

000 001 002 003 004 005 IBiT: UTILIZING INDUCTIVE BIASES TO CREATE A 006 MORE DATA EFFICIENT ATTENTION MECHANISM 007 008 009

010 **Anonymous authors**
011 Paper under double-blind review
012
013
014
015
016
017
018
019

020 ABSTRACT 021

022 In recent years, Transformer-based architectures have become the dominant
023 method for Computer Vision applications. While Transformers are explainable
024 and scale well with dataset size (Dosovitskiy et al., 2020), they lack the inductive
025 biases of Convolutional Neural Networks (LeCun et al., 1989). While these bi-
026 ases may be learned on large datasets, we show that introducing these inductive
027 biases through learned masks allow Vision Transformers to learn on much smaller
028 datasets without Knowledge Distillation. These Transformers, which we call In-
029 ductively Biased Image Transformers (IBiT), are significantly more accurate on
030 small datasets, while retaining the explainability Transformers.
031

032 1 INTRODUCTION 033

034 Vision Transformers (Dosovitskiy et al., 2020) have become established as the state-of-the-art Com-
035 puter Vision backbone. Such self-attention (Vaswani et al., 2017) based networks have also shown
036 excellent pre-training performance on datasets like ImageNet (Deng et al., 2009). Unfortunately,
037 Vision Transformers require large amounts of data (14M-300M images) during pre-training to out-
038 perform Convolutional Neural Networks (Dosovitskiy et al., 2020). In more specialized domains
039 where transfer learning on large image recognition datasets is not possible, and dataset size is often
040 quite small (Zhai et al., 2020), Convolutional Neural Networks (CNNs), more specifically ResNets
041 (He et al., 2015), are still the dominant model architecture.
042

043 This is because CNNs possess inductive biases, namely translational equivariance and locality
044 (Dosovitskiy et al., 2020), which allow such models to achieve better results with smaller amounts
045 of data.
046

047 Using this intuition, we propose Inductively Biased Image Transformers, or IBiTs, a model that
048 can approximate the inductive biases of a CNN, allowing it to learn better on small datasets. This
049 is possible through the application of learnable masks to the attention layers during self-attention
050 (Vaswani et al., 2017), allowing IBiTs to mimic a CNN’s biases with a Transformer architecture.
051 Using a technique called Rank Approximation, we significantly reduce the parameters required to
052 implement these learnable masks by using low rank approximations.
053

054 When all of these methods are implemented, the final model is able to outperform comparable
055 Transformer-based methods (Touvron et al., 2021) by two percentage points when trained solely on
056 ImageNet, achieving state-of-the-art image transformers performance while retaining explainability
057 and scalability.
058

059 2 RELATED WORK 060

061 Vision transformers were first introduced by Dosovitskiy et al. (2020) and pretrained Vision Trans-
062 formers have seen use in a wide variety of applications.
063

064 DeiT were the first models to explore generalizing Transformers for smaller datasets using knowl-
065 edge distillation. Knowledge distillation uses strong teacher models to introduce inductive biases
066 into Vision Transformers. Although we also introduce inductive biases, our method, which uses
067 learnable masks, does not use strong teacher models which often need large amounts of data and
068 computational power to train.
069

054 Another method to induce inductive biases in Transformers models involves the use of learned relative
 055 positional encodings to make self-attention layers have the capacity to model CNN layers
 056 (Cordonnier et al., 2020). However, this method does not perform as well as Vision Transformers. It
 057 also requires the number of heads in the self-attention layer to be equivalent to the square of the filter
 058 size being approximated (eg. A transformer would need 9 heads to approximate a convolutional
 059 layer with a filter size of 3x3).

060 To improve the performance of relative positional encodings, further research involved using a
 061 weighted sum between relative positional encodings and normal self-attention (d’Ascoli et al.,
 062 2022). This method outperformed DeiT by 0.9 percent. However, ConViTs, as the models are
 063 called, slightly modify the architecture of DeiT, using four heads instead of the three normally used
 064 by DeiT.

065 Our method, IBiT, does not use relative positional encodings, instead using learnable masks. By
 066 using this new approach, IBiTs achieve improved performance with fewer parameters and faster
 067 performance. IBiTs do not require any underlying assumptions surrounding model architecture like
 068 ConViTs do, meaning it is easy to modify existing models to incorporate our methods, by just
 069 converting a normal self-attention layer into a learned mask self attention layer with the exact same
 070 structure. Our method also performs significantly better than both these approaches of introducing
 071 inductive biases into Transformers, while retaining the explainability of attention-based models.

073 3 MODEL ARCHITECTURE

075 3.1 APPROXIMATING CONVOLUTION WITH SELF-ATTENTION

077 To approximate convolution with self-attention, we begin with convolution with a single filter and a
 078 single channel.

$$081 \quad Y_{i,j} = \sum_{k=0}^f \sum_{l=0}^f X_{(i+k),(j+l)} * W_{k,l}$$

084 In this equation, f represents the filter size, W represent the filter weights, X is a 2-D input image,
 085 and Y is the result of the convolution operation.

087 The equation for a single head of self-attention is as follows:

$$090 \quad Y_i = \sum_{m=0}^{\text{size}} X_m * W_{i,m}$$

093 where X is a 1-D representation created by flattening the image, size is the length of the 1-D
 094 representation of the image, and W is the attention map generated by self attention.

095 By re-indexing size in terms of $height$ and $width$ and re-indexing i in terms of i and j in the 2-D
 096 image, we can create the following equation, which is equivalent to self-attention for a single head.

$$099 \quad Y_{i*width+j} = \sum_{m=0}^{height} \sum_{n=0}^{width} X_{m*width+n} * W_{i*width+j, m*width+n}$$

103 Setting the row $W_{i*width+j}$ to equal $W_{k,l}$ where $k = m \in \{0, 1, \dots, f\}$ and $l = n \in \{0, 1, \dots, f\}$,
 104 and setting all other entries in the matrix W to zero, the equation simplifies to the equation below.

$$106 \quad Y_{i*width+j} = \sum_{k=0}^f \sum_{l=0}^f X_{(i+k)*width+(j+l)} * W_{k,l}$$

162 B respectively, become the inductive bias matrix.
 163

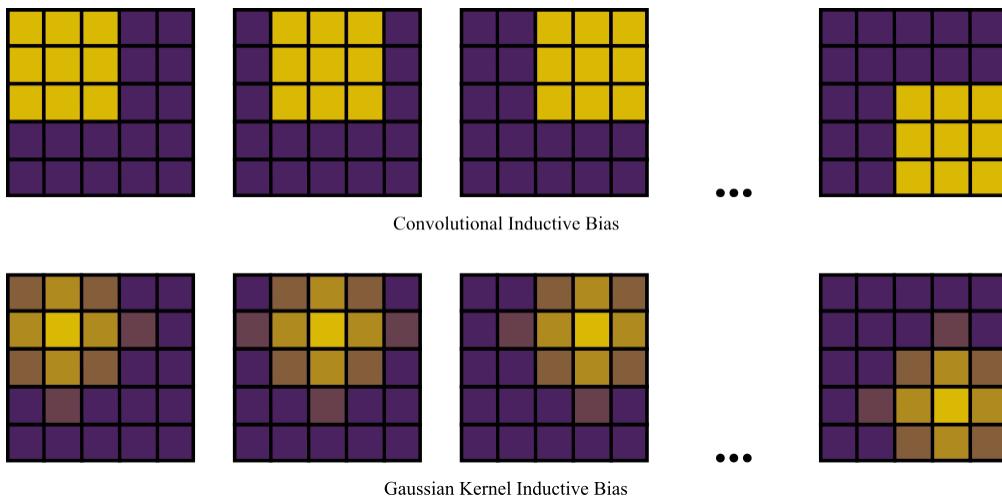
$$W^{inductive} = A \bullet B^T$$

166 We then undo the rank-reducing rolling operation and multiply this inductive bias matrix and the
 167 attention map element-wise, essentially treating the unrolled inductive bias matrix as a mask on the
 168 attention map.

169 This ensures that our inductive biases are parameter-efficient and persistent regardless of image
 170 content.
 171

172 3.3 MASK TRAINING 173

174 We initially set the inductive biases to an inductively biased attention map. Instead of training our
 175 masks to initially represent a Convolutional kernel, we use the same rank approximation methodology
 176 to approximate a Gaussian kernel.



194 Figure 2: Convolutional Inductive biases versus Gaussian Kernel Inductive Biases
 195
 196

197 To do this, the initial weight matrices are trained to approximate the unrolled attention map using
 198 the algorithm below.
 199

200 **Algorithm 1** Mask Weights Training Procedure

```

201 1: procedure TRAINMASKWEIGHTS( $x$ ,  $num\_heads$ ,  $d\_model$ )
202 2:    $A \leftarrow \text{RANDOMINITIALIZATION}(mask\_fidelity, height * width)$             $\triangleright$  Initialize first
203 3:   submask,  $A$ , with shape  $(mask\_fidelity, height * width)$ 
204 4:    $B \leftarrow \text{RANDOMINITIALIZATION}(mask\_fidelity, height * width)$             $\triangleright$  Initialize second
205 5:   submask,  $B$ , with shape  $(mask\_fidelity, height * width)$ 
206 6:    $\alpha \leftarrow 0.1$                                  $\triangleright$  Initialize learning rate to high value of 0.1
207 7:    $filter\_matrix \leftarrow \text{RADIALATTENTIONMATRIX}(filter)$             $\triangleright$  Initialize Target Attention
208 8:   Map(Fig. 1)
209 9:   for  $i = 1, \dots, epochs$  do
210 10:     $output \leftarrow A^T \bullet B$ 
211 11:     $loss \leftarrow \text{MSE}(filter\_matrix, output)$ 
212 12:     $A \leftarrow A - \alpha \cdot \frac{\partial loss}{\partial A}$             $\triangleright$  Take Gradient Descent step for  $A$ 
213 13:     $B \leftarrow B - \alpha \cdot \frac{\partial loss}{\partial B}$             $\triangleright$  Take Gradient Descent step for  $B$ 
214 14:   end for
215 15:   return  $(A, B)$ 
216 16: end procedure

```

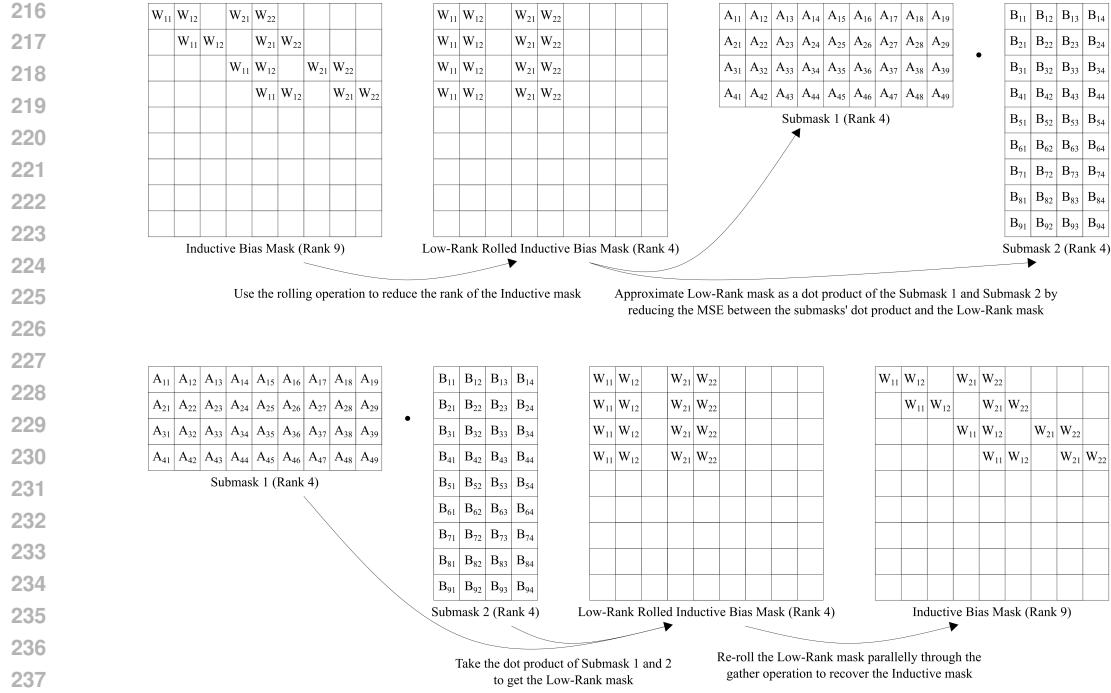


Figure 3: Visual Representation of LMSA Layer

The algorithm for the full Learned Mask Self Attention layer is described in the page below, while Figure 3 presents a visual representation of the Learned Mask Self Attention process.

Algorithm 2 LMSA Layer

```

1: procedure LMSA( $x$ , batch_size, seq_len, num_heads, d_model, w_mask1, w_mask2)
2:    $keys \leftarrow \text{LINEAR}(W_{keys}, x)$   $\triangleright$  Linearly transform input to get keys, which has a shape of
   (batch_size, seq_len, d_model), where seq_len is and image's height times its width
3:    $queries \leftarrow \text{LINEAR}(W_{queries}, x)$ 
4:    $values \leftarrow \text{LINEAR}(W_{values}, x)$ 
5:    $keys \leftarrow \text{RESHAPE}(batch\_size, seq\_len, num\_heads, \frac{d\_model}{num\_heads}).T$ 
6:    $queries \leftarrow \text{RESHAPE}(batch\_size, seq\_len, num\_heads, \frac{d\_model}{num\_heads}).T$ 
7:    $values \leftarrow \text{RESHAPE}(batch\_size, seq\_len, num\_heads, \frac{d\_model}{num\_heads}).T$   $\triangleright$  Split
   keys, queries, values along channels to get shape of (batch_size, num_heads, seq_len,  $\frac{d\_model}{num\_heads}$ )
8:    $W^{inductive} \leftarrow A^T \bullet B$ 
9:    $W^{inductive} \leftarrow \text{ROLL}(W^{inductive})$   $\triangleright$  Rolls w_mask by row number. More details on
   procedure in Appendix A
10:   $W^{attention} \leftarrow keys \bullet queries.T$ 
11:   $W^{new\_attention} \leftarrow W^{attention} \times W^{inductive}$   $\triangleright$  Has shape (batch_size, num_heads, seq_len,
   seq_len)
12:   $W^{new\_attention} \leftarrow \frac{W^{new\_attention}}{\text{NORM}(W^{new\_attention})}$   $\triangleright$  Normalizes  $W^{new\_attention}$ 
13:   $output \leftarrow W^{new\_attention} \bullet values$   $\triangleright$  Has shape (batch_size, num_heads, seq_len,
    $\frac{d\_model}{num\_heads}$ )
14:   $output \leftarrow output.T.\text{RESHAPE}(batch\_size, seq\_len, d\_model)$   $\triangleright$  Reshape back to same
   dimensions as input
15:  return output
16: end procedure

```

270 4 EXPERIMENTS
271272
273 4.1 EXPERIMENTAL SETUP
274275 Our model architecture is the same as the DeiT model architecture, with the same number of heads
276 per layer, and the same number of layers. We replace all Multi-Head Self Attention layers with
277 Learned Masked Self Attention. We also remove the CutMix data augmentation technique (Yun
278 et al., 2019), because it hinders the learning of inductive biases. Finally, we remove stochastic
279 depth on the feed-forward layer, since it improves ViT performance. We also compare our results
280 to ConViTs, which have one more head than both DeiT, and our model. We detail the hyper-
281 parameters and other model information in the table below. We train our models on ImageNet-1k
282 for 300 epochs, and use the reported results on ImageNet-1k for other models.
283
284
285

286 Table 1: Training Configurations

287
288

Model Type	# of Layers	# of Heads	D _{model}	Learning Rate	# of Params
IBiT (Ours)	12	3	192	0.001	6M
DeiT	12	3	192	0.001	6M
ConViT	12	4	192	0.001	6M

293 For our scaling experiments, we compare DeiT and ConViTs on varying percentages of the Im-
294 ageNet dataset to show dataset sample efficiency.
295
296
297

298 Table 2: Scaling Configurations

299
300

Model Type	# of Layers	# of Heads	D _{model}	Learning Rate	# of Params
IBiT (Ours)	12	3	192	0.001	6M
DeiT	12	3	192	0.001	6M

303 To show explainability, we use Rollout Attention to highlight which pixels the model is using to
304 classify the input (Abnar & Zuidema, 2020).
305
306307 4.2 RESULTS
308309 Here we present the results of our experiments. Our model, the IBiT, outperforms both DeiT and
310 ConViTs significantly. The scaling curve indicates that our model is even more scalable than a
311 DeiT, improving at a faster rate as dataset size increases. This is in contrast to previous approaches
312 of inducing inductive biases, which mainly show large increases at very small dataset sizes.
313
314

315 Table 3: Training Results

316
317
318

Model Type	Accuracy	# of Params
IBiT (Ours)	74.2	6M
DeiT	72.2	6M
DeiT (Our Reproduction)	71.5	6M
ConViT	73.1	6M

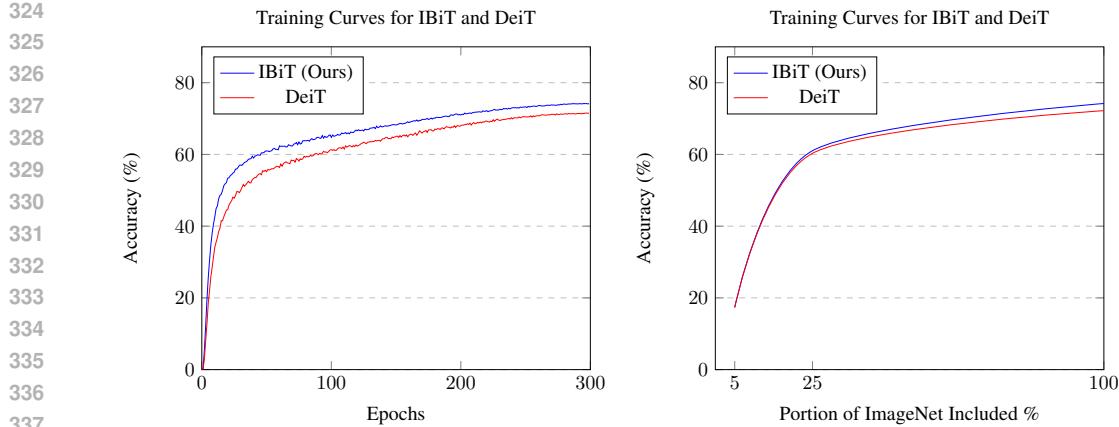


Figure 4: Training and Scaling Curves for IBiT and DeiT

4.3 EXPLAINABILITY

Here are some representative attention maps between the CLS token and the image, using Rollout Attention (Abnar & Zuidema, 2020). More attention maps can be found in Appendix B.

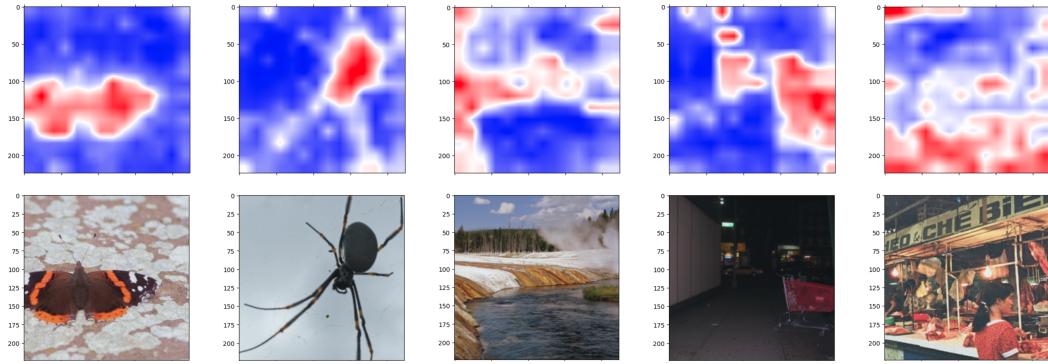


Figure 5: Representative Attention Maps using Rollout Attention

The model typically attends to the subject of the image. Through attention maps, we show that the explainability of Transformers is preserved, despite the use of Learnable Masks.

5 ABLATION RESULTS

Here we present the results for our different ablation configurations. for our ablation, we ablate on

Table 4: Ablation Configurations

Configuration	Learnable Masks	CutMix	Accuracy
A (IBiT)	✓	✗	74.2
B	✓	✓	72.2
C (DeiT)	✗	✓	71.5

the Learnable Mask Self Attention Layer, and on CutMix. We find that the use of CutMix degrades model performance significantly. By mixing different portions of the image, CutMix hinders the formation of inductive biases in our model, leading to reduced performance.

378

6 DISCUSSION

380

6.1 LEARNABLE MASKS

382 Here we show the learnable masks as they evolve throughout the training process. You can see
 383 how later layers have less of the initial inductive biases, while earlier layers learn multiple strong
 384 inductive biases quickly.

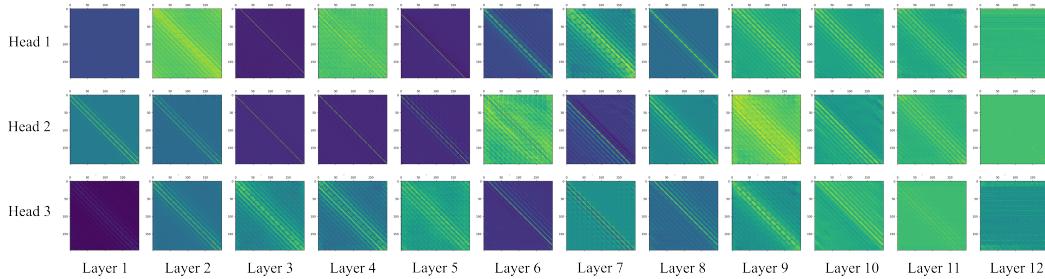
395

Figure 6: Learnable Mask Visualization for Trained IBiT Network

398 This motivates the idea that learned masks may not even be needed in later layers, though we leave
 399 further architectural modifications to future work.

401

6.2 GRADIENT BIASING

403 One reason we believe models using learnable masks perform better is the property of gradient
 404 biasing.

405 Since we set the mask to mimic the inductive biases of a Gaussian kernel, and the mask is applied
 406 through element-wise multiplication, the gradient update on the attention mask can be calculated as
 407
$$W^{\text{mask}} \frac{\partial J}{\partial W^{\text{attention}}}$$

409 This means that at each weight of the mask, the gradient, $\frac{\partial J}{\partial W^{\text{attention}}}$ is scaled by the mask weight.
 410 When this mask represents a gaussian kernel, this means that values close to each are scaled to
 411 have a larger gradient, and hence the model learns to use these values better. These inductive biases
 412 are visible in the learnable mask even during late stages of training (Figure 5 and Appendix C)
 413 highlighting the effect of gradient biasing.

414

7 CONCLUSION

417 Clearly, using learnable masks preserves the explainability of regular Transformers, while being
 418 significantly more accurate on ImageNet. These models are significantly more sample efficient
 419 compared to other Transformer based models. We hope the interesting new properties these
 420 models possess and further work on parameter efficiency and more efficient learnable masks may
 421 lead to significant advancements in the field of explainable, data-efficient computer vision.

423

8 REPRODUCIBILITY

425 To ensure that our results are reproducible, we have published our trained models and code on
 426 GitHub. We have also put all model hyperparameter configurations for all the model training runs
 427 in the appendices.

429

REFERENCES

431 Samira Abnar and Willem Zuidema. Quantifying attention flow in transformers, 2020. URL
<https://arxiv.org/abs/2005.00928>.

432 Jean-Baptiste Cordonnier, Andreas Loukas, and Martin Jaggi. On the relationship between self-
 433 attention and convolutional layers, 2020. URL <https://arxiv.org/abs/1911.03584>.
 434

435

436 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hier-
 437 archical image database. In *2009 IEEE Conference on Computer Vision and Pattern Recognition*,
 438 pp. 248–255, 2009. doi: 10.1109/CVPR.2009.5206848.
 439

440

441

442 Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas
 443 Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit,
 444 and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at
 445 scale. *CoRR*, abs/2010.11929, 2020. URL <https://arxiv.org/abs/2010.11929>.
 446

447

448 Stéphane d’Ascoli, Hugo Touvron, Matthew L Leavitt, Ari S Morcos, Giulio Biroli, and Lev-
 449 ent Sagun. Convit: improving vision transformers with soft convolutional inductive biases*.
 450 *Journal of Statistical Mechanics: Theory and Experiment*, 2022(11):114005, November 2022.
 451 ISSN 1742-5468. doi: 10.1088/1742-5468/ac9830. URL <http://dx.doi.org/10.1088/1742-5468/ac9830>.
 452

453

454

455 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recog-
 456 nition. *CoRR*, abs/1512.03385, 2015. URL <http://arxiv.org/abs/1512.03385>.
 457

458

459

460 Y. LeCun, B. Boser, J. S. Denker, D. Henderson, R. E. Howard, W. Hubbard, and L. D. Jackel.
 461 Backpropagation applied to handwritten zip code recognition. *Neural Computation*, 1(4):541–
 462 551, 1989. doi: 10.1162/neco.1989.1.4.541.
 463

464

465 Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, and
 466 Hervé Jégou. Training data-efficient image transformers & distillation through attention, 2021.
 467 URL <https://arxiv.org/abs/2012.12877>.
 468

469

470 Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N. Gomez,
 471 Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. *CoRR*, abs/1706.03762, 2017.
 472 URL <http://arxiv.org/abs/1706.03762>.
 473

474

475

476 Sangdoo Yun, Dongyoon Han, Seong Joon Oh, Sanghyuk Chun, Junsuk Choe, and Youngjoon Yoo.
 477 Cutmix: Regularization strategy to train strong classifiers with localizable features, 2019. URL
 478 <https://arxiv.org/abs/1905.04899>.
 479

480

481 Xiaohua Zhai, Joan Puigcerver, Alexander Kolesnikov, Pierre Ruyssen, Carlos Riquelme, Mario
 482 Lucic, Josip Djolonga, Andre Susano Pinto, Maxim Neumann, Alexey Dosovitskiy, Lucas Beyer,
 483 Olivier Bachem, Michael Tschannen, Marcin Michalski, Olivier Bousquet, Sylvain Gelly, and
 484 Neil Houlsby. A large-scale study of representation learning with the visual task adaptation
 485 benchmark, 2020. URL <https://arxiv.org/abs/1910.04867>.

486 APPENDIX
487488 A MORE EXPLAINABILITY VISUALIZATIONS
489

490

491

492

493

494

495

496

497

498

499

500

501

502

503

504

505

506

507

508

509

510

511

512

513

514

515

516

517

518

519

520

521

522

523

524

525

526

527

528

529

530

531

532

533

534

535

536

537

538

539

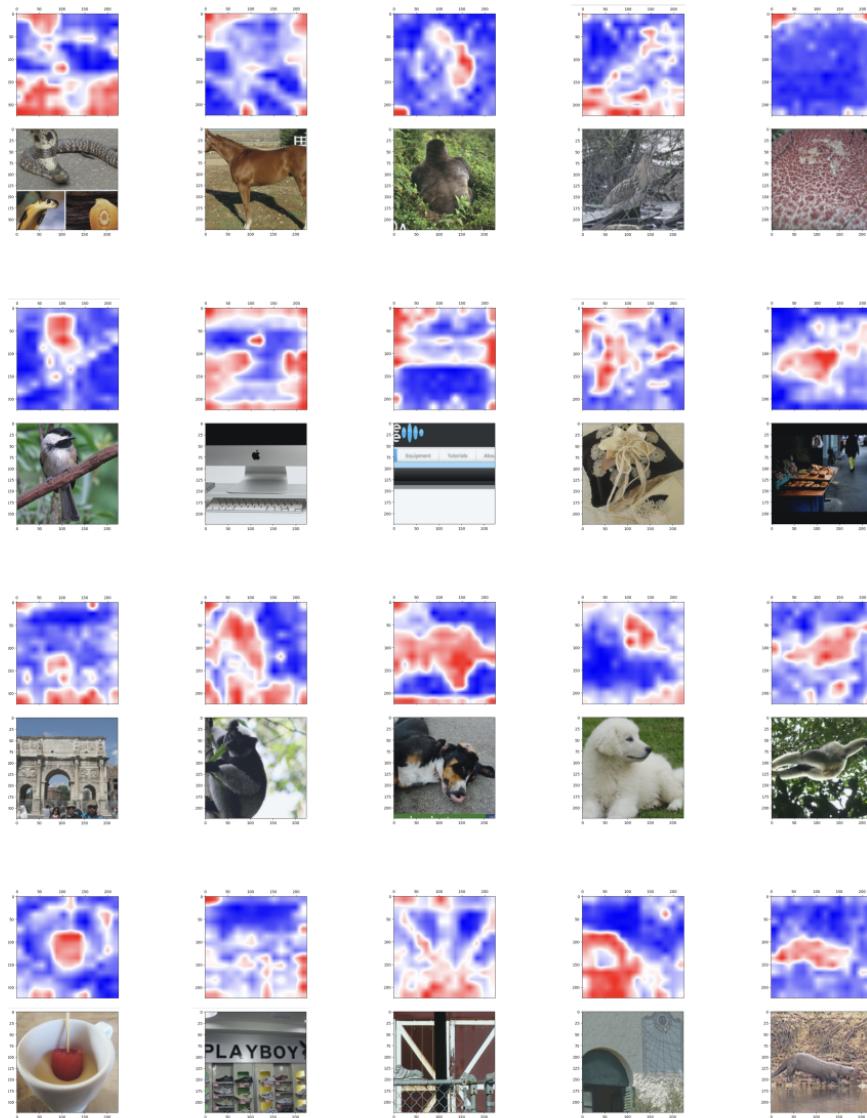


Figure 7: More Representative Attention Maps using Rollout Attention

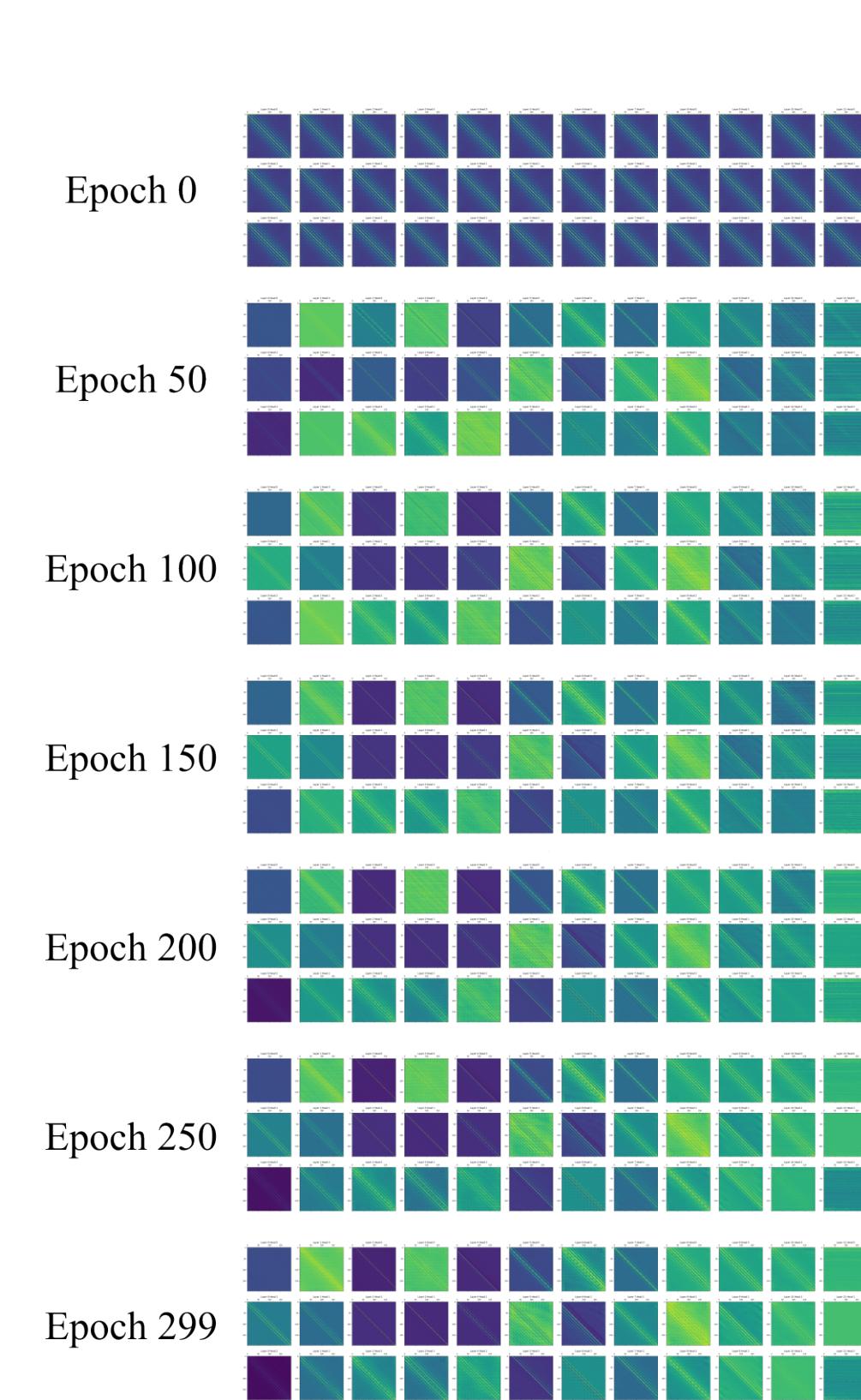
540 B MASK VISUALIZATIONS THROUGH LEARNING
541
542
543
544

Figure 8: Learnable Mask Visualization during Training of IBiT Network

594 C HYPERPARAMETER CONFIGURATIONS FOR TRAINED MODELS
595
596
597598 Table 5: Training Configurations
599

600 Model Type	601 IBiT (Ours)	602 DeiT (Our Reproduction)
603 # of Layers	604 12	605 12
606 # of Heads	607 4	608 4
609 D_{model}	610 192	611 192
612 Learning Rate	613 0.001	614 0.001
615 Weight Decay	616 0.005	617 0.005
618 Label Smoothing Rate	619 0.1	620 0.1
621 Dropout Rate	622 0.0	623 0.0
624 Drop Path Rate	625 0.1	626 0.1
627 Learning Rate Scheduler	628 Cosine-Warmup	629 Cosine-Warmup
630 # of Params	631 6M	632 6M
633 CutMix α	634 N/A	635 1.0
636 MixUp α	637 N/A	638 0.8

639
640
641
642
643
644
645
646
647