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Abstract001

While temporal knowledge graph forecasting002
(TKGF) approaches have traditionally relied003
heavily on complex graph neural network ar-004
chitectures, recent advances in large language005
models (LLMs) and in-context learning (ICL)006
have presented promising out-of-the-box alter-007
natives. However, little is known about LLMs’008
limitations and generalization capabilities for009
TKGF. In this study, we conduct a compara-010
tive analysis of complexity (e.g., more number011
of hops) and sparsity (e.g., relation frequency)012
confounders between LLMs and supervised013
models using two weakly annotated TKGF014
benchmarks. Our experimental results show-015
case that while LLMs perform on par or outper-016
form supervised models in low-complexity sce-017
narios, their effectiveness diminishes in more018
complex settings (e.g., multi-step, more num-019
ber of hops, etc.) where supervised models020
maintain superior performance.021

1 Introduction022

Knowledge graphs (KGs) are commonly used023

structures that store relational information as a024

graph (Bollacker et al., 2008; Vrandečić and025

Krötzsch, 2014). While using KGs for keeping026

static facts is common, they are unsuitable for027

holding complex dynamic (i.e., temporal) infor-028

mation. Temporal knowledge graphs (TKGs) are029

extensions of KGs that enable the storage of such030

information (Leetaru and Schrodt, 2013; García-031

Durán et al., 2018). Consequently, TKGs allow032

practitioners to do various predictive tasks on com-033

plex temporal data. One critical task that has034

been empowered by TKGs is temporal knowl-035

edge graph forecasting (TKGF) (Gastinger et al.,036

2023), where the objective is to predict future037

facts from a set of prior facts before a specific038

time in a TKG. A hypothetical real-world exam-039

ple of TKGF is to answer the question, “Who040

will win the 2024 United States presidential elec-041

tion?” based on previous political events. This042

scenario can be represented by the query quadru- 043

ple q = (General Election, Winner, ?, Nov 2024) 044

and the time-constrained TKG Gt = {(Biden, Won, 045

General Election, Nov 2020), (Jorgensen, Lost, 046

General Election, Nov 2020), . . . }. 047

Following the recent advancements in large lan- 048

guage models (LLMs), the interest in employing 049

them for temporal knowledge graph forecasting 050

(TKGF) has increased. Recent studies have demon- 051

strated LLMs’ effectiveness as general estimators 052

across various function classes (Garg et al., 2022; 053

Mirchandani et al., 2023). Specifically, these mod- 054

els have shown immense potential for TKGF, sur- 055

passing state-of-the-art supervised models in some 056

cases (Lee et al., 2023; Liao et al., 2023). These ad- 057

vancements present a cheap, fast, and ready-to-use 058

alternative solution to the state-of-the-art methods, 059

many of which use computationally heavy graph 060

neural network (GNN) architectures. However, de- 061

spite all their benefits, the broad applications of 062

such solutions for forecasting problems and LLMs’ 063

“grey-box” nature give rise to concerns regarding 064

their strengths, limitations, and generalizability. 065

In this study, we provide insights into the ef- 066

fect of various confounders – arising from rela- 067

tional and temporal patterns – on the effective- 068

ness of LLM-based models for TKGF. To this 069

end, first, we utilize a state-of-the-art rule-based 070

model to generate reasoning rules for existing TKG 071

datasets. Then, based on the generated rules, we 072

create two weakly labeled datasets containing con- 073

founder annotations for the test sets. Finally, we 074

use these datasets to compare state-of-the-art su- 075

pervised models in single-step and multi-step set- 076

tings (Gastinger et al., 2023) across complexity 077

(e.g., number of unique entities), and sparsity (e.g., 078

relation frequency) confounders (see Table 1 for 079

more thorough examples). 080

Our experimental results on the annotated 081

datasets derived from the well-known TKG bench- 082

marks ICEWS14 and ICEWS18 (García-Durán 083
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Temporal Rule
Complexity Sparsity

# Unique
Entities

# Unique
Relations # Hops Relation

Frequency
Time

Interval

(E1, express intent to meet−1, E2, T1) ⇒ (E1, share information︸ ︷︷ ︸
R

, E2, T2) 2 2 1 fR T2 − T1

(E1, provide military aid, E2, T1) ∧ (E2, intend to protect−1, E3, T2)
⇒ (E1, provide military aid︸ ︷︷ ︸

R

, E3, T3) 3 2 2 fR T3 − T1

(E1, riot, E2, T1) ∧ (E2,make statement, E1, T2) ∧ (E1, riot, E2, T3)
⇒ (E1, demonstrate or rally︸ ︷︷ ︸

R

, E2, T4) 2 3 3 fR T4 − T1

Table 1: Confounder values examples. The samples are taken from Liu et al. (2022) with some small modifications.
Note that fR refers to the frequency of relation R among all quadruples in the dataset.

et al., 2018) reveal that: (1) LLMs outperform su-084

pervised models in scenarios with lower complex-085

ity, such as annotated samples with 1-hop patterns086

in single-step settings or samples involving only087

one unique relation, and (2) as the variability or088

complexity of the patterns increases, LLM-based089

models begin to underperform massively compared090

to supervised models. This phenomenon is partic-091

ularly evident in multi-step settings, where LLMs092

lag behind supervised models in all scenarios.093

2 Related Work094

Supervised Models. Recent supervised models095

mostly utilize embedding-based GNNs to enhance096

their structural and sequential learning capabilities097

by introducing an autoregressive architecture to098

aggregate information both globally and locally099

in RE-Net (Jin et al., 2020), combining convolu-100

tional and recurrent architectures for modeling tem-101

poral sequences in RE-GCN (Li et al., 2021), in-102

troducing neural ordinary differential equations to103

model temporal sequences in TANGO (Han et al.,104

2021), and extending convolutional architectures105

to learn evolutionary patterns in CEN (Li et al.,106

2022). Moreover, in parallel to these models, other107

approaches have been introduced in prior works,108

such as using a copy-mechanism in CyGNet (Zhu109

et al., 2021), leveraging reinforcement learning on110

temporal paths in TiTer (Sun et al., 2021), and111

learning temporal logic rules via temporal random112

walks in TLogic (Liu et al., 2022).113

LLM-based Models. Recent advances in LLMs114

have drastically improved their capabilities, lead-115

ing to emergent behaviors such as in-context learn-116

ing (ICL). ICL allows LLMs to perform tasks117

conditioned solely on the provided context with-118

out any parameter optimization. Utilizing ICL,119

Dataset |E| |R|
# of Facts Time

GranularityTrain/Valid/Test Annotated

ICEWS14 6,869 230 75k/8.5k/7.3k 11,625 1 day
ICEWS18 23,033 256 373k/46k/50k 65,003 1 day

Table 2: Dataset statistics. Each dataset consists of
historical facts divided into three subsets based on time.

Lee et al. (2023) introduced the first LLM-based 120

TKGF model, which showed performance on par 121

with state-of-the-art supervised models without any 122

training. Liao et al. (2023); Xia et al. (2024) intro- 123

duced an improved historical fact retriever and an 124

alignment training procedure, posting better perfor- 125

mances than the state-of-the-art supervised models. 126

In parallel, Xia et al. (2024) introduced a fusion 127

between LLM-based and supervised models, lead- 128

ing to performance improvements across the board. 129

While these LLM-based models have shown stel- 130

lar achievements toward the TKGF task, we still 131

lack a proper understanding of their strengths and 132

limitations, a gap that this work aims to bridge. 133

3 Experimental Setup 134

3.1 Datasets 135

Our experiments focused on two prominent TKGF 136

datasets: ICEWS14 (García-Durán et al., 2018) 137

and ICEWS18 (Jin et al., 2020) (see Table 2). We 138

specifically chose these datasets because 1) they 139

are commonly used by almost all the prior works in 140

the literature and 2) they pose a much greater chal- 141

lenge to the forecasting models compared to other 142

existing datasets such as WIKI (Leblay and Chekol, 143

2018) and YAGO (Rebele et al., 2016). Moreover, 144

to keep our results consistent and comparable to 145

previous works, we use the same train/valid/test 146

splits as Gastinger et al. (2023). 147
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3.2 Weak Labeling148

One of the challenges we faced in our experiments149

was the absence of annotations for different con-150

founders in the existing datasets. To overcome151

this issue, we used TLogic (Liu et al., 2022), a152

state-of-the-art rule-learning-based TKG model, to153

annotate test samples with temporal multi-hop pat-154

terns. To this end, first, we ran the rule-learning155

part of TLogic on the combination of all quadruples156

from the train, valid, and test sets with the number157

of hops ∈ {1, 2, 3}. Then, we annotated each test158

sample using the matching pattern with the high-159

est score1, if such a rule existed. Finally, for the160

annotated test quadruples, we extract various con-161

founders from their associated patterns, including162

the number of unique entities and relations, the163

pattern’s length denoted as “hop”, the relation fre-164

quency of the test query, and the time interval (see165

Table 1 for examples of extracted values). Table 2166

provides the annotation statistics.167

3.3 Models168

For our LLM-based model, we utilize the ICL-169

based model as described by Lee et al. (2023),170

which employs gpt-neox-20b (Black et al., 2022).171

This method is an inference-time approach that172

demonstrates performance comparable to that of173

supervised models. Moreover, we use GenTKG174

(Liao et al., 2023) as another LLM-based baseline.175

This method involves fine-tuning the base language176

model over a small portion of the training dataset.177

For both models, we utilize the implementation178

provided by the authors. Finally, for the TKG179

baselines we used the following state-of-the-art180

models with the hyperparameters and implemen-181

tation as provided by (Gastinger et al., 2023): RE-182

Net (Jin et al., 2020), RE-GCN (Li et al., 2021),183

TANGO (Han et al., 2021), CyGNet (Zhu et al.,184

2021), and CEN (Li et al., 2022).185

3.4 Implementation Details186

To evaluate each prediction, we retain the top 100187

entities with the highest scores (or the highest log188

probability). This is due to a limitation of the189

ICL-based models preventing them from predict-190

ing entities that do not appear in its context, which191

at most contains 100 historical facts, bounded by192

the context length of the underlying model (i.e.,193

1For a reasoning path matched with a pattern, TLogic
generates a score by combining rule confidence and temporal
recency scores.

gpt-neox-20b). This protocol allows us to evalu- 194

ate and fairly compare the LLM-based and super- 195

vised models across our experiments. As for our 196

metrics, we report the Hits@{1,3} based on the list 197

of retained entities for each prediction. All baseline 198

models, except for GenTKG (Liao et al., 2023), re- 199

port both head and tail prediction performance by 200

generating a head query (?, r, o, t) and a tail query 201

(s, r, ?, t) for each test quadruple (s, r, o, t), follow- 202

ing standard practices in the literature. However, 203

GenTKG focuses solely on tail prediction. Our 204

experiments are focused on combined head and 205

tail predictions and include separate comparisons 206

with GenTKG and other LLM-based models. The 207

codebase utilizes PyTorch (Paszke et al., 2019) and 208

Huggingface (Wolf et al., 2020) libraries. 209

4 Experiments 210

ICL vs. GenTKG. Table 3 presents the single- 211

step tail prediction performance of two prominent 212

LLM-based approaches for TKGF, itemized by the 213

number of hops confounder. As evident, the ICL- 214

based approach outperforms GenTKG by a large 215

margin across all scenarios. While this is somewhat 216

surprising, given that GenTKG further fine-tunes 217

LLMs for TKGF, we leave further investigations 218

to future works and continue our experiments with 219

the ICL method only. 220

LLMs vs. Supervised. We present our experi- 221

mental results on both single-step (top) and multi- 222

step (bottom) queries in Table 4, grouped by the 223

number of hops as the confounder. As evident, 224

LLM-based models only exhibit a better perfor- 225

mance with 1-hop queries in the ICEWS14 dataset. 226

Moreover, as the number of hops, an indicator 227

of the pattern complexity, increases, LLMs’ per- 228

formance gap relative to the supervised models 229

widens. Interestingly, this decline in performance 230

is not monotonic in terms of complexity, making 231

it even more challenging to predict the potential 232

pitfalls. For example, LLMs’ worst performance in 233

ICEWS14 occurs in 2-hop queries, while the per- 234

formance on 3-hop queries stays competitive. We 235

observe the same trend when analyzing other con- 236

founders related to pattern complexity. For exam- 237

ple, LLM-based models outperform the supervised 238

models in patterns involving two unique entities on 239

ICEWS14. However, as the number of unique enti- 240

ties increases, the performance of LLM-based mod- 241

els declines (see Table 5 in Appendix B). Similarly, 242

this trend is evident when the samples are grouped 243
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ICEWS14 ICEWS18

Single-step Train H@1 H@3 H@1 H@3

1-hop 2-hop 3-hop 1-hop 2-hop 3-hop 1-hop 2-hop 3-hop 1-hop 2-hop 3-hop

gpt-neox-20b-entity ✗ 0.467 0.132 0.459 0.676 0.224 0.605 0.324 0.140 0.289 0.517 0.273 0.465
gpt-neox-20b-pair ✗ 0.423 0.084 0.440 0.598 0.123 0.548 0.332 0.141 0.324 0.514 0.227 0.496

GenTKG ✓ 0.406 0.128 0.375 0.557 0.207 0.497 0.088 0.066 0.113 0.129 0.089 0.143

Table 3: Performance (Hits@K) comparison between GentTKG and ICL methods for single-step tail prediction.
The best performance is shown in bold.

ICEWS14 ICEWS18

Single-step Train H@1 H@3 H@1 H@3

1-hop 2-hop 3-hop 1-hop 2-hop 3-hop 1-hop 2-hop 3-hop 1-hop 2-hop 3-hop

RE-GCN ✓ 0.426 0.152 0.387 0.636 0.322 0.561 0.345 0.195 0.319 0.547 0.355 0.502
TANGO ✓ 0.364 0.120 0.362 0.545 0.248 0.502 0.297 0.163 0.283 0.488 0.310 0.455
CEN ✓ 0.433 0.152 0.390 0.632 0.300 0.562 0.339 0.189 0.311 0.540 0.343 0.491

Average 0.408 0.141 0.380 0.604 0.290 0.542 0.327 0.183 0.304 0.525 0.336 0.483
Median 0.426 0.152 0.387 0.632 0.300 0.561 0.339 0.189 0.311 0.540 0.343 0.491

gpt-neox-20b-entity ✗ 0.464 0.106 0.386 0.658 0.178 0.540 0.298 0.112 0.279 0.481 0.224 0.436
∆ Average 0.056 -0.035 0.007 0.054 -0.112 -0.002 -0.029 -0.071 -0.025 -0.044 -0.112 -0.046
∆ Median 0.037 -0.046 -0.001 0.027 -0.122 -0.021 -0.041 -0.078 -0.032 -0.059 -0.119 -0.055

gpt-neox-20b-pair ✗ 0.416 0.068 0.379 0.583 0.098 0.514 0.310 0.109 0.307 0.487 0.179 0.471
∆ Average 0.009 -0.074 -0.001 -0.022 -0.192 -0.027 -0.017 -0.073 0.003 -0.038 -0.157 -0.012
∆ Median -0.010 -0.085 -0.008 -0.049 -0.202 -0.046 -0.029 -0.080 -0.004 -0.053 -0.164 -0.020

ICEWS14 ICEWS18

Multi-step Train H@1 H@3 H@1 H@3

1-hop 2-hop 3-hop 1-hop 2-hop 3-hop 1-hop 2-hop 3-hop 1-hop 2-hop 3-hop

RE-NET ✓ 0.373 0.133 0.360 0.541 0.259 0.513 0.288 0.160 0.278 0.480 0.314 0.450
RE-GCN ✓ 0.366 0.157 0.349 0.554 0.300 0.490 0.295 0.182 0.289 0.483 0.330 0.458
CyGNet ✓ 0.355 0.119 0.345 0.536 0.260 0.499 0.255 0.134 0.261 0.449 0.283 0.441
Average 0.364 0.136 0.351 0.543 0.273 0.501 0.279 0.159 0.276 0.471 0.309 0.450
Median 0.366 0.133 0.349 0.541 0.260 0.499 0.288 0.160 0.278 0.480 0.314 0.450

gpt-neox-20b-entity ✗ 0.343 0.087 0.321 0.496 0.169 0.446 0.197 0.089 0.197 0.313 0.178 0.307
∆ Average -0.021 -0.049 -0.030 -0.048 -0.104 -0.054 -0.082 -0.070 -0.079 -0.158 -0.131 -0.142
∆ Median -0.023 -0.046 -0.028 -0.045 -0.091 -0.053 -0.090 -0.072 -0.081 -0.167 -0.136 -0.143

gpt-neox-20b-pair ✗ 0.309 0.065 0.326 0.437 0.089 0.434 0.237 0.087 0.256 0.379 0.144 0.385
∆ Average -0.055 -0.071 -0.025 -0.106 -0.183 -0.067 -0.042 -0.072 -0.020 -0.092 -0.164 -0.065
∆ Median -0.056 -0.068 -0.023 -0.104 -0.170 -0.065 -0.050 -0.073 -0.022 -0.102 -0.170 -0.066

Table 4: Performance (Hits@K) comparison between supervised models and ICL for single-step (top) and multi-
step (bottom) prediction, grouped by the number of hops as the confounder. The first group consists of supervised
models, whereas the second group consists of ICL models, i.e., GPT-NeoX. The green and red colors represent where
LLM is outperforming and underperforming the average performance of the supervised models.

by number of unique relations (see Table 6 in Ap-244

pendix B). When the samples are grouped by rela-245

tion frequency, the LLM-based models perform on246

par or moderately outperform the supervised mod-247

els only in the ICEWS14 single-step setting. In all248

other cases, the supervised models outperform the249

LLM-based models. However, the upward trend250

in Figure 1 (Appendix B) indicates that as relation251

frequency increases, the performance gap between252

the LLM-based and supervised models decreases.253

Moreover, when the samples are grouped by time254

interval (see Figure 2 in Appendix B), the super-255

vised models consistently outperform the LLM-256

based models. We observe that LLM-based mod-257

els perform worse in the multi-step setup across258

all confounders than their counterpart average su-259

pervised models. Finally, the performance gap is260

wider on the ICEWS18 dataset compared to the 261

ICEWS14 dataset, which could be attributed to the 262

fact that ICEWS18 is more dense and challenging. 263

5 Conclusion 264

In this paper, we presented an in-depth analysis 265

of the effect of various confounders on the predic- 266

tive power of LLM-based and supervised models 267

for TKGF. Specifically, we created two annotated 268

benchmarks for testing TKGF models across var- 269

ied complexities and sparsity levels. Our experi- 270

mental results indicate that while LLMs are effec- 271

tive in low-complexity scenarios, their performance 272

rapidly deteriorates as the complexity of the pat- 273

terns increases. These findings highlight the need 274

for further development and optimization of LLMs 275

for TKGF tasks. 276
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Limitations277

The potential problem with weakly annotating the278

existing datasets is the propagation of biases from279

both the annotator and the source dataset, poten-280

tially resulting in inflated or misleading perfor-281

mances. To overcome this issue, we need a new282

TKGF benchmarking framework for LLM-based283

models that focuses on controlling the confounders284

of the test samples. Specifically, this framework285

should generate pairs of historical context and286

query quadruple (i.e., (Gt, q)) with controllable287

relational pattern distributions in historical context288

and known ground truth for the query quadruple.289

Such a benchmark allows us to examine the pure290

abilities of LLMs for reasoning over relational pat-291

terns and the effectiveness of context retrieval algo-292

rithms for gathering relevant historical facts.293
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ias Niepert. 2018. Learning sequence encoders for314
temporal knowledge graph completion. In Proceed-315
ings of the 2018 Conference on Empirical Methods316
in Natural Language Processing, pages 4816–4821,317
Brussels, Belgium. Association for Computational318
Linguistics.319

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gre-320
gory Valiant. 2022. What can transformers learn in-321
context? a case study of simple function classes. In322
Advances in Neural Information Processing Systems,323
volume 35, pages 30583–30598. Curran Associates,324
Inc.325

Julia Gastinger, Timo Sztyler, Lokesh Sharma, Anett326
Schuelke, and Heiner Stuckenschmidt. 2023. Com-327
paring apples and oranges? on the evaluation of meth-328
ods for temporal knowledge graph forecasting. In329

Machine Learning and Knowledge Discovery in 330
Databases: Research Track, pages 533–549, Cham. 331
Springer Nature Switzerland. 332

Zhen Han, Zifeng Ding, Yunpu Ma, Yujia Gu, and 333
Volker Tresp. 2021. Learning neural ordinary equa- 334
tions for forecasting future links on temporal knowl- 335
edge graphs. In Proceedings of the 2021 Conference 336
on Empirical Methods in Natural Language Process- 337
ing, pages 8352–8364, Online and Punta Cana, Do- 338
minican Republic. Association for Computational 339
Linguistics. 340

Woojeong Jin, Meng Qu, Xisen Jin, and Xiang Ren. 341
2020. Recurrent event network: Autoregressive struc- 342
ture inferenceover temporal knowledge graphs. In 343
Proceedings of the 2020 Conference on Empirical 344
Methods in Natural Language Processing (EMNLP), 345
pages 6669–6683, Online. Association for Computa- 346
tional Linguistics. 347

Julien Leblay and Melisachew Wudage Chekol. 2018. 348
Deriving validity time in knowledge graph. In Com- 349
panion Proceedings of the The Web Conference 2018, 350
WWW ’18, page 1771–1776, Republic and Canton 351
of Geneva, CHE. International World Wide Web Con- 352
ferences Steering Committee. 353

Dong-Ho Lee, Kian Ahrabian, Woojeong Jin, Fred 354
Morstatter, and Jay Pujara. 2023. Temporal knowl- 355
edge graph forecasting without knowledge using in- 356
context learning. In Proceedings of the 2023 Con- 357
ference on Empirical Methods in Natural Language 358
Processing, pages 544–557, Singapore. Association 359
for Computational Linguistics. 360

Kalev Leetaru and Philip A Schrodt. 2013. Gdelt: 361
Global data on events, location, and tone, 1979–2012. 362
In ISA annual convention, volume 2, pages 1–49. 363
Citeseer. 364

Zixuan Li, Saiping Guan, Xiaolong Jin, Weihua Peng, 365
Yajuan Lyu, Yong Zhu, Long Bai, Wei Li, Jiafeng 366
Guo, and Xueqi Cheng. 2022. Complex evolutional 367
pattern learning for temporal knowledge graph rea- 368
soning. In Proceedings of the 60th Annual Meet- 369
ing of the Association for Computational Linguistics 370
(Volume 2: Short Papers), pages 290–296, Dublin, 371
Ireland. Association for Computational Linguistics. 372

Zixuan Li, Xiaolong Jin, Wei Li, Saiping Guan, Jiafeng 373
Guo, Huawei Shen, Yuanzhuo Wang, and Xueqi 374
Cheng. 2021. Temporal knowledge graph reason- 375
ing based on evolutional representation learning. In 376
Proceedings of the 44th International ACM SIGIR 377
Conference on Research and Development in Infor- 378
mation Retrieval, SIGIR ’21, page 408–417, New 379
York, NY, USA. Association for Computing Machin- 380
ery. 381

Ruotong Liao, Xu Jia, Yunpu Ma, and Volker Tresp. 382
2023. Gentkg: Generative forecasting on temporal 383
knowledge graph. arXiv preprint arXiv:2310.07793. 384

Yushan Liu, Yunpu Ma, Marcel Hildebrandt, Mitchell 385
Joblin, and Volker Tresp. 2022. Tlogic: Temporal 386

5

https://doi.org/10.18653/v1/2022.bigscience-1.9
https://doi.org/10.18653/v1/2022.bigscience-1.9
https://doi.org/10.18653/v1/2022.bigscience-1.9
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.1145/1376616.1376746
https://doi.org/10.18653/v1/D18-1516
https://doi.org/10.18653/v1/D18-1516
https://doi.org/10.18653/v1/D18-1516
https://proceedings.neurips.cc/paper_files/paper/2022/file/c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf
https://proceedings.neurips.cc/paper_files/paper/2022/file/c529dba08a146ea8d6cf715ae8930cbe-Paper-Conference.pdf
https://doi.org/10.1007/978-3-031-43418-1_32
https://doi.org/10.1007/978-3-031-43418-1_32
https://doi.org/10.1007/978-3-031-43418-1_32
https://doi.org/10.1007/978-3-031-43418-1_32
https://doi.org/10.1007/978-3-031-43418-1_32
https://doi.org/10.18653/v1/2021.emnlp-main.658
https://doi.org/10.18653/v1/2021.emnlp-main.658
https://doi.org/10.18653/v1/2021.emnlp-main.658
https://doi.org/10.18653/v1/2021.emnlp-main.658
https://doi.org/10.18653/v1/2021.emnlp-main.658
https://doi.org/10.18653/v1/2020.emnlp-main.541
https://doi.org/10.18653/v1/2020.emnlp-main.541
https://doi.org/10.18653/v1/2020.emnlp-main.541
https://doi.org/10.1145/3184558.3191639
https://doi.org/10.18653/v1/2023.emnlp-main.36
https://doi.org/10.18653/v1/2023.emnlp-main.36
https://doi.org/10.18653/v1/2023.emnlp-main.36
https://doi.org/10.18653/v1/2023.emnlp-main.36
https://doi.org/10.18653/v1/2023.emnlp-main.36
https://doi.org/10.18653/v1/2022.acl-short.32
https://doi.org/10.18653/v1/2022.acl-short.32
https://doi.org/10.18653/v1/2022.acl-short.32
https://doi.org/10.18653/v1/2022.acl-short.32
https://doi.org/10.18653/v1/2022.acl-short.32
https://doi.org/10.1145/3404835.3462963
https://doi.org/10.1145/3404835.3462963
https://doi.org/10.1145/3404835.3462963
https://doi.org/10.1609/aaai.v36i4.20330
https://doi.org/10.1609/aaai.v36i4.20330


logical rules for explainable link forecasting on tem-387
poral knowledge graphs. Proceedings of the AAAI388
Conference on Artificial Intelligence, 36(4):4120–389
4127.390

Suvir Mirchandani, Fei Xia, Pete Florence, brian ichter,391
Danny Driess, Montserrat Gonzalez Arenas, Kan-392
ishka Rao, Dorsa Sadigh, and Andy Zeng. 2023.393
Large language models as general pattern machines.394
In 7th Annual Conference on Robot Learning.395

Adam Paszke, Sam Gross, Francisco Massa, Adam396
Lerer, James Bradbury, Gregory Chanan, Trevor397
Killeen, Zeming Lin, Natalia Gimelshein, Luca398
Antiga, Alban Desmaison, Andreas Köpf, Edward399
Yang, Zachary DeVito, Martin Raison, Alykhan Te-400
jani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang,401
Junjie Bai, and Soumith Chintala. 2019. Pytorch: An402
imperative style, high-performance deep learning li-403
brary. In Advances in Neural Information Processing404
Systems 32: Annual Conference on Neural Informa-405
tion Processing Systems 2019, NeurIPS 2019, De-406
cember 8-14, 2019, Vancouver, BC, Canada, pages407
8024–8035.408

Thomas Rebele, Fabian Suchanek, Johannes Hoffart,409
Joanna Biega, Erdal Kuzey, and Gerhard Weikum.410
2016. Yago: A multilingual knowledge base from411
wikipedia, wordnet, and geonames. In The Semantic412
Web – ISWC 2016: 15th International Semantic Web413
Conference, Kobe, Japan, October 17–21, 2016, Pro-414
ceedings, Part II, page 177–185, Berlin, Heidelberg.415
Springer-Verlag.416

Haohai Sun, Jialun Zhong, Yunpu Ma, Zhen Han, and417
Kun He. 2021. TimeTraveler: Reinforcement learn-418
ing for temporal knowledge graph forecasting. In419
Proceedings of the 2021 Conference on Empirical420
Methods in Natural Language Processing, pages421
8306–8319, Online and Punta Cana, Dominican Re-422
public. Association for Computational Linguistics.423
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Single-step Train
ICEWS14 ICEWS18

H@1 H@3 H@1 H@3

2 3 4 2 3 4 2 3 4 2 3 4

RE-GCN ✓ 0.452 0.368 0.106 0.660 0.552 0.232 0.350 0.329 0.160 0.552 0.517 0.302
TANGO ✓ 0.394 0.342 0.083 0.572 0.490 0.180 0.302 0.293 0.128 0.495 0.470 0.255
CEN ✓ 0.461 0.369 0.098 0.658 0.546 0.230 0.344 0.323 0.147 0.546 0.509 0.283

Average 0.436 0.360 0.096 0.630 0.529 0.214 0.332 0.315 0.145 0.531 0.499 0.280

gpt-neox-20b-entity ✗ 0.492 0.353 0.078 0.681 0.508 0.168 0.303 0.273 0.129 0.486 0.437 0.222
∆ Average 0.056 -0.007 -0.017 0.051 -0.021 -0.046 -0.029 -0.042 -0.016 -0.045 -0.061 -0.057
∆ Median 0.039 -0.015 -0.020 0.023 -0.038 -0.063 -0.041 -0.050 -0.018 -0.060 -0.071 -0.060

gpt-neox-20b-pair ✗ 0.446 0.345 0.068 0.613 0.483 0.099 0.316 0.304 0.120 0.494 0.469 0.193
∆ Average 0.011 -0.014 -0.028 -0.016 -0.047 -0.115 -0.017 -0.011 -0.025 -0.038 -0.030 -0.087
∆ Median -0.006 -0.022 -0.031 -0.044 -0.063 -0.131 -0.029 -0.019 -0.027 -0.053 -0.040 -0.090

Multi-step Train
ICEWS14 ICEWS18

H@1 H@3 H@1 H@3

2 3 4 2 3 4 2 3 4 2 3 4

RE-NET ✓ 0.400 0.341 0.099 0.573 0.492 0.202 0.293 0.287 0.130 0.487 0.466 0.256
RE-GCN ✓ 0.382 0.350 0.106 0.564 0.505 0.208 0.301 0.301 0.137 0.490 0.475 0.267
CyGNet ✓ 0.379 0.333 0.083 0.562 0.496 0.170 0.260 0.267 0.114 0.454 0.456 0.237
Average 0.387 0.341 0.096 0.566 0.498 0.193 0.285 0.285 0.127 0.477 0.466 0.253

gpt-neox-20b-entity ✗ 0.371 0.294 0.064 0.525 0.419 0.136 0.202 0.197 0.082 0.319 0.312 0.156
∆ Average -0.015 -0.047 -0.032 -0.041 -0.078 -0.057 -0.082 -0.087 -0.045 -0.158 -0.154 -0.097
∆ Median -0.011 -0.047 -0.035 -0.039 -0.077 -0.066 -0.091 -0.089 -0.048 -0.168 -0.154 -0.100

gpt-neox-20b-pair ✗ 0.341 0.302 0.058 0.467 0.414 0.084 0.244 0.254 0.088 0.387 0.384 0.144
∆ Average -0.046 -0.040 -0.038 -0.099 -0.084 -0.109 -0.040 -0.031 -0.039 -0.091 -0.082 -0.109
∆ Median -0.042 -0.039 -0.041 -0.096 -0.082 -0.118 -0.048 -0.033 -0.042 -0.100 -0.082 -0.112

Table 5: Performance (Hits@K) comparison between supervised models and ICL for single-step (top) and multi-
step (bottom) prediction, grouped by the number of number of unique entities as confounder. The first group
consists of supervised models, whereas the second group consists of ICL models, i.e., GPT-NeoX with a history
length of 100. The green and red colors represent where LLM is outperforming and underperforming the average
performance of the supervised models.

(a) ICEWS14 Single-step (b) ICEWS18 Single-step

(a) ICEWS14 Multi-step (b) ICEWS18 Multi-step

Figure 1: Hits@1 difference between the average performance of ICL and the average performance of supervised
models,grouped by the relation frequency confounder, for single-step (top) and multi-step (bottom) prediction.
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Single-step Train
ICEWS14 ICEWS18

H@1 H@3 H@1 H@3

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

RE-GCN ✓ 0.495 0.357 0.344 0.403 0.717 0.548 0.530 0.553 0.346 0.319 0.308 0.284 0.550 0.512 0.486 0.456
TANGO ✓ 0.455 0.292 0.318 0.380 0.646 0.454 0.469 0.497 0.309 0.269 0.276 0.248 0.508 0.451 0.441 0.411
CEN ✓ 0.501 0.366 0.345 0.403 0.702 0.549 0.524 0.563 0.338 0.313 0.301 0.279 0.539 0.504 0.477 0.449

Average 0.484 0.338 0.335 0.396 0.689 0.517 0.508 0.538 0.331 0.300 0.295 0.270 0.533 0.489 0.468 0.439
Median 0.495 0.357 0.344 0.403 0.702 0.548 0.524 0.553 0.338 0.313 0.301 0.279 0.539 0.504 0.477 0.449

gpt-neox-20b-entity ✗ 0.570 0.363 0.351 0.358 0.770 0.531 0.500 0.512 0.301 0.282 0.242 0.224 0.482 0.456 0.391 0.357
∆ Average 0.086 0.024 0.016 -0.037 0.081 0.014 -0.008 -0.026 -0.030 -0.018 -0.052 -0.046 -0.051 -0.033 -0.077 -0.082
∆ Median 0.074 0.005 0.008 -0.045 0.067 -0.017 -0.024 -0.041 -0.037 -0.031 -0.058 -0.055 -0.058 -0.047 -0.086 -0.093

gpt-neox-20b-pair ✗ 0.585 0.295 0.344 0.322 0.820 0.408 0.480 0.414 0.358 0.279 0.268 0.226 0.566 0.441 0.411 0.334
∆ Average 0.101 -0.043 0.009 -0.074 0.131 -0.109 -0.028 -0.124 0.027 -0.021 -0.027 -0.044 0.033 -0.048 -0.057 -0.105
∆ Median 0.090 -0.062 0.001 -0.081 0.118 -0.140 -0.044 -0.139 0.020 -0.033 -0.033 -0.052 0.026 -0.063 -0.066 -0.115

Multi-step Train
ICEWS14 ICEWS18

H@1 H@3 H@1 H@3

1 2 3 4 1 2 3 4 1 2 3 4 1 2 3 4

RE-NET ✓ 0.455 0.308 0.317 0.370 0.620 0.466 0.476 0.517 0.304 0.261 0.268 0.247 0.508 0.440 0.441 0.408
RE-GCN ✓ 0.425 0.312 0.317 0.358 0.636 0.476 0.461 0.485 0.313 0.269 0.286 0.250 0.506 0.448 0.450 0.410
CyGNet ✓ 0.466 0.271 0.314 0.342 0.662 0.433 0.469 0.494 0.287 0.227 0.252 0.216 0.490 0.411 0.428 0.378
Average 0.448 0.297 0.316 0.357 0.639 0.458 0.469 0.499 0.301 0.252 0.268 0.237 0.501 0.433 0.439 0.399
Median 0.455 0.308 0.317 0.358 0.636 0.466 0.469 0.494 0.304 0.261 0.268 0.247 0.506 0.440 0.441 0.408

gpt-neox-20b-entity ✗ 0.415 0.280 0.287 0.311 0.569 0.414 0.413 0.440 0.219 0.181 0.179 0.155 0.330 0.299 0.284 0.246
∆ Average -0.033 -0.017 -0.029 -0.046 -0.070 -0.044 -0.056 -0.058 -0.082 -0.072 -0.090 -0.082 -0.171 -0.134 -0.155 -0.153
∆ Median -0.039 -0.028 -0.030 -0.047 -0.067 -0.052 -0.056 -0.054 -0.085 -0.080 -0.089 -0.091 -0.175 -0.141 -0.156 -0.162

gpt-neox-20b-pair ✗ 0.448 0.223 0.295 0.286 0.628 0.312 0.403 0.358 0.290 0.210 0.230 0.185 0.467 0.333 0.341 0.275
∆ Average -0.001 -0.074 -0.021 -0.070 -0.012 -0.147 -0.066 -0.141 -0.012 -0.043 -0.038 -0.052 -0.034 -0.100 -0.099 -0.123
∆ Median -0.007 -0.085 -0.022 -0.072 -0.008 -0.155 -0.066 -0.137 -0.014 -0.051 -0.037 -0.061 -0.039 -0.106 -0.100 -0.132

Table 6: Performance (Hits@K) comparison between supervised models and ICL for single-step (top) and multi-
step (bottom) prediction, grouped by the number of number of unique relations as confounder. The first group
consists of supervised models, whereas the second group consists of ICL models, i.e., GPT-NeoX with a history
length of 100. The green and red colors represent where LLM is outperforming and underperforming the average
performance of the supervised models.

(a) ICEWS14 Single-step (b) ICEWS18 Single-step

(a) ICEWS14 Multi-step (b) ICEWS18 Multi-step

Figure 2: Hits@1 difference between the average performance of ICL and the average performance of supervised
models, grouped by the time interval confounder, for single-step (top) and multi-step (bottom) prediction.
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