sites [68]. It utilizes the formidable library to process files uploaded

to the server. Our investigation shows that Strapi uses the formi-
dable library without utilizing any additional security mechanism
to prevent all the attacks we consider in this work, except for the
SVG upload attack. Thus, same as formidable, Strapi is insecure
to all types of file type-based and two types of content-based at-
tacks. Different from formidable, it uses a security package named
koa-helmet module to prevent the code execution in the browser
which makes resilient against SVG Upload attack [49].

✗ Blind-trust to the file upload library:
Our analysis disclose that some application developers may place
undue trust in the security features provided by upload libraries,
which can lead to overlooked insecurities.

• Apostrophe is a popular website builder [61] with currently 4.3k
weekly downloads and having received over 4K stars on GitHub.
It uses the file upload library connect-multiparty as a file upload
library. We found Apostrophe is resilient to all attacks we tested
against. The reason is that, similar to wikijs, Apostrophe uses addi-
tional security packages such as Imagemagick [45] to validate file
type. Thus, it is resilient to all types file type-based attacks. Also,
it makes use of sanitize-html [47] package to sanitize malicious
HTML payload inside files. Therefore, it is resilient against the SVG
upload attack.
• Wikijs: is a Wikipedia-like informative website builder with over
2.8k weekly downloads and over 22k stars on GitHub, [62]. It uses
the multer library to handle the file upload process. We found that it
is resilient against all types of UFU attacks. We analyzed its source
code and found that developers of wikijs utilize different types of
open-source security packages to prevent all types of attacks. Partic-
ularly, wiki’s uses sanitize-filename package [41] for handling
uploaded file names, file-type package package [69] to deter-
mine the file type of the uploaded files. Finally, to prevent the code
execution via SVG Upload attack, it utilizes xss [48] package.

7



• Sanity: is a popular open-source CMS that receives more than
72k weekly downloads [63]. It uses custom functions to handle
the uploaded files before they are transmitted to its backend. To
prevent file name-based attacks, it assigns a random file name to any
uploaded file, which makes sanity resilient to all types of file name-
based attacks. Moreover, it validates file type from the metadata
of the uploaded file by utilizing the exif-js [44] package and it is
resilient against all types of spoofing-based, polyglot file, and PDF
file attacks. Similarly to Apostrophe, it uses an additional security
package, sanitize-html [47], to prevent the SVG file upload attack.

✓ Utilizing custom functions and packages to prevent UFU:
Our analysis showed that demonstrates that a combination of
custom implementations and open-source packages can effec-
tively prevent all attacks, while also providing the flexibility to
defend against specific attacks as needed.

In addition to these seven real-world applications, we also an-
alyzed ButterCMS, FireCMS, total.js, and Keystone. Their results
are presented in Table 2. Due to the page limit, we present their
detailed explanation in Section 12 in Appendix.

5 ROOT CAUSES & RECOMMENDATIONS

In this section, based on the knowledge gained from our responsible
disclosure process and our experiments we enumerate primary
factors contributing to the challenges faced by file upload library
and Node.js application developers.
Security Documentation is Imperative. Our analysis identified
a lack of well-designed and comprehensive security documentation
for current file upload libraries. This deficiency is a significant chal-
lenge for security-unaware developers, as they may be unaware
on these issues. While developers are encouraged to incorporate
such ready-to-use third-party software packages into their systems,
due to missing security documentation, they are unfortunately left
with minimal guidance on how to implement security against UFU
attacks. Our analysis of real-world web applications concluded
that the absence of security documentation on file upload libraries
places application developers to an uncertain position, where they
inadvertently introduce security misconfigurations to their appli-
cations or fail to implement necessary file validation/sanitization
mechanisms which makes their applications insecure against UFU
attacks. Consequently, library developers should explicitly enumer-
ate the use cases of the file upload library and clearly state both
the absent and present security mechanisms against UFU attacks
in their security documentation.
Lack of Consensus of Responsibility. Our analysis elucidates
that the process to report and patch critical libraries is not entirely
clear to the involved parties. As our disclosure process exhibits an
absence of a well-defined consensus concerning the allocation of
accountability for implementing content and metadata validation
within the file upload ecosystem. While some library developers
took the reported issues very seriously and initiated the patching
process, others conveniently deferred the responsibility to web ap-
plication developers. This confusion on where the responsibility
lies greatly endangers the overall security of the file upload ecosys-
tem. Consequently, we posit that the responsibility to implement
defense against UFU should be clearly defined and we suggest that

the implementation of security checks at the file upload library level
would be scalable and substantially contribute to mitigating the
risks associated with this critical issue in the file upload ecosystem.
Lack of Comprehensive Security Test Cases. Our analysis dis-
closed that popular file upload libraries (e.g., express-fileupload,
formidable) contain bugs within their security-related functions.
As we detail in Section 10, these bugs not only present theoretical
risks but also attack vectors that can be exploited by malicious
actors to launch various types of UFU attacks on web applications
utilizing these libraries. Our analysis on the source code of these
libraries revealed that they have not been tested against all the at-
tack scenarios that can be utilized by an attacker. For example, the
sanitization function in the formidable library did not consider pay-
loads that can be inserted between the extensions of the uploaded
files. Consequently, our recommendation is the developers must
consider all the edge cases while implementing these functions in
their libraries.

6 RELATEDWORK

Node.js Security. SYNODE [70], a static analysis-based prevention
tool against injection attacks in the Node.js ecosystem. In [71],
the first security architecture for Node.js, was introduced. In [72]
investigated the security of Node.js applications against ReDoS
attacks. Differently, Nielsen et al. [73] proposed a modular call
graph-based approach for security scanning in Node.js applications.
In [74], the authors focused on the communication process between
client- and server-side code in Node.js programs and identified
vulnerabilities that can lead to different types of server-side attacks.
File Upload Security.Huang et al. proposed UChecker [7], a static
analysis-based tool that automatically detects UFU vulnerabilities
in PHP-based server-side web applications. Likewise, Huang et al.
introduced UFuzzer [8], a locality analysis-based UFU vulnerability
detection system for PHP applications. In [6], the authors proposed
a penetration testing tool for identifying file upload bugs in PHP-
based web applications. While
Differences from existing work.While there exists a substantial
amount of prior work investigating the security of Node.js, none
focused specifically on the UFU attacks. Additionally, although
there are studies that propose tools to detect UFU vulnerabilities in
PHP web applications, there is no prior work that investigates both
the security of file upload libraries and the applications in Node.js
ecosystem. We also enumerate the challenges in using existing
tools for Node.js and compare the attack coverage of NodeSecwith
existing tool in Section 13 in Appendix.

7 CONCLUSION

In this paper, we analyzed the security posture of the file upload
ecosystem in Node.js. We introduce NodeSec a tool designed to
analyze Node.js applications and libraries in the context of UFU-
related security issues and we analyze popular file upload libraries
and real-world web applications using NodeSec. Our analysis re-
vealed security issues in eleven popular Node.js web applications
and bugs in file upload libraries and received 19 CVEs. With this
study, we aim to raise awareness about the importance of security
measures in file upload libraries and web applications, contributing
to the development of better practices and tools to protect users
from UFU attacks.

8



REFERENCES

[1] OWASP Cheat Sheet Series, “Denial of Service Cheat Sheet,” https://cheatsheetse
ries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html, 2022.

[2] Brainhub, “Famous Node JS Apps: Examples (2023),” https://brainhub.eu/library/
famous-apps-built-with-nodejs, 2023.

[3] I. Koishybayev and A. Kapravelos, “Mininode: Reducing the attack surface of
node.js applications,” in 23rd International Symposium on Research in Attacks,
Intrusions and Defenses, 2020.

[4] K. Solomos, P. Ilia, S. Karami, N. Nikiforakis, and J. Polakis, “The dangers of
human touch: Fingerprinting browser extensions through user actions,” in 31st
USENIX Security Symposium, 2022.

[5] M. Zimmermann, C.-A. Staicu, C. Tenny, and M. Pradel, “Small world with high
risks: A study of security threats in the npm ecosystem,” in USENIX Security
Symposium, 2019.

[6] T.-J. Lee, S. Wi, S. Lee, and S. Son, “Fuse: Finding file upload bugs via penetration
testing,” in NDSS, 2020.

[7] J. Huang, Y. Li, J. Zhang, and R. Dai, “Uchecker: Automatically detecting php-
based unrestricted file upload vulnerabilities,” in 49th Annual International Con-
ference on Dependable Systems and Networks.

[8] J. Huang, J. Zhang, J. Liu, C. Li, and R. Dai, UFuzzer: Lightweight Detection of
PHP-Based Unrestricted File Upload Vulnerabilities Via Static-Fuzzing Co-Analysis,
2021.

[9] Naveen J, “Remote Code Execution Due to Unrestricted File Upload,” https:
//cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html,
2022.

[10] node formidable, “Formidable detects MIME-type according to the file extension
and not by the real content,” https://github.com/node-formidable/formidable/is
sues/749, 2022.

[11] Multer, “Why does multer not save files with file extension by default?” https:
//github.com/expressjs/multer/issues/439, 2022.

[12] D. Votipka, K. R. Fulton, J. Parker, M. Hou, M. L. Mazurek, and M. Hicks, “Under-
standing security mistakes developers make: Qualitative analysis from build it,
break it, fix it,” in 29th USENIX Security Symposium.

[13] L. Masinter, “Returning Values from Forms: multipart/form-data ,” https://www.
rfc-editor.org/rfc/rfc7578, 2022.

[14] node formidable, “Formidable,” https://www.npmjs.com/package/formidable,
2022.

[15] A. Sharma, “NodeJS module downloaded 7M times lets hackers inject code,”
https://www.bleepingcomputer.com/news/security/nodejs-module-download
ed-7m-times-lets-hackers-inject-code/, 2022.

[16] L. Services, “Log4j Security Vulnerabilities,” https://logging.apache.org/log4j/2.x
/security.html, 2022.

[17] A. Ojamaa and K. Düüna, “Assessing the security of node.js platform,” in Interna-
tional Conference for Internet Technology and Secured Transactions, 2012.

[18] Hackerone, “Node.js third-party modules: Unrestricted file upload (RCE),” https:
//vulners.com/hackerone/H1:343726k, 2018.

[19] U. Sarmah, D. Bhattacharyya, and J. Kalita, “A survey of detection methods for
xss attacks,” Journal of Network and Computer Applications, 2018.

[20] Ghost, “Ghost,” https://www.npmjs.com/package/ghost, 2022.
[21] X. Li and Y. Xue, “A survey on server-side approaches to securing web applica-

tions,” ACM Comput. Surv., 2014.
[22] R. Lerdorf, K. Tatroe, B. Kaehms, R. McGredy, N. Torkington, and P. Ferguson,

Programming PHP, ser. Creating Dynamic Web Pages. O’Reilly Media, 2002.
[23] M. Madsen, F. Tip, and O. Lhoták, “Static analysis of event-driven node.js

javascript applications,” 2015.
[24] NVD, “NVD - Data Feeds,” https://nvd.nist.gov/vuln/data-feeds, 2022.
[25] OWASP, “Unrestricted File Upload,” https://owasp.org/www-community/vulner

abilities/Unrestricted_File_Upload, 2023.
[26] Mitre, “CAPEC-73: User-Controlled Filename,” https://capec.mitre.org/data/def

initions/73.html, 2022.
[27] MITRE, “CWE-646: Reliance on File Name or Extension of Externally-Supplied

File,” https://cwe.mitre.org/data/definitions/646.html, 2022.
[28] CWE, “CWE - 158 : Improper Neutralization of Null Byte or NUL Character,”

https://www.cvedetails.com/cwe-details/158/Improper-Neutralization-of-Null-
Byte-or-NUL-Character.html, 2023.

[29] OWASP, “Path Traversal,” https://owasp.org/www-community/attacks/Path_Tra
versal, 2023.

[30] Mitre, “ CWE-1287: Improper Validation of Specified Type of Input,” https://cwe.
mitre.org/data/definitions/1287.html, 2022.

[31] M. C. Amirani, M. Toorani, and A. Beheshti, “A new approach to content-based
file type detection,” in IEEE Symposium on Computers and Communications.

[32] J. Magazinius, B. K. Rios, and A. Sabelfeld, “Polyglots: crossing origins by crossing
formats,” ACM conference on Computer & communications security, 2013.

[33] G. Heyes, “Bypassing CSP using polyglot JPEGs,” https://portswigger.net/resear
ch/bypassing-csp-using-polyglot-jpegs, 2021.

[34] V. lie, “Polyglot Files: a Hacker’s best friend,” https://medium.com/swlh/polyglot-
files-a-hackers-best-friend-850bf812dd8a, 2022.

[35] A. Barua, H. Shahriar, and M. Zulkernine, “Server-side detection of content
sniffing attacks,” in International Symposium on Software Reliability Engineering,
2011.

[36] J. Müller, D. Noss, C. Mainka, V. Mladenov, and J. Schwenk, “Processing dangerous
paths – on security and privacy of the portable document format,” in NDSS, 2021.

[37] C. Jongsma, “First came the Zip Bomb, now comes the PDF Bomb,” https://ww
w2.computerworld.com.au/article/222180/first_came_zip_bomb_now_comes
_pdf_bomb/, 2022.

[38] P. Stokes, “Malicious PDFs,” https://www.sentinelone.com/blog/malicious-pdfs-
revealing-techniques-behind-attacks/, 2019.

[39] T. N. Nguyen, “https://www.fortinet.com/blog/threat-research/scalable-vector-
graphics-attack-surface-anatomy,” 2019.

[40] Chance, “chance,” https://www.npmjs.com/package/chance, 2022.
[41] sanitize filename, “sanitize-filename,” https://www.npmjs.com/package/sanitize-

filename, 2022.
[42] filenamify, “filenamify,” https://www.npmjs.com/package/filenamify, 2022.
[43] OWASP, “File Content Validation OWASP ,” https://cheatsheetseries.owasp.org/c

heatsheets/File_Upload_Cheat_Sheet.html#file-content-validation, 2022.
[44] exif js, “exif-js,” https://www.npmjs.com/package/exif-js, 2022.
[45] ImageMagick, “ImageMagick,” https://github.com/ImageMagick/ImageMagick,

2022.
[46] stream-file type, “Stream File Type,” https://www.npmjs.com/package/stream-

file-type, 2022.
[47] sanitize html, “sanitize-html,” https://www.npmjs.com/package/sanitize-html,

2022.
[48] xss, “Sanitize untrusted HTML (to prevent XSS) with a configuration specified

by a Whitelist.” https://www.npmjs.com/package/xss, 2022.
[49] koa helmet, “koa-helmet,” https://www.npmjs.com/package/koa-helmet, 2022.
[50] Anonymous, “(In)Security of File Uploads in Node.js,” https://sites.google.com/v

iew/wwwpaper/home, 2023.
[51] Expressjs, “Express,” https://www.npmjs.com/package/expresss, 2022.
[52] richardgirges, “Express File Upload,” https://www.npmjs.com/package/express-

fileupload, 2017.
[53] expressjs, “Multer,” https://www.npmjs.com/package/multer, 2022.
[54] connect multiparty, “connect-multiparty,” https://www.npmjs.com/package/co

nnect-multiparty, 2022.
[55] balderdashy, “skipper,” https://www.npmjs.com/package/skipper, 2022.
[56] graphql upload, “graphql-upload,” https://www.npmjs.com/package/graphql-

upload, 2022.
[57] Strapi, “Strapi,” https://www.npmjs.com/package/strapi.
[58] payloadcms, “payload,” https://github.com/payloadcms/payload, 2022.
[59] ButterCMS, “ButterCMS ,” https://github.com/ButterCMS, 2023.
[60] keystone, “keystone,” https://www.npmjs.com/package/keystone, 2022.
[61] apostrophecms, “apostrophe ,” https://github.com/apostrophecms/apostrophe,

2022.
[62] Requarks, “wiki,” https://github.com/Requarks/wiki, 2022.
[63] Sanity, “Sanity,” https://github.com/sanity-io, 2022.
[64] Camberi, “firecms,” https://github.com/Camberi/firecms, 2019.
[65] Jermolene, “TiddlyWiki5,” https://github.com/Jermolene/TiddlyWiki5, 2022.
[66] Total.js, “Total.js Platform Open-source JavaScript platform,” https://github.com

/totaljs, 2022.
[67] Bultwith, “Ghost Usage Statistics,” https://trends.builtwith.com/cms/Ghost.
[68] Builtwith, “Strapi Usage Statistics,” https://trends.builtwith.com/cms/Strapi/,

2022.
[69] file type, “file-type,” https://www.npmjs.com/package/file-type, 2022.
[70] C.-A. Staicu, M. Pradel, and B. Livshits, “Synode: Understanding and automatically

preventing injection attacks on node.js,” in NDSS, 2018.
[71] W. De Groef, F. Massacci, and F. Piessens, “Nodesentry: Least-privilege library in-

tegration for server-side javascript,” ser. ACSAC ’14. Association for Computing
Machinery, 2014.

[72] C.-A. Staicu and M. Pradel, “Freezing the web: A study of ReDoS vulnerabilities
in JavaScript-based web servers,” in USENIX Security Symposium, 2018.

[73] B. B. Nielsen, M. T. Torp, and A. Møller, “Modular call graph construction for
security scanning of node.js applications,” in ACM International Symposium on
Software Testing and Analysis, 2021.

[74] F. Xiao, J. Huang, Y. Xiong, G. Yang, H. Hu, G. Gu, and W. Lee, “Abusing hidden
properties to attack the node.js ecosystem,” in USENIX Security Symposium, 2021.

[75] request, “Request - Simplified HTTP client,” https://www.npmjs.com/package/re
quest, 2023.

[76] J. Hickling, “What is dom xss and why should you care?” Computer Fraud &
Security, 2021. [Online]. Available: https://doi.org/10.1016/S1361-3723(21)00040-3

[77] S. Tilkov and S. Vinoski, “Node.js: Using javascript to build high-performance
network programs,” IEEE Internet Computing, 2010.

[78] image type, “image-type,” https://www.npmjs.com/package/image-type, 2022.
[79] J. Davis, A. Thekumparampil, and D. Lee, “Node.fz: Fuzzing the server-side event-

driven architecture,” ser. EuroSys, 2017.
[80] almadin, “fuxploider,” https://github.com/almandin/fuxploider, 2018.

9

https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html
https://brainhub.eu/library/famous-apps-built-with-nodejs
https://brainhub.eu/library/famous-apps-built-with-nodejs
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://cheatsheetseries.owasp.org/cheatsheets/Input_Validation_Cheat_Sheet.html
https://github.com/node-formidable/formidable/issues/749
https://github.com/node-formidable/formidable/issues/749
https://github.com/expressjs/multer/issues/439
https://github.com/expressjs/multer/issues/439
https://www.rfc-editor.org/rfc/rfc7578
https://www.rfc-editor.org/rfc/rfc7578
https://www.npmjs.com/package/formidable
https://www.bleepingcomputer.com/news/security/nodejs-module-downloaded-7m-times-lets-hackers-inject-code/
https://www.bleepingcomputer.com/news/security/nodejs-module-downloaded-7m-times-lets-hackers-inject-code/
https://logging.apache.org/log4j/2.x/security.html 
https://logging.apache.org/log4j/2.x/security.html 
https://vulners.com/hackerone/H1:343726k
https://vulners.com/hackerone/H1:343726k
https://www.npmjs.com/package/ghost
https://nvd.nist.gov/vuln/data-feeds
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://owasp.org/www-community/vulnerabilities/Unrestricted_File_Upload
https://capec.mitre.org/data/definitions/73.html
https://capec.mitre.org/data/definitions/73.html
https://cwe.mitre.org/data/definitions/646.html 
https://www.cvedetails.com/cwe-details/158/Improper-Neutralization-of-Null-Byte-or-NUL-Character.html 
https://www.cvedetails.com/cwe-details/158/Improper-Neutralization-of-Null-Byte-or-NUL-Character.html 
https://owasp.org/www-community/attacks/Path_Traversal
https://owasp.org/www-community/attacks/Path_Traversal
https://cwe.mitre.org/data/definitions/1287.html
https://cwe.mitre.org/data/definitions/1287.html
https://portswigger.net/research/bypassing-csp-using-polyglot-jpegs
https://portswigger.net/research/bypassing-csp-using-polyglot-jpegs
https://medium.com/swlh/polyglot-files-a-hackers-best-friend-850bf812dd8a
https://medium.com/swlh/polyglot-files-a-hackers-best-friend-850bf812dd8a
https://www2.computerworld.com.au/article/222180/first_came_zip_bomb_now_comes_pdf_bomb/
https://www2.computerworld.com.au/article/222180/first_came_zip_bomb_now_comes_pdf_bomb/
https://www2.computerworld.com.au/article/222180/first_came_zip_bomb_now_comes_pdf_bomb/
https://www.sentinelone.com/blog/malicious-pdfs-revealing-techniques-behind-attacks/
https://www.sentinelone.com/blog/malicious-pdfs-revealing-techniques-behind-attacks/
https://www.npmjs.com/package/chance
https://www.npmjs.com/package/sanitize-filename 
https://www.npmjs.com/package/sanitize-filename 
https://www.npmjs.com/package/filenamify 
https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html#file-content-validation
https://cheatsheetseries.owasp.org/cheatsheets/File_Upload_Cheat_Sheet.html#file-content-validation
https://www.npmjs.com/package/exif-js
https://github.com/ImageMagick/ImageMagick
https://www.npmjs.com/package/stream-file-type
https://www.npmjs.com/package/stream-file-type
https://www.npmjs.com/package/sanitize-html
https://www.npmjs.com/package/xss
https://www.npmjs.com/package/koa-helmet
https://sites.google.com/view/wwwpaper/home
https://sites.google.com/view/wwwpaper/home
https://www.npmjs.com/package/expresss
https://www.npmjs.com/package/express-fileupload
https://www.npmjs.com/package/express-fileupload
https://www.npmjs.com/package/multer 
https://www.npmjs.com/package/connect-multiparty
https://www.npmjs.com/package/connect-multiparty
https://www.npmjs.com/package/skipper
https://www.npmjs.com/package/graphql-upload
https://www.npmjs.com/package/graphql-upload
https://www.npmjs.com/package/strapi
https://github.com/payloadcms/payload 
https://github.com/ButterCMS
https://www.npmjs.com/package/keystone
https://github.com/apostrophecms/apostrophe
https://github.com/Requarks/wiki
https://github.com/sanity-io 
https://github.com/Camberi/firecms
https://github.com/Jermolene/TiddlyWiki5
https://github.com/totaljs 
https://github.com/totaljs 
https://trends.builtwith.com/cms/Ghost
https://trends.builtwith.com/cms/Strapi/
https://www.npmjs.com/package/file-type
https://www.npmjs.com/package/request
https://www.npmjs.com/package/request
https://doi.org/10.1016/S1361-3723(21)00040-3
https://www.npmjs.com/package/image-type
https://github.com/almandin/fuxploider 


[81] SasanLabs, “owasp-zap-fileupload-addon,” https://github.com/SasanLabs/owasp-
zap-fileupload-addon, 2023.

[82] Asprise, “Scanner.js JavaScript Scan,” https://asprise.com/scan/scannerjs/docs/ht
ml/intro-scannerjs-sdk-library.html, 2019.

[83] nodesecure/scanner, “scanner,” https://www.npmjs.com/package/@nodesecure/
scanner, 2023.

[84] ajunabraham, “njsscan,” https://github.com/ajinabraham/njsscan, 2023.
[85] portswigger, “Upload Scanner - PortSwigger,” https://github.com/PortSwigger/u

pload-scanner, 2023.
[86] python, “Sunsetting Python 2,” https://www.python.org/doc/sunset-python-2/,

2023.

APPENDIX

8 VULNERABILITY DISCLOSURE AND

RESPONSES

We responsibly disclosed our findings to the respective developers
and maintainers of the libraries and CMSs. As of writing this paper,
we received 8 CVEs for libraries and 11 CVEs for CMSs. For dis-
closure, we sent an initial notification email to each developer. We
sent a second email to the ones that responded to our notification
email. In the second email, we included the following: (i) general
description, (ii) implementation issues, (iii) steps for reproducing
the vulnerabilities, (iv) the proof-of-concept attack videos, and (v)
potential countermeasures for each vulnerability. The summary of
library and CMS developers’ responses is given in the Table 3.

Table 3: Library/CMS developer responses and patching sta-

tus of the reported vulnerabilities.

Name Type Version Response Ack

CVE

Issued

Patching

Status

express-fileupload Library 1.2.1 Yes Yes Yes Yes
multer Library 1.4.4 Yes No Yes No
formidable Library 2.0.1 Yes Yes Yes Yes
connect-multiparty Library 2.0.0 No No Yes No
skipper Library 0.9.1 Yes No Yes No
graphql-upload Library 13.0.0 Yes No Yes No
GhostCMS CMS 4.42.0 Yes Yes Yes No
payloadCMS CMS 0.15.1 Yes Yes Yes No
Strapi CMS 4.1.7 Yes Yes Yes Yes
ButterCMS CMS 1.2.9 Yes Yes Yes Yes
Keystone CMS 4.2.1 No No Yes No
FireCMS CMS 1.0.0 No Yes Yes Yes
Tiddlywiki CMS 5.2.2 Yes Yes Yes No
totaljs CMS 4.0.0 No No Yes No

Library Developers’ Responses and Reactions. We received an
initial response from five libraries within three days after the initial
notification email. We did not receive a response from the connect-
multiparty library. Meanwhile, express-fileupload and formidable
libraries acknowledged the issues and implementation mistakes
related to their file name handling on uploaded files. They fixed
the problems and released patched versions. Moreover, although
the multer library acknowledged the issue, they refused to patch
the library, claiming that their library simply accepts all files re-
gardless of their content and deferred the responsibility to web
application developers to apply the necessary security checks. Fur-
thermore, the graphql-upload library considered the reported issue

to be outside the scope of the offered service since the library op-
erates as middleware. We recommended that they clarify this in
their security documentation, stating that they do not perform any
security checks in their library to avoid misleading web application
developers.
CMSDevelopers’ Responses andReactions.As for the responses
from the real-world web applications, four out of the eight vulner-
able real-world web applications analyzed, namely Strapi, Butter-
CMS, GhostCMS, and PayloadCMS, replied our notification email
in two weeks. So far, ButterCMS and Strapi fixed the vulnerabilities.
On the other hand, GhostCMS and PayloadCMS refused to patch
the vulnerabilities. They claimed that all users were considered to
be trusted in their "threat model", and that they did not expect them
to upload malicious files. Furthermore, totaljs [66] requested more
information about our findings and we sent the aforementioned
detailed attack description email. However, we have not received
any reply as of the writing of this paper. At the time of this writing,
we unfortunately still have not heard back from the developers of
fireCMS, tiddlywiki, and keystone for the vulnerabilities notified.
US-Cert Involvement.We also notified the US-CERT about the
issues. They acknowledged our findings and decided to create two
cases, one for the libraries and one for impacted CMSs.

9 IMPLEMENTATION DETAILS OF NODESEC

To systematically analyze the file upload security weaknesses in
Node.js applications and libraries, we developed NodeSec, which
automatically generates attack payload files for our attacks (A1-A13)
and uploads the malicious payloads to the target web application
in an automated fashion. The architecture of NodeSec is depicted
in Figure 2 and consists of the following main modules: 1) Mali-
cious Payload Generator, 2) Payload Database, 3) Authorization 4)
Uploader, and 5) Validator.
Malicious Payload Generator. This module creates payload files
to trigger the attacks detailed in Section 3.2. It comprises multiple
attack generator components that transform seed files into attack
payloads. After generating the payloads, we verify whether they are
executable following the modification and ensure the preservation
of their semantics. Its components include:

• Malicious Extension Injector. This component takes a seed file as
input, such as test.js, and injects multiple extensions through
either random prepending or appending with benign extensions
(e.g., test.js.png, test.png.js), removing the file extension entirely
(e.g., test), disguising the file extension by randomly altering the
case of its characters (e.g., test.Js, testJS), and appending unusual
extensions (e.g., seed.html5, test.js6). It also generates filenames
with triple-appended extensions (e.g., seed.pdf.html.png), ran-
domly mixed case extensions (e.g., test.Js, test.hTml.jPEg), and
unusual extensions (e.g., jsx, mjs, xhtml).

• Null-byte Injector. This module inserts null-byte characters at
random positions within the file name. To enhance the attack
coverage, we base this component on the set of files generated
by the Malicious Extension Injector. Specifically, this component
places different null-bytes in random positions in the file name.
For example, thismodule creates file names such as test.js%00.png,
test.js%.png.

10

https://github.com/SasanLabs/owasp-zap-fileupload-addon
https://github.com/SasanLabs/owasp-zap-fileupload-addon
https://asprise.com/scan/scannerjs/docs/html/intro-scannerjs-sdk-library.html
https://asprise.com/scan/scannerjs/docs/html/intro-scannerjs-sdk-library.html
https://www.npmjs.com/package/@nodesecure/scanner
https://www.npmjs.com/package/@nodesecure/scanner
https://github.com/ajinabraham/njsscan
https://github.com/PortSwigger/upload-scanner
https://github.com/PortSwigger/upload-scanner
https://www.python.org/doc/sunset-python-2/


• Script Injector. This component receives a seed input file and in-
jects script payloads at random positions within the file name.
Similar to the Null-byte Injector component, this module in-
creases the attack coverage of our tool by injecting payload scripts
into random positions of the file name. For instance, using this
module, a JavaScript seed payload file named "test.png.js" can be
transformed into "test.png[payload].js".

• Non-alphanumeric Injector. This component takes a seed input file
and injects malicious non-alphanumeric characters into random
positions in the file name. For example, given a valid PNG file
named "file.png" as input, the component can generate file names
such as "/../..png".

• Spoofer. This component takes an input file and generates a
spoofed version with either altered MIME type or magic bytes.
It consists of two separate functionalities: MIME type spoofing
and magic-byte spoofing. For MIME type spoofing, the compo-
nent reads a JSON file containing a list of MIME types and their
corresponding file extensions. It iterates through the input files
and alters their MIME type from the original value (e.g., "tex-
t/javascript") to a different MIME type (e.g., "application/pdf")
while keeping the file content unchanged. The output files are
saved with the same file extension but with an updated MIME
type, potentially bypassing file type validation checks based on
MIME types. In the case of magic-byte spoofing, the component
reads a JSON file containing a list of magic bytes associated with
different file formats. It iterates through the input files and mod-
ifies the magic byte of each file with another file format. The
output files are saved with a new file extension corresponding to
the spoofed magic byte, while the file content remains the same.

• Polyglot File Generator. This component creates polyglot files,
specifically PDF+HTML and PNG+JS combinations. Polyglot files
are files that are valid in multiple file formats, allowing them to
bypass certain file validation mechanisms and introduce security
risks in web applications [32]. To generate PDF+HTML polyglot
files, the script creates a simple PDF file using the ReportLab
library and a basic HTML file with a heading. It then combines
the PDF and HTML data, separated by a custom delimiter, into a
single file. For PNG+JS polyglot files, the script reads an existing
PNG file, calculates its header size, and injects a JavaScript pay-
load, preceded by a sequence of null bytes, into the file without
affecting its validity as a PNG image.

• Malicious File Generator. This component generates various types
ofmalicious files by embedding payloadswithin benign PDF, SVG,
and HTML files. The generator creates JavaScript-embedded and
compressed PDF files, SVG files with different payloads, and
modified HTML and EML files.

Payload Database. This component serves as a comprehensive
repository for attack payloads, which are then uploaded to the
target web application through the Uploader module. In addition
to the payloads generated by the Malicious Payload Generator for
our attacks considered in this study, the users can employ their
own scripts to generate different payload files or directly import
pre-created payload files to the database.
Authorization Module. The Authorization module is a Node.js
script that automates the collection of essential data, such as login
credentials, cookie tokens, and request headers. The script prompts

the user for required details such as login URL, upload target URL,
upload directory, username, and password. After, it navigates and
extracts the session cookie and headers, creates a configuration
object, and saves it as a JSON file. The configuration file is employed
by the Uploader module to automate the upload of payload files.
Uploader. The Uploader module automates the process of upload-
ing attack payload files to the server side of the target web ap-
plication. This module necessitates two critical input files: 1) a
configuration file retrieved from the Authorization module and 2) a
payload file designated for uploading to the target web application.
It employs the request-promise [75] library to generate upload
requests and accepts configuration and payload files as inputs. The
module includes necessary functions that automate the upload
process for different payload files such as preparing form data.
Validator. The Validator module conducts the validation process af-
ter the successful upload of the payload for each attack. For attacks
involving malicious characters or extensions in the file name (A1-
A5), this component examines the web application’s sanitization
process. It determines whether the file name has been adequately
sanitized by checking the name of the uploaded file. If the file name
retains any malicious characters and/or patterns after a successful
upload, the Validator module classifies the web application as vul-
nerable. To validate the attacks that could result in code execution
on Node.js servers or browsers (A6-A13), the module checks the
file contents by searching for malicious content signatures. For
example, to validate the attack A13, the module scans the SVG file
and checks for a malicious script. After validating the presence of
malicious content, it remotely executes the file using the Node.js
interpreter v16.14.0 by employing Node.js script. The execution
is performed by a script that accesses the uploaded payload file’s
path via the URL obtained from the target web application’s Node
server.

10 CASE STUDIES

In this subsection, we present two case studies that demonstrate
the efficacy of NodeSec in detecting implementation errors in file
upload libraries. Our all findings were acknowledged and patched
by the developers of the libraries.
Express-fileupload. Express-fileupload is a popular file upload
library for Node.js applications. It receives almost 284,620 weekly
downloads and is used by 169k open-source projects [52]. To pre-
vent file name-based attacks, the library contains security options
such as SafeFileNames and preserveExtension to sanitize the
name of the uploaded file to make the web application resilient
against file name-based attacks. While analyzing the security of
this library with NodeSec we found that these functions were in-
correctly implemented. During our experiments, we saw that while
uploading the payload file named /.../../.html, which contained
only non-alphanumeric characters, the library uploaded the file as
.html. The manual analysis of the source code revealed that the
SafeFileNames does not properly handle the non-alphanumeric
characters in the file name. As demonstrated in Lines 14-25 at
Listing 2, it strips all the non-alpha characters in the file and con-
structs the filename by concatenating the name and extension. This
construction preserves that dot in the file name and thus allows

11



hidden files to be uploaded to a web application server. Such be-
havior introduces security weaknesses to the library as filenames
beginning with a dot are considered hidden in UNIX-like systems.
This weakness can be exploited by adversaries to upload mali-
cious payload files to a web application server. Furthermore, while
the preserveExtension option is designed to set the extension’s
length, our experiments using NodeSec disclosed a potential abuse
by attackers. During the experiment, NodeSec generated a ma-
licious payload named test.4mjs. After the upload, the payload’s
filename was renamed to test4.mjs. As demonstrated in Listing 2
due to an implementation issue, the extension is not trimmed cor-
rectly in cases where the extension length is bigger than the settled
max length. As demonstrated in our demo website. This implemen-
tation mistake could be leveraged by attackers to upload malicious
payloads onto a web application server and trigger shell code exe-
cution.
Formidable. Formidable is a popular file upload library that re-
ceives nearly 9 million weekly downloads and is used by 1.5 million
open-source packages [14]. While testing the formidable file upload
library against file name-based attacks with NodeSec, we observed
that the library’s file name sanitization function was improperly
implemented. The manual analysis of the code revealed that the
getExtension function does not handle multiple dots in file names
correctly. Due to the regex implementation issue as demonstrated
in the Listing 3, the function fails to correctly parse extensions
with multiple dots (e.g., .png.html) and does not sanitize characters
between the dots. For example, when uploading a payload such
as test.png[payload].html, the library sanitizes the file name
until the first extension, leaving the malicious payload exposed on
the application server. This could potentially allow an attacker to
bypass security measures implemented by the web application.

11 ATTACK EXECUTION AND

CONSEQUENCES

Evading security checks in a web application to upload a malicious
payload is itself unintended and exposes the application’s insecurity.
However, to successfully exploit the vulnerability, as explained in
our threat model in Section, the attacker still needs to find a way
to execute the uploaded payload, either on the client or server side.
We discuss these methods and their potential consequences below.
Executing on the client side. The file name or content reflected by
the web page can cause arbitrary code execution on the client side.
The attacker can employ various tactics to trigger code execution
on the client side, such as directly uploading an HTML or JS file
to a web page. Then, a user can trigger the execution of the file by
accessing or opening it from the public path of the file [76]. This
can lead to various attacks, such as stealing sensitive user data or
redirecting users to malicious websites.
Executing on the server side. Unlike PHP, Node.js compiles
JavaScript code intomachine code before execution, to minimize the
arbitrary code execution [77]. Nevertheless, the attackers can still
exploit UFU vulnerabilities to execute code in the server-side. For
instance, attackers may exploit dangerous Node.js functions, like
eval() and exec(), to enable server-side execution of uploaded
files. For example, after the malicious payload file is uploaded to
the server, the eval() function implemented on the server side

1 const parseFileNameExtension = (preserveExtension,
fileName) => {

2 // ...
3 const nameParts = fileName.split('.');
4 if (nameParts.length < 2) return result;
5
6 let extension = nameParts.pop();
7 // ISSUE: The extension is not trimmed correctly when

its length is equal to maxExtLength
8 if (extension.length > maxExtLength && maxExtLength >

0) {
9 // ...}
10 result.extension = maxExtLength ? extension : '';
11 result.name = nameParts.join('.');
12 return result;
13 };
14 const parseFileName = (opts, fileName) => {
15 // ...
16 parsedName = uriDecodeFileName(opts, parsedName);
17 if (!opts.safeFileNames) return parsedName;
18
19 const nameRegex = typeof opts.safeFileNames === 'object

' && opts.safeFileNames instanceof RegExp
20 ? opts.safeFileNames
21 : SAFE_FILE_NAME_REGEX;
22 let {name, extension} = parseFileNameExtension(opts.

preserveExtension, parsedName);
23 if (extension.length) extension = '.' + extension.

replace(nameRegex, '');
24 // ISSUE: The following line allows uploading hidden

files (starting with a dot)
25 return name.replace(nameRegex, '').concat(extension);};

Listing 2: A sample code snippet from the express-fileupload

library.

1 _getExtension(str) {
2 const basename = path.basename(str);
3 const firstDot = basename.indexOf('.');
4 const lastDot = basename.lastIndexOf('.');
5 //ISSUE:Doesn't handle multiple dots in extension.
6 const extname = path.extname(basename).replace(/(.[a-

z0-9]+).*/i, '$1');
7 if (firstDot === lastDot) {return extname;}
8 // ISSUE: Doesn't sanitize characters between dots
9 return basename.slice(firstDot, lastDot) + extname;}

Listing 3: A sample code snippet from the formidable library

demonstrating the improper handling of multiple dots and

lack of sanitization in its function.

can execute a JavaScript code embedded in the payload file. While
the security sandboxing of JavaScript decreases the dangers/risks
of these functions by preventing the execution of the code in the
browser, Node.js does not have a built-in security sandbox [17, 70].
In some cases, the reliance on third-party libraries and modules
in Node.js applications can introduce vulnerabilities. For example,
after uploading a malicious payload file, an attacker could exploit an
insecure implementation of the security-related function (e.g., sani-
tization function) in a third-party library, executing the embedded
JavaScript code in the payload file [15].

12



12 ANALYSIS OF MORE REAL-WORLDWEB

APPS

• ButterCMS: is another popular CMS with over 20k weekly down-
loads [59]. It employs the formidable library for processing the
uploaded files. Our analysis, conducted with NodeSec, reveals that
it does not use any additional security mechanisms to strengthen
its file upload security. As a result, ButterCMS is vulnerable to the
same set of attacks as the formidable library, which includes file
type-based (A6-A10) attacks and content-based attacks.
• FireCMS: is a CMS used by various websites from different sectors
and received nearly 1k stars on GitHub [64]. It utilizes custom-
implemented functions to process the uploaded files before sending
them to the server. Thanks to its custom build fileNamebuilder
function, FireCMS is resilient to four types of file name-based at-
tacks. Nevertheless, it does not utilize any type of file validation
mechanism to prevent the uploading of malicious files which results
in FireCMS being insecure to other types of attacks.
• Totaljs: is an open-source CMSwithmore than 1.7M downloads [66].
It uses custom file upload functions to process the uploaded files.
We found that it is resilient against all types of file name-based
attacks since it assigns a random name to an uploaded file via a
custom-implemented function. Nonetheless, it does not utilize any
type of file validation technique before uploading a file to its server.
Thus, it is insecure against the A10 attack type. However, it per-
forms pre-processing and resizing operations on the images before
displaying them on the front end. In this process, it raises an excep-
tion while pre-processing the image files with a payload. Thus, it is
resilient against three types of file type-based attacks and one type
of content-based attack. However, it is not resilient against another
type of file type-based and two types of content-based attacks.
• Keystone: is a popular CMS with over 1.7k weekly downloads [60].
It makes use of graphql-upload for uploading files to the server.
Our analysis showed that Keystone implements additional secu-
rity mechanisms by assigning a safe file name to an uploaded file
before sending it to the server by using filenamify [42] package,
which makes it resilient against all types of file name-based attacks.
Moreover, it uses the image-type module [78] to determine and
validate the file types of images, which prevents three types of
file type-based attacks and SVG upload attacks. Nevertheless, it
does not utilize any mechanism to detect malicious content within
PDF files. Hence, Keystone is only insecure against two types of
content-based attacks.

13 COMPARISONWITH EXISTING TOOLS

The fundamental concept of file uploading remains consistent (i.e.,
transferring a file from a client to a server) among different server-
side technologies. So, theoretically, all the existing tools can be
adapted for analyzing Node.js applications. Whereas, this requires
significant domain expertise and in-depth knowledge of the existing
tools’ source. Below, we enumerate the challenges in using existing
tools for Node.js and compare the attack coverage of NodeSecwith
existing tools.

A Challenges in Using Existing Tools for

Node.js

During our experiment, we observed the main challenges of using
existing tools for Node.js applications as follows:
Syntax and Structure. The syntax, structure, and functions of pro-
gramming languages can differ significantly, leading to challenges
in detecting and addressing UFU vulnerabilities across different
languages. For example, PHP uses a mixture of tag-based and imper-
ative syntax, while Node.js adopts a more uniform object-oriented
and functional approach [22]. This difference in syntax and struc-
ture makes static analysis techniques tailored for PHP syntax, such
as those employed by UChecker [7] and UFuzzer [8], inapplicable
for Node.js applications. For instance, the lack of tag-based syntax
in Node.js might influence the detection process, as tools designed
for PHP do not parse or analyze JavaScript code to detect UFU vul-
nerabilities. Moreover, the execution of listeners within third-party
packages in Node.js applications is event-driven, which can pose
challenges for static analysis-based approaches [79].
Library Usage and Different File Handling. PHP-basedweb ap-
plications commonly use the _FILES superglobal array and built-in
functions, such as getimagesize() and finfo_file, during the
file upload process [22]. These built-in functions are part of the core
PHP language. So, they inherently provide a safer setup. Conversely,
Node.js web applications frequently use third-party file upload
libraries. Hence, when analyzing UFU vulnerabilities in Node.js
applications, it’s vital to create attack payloads that specifically ad-
dress edge cases in these libraries. We evaluated the existing tools
on the formidable library and found that the techniques employed
by these tools were unable to detect the existing implementation
flaws since their attacks mostly focus on the lack of checks during
the file upload mechanisms of the web application. On the other
hand, as detailed in Section 4.1, NodeSec uniquely generates file
names by inserting payloads at random positions, which enabled
it to exclusively identify the formidable library’s implementation
error.
Different Execution Environments. PHP-basedweb applications
typically run on web servers like Apache or Nginx, whereas Node.js-
based web applications either have their own integrated web server
or use a server like Express.js [51]. Our experiments have shown
that existing tools, such as FUSE [6] and Fuxploider [80], generate
payloads based on PHP tags and PHP-specific functions in their
payload generation process. These tools are designed to detect
UFU vulnerabilities in PHP web applications, and their payloads
are intended for execution within PHP interpreters on Apache or
Nginx servers or specific server configurations. Although these
payloads can successfully identify distinct UFU vulnerabilities in
PHP applications, they are not applicable to Node.js applications.
We observed that FUSE-generated payloads such as ’seed.PHP,’ in-
correctly labeled the application as vulnerable. However, Node.js
applications are not designed to process PHP code, which results
in false positives. Furthermore, existing file upload analysis tools
primarily focus on the execution of JavaScript files on the client
side. In contrast, Node.js environments also allow for the execution
of JavaScript files server-side [70].

13



B Attack Coverage

In this section, we compare NodeSec’s attack coverage with other
tools.
FUSE. is designed to identify UFU vulnerabilities in PHP-based
web applications by performing 13 different mutation techniques
(M1 to M13) on seed files such as HTML, JS, XHTML, and PHP.
NodeSec covers mutations M1, M2, M3, M6, M8, M9, and M13. The
mutation M5 replaces PHP tags in PHP files, is not applicable to
Node.js applications that do not use PHP tags. Mutations M4, M7,
M10, M11, and M12 in FUSE are designed to modify the name of
an uploaded file, all of which are covered by NodeSec. Moreover,
unlike FUSE, NodeSec considers several other attacks related to
file name and file type, such as null-byte injected file name, script-
named file name, path traversal, and PDF bomb attack.
UploadScanner. allows testing of web application security mecha-
nisms against both file type-based and file content-based attacks. To
evaluate web applications against file name-based attacks, Upload-
Scanner generates payloads by prepending an extension to a file
name, changing the file’s extension, and injecting scripts, null-bytes,
and path traversal payloads into the file name. NodeSec enhances
these attacks by integrating randomization logic and inserting null
bytes, scripts, and path traversal payloads into random positions of
the file names. This enables the generation of more sophisticated
payloads, such as test.js[payload].png. Notably, with this approach,
NodeSec uncovered 3 different implementation mistakes in the
popular file upload libraries.

Fuxploider. is an open-source tool that automates the detection
and exploitation of file upload vulnerabilities. It focuses on detecting
UFU vulnerabilities in PHP and JSP applications by employing the
issues in specific functions such as the phpinfo() function, and
specific server configurations like Apache 2.4. In terms of attack
coverage, Fuxploider can upload a file by changing its extension to
upper and lower case, using an uncommon extension, and altering
the MIME-type, all of which are already covered by NodeSec.

In addition to the most related tools mentioned above, there are
alternative tools for detecting vulnerabilities in Node.js applications.
However, we did not include them in our analysis due to space
limitations. For example, OWASP ZAP’s FileUpload Add-on [81] is
heavily inspired by UploadScanner, while others (e.g., client-side
scanners) did not exclusively focus on UFU vulnerabilities [82–84].

B.1 Configurability and Deployability. Besides attack coverage,
NodeSec advances existing tools in terms of configurability and
deployability. First, all of the compared tools [6, 80, 85] are imple-
mented in Python 2, which has reached its end-of-life [86]. Addi-
tionally, these tools haven’t been actively maintained despite the
constant evolution of web technologies, including server-side de-
velopment platforms. Finally, UploadScanner was developed as an
extension for the premium version of Burp Suite Pro, restricting
its deployability. Conversely, NodeSec is developed with Python 3
and Node.js, fully open source (all of the modules in Section 3.4),
and provides easy configurability due to its modular structure.

14


	Abstract
	1 Introduction
	2 Unrestricted File Upload
	2.1 File Upload in Node.js
	2.2 Unrestricted File Upload in Node.js

	3 Methodology
	3.1 Attack Identification
	3.2 Attack Descriptions
	3.3 Secure File Upload Validation Objectives
	3.4 NodeSec

	4 Analyzing Libraries & Applications
	4.1  (In)Securities in File Upload Libraries
	4.2 (In)securities in Real world Applications

	5 Root Causes & Recommendations
	6 Related Work
	7 Conclusion
	References
	8 Vulnerability Disclosure and Responses
	9 Implementation Details of NodeSec
	10 Case Studies
	11 Attack Execution and Consequences
	12 Analysis of More Real-world Web Apps
	13 Comparison with Existing Tools
	A Challenges in Using Existing Tools for Node.js
	B Attack Coverage


