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Abstract

Entity disambiguation (ED) is crucial in natu-001
ral language processing (NLP) for tasks such002
as question-answering and information extrac-003
tion. A major challenge in ED is handling over-004
shadowed entities—uncommon entities sharing005
mention surfaces with common entities. The006
current approach to enhance performance on007
these entities involves reasoning over facts in008
a knowledge base (KB), increasing computa-009
tional overhead during inference. We argue that010
the ED performance on overshadowed entities011
can be enhanced during training by addressing012
shortcut learning, which does not add computa-013
tional overhead at inference. We propose a sim-014
ple yet effective debiasing technique to prevent015
models from shortcut learning during training.016
Experiments on a range of ED datasets show017
that our method achieves state-of-the-art perfor-018
mance without compromising inference speed.019
Our findings suggest a new research direction020
for improving entity disambiguation via short-021
cut learning mitigation.022

1 Introduction023

Entity disambiguation (ED) is an essential task in024

many natural language processing (NLP) applica-025

tions, for instance, open-domain question answer-026

ing (Hu et al., 2022; Saffari et al., 2021; Srivas-027

tava et al., 2021; Wang et al., 2021), fact verifica-028

tion (Zhou et al., 2019), and information extrac-029

tion (Baldini Soares et al., 2019). The task is to030

identify the correct entity recorded in a KB, e.g.,031

Wikidata, for each ambiguous entity mention in032

a given text, which is a crucial capability when033

performing entity linking (EL). In real-world ED034

applications, there are two important properties:035

• Context-awareness: The method should be able036

to accurately resolve entities based on the sur-037

rounding context of the entity mentions. For ex-038

ample, the mention of Michael Jordan can refer039

to a basketball player (Michael Jeffrey Jordan)040

domask_mention(X)

E

X

Xm Xc

̂E

X̂

X̂m Xc

Michael Jordan is widely 
regarded as one of the greatest 

basketball players of all time.

[MASK] [MASK] is widely 
regarded as one of the greatest 

basketball players of all time.

Spurious 
feature

Intended 
feature

Intended 
feature

E

X

Xm Xc

100.00 
0.00 
0.00 
0.00

Michael Jordan (Q41421) 
Michael Jordan (Q65029442) 
Michael Jordan (Q6831716) 
Michael I. Jordan (Q3308285)

Spurious 
feature

Xc

Michael Jordan published a new paper on machine learning.

Xm

X
Xm
Xc
E

:  Input Text 
:  Mention Surface 
:  Mention Context 
:  Predicted Entity

99.06 
0.22 
0.14 
0.07

Michael Jordan (Q41421) 
Michael Jordan (Q65029442) 
Michael Jordan (Q6831716) 
Michael I. Jordan (Q3308285)

P(E |Xm)Entity prior:Model prediction: P(E |Xm, Xc)

Intended 
feature

Gold label: Q3308285 (overshadowed by Q41421)

Gold label: Q41421

Figure 1: The causal graph of ED models. Due to the
strong correlations between the spurious feature and
training labels, typical ED models are prone to shortcut
learning and fail to resolve overshadowed entities.

or a machine learning researcher (Michael Irwin 041

Jordan), depending on the context. 042

• Scalability: The method should be capable of 043

handling large amounts of input data efficiently. 044

This leads to faster processing times and lower 045

costs associated with running the ED system. 046

The existing ED approaches can be categorized 047

into: (i) Classification-based approaches fine-tune a 048

classification layer on top of a pre-trained language 049

model (PLM) to predict a score distribution over 050

entity vocabulary (Broscheit, 2019; Yamada et al., 051

2022) or entity types (Onoe and Durrett, 2020; 052

Tedeschi et al., 2021). (ii) Generative-based ap- 053

proaches fine-tune a generative PLM to generate a 054

unique entity name (Cao et al., 2021; De Cao et al., 055

2021; Du et al., 2022) or entity description (Proco- 056

pio et al., 2023). (iii) Retrieval-based approaches 057

fine-tune a bi-encoder (Li et al., 2020) or a cross- 058

encoder (Wu et al., 2020) to compute similarity 059

scores between mentions and entity descriptions. 060

ReFinED (Ayoola et al., 2022b) enhanced the bi- 061

encoder’s performance by incorporating entity type 062

classification and entity priors to re-rank the bi- 063

encoder predictions. 064

Nonetheless, ED methods often struggle with 065

overshadowed entities (Provatorova et al., 2021), in- 066
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Figure 2: The system overview of the proposed method.

dicating a lack of Context-awareness in current ED067

methods. KBED (Ayoola et al., 2022a) improved068

ReFinED’s performance on overshadowed entities069

by leveraging KB facts. Specifically, they extract070

relations between every pair of mentions in input071

and perform reasoning over external knowledge072

retrieved from KB to re-rank the ReFinED’s predic-073

tions. Although this method has the potential to en-074

hance Context-awareness and reduce the overshad-075

owing problem, it requires input to contain multi-076

ple mentions, and its computational burden grows077

as the number of mentions increases, hence com-078

promising the Scalability of the ReFinED method.079

According to our empirical results, KBED slows080

down the throughput of ReFinED from 3.3 to 0.6081

queries per second (Q/s) on standard ED datasets.082

This paper tackles the overshadowing issue by083

addressing shortcut learning (Geirhos et al., 2020)084

during training, which does not impose a compu-085

tational burden at inference. We introduce Coun-086

terfactual Training (CFT) as a technique to prevent087

the models from learning shortcut solutions and088

to enhance Context-awareness. As shown in Fig-089

ure 1, each input text X to ED models contains two090

input features: the mention surface Xm (spurious091

feature) and the mention context Xc (intended fea-092

ture). The intended solution is to use the contextual093

feature Xc to determine entity E. Nevertheless, the094

strong correlations between the spurious feature095

Xm and training labels can induce the models to096

learn a shortcut (i.e., using the mention surface to097

determine entity E), obscuring the intended solu-098

tion. This shortcut solution allows the models to099

achieve high performance on common entities but100

poor performance on overshadowed entities.101

We assess CFT against existing methods on six102

standard datasets and three challenging datasets.103

The results show that CFT achieves the best perfor-104

mance on seven out of nine datasets for overshad-105

owed entities and six out of nine datasets for overall106

entities without compromising the throughput at 107

inference. We find that CFT performs surprisingly 108

well on texts with limited contextual information 109

(i.e., short sentences with a small number of men- 110

tions) while other methods struggle. Source code 111

and models will be available upon acceptance. 112

2 Counterfactual Training (CFT) 113

2.1 Counterfactual Example 114

For every training example X , we perform an in- 115

tervention domask_mention(·) to mask all mention sur- 116

face tokens Xm with special [MASK] tokens and 117

leave the mention context tokens Xc as original: 118

X̂ = domask_mention(X) = ⟨w1, w2, ..., wn⟩

∀wi ∈ X,

{
wi ← [MASK] if wi ∈ Xm

wi ← wi if wi ∈ Xc

(1) 119

thereby creating a counterfactual example X̂ that 120
excludes the mention surface Xm (spurious fea- 121

ture) and only contains the mention context Xc 122

(intended feature) as shown in Figure 2. We denote 123

the masked tokens in X̂ as X̂m. 124

2.2 Training Objective 125

The typical training objective of ED is to minimize 126

the negative log-likelihood between the gold en- 127

tity label Ẽ and the model prediction E given a 128

mention surface Xm and mention context Xc: 129

LED = L(Ẽ, E)

E = f(Xm, Xc, θ)
(2) 130

where L is any loss function (e.g., cross-entropy) 131

and θ is parameters of the model f . However, due 132

to a strong correlation between mention surface 133

Xm (spurious feature) and training labels Ẽ, train- 134

ing the model merely on LED could mislead the 135

model to use the mention surface Xm (spurious 136

feature) to resolve entities during inference. 137

To enforce the model to rely on contextual infor- 138

mation, enhancing Context-awareness, we incorpo- 139

rate the counterfactual example X̂ in Section 2.1 to 140

provide regularization during the training process: 141

LCFT = L(Ẽ, Ê)

Ê = f(X̂m, Xc, θ)
(3) 142

We combine the LCFT auxiliary term with the LED 143

to obtain the final training objective: 144

LFinal = LED + µ · LCFT (4) 145

where µ is a hyperparameter that controls the 146

strength of the regularization. 147
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3 Experimental Settings148

3.1 Baselines and Competitive Methods149

We report the performance of three baseline ED150

methods. ReFinED (Ayoola et al., 2022b) and151

BLINK (Wu et al., 2020) are retrieval-based ED152

methods that use the bi-encoder and cross-encoder153

architectures, respectively. GENRE (Cao et al.,154

2021) is a generative encoder-decoder ED method.155

We use the same candidate generation method156

for all baselines as previous works (Ayoola et al.,157

2022b; Cao et al., 2021; Le and Titov, 2018).158

We compare CFT with the current state-of-the-159

art method for improving overshadowed entity dis-160

ambiguation. KBED (Ayoola et al., 2022a) is a161

ReFinED extension with overshadowed entity dis-162

ambiguation improvement. The method applies163

reasoning over KB facts to promote candidate enti-164

ties that are coherent with entities in the context.165

Since we formulate the overshadowing problem166

as shortcut learning, we also compare our work167

with existing shortcut mitigation methods. Focal168

loss (Focal) (Lin et al., 2017) and Counterfactual169

inference (CFI) (Wang et al., 2022; Qian et al.,170

2021) are well-known debiasing techniques for mit-171

igating shortcut learning in computer vision and172

NLP. We applied these two methods to the ED prob-173

lem by treating the mention surface as a spurious174

feature. Entity Masking (EM) is a technique used175

in Relation Extraction (RE) literature (Zhang et al.,176

2017; Liu et al., 2022) to prevent the model from177

using the mention surface feature as a shortcut for178

predicting relations. To the best of our knowledge,179

this work is the first to evaluate these three methods180

in entity disambiguation. See the implementation181

details in Appendix A.1.182

3.2 Training Details183

While CFT can be applied to any existing ED184

method, we employ a publicly available ED method185

called ReFinED (Ayoola et al., 2022b) due to its186

practicality in resolving entities at scales. ReFinED187

also forms the basis of the current state-of-the-art188

method, KBED, allowing for direct comparison be-189

tween KBED and CFT. We trained CFT, KBED,190

Focal, and EM base on ReFinED by pretraining on191

the Wikipedia dataset and finetuning on the train-192

ing set of AIDA-CoNLL (Hoffart et al., 2011). The193

training datasets comprise approximately 140M194

mention spans, covering approximately 5.3M enti-195

ties. We use the validation set of the AIDA-CoNLL196

dataset to tune hyperparameters (Appendix A.2).197

We trained each method using three different seeds. 198

We report here that we cannot reproduce the origi- 199

nal ReFinED results using their source code. 1 200

3.3 Datasets and Evaluations 201

We evaluate the effectiveness of CFT on overshad- 202

owed and common entities under two scenarios. 203

Standard Set. We employ commonly used six 204

datasets for evaluating ED performance: AIDA- 205

CoNLL (Hoffart et al., 2011), MSNBC (Cucerzan, 206

2007), AQUAINT (Milne and Witten, 2008), 207

ACE2004 (Ratinov et al., 2011), WNED-CWED 208

(CWED) (Gabrilovich et al., 2013), and WNED- 209

WIKI (WIKI) (Alani et al., 2018). These datasets 210

contain lengthy texts collected from news and web 211

articles across several domains, such as sports, pol- 212

itics, and technology. The average sequence length 213

of these datasets is 565.9, with each sequence hav- 214

ing an average of 24.5 mention spans. 215

Challenge Set. Let us now assess the ED method 216

with limited contextual information. We employ 217

three test datasets: TWEEKI (Harandizadeh and 218

Singh, 2020), MINTAKA (Sen et al., 2022), and 219

ShadowLink (SLINK) (Provatorova et al., 2021). 220

The datasets contain short sentences from a variety 221

of domains, including social media, question an- 222

swering, and text snippets from Wikipedia pages. 223

The average sequence length is 17.9, with each 224

sequence having an average of 1.3 mention spans. 225

For each dataset, we split mention spans into 226

“Sha” and “Top” for overshadowed and common 227

entities using entity prior obtained from training 228

data. Specifically, any mention span unresolvable 229

using the prior is considered an overshadowed en- 230

tity; otherwise, it is a common entity. The statistics 231

of each dataset are reported in Appendix A.3. 232

Evaluation. We report average InKB micro-F1 233

over three different seeds for each method. We 234

measure the inference rate (Q/s) on a V100 GPU. 235

We exclude "Sha" and "Top" results from BLINK 236

and GENRE because each baseline is trained on 237

a different dataset and possesses a different en- 238

tity prior, making results incomparable to those of 239

ReFinED-based. 240

4 Experimental Results 241

Standard Set. The results in Table 1 demon- 242

strate the effectiveness and efficiency of our method 243

1https://github.com/amazon-science/ReFinED. We noticed
that the original ReFinED model is trained using a different
implementation from the source code provided, as the number
of parameters is inconsistent with the model in the code.
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Method
AIDA MSNBC* AQUAINT* ACE2004* CWEB* WIKI* Avg. Rate

Sha Top All Sha Top All Sha Top All Sha Top All Sha Top All Sha Top All Sha Top All (Q/s)

BLINK† - - 86.7 - - 90.3 - - 88.9 - - 88.7 - - 82.6 - - 86.1 - - 87.2 0.1

GENRE† - - 93.3 - - 94.3 - - 89.9 - - 90.1 - - 77.3 - - 87.4 - - 88.7 0.4

ReFinED 79.4 98.3 92.9 73.4 96.4 93.6 45.8 94.2 88.6 54.1 98.1 91.4 50.5 90.3 78.4 63.9 97.7 86.8 61.2 95.8 88.6 3.3
w/ Focal 81.6 98.3 93.5 73.2 96.1 93.3 43.8 94.6 88.8 54.1 97.9 91.2 49.7 90.2 78.1 60.7 97.2 85.4 60.5 95.7 88.4 3.3
w/ EM 70.2 97.7 89.9 72.6 95.1 92.3 42.7 90.8 85.3 47.3 95.9 88.5 43.5 88.3 74.7 57.5 96.5 83.9 55.6 94.0 85.8 3.3
w/ CFI 80.5 98.1 93.1 72.7 96.6 93.6 46.3 93.7 88.3 56.1 98.1 91.7 50.3 90.1 78.1 65.3 97.5 87.1 61.9 95.7 88.6 3.1

w/ KBED 82.2 98.4 93.8 76.0 96.9 94.3 45.8 95.3 89.6 57.4 98.3 92.1 50.2 90.2 78.1 65.0 97.6 87.0 62.8 96.1 89.1 0.6

w/ CFT 83.8 98.2 94.1 74.2 96.3 93.5 49.0 94.7 89.4 56.8 97.9 91.7 51.5 90.3 78.7 66.2 97.8 87.6 63.6 95.9 89.2 3.3

Table 1: Experimental (InKB micro F1-Score) results on standard datasets with abundant contextual information.
We report results for overshadowed entities (Sha), common entities (Top), and all entities (All). bold and underline
represent the best and second-performing, respectively. (*) denotes out-of-domain datasets. (†) denotes methods
that we used their original parameters.

(CFT) on texts with abundant context. CFT outper-244

forms the state-of-the-art method (KBED) on over-245

shadowed entity disambiguation by a significant246

margin. CFT also performs the best compared to247

other debiasing methods. Focal performs well only248

on the in-domain dataset (AIDA) but struggles to249

perform on out-of-domain datasets. Although EM250

and CFI are widely used in RE to mitigate shortcut251

learning, it is ineffective in ED. For the Q/s rate,252

Focal, EM, and CFT achieve the same throughput253

as ReFinED, while CFI and KBED show a drop in254

throughput. The case study and analysis of CFT255

and KBED are discussed in Appendix A.4.256

Challenge Set. Table 2 shows that CFT is the most257

effective method for disambiguating entities on out-258

of-domain datasets with limited contextual infor-259

mation (TWEEKI and MINTAKA). BLINK per-260

forms well only on the Wikipedia domain dataset261

(SLINK). Although KBED performs well on in-262

put texts with abundant context, it struggles when263

context is limited. The results of the Q/s rates264

conform with those of the standard set.

Method
TWEEKI* MINTAKA* SLINK Rate

Sha Top All Sha Top All Sha Top All (Q/s)

BLINK† - - 80.5 - - 85.1 - - 74.6 0.4

GENRE† - - 79.8 - - 84.2 - - 56.5 15.7

ReFinED 42.1 93.5 82.1 37.3 95.9 87.1 43.0 93.0 69.2 39.0
w/ Focal 42.0 93.1 81.8 35.7 95.7 86.7 41.8 93.0 68.8 39.0
w/ EM 32.3 90.1 77.3 27.9 91.9 82.3 43.1 91.7 68.0 39.0
w/ CFI 42.6 93.3 81.9 38.3 95.8 87.1 43.5 93.1 69.2 24.3

w/ KBED 40.9 92.8 81.2 37.1 95.5 86.6 41.5 93.0 68.1 27.5

w/ CFT 44.6 93.5 82.6 38.7 96.0 87.3 44.1 92.8 69.5 39.0

Table 2: Results on challenge datasets with limited con-
textual information. (*) denotes out-of-domain datasets.

265

Scalability. Figure 3 displays a bar chart with266

the average inference time per query on the y-axis.267

The x-axis organizes the queries into eight octiles 268

ranked according to the number of mentions per 269

query, where queries in the eighth octile have the 270

highest number of mentions. We can see that the 271

performance gap between CFT and KBED widens 272

as we move from the first to the eighth octile. This 273

finding shows that not only is CFT faster, but it 274

can also scale better than KBED as the number of 275

mentions per query grows. The statistics of each 276

octile are reported in Appendix A.5 277

Figure 3: Time taken to process queries with different
numbers of mentions. The queries are organized into
eight octiles ranked by the number of mentions.

5 Conclusion 278

This paper addresses the challenge of handling 279

overshadowed entities in Entity Disambiguation 280

(ED). By formulating the ED problem as shortcut 281

learning mitigation, the spurious correlation be- 282

tween mention surfaces and training labels can be 283

mitigated via CFT, which reduces the model’s re- 284

liance on surface forms for common entities. As 285

opposed to the current SOTA (KBED), our solution 286

does not impose additional inference time, making 287

it 5 times faster than KBED. The empirical results 288

show that CFT achieves the best performance on 289

overshadowed entities. These results support the 290

new research direction of modeling the entity dis- 291

ambiguation problem with counterfactual learning. 292
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Limitations293

The limitations of our work are as follows.294

• The scope of experiments in this paper does not295

cover the performance of downstream tasks. Fur-296

ther studies are needed to assess the effect of our297

method on tasks that rely on ED, e.g., knowledge-298

graph question answering (KGQA).299

• Although our approach does not incur any com-300

putational overhead during inference, it incurs a301

computational overhead during training which is302

equivalent to performing two forward passes per303

input. Consequently, this approach might not be304

appropriate for larger models such as LLMs.305
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A Appendix531

A.1 Implementation Details532

A.1.1 Counterfactual Training533

In this subsection, we explain how we implement534

our method over the state-of-the-art instance-based535

ED method, ReFinED. The ReFinED model pre-536

dicts entities’s scores based on the descriptions,537

types, and priors of the entities. The model com-538

prises three sub-modules:539

• Entity description module calculates the de-540

scription score for each entity by computing the541

dot product between the two embeddings of men-542

tion and description of the entity obtained from543

the knowledge base. The module is trained using544

a cross-entropy loss Ld.545

• Entity typing module predicts types probabil-546

ity distribution for each mention and then calcu-547

lates the typing score by computing the Euclidean548

distance between the predicted types and entity549

types obtained from the knowledge base. The550

module is trained using a binary cross-entropy551

loss Lt.552

• Combined score module uses a linear layer to553

aggregate the description score, typing score, and554

entity prior to a final prediction score. The mod-555

ule is trained using a cross-entropy loss Lc. Note556

that the inputs to this module, description score557

and typing score, are detached. Thus, the update558

gradients from Lc will not affect other parts of559

the model.560

During training, we employ CFT on the Entity de-561

scription module. Specifically, we replace the train-562

ing objective of the Entity description module with563

objCFT (Eq. 4) where L = Ld.564

A.1.2 Counterfactual Inference565

This section explains how we implement counter-566

factual inference (Wang et al., 2022; Qian et al.,567

2021) for ED. For every test example X , we per-568

form an intervention domask_context(·) to mask all569

context tokens Xc with special [MASK] tokens570

and leave the mention surface tokens Xm as origi-571

nal:572

X ′ = domask_context(X) = ⟨w1, w2, ..., wn⟩

∀wi ∈ X,

{
wi ← [MASK] if wi ∈ Xc

wi ← wi if wi ∈ Xm

(5)573

574
thereby creating a counterfactual example X ′575

that excludes the mention context Xc (intended576

Hyperparameter Value
learning rate 3e-5
batch size 56
max sequence length 300
dropout 0.05
description embeddings dim. 300
# training steps 1M
# candidates 30
# entity types 1400
mention transformer init. roberta-base
# mention encoder layers 12
description transformer init. roberta-base
# description encoder layers 2
# description tokens 32
mention mask prob. 0.0
(λ2, λ3, λ4) (1, 0.01, 1)
µ 0.1

Table 3: ReFinED with CFT hyperparameters.

Figure 4: Results of ReFinED with CFT with different
µ values on the validation set of AIDA dataset.

feature) and only contains the mention surface Xm 577

(spurious feature). We denote the masked tokens in 578

X ′ as X ′
c. This counterfactual example X ′ is then 579

used to estimate the effect of mention surfaces Xm 580

on output predictions: 581

E′ = f(Xm, X ′
c, θ) (6) 582

To mitigate the effect of mention surfaces Xm on 583

output predictions, we subtract the original model 584

prediction E with the estimated effect E′: 585

Efinal = E − λ · E′ (7) 586

where λ is a hyperparameter that controls the effect 587

of the mention surfaces that we want to reduce. 588

A.2 Hyperparameter details 589

To train our model (ReFinED with CFT), we 590

trained the model using the hyperparameters setting 591

in Table 3 following the original ReFinED setting. 592
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We performed a hyperparameter search for µ in593

a range of [0.05, 0.1, 0.2, 0.3, 0.4] on the valida-594

tion set of AIDA-CoNLL, we got the best value of595

0.1 as shown in Figure 4. We reduced the batch596

size from 64 to 56 due to the additional memory597

requirement of CFT during the training. Since this598

paper focuses on entity disambiguation, we omit599

the mention detection module. The model has ap-600

proximately 154M parameters. The training took601

approximately 87 hours on an A100 GPU.602

A.3 Datasets statistics603

Table 4 shows the InKB statistics of each test604

dataset. The overshadowed entities are determined605

using entity prior collected from the training dataset606

of ReFinED. The standard set contains long article607

ED datasets that have approximately 24.5 men-608

tions and 564.9 words per query. The challenge609

set contains short sentence ED datasets that have610

approximately 1.3 mentions and 17.9 words per611

query. The standard and challenge sets have simi-612

lar proportion of overshadowed entities, 30.1% and613

27.4%, respectively.614

Mentions Seq. Length Shadow
Dataset Count Mean Mean %
Standard Set
AIDA 4,464 19.4 177.2 28.8%
MSNBC 651 32.6 565.9 12.6%
AQUAINT 719 14.4 220.5 13.1%
ACE2004 253 7.2 375.5 18.2%
CWEB 11,035 34.5 1,212.3 31.1%
WIKI 6,734 21.1 269.8 33.5%
Avg. 23,856 24.5 564.9 30.1%

Challenge Set
TWEEKI 860 1.8 16.4 24.1%
MINTAKA 5,703 1.5 10.1 17.1%
SLINK 2,674 1.0 29.7 50.5%
Avg. 9,237 1.3 17.9 27.4%

Table 4: Statistics of test datasets.

A.4 Case Study and Analysis615

To comprehend how our debiasing method (CFT)616

can outperform the best current method (KBED) on617

overshadowed entities, we analyze the predictions618

of our method on various scenarios of overshad-619

owed entities compared with other methods. In620

Table 6, example 1 illustrates the situation when an621

overshadowed entity Guardian newspaper (Nige-622

rian independent daily newspaper) appears in a623

text with related entities in context, i.e., Lagos624

(Largest city in Nigeria). In this case, both CFT625

and KBED can resolve the overshadowed entity 626

Guardian newspaper (Nigerian independent daily 627

newspaper) correctly as they are sufficient contex- 628

tual information, allowing KBED to perform rea- 629

soning over KB facts.In contrast, example 2 demon- 630

strates the situation when an overshadowed entity 631

appears in a text without related entities, disabling 632

KBED from performing reasoning. This results 633

in KBED predicting an incorrect entity while CFT 634

can still resolve the entity correctly. These findings 635

show that, compared to KBED, CFT can resolve 636

overshadowed entities in a broader range of sce- 637

narios, making it outperforms KBED, especially in 638

short texts with few mentions. 639

Finally, we examine failed cases of our method 640

for overshadowed and non-overshadowed entities 641

compared with other methods. In Table 6, example 642

3 demonstrates the case when all methods fail to 643

resolve an overshadowed entity. Interestingly, they 644

predict entities that suit the context well and are 645

semantically similar to the gold entity label. Exam- 646

ple 4 demonstrates a fail case when our method and 647

KBED fail to resolve a non-overshadowed entity 648

in a context containing entities that related to in- 649

correct entities, e.g., Foreign minister (Ministry of 650

Foreign Affairs of Iran) is located in Iran (Country 651

in Western Asia). Both CFT and KBED predict 652

a specific entity that suits the context but is mis- 653

matched with the gold label. These findings show 654

the problem of annotations in ED datasets where 655

multiple entities in KB are correct answers. 656

A.5 Scalability Study 657

Table 5 shows the statistics of each octile in Fig- 658

ure 3. The octiles are created by ranking queries 659

from seven datasets: AIDA, MSNBC, AQUAINT, 660

ACE2004, CWEB, WIKI, and TWEEKI, in ascend- 661

ing order according to the number of mentions in 662

queries, then divided into eight equal-sized octiles. 663

Queries Number of Mentions
Octile Count Min Max Mean ± Std.

1 549 1 1 1.0 ± 0.0
2 549 1 2 1.7 ± 0.5
3 549 2 5 3.2 ± 1.0
4 549 5 16 11.4 ± 3.2
5 549 16 21 18.7 ± 1.6
6 549 21 27 23.7 ± 1.8
7 549 27 36 31.2 ± 2.6
8 537 36 114 45.1 ± 10.4

Table 5: Statistics of octiles.
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No. Example Prediction

1

... An Air Afrique Boeing-727 jet was the third passenger liner looted in the past month by armed Entity Prior → Q11148 ×
robbers while awaiting takeoff at Nigeria’s largest international airport, the Lagos Guardian ReFinED → Q11148 ×
newspaper reported on Thursday. The thieves broke into the aircraft’s luggage compartment and w/ KBED → Q7738431 ✓

escaped with a large quantity of baggage as the plane was awaiting permission to take off ... w/ CFT → Q7738431 ✓

Remark: *Q7738431 (Nigerian independent daily newspaper), Q11148 (British national daily newspaper)

2

... Word of the agreement leaked out when former captain Courtney Walsh, head of the West Indies Entity Prior → Q669037 ×
players association, told the Caribbean News Agency that Lara and Hooper had been reinstated ReFinED → Q920396 ×
and the tour was going ahead. The crisis came to a head last Wednesday when the West Indies w/ KBED → Q920396 ×
Cricket Board fired superstar batsman Lara as captain and Hooper as vice-captain. The two ... w/ CFT → Q912881 ✓

Remark: *Q912881 (West Indies cricket team), Q669037 (West Indies) Q920396 (British West Indies)

3

... Saban was introduced as Alabama’s coach on Thursday, touting his championship aspirations Entity Prior → Q173 ×
and citing his love of college football as a reason for taking a pay cut to leave the Miami Dolphins. ReFinED → Q4705216 ×
Alabama has had four losing seasons since ’97. "His teams always play with confidence and pride w/ KBED → Q4705216 ×
and I know that in order to win a national championship, a team has to be mentally as well as ... w/ CFT → Q4705216 ×

Remark: *Q492318 (University of Alabama), Q4705216 (Alabama Crimson Tide football), Q173 (State of the United States of America)

4

... Iran will protest to the International Court of Justice at the Hague and other global bodies Entity Prior → Q7330070 ✓

about the U.S.-funded Radio Free Europe, the Iran Daily reported Monday. It quoted Foreign ReFinED → Q7330070 ✓

Minister Kamal Kharrazi as saying the radio “was set up to interfere in Iran’s internal affairs” w/ KBED → Q2565708 ×
It did not say when the complaints will be filed. The English-language daily also did not say ... w/ CFT → Q2565708 ×

Remark: *Q7330070 (Foreign minister), Q2565708 (Ministry of Foreign Affairs of Iran)

Table 6: Case studies for our debiasing method on ED datasets. We highlight the target entity and related context
entities with bold and underline respectively. * indicates the gold entity label.
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