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Abstract

We develop EigenVI, an eigenvalue-based approach for black-box variational infer-
ence (BBVI). EigenVI constructs its variational approximations from orthogonal
function expansions. For distributions over RD, the lowest order term in these
expansions provides a Gaussian variational approximation, while higher-order
terms provide a systematic way to model non-Gaussianity. These approximations
are flexible enough to model complex distributions (multimodal, asymmetric), but
they are simple enough that one can calculate their low-order moments and draw
samples from them. EigenVI can also model other types of random variables (e.g.,
nonnegative, bounded) by constructing variational approximations from different
families of orthogonal functions. Within these families, EigenVI computes the
variational approximation that best matches the score function of the target distri-
bution by minimizing a stochastic estimate of the Fisher divergence. Notably, this
optimization reduces to solving a minimum eigenvalue problem, so that EigenVI
effectively sidesteps the iterative gradient-based optimizations that are required
for many other BBVI algorithms. (Gradient-based methods can be sensitive to
learning rates, termination criteria, and other tunable hyperparameters.) We use
EigenVI to approximate a variety of target distributions, including a benchmark
suite of Bayesian models from posteriordb. On these distributions, we find that
EigenVI is more accurate than existing methods for Gaussian BBVI.

1 Introduction

Probabilistic modeling is a cornerstone of modern data analysis, uncertainty quantification, and
decision making. A key challenge of probabilistic inference is computing a target distribution of
interest; for instance, in Bayesian modeling, the goal is to compute a posterior distribution, which is
often intractable. Variational inference (VI) [5, 21, 45] is a popular method for scalable probabilistic
inference that has worked across a range of applications. The idea behind VI is to approximate the
target distribution by the closest member of some tractable family.

One major focus of research is to develop black-box algorithms for variational inference [6, 15,
23, 27, 32, 37, 40, 44, 46]. Algorithms for black-box variational inference (BBVI) can be used to
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approximate any target distribution that is differentiable and computable up to some multiplicative
(normalizing) constant; as such, they are extremely flexible. These algorithms have been widely
implemented in popular probabilistic programming languages, and they are part of the modern
toolbox for practitioners in computational statistics and data analysis [1, 4, 7, 13, 43].

Traditionally, the variational approximations in BBVI are optimized by minimizing the Kullback-
Leibler (KL) divergence between the variational family and the target (equivalently, maximizing the
ELBO). This strategy is powerful and scalable, but it relies on stochastic gradient descent (SGD),
which can be difficult to tune [10, 11, 51]. These difficulties can be acute even for Gaussian variational
approximations [27, 40], particularly if these approximations employ full covariance matrices.

More recently, researchers have proposed algorithms for Gaussian BBVI that do not require the use
of SGD [6, 37]. Instead of minimizing the KL divergence, these methods aim to match the scores, or
the gradients of the log densities, between the variational distribution and the target density. These
methods exploit the special form of Gaussian distributions to derive closed-form proximal point
updates for score-matching. These updates are as inexpensive as SGD, but not as brittle. They show
that score-based BBVI can be applied in an elegant way to Gaussian variational families.

In this paper, we show that score-based BBVI also yields simple, closed-form updates for a much
broader family of variational approximations. Specifically, we propose a new class of variational
families constructed from orthogonal function expansions and inspired by solutions to the Schrödinger
equation in quantum mechanics. These families are expressive enough to parameterize a wide range
of target distributions; at the same time, the distributions in these families are sufficiently tractable
that one can calculate low-order moments and draw samples from them. In this paper, we mostly
use orthogonal function expansions to construct distributions supported on RD; in this case, the
lowest-order term in the expansion is sufficient to model Gaussian behavior, while higher-order terms
account for increasing amounts of non-Gaussianity. More generally, we also show how different basis
sets of orthogonal functions can be used to construct variational families over other spaces.

To optimize over a variational family from this class, we minimize an estimate of the Fisher divergence,
which measures the scores of the variational distribution against those of the target distribution. We
show that this optimization reduces to a minimum eigenvalue problem, thus avoiding the need for
gradient-based methods. For this reason, we call our approach EigenVI.

We study EigenVI with a variational family constructed from weighted Hermite polynomials. We
first demonstrate the expressiveness of this family on a variety of multimodal, asymmetric, and heavy-
tailed distributions. We then use EigenVI to approximate a diverse collection of non-Gaussian target
distributions from posteriordb [35], a benchmark suite of Bayesian hierarchical models. On these
problems, EigenVI provides more accurate posterior approximations than leading implementations
of Gaussian BBVI based on KL minimization and score-matching.

The organization of this paper is as follows. In Section 2 we introduce the variational families that
arise from orthgonal function expansions, and we show how score-matching in these families reduces
to an eigenvalue problem. In Section 3 we review the literature related to EigenVI. In Section 4, we
evaluate EigenVI on a variety of synthetic and real-data targets. Finally, in Section 5, we discuss
limitations and future work.

2 Score-based variational inference with orthogonal function expansions

In this section we use orthogonal function expansions to develop new variational families for ap-
proximate probabilistic inference. In Section 2.1, we review the basic properties of these expansions.
In Section 2.2, we introduce a score-based divergence for VI with these families; notably, for this
divergence, the optimization for VI reduces to an eigenvalue problem. Finally in Section 2.3, we
consider how to use these variational approximations for unstandardized distributions; in these
settings we must carefully manage the trade-off between expressiveness and computational cost.

2.1 Orthogonal function expansions

Let Z ⊆ RD denote the support of the target distribution p. Suppose that there exists a complete set of
orthonormal basis functions {ϕk(z)}∞k=1 on this set. By complete, we mean that any sufficiently well-
behaved function f : Z → R can be approximated, to arbitrary accuracy, by a particular weighted
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Table 1: Examples of orthogonal function expansions in one dimension. The basis functions in the
table are not normalized, but they can be rescaled so that their squares integrate to one.

support orthogonal family basis functions ϕk(·)

z ∈ [−1, 1] Legendre polynomials {1, z, 3z2−1, 5z3−3z, . . .}
z = eiθ∈ S1 Fourier basis {1, cos θ, sin θ, cos 2θ, sin 2θ, . . .}
z ∈ [0,∞) weighted Laguerre polynomials e−

z
2 {1, 1−z, z2−4z+2, . . .}

z ∈ R weighted Hermite polynomials e−
z2

4 {1, z, (z2−1), (z3−3z), . . .}

sum of these basis functions, and by orthonormal, we mean that the basis functions satisfy∫
ϕk(z)ϕk′(z) dz =

{
1 if k = k′,
0 otherwise, (1)

where the integral is over Z . Define the K th-order variational family QK to be the set containing all
distributions of the form

q(z) =

(
K∑

k=1

αkϕk(z)

)2

where
K∑

k=1

α2
k = 1, (2)

and where αk ∈ R for k = 1, . . . ,K are the parameters of the family QK . In words, QK contains
all distributions that can be obtained by taking weighted sums of the first K basis functions and then
squaring the result.

Eq. 2 involves a squaring operation, a sum-of-squares constraint, and a weighted sum. The squaring
operation ensures that the density functions in QK are nonnegative (i.e., with q(z)≥0 for all z ∈ Z),
while the sum-of-squares constraint ensures that they are normalized:∫

q(z) dz =

∫ ( K∑
k=1

αkϕk(z)

)2

dz =

∫ K∑
k,k′=1

αkαk′ϕk(z)ϕk′(z) dz =

K∑
k=1

α2
k = 1. (3)

The weighted sum in Eq. 2 bears a superficial similarity to a mixture model, but note that neither the
basis functions ϕk(z) nor the weights αk in Eq. 2 are constrained to be nonnegative. Distributions
of this form arise naturally in physics from the quantum-mechanical wave functions that satisfy
Schrödinger’s equation [16]. In that setting, though, it is typical to consider complex-valued weights
and basis functions, whereas here we only consider real-valued ones.

The simplest examples of orthogonal function expansions arise in one dimension. For example,
functions on the interval [−1, 1] can be represented as weighted sums of Legendre polynomials,
while functions on the unit circle can be represented by Fourier series of sines and cosines; see
Table 1. Distributions on unbounded intervals can also be represented in this way. On the real line,
for example, we may consider approximations of the form in Eq. 2 where

ϕk+1(z) =
(√

2πk!
)− 1

2
(
e−

1
2 z

2
) 1

2

Hk(z), (4)

and Hk(z) are the probabilist’s Hermite polynomials given by

Hk(z) = (−1)ke
z2

2
dk

dzk

[
e−

z2

2

]
. (5)

Note how the lowest-order basis function ϕ1(z) in this family gives rise (upon squaring) to a Gaussian
distribution with zero mean and unit variance.

Figure 1 shows how various multimodal distributions with one-dimensional support can be approxi-
mated by computing weighted sums of basis functions and squaring their result. We emphasize that
the more basis functions in the sum, the better the approximation.

Orthogonal function expansions in one dimension are also important because their Cartesian products
can be used to generate orthogonal function expansions in higher dimensions. For example, we can
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Figure 1: Target probability distributions (black dashed curves) on the interval [−1, 1] (left), the unit
circle (middle), and the real line (right), and their approximations by orthogonal function expansions
from different families and of different orders; see Eq. 2 and Table 1.

approximate distributions over (say) R3 by

q(z1, z2, z3) =

K1∑
i=1

K2∑
j=1

K3∑
k=1

βijk ϕi(z1)ϕj(z2)ϕk(z3)

2

where
∑
ijk

β2
ijk = 1, (6)

where βijk ∈ R now parametrize the family. Note that there are a total K1K2K3 parameters in the
above expansion, so that this method of Cartesian products does not scale well to high dimensions if
multiple basis functions are used per dimension. Note that the same strategy can also be used for
random variables of mixed type: for example, from Table 1, we can create a variational family of
distributions over R×[−1, 1]×[0,∞) from the Cartesian product of orthogonal function expansions
involving Hermite, Legendre, and Laguerre polynomials.

As shown in Figure 1, the approximating distributions from K th-order expansions can model the
presence of multiple modes as well as many types of asymmetry, and this expressiveness also extends
to higher dimensions. Nevertheless, it remains tractable to sample from these distributions and even
to calculate (analytically) their low-order moments, as we show in Appendices A and B.

For concreteness, consider the distribution over R3 in Eq. 6. The marginal distribution q(z1) is

q(z1) =

∫
q(z1, z2, z3) dz2 dz3 =

∑
ii′

∑
jk

βijkβi′jk

ϕi(z1)ϕi′(z1), (7)

and from this expression, moments such as E[z1] and Var[z1] can be calculated by evaluating integrals
involving the elementary functions in Table 1. (In practice, these integrals are further simplified by
recursion relations that relate basis functions of different orders; we demonstrate how to compute the
first two moments for the normalized Hermite family in Eqs. B.19 and B.22.)

To generate samples {z(t)}, each dimension is sampled as follows: we draw z
(t)
1 ∼ q(z1) by comput-

ing the cumulative distribution function (CDF) of this marginal distribution and then numerically
inverting this CDF. Finally, extending these ideas, we can calculate higher-order moments and obtain
joint samples via the nested draws

z
(t)
1 ∼ q(z1), z

(t)
2 ∼ q(z2 | z1), z

(t)
3 ∼ q(z3 | z1, z2). (8)

The overall complexity of these procedures scales no worse than quadratically in the number of basis
functions in the expansion. These extensions are discussed further in Appendices A and B.

2.2 EigenVI

In variational inference, we posit a parameterized family of approximating distributions and then
compute the particular approximation in this family that is closest to a target distribution of interest.
Eq. 2 constructs a variational family QK from the orthogonal functions {ϕk(z)}Kk=1 whose variational
parameters are the weights {αk}Kk=1. We now derive EigenVI, a method to find q ∈ QK that is close
to the target distribution p(z).
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We first define the measure of closeness that we will minimize. EigenVI measures the quality of an
approximate density by the Fisher divergence [18],

D(q, p) =

∫
∥∇ log q(z)−∇ log p(z)∥2 q(z)dz, (9)

where ∇ log q(z) and ∇ log p(z) are the score functions of the variational approximation and target,
respectively. Suppose that q and p have the same support; then the Fisher divergence vanishes if and
only if the scores of q and p are everywhere equal.

Though p is, by assumption, intractable to compute, in many applications it is possible to efficiently
compute the score ∇ log p at any point z ∈ Z . For example, in Bayesian models the score of the
target posterior is equal to the gradient of the log joint. This observation is the main motivation for
score-based methods in probabilistic modeling [6, 31, 37, 48].

Here we seek the q∈QK that minimizes D(q, p). But now a challenge arises: it is generally difficult
to evaluate the integral for D(q, p) in Eq. 9, let alone to minimize it as a function of q. While it is
possible to sample from the distribution q, it is not straightforward to simultaneously sample from
q and optimize over the variational parameters {αk}Kk=1 in terms of which it is defined. Instead,
we construct an unbiased estimator of D(q, p) by importance sampling, which also decouples the
sampling distribution from the optimization. Let {z1, z2, . . . zB} denote a batch of B samples drawn
from some proposal distribution π on Z . From these samples we can form the unbiased estimator

D̂π(q, p) =

B∑
b=1

q(zb)

π(zb)

∥∥∇ log q(zb)−∇ log p(zb)
∥∥2. (10)

This estimator should be accurate for appropriately broad proposal distributions and for sufficiently
large batch sizes. We can therefore attempt to minimize Eq. 10 in place of Eq. 9.

Now we show that the minimization of Eq. 10 over q ∈ QK simplifies to a minimum eigenvalue
problem for the weights {αk}Kk=1. To obtain the eigenvalue problem, we substitute the orthogonal
function expansion in Eq. 2 into Eq. 10 for the unbiased estimator of D(q, p). As an intermediate
step, we differentiate Eq. 2 to obtain the scores

∇ log q(zb) =
2
∑

k αk∇ϕk(z
b)∑

k αkϕk(zb)
. (11)

Further substitution of the scores provides the key result behind our approach: the unbiased estimator
in Eq. 10 is a simple quadratic form in the weights α := [α1, . . . , αK ]⊤ of the orthogonal function
expansion,

D̂π(q, p) = α⊤Mα, (12)
where the coefficients of the quadratic form are given by

Mjk =

B∑
b=1

1

π(zb)

[
2∇ϕj(z

b)− ϕj(z
b)∇ log p(zb)

]
·
[
2∇ϕk(z

b)− ϕk(z
b)∇ log p(zb)

]
. (13)

Note that the elements of the K×K symmetric matrix M capture all of the dependence on the batch
of samples {zb}Bb=1, the scores of p and q at these samples, and the choice of the family of orthogonal
functions. Next we minimize the quadratic form in Eq. 12 subject to the sum-of-squares constraint∑

k α
2
k = 1 in Eq. 2. In this way we obtain the eigenvalue problem [8]

min
q∈QK

[
D̂π(q, p)

]
= min

∥α∥=1

[
α⊤Mα

]
=: λmin(M), (14)

where λmin(M) is the minimal eigenvalue of M , and the optimal weights are given (up to an arbitrary
sign) by its corresponding eigenvector; see Appendix C for a proof. EigenVI solves Eq. 14.

We note that the eigenvalue problem in EigenVI arises from the curious alignment of three particular
choices—namely, (i) the choice of variational family (based on orthogonal function expansions),
(ii) the choice of divergence (based on score-matching), and (iii) the choice of estimator for the
divergence (based on importance sampling). The simplicity of this eigenvalue problem stands in
contrast to the many heuristics of gradient-based optimizations—involving learning rates, terminating
criteria, and perhaps other algorithmic hyperparameters—that are typically required for ELBO-based

5



BBVI [10, 11]. But EigenVI is also not entirely free of heuristics; to compute the estimator in Eq. 10
we must also specify the proposal distribution π and the number of samples B; see Appendix D for a
discussion.

The size of the eigenvalue problem in EigenVI is equal to the number of basis functions K in the
orthogonal function expansion of Eq. 2. The eigenvalue problem also generalizes to orthogonal
function expansions that are formed from Cartesian products of one-dimensional families, but in this
case, if multiple basis functions are used per dimension, then the overall basis size grows exponentially
in the dimensionality. Thus, for example, the eigenvalue problem would be of size K1K2K3 for the
approximation in Eq. 6, as can be seen by “flattening” the tensor of weights β in Eq. 6 into the vector
of weights α = vec(β) in Eq. 2. Finally, we note that EigenVI only needs to compute the minimal
eigenvector of M in Eq. 14, and therefore it can benefit from specialized routines that are much less
expensive than a full diagonalization.

2.3 EigenVI in RD: the Hermite family and standardization

We now discuss the specific case of EigenVI for Z=RD with the Hermite-based variational family
in Eq. 4. For this case, we propose a transformation of the domain that serves to precondition or
standardize the target distribution before applying EigenVI. While this standardization is not required
to use EigenVI, it helps to reduce the number of basis functions needed to approximate the target,
leading to a more computationally efficient procedure. It also suggests natural default choices for the
proposal distribution π in Eq. 10.

Recall that the eigenvalue problem grows linearly in size with the number of basis functions. Before
applying EigenVI, our goal is therefore to transform the domain in a way that reduces the number of
basis functions needed for a good approximation. To meet this goal for distributions over RD, we
observe that the lowest-order basis function of the Hermite family in Eq. 4 yields (upon squaring) a
standard multivariate Gaussian, with zero mean and unit covariance. Intuitively, we might expect the
approximation of EigenVI to require fewer basis functions if the statistics of the target distribution
nearly match those of this lowest-order basis function. The goal of standardization is to achieve this
match, to whatever extent possible, by a suitable transformation of the underlying domain. Having
done so, EigenVI in RD can then be viewed as a systematic framework to model non-Gaussian effects
via a small number of higher-order terms in its orthogonal function expansion.

Concretely, we consider a linear transformation of the domain:

z̃ = Σ− 1
2 (z−µ), (15)

where µ and Σ are estimates of the mean and covariance obtained from some other algorithm (e.g., a
Laplace approximation, Gaussian variational inference, Monte Carlo, or domain-specific knowledge).
We then apply the EigenVI to fit a Kth-order variational approximation q̃(z̃) to the target distribution
p̃(z̃) that is induced by this transformation; afterwards, we reverse the change-of-variables to obtain
the final approximation to p(z), i.e.,

q(z) = q̃(z̃)|Σ|−1/2. (16)

Figure 2 shows why it is more difficult to approximate distributions that are badly centered or poorly
scaled. The left panel shows the effect of translating a standard Gaussian away from the origin and
shrinking its variance; note how a comparable approximation to the uncentered Gaussian now requires
a 16th-order expansion. On the other hand, after standardization, the target can be perfectly fitted by
the base distribution in the orthogonal family of reweighted Hermite polynomials. The right panel
shows the similar effect of translating the mixture distribution in Figure 1 (right panel); comparing
these panels, we see that twice as many basis functions (K=14 versus K=7) are required to provide
a comparable fit of the uncentered mixture.

Finally, we note another benefit of standardizing the target before fitting EigenVI; when the target has
nearly zero mean and unit covariance, it becomes simpler to identify natural choices for the proposal
distribution π. Intuitively, in this case, we want a proposal distribution that has the same mean but
heavier tails than a standard Gaussian. In our experiments, we use two types of centered proposal
distributions—uniform and isotropic Gaussian—whose variances are greater than one.
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(b) Mixture target (translation of Figure 1c)

Figure 2: Higher-order expansions may be required to approximate target distributions (black) that
are not standardized. Left: approximation of a non-standardized Gaussian. Right: approximation of
the mixture distribution in Figure 1 after translating its largest modes away from the origin.

3 Related work
Several recent works have considered BBVI methods based on score-matching. These methods take
a particularly simple form for Gaussian variational families [6, 37]. The Fisher divergence [18] has
been previously studied as a divergence for variational inference [47]. Yu and Zhang [48] propose
minimizing a Fisher divergence for semi-implicit (non-Gaussian) variational families; the divergence
is minimized using gradient-based optimization. In another line of work, Zhang et al. [50] consider
variational families of energy-based models and derive a closed-form solution to minimize the Fisher
divergence in this setting.

More generally, there have many studies of VI with non-Gaussian variational families. One common
extension is to consider families of mixture models [14, 17, 36]; these are typically optimized via
ELBO maximization. BBVI algorithms have also been derived for more expressive variational
families of energy-based models [9, 22, 28, 29, 52, 53] and normalizing flows [3, 24, 25, 34, 39, 41].
However the performance of these models, especially the normalizing flows, is often sensitive to
the hyperparameters of the flow architecture and optimizer, as well as the parameters of the base
distribution [2, 11]. Other aspects of these variational approximations are also less straightforward;
for example, one cannot compute their low-order moments, and one cannot easily evaluate or draw
samples from the densities of energy-based models.

The variational approximation in EigenVI is based on the idea of squaring a weighted sum of basis
functions. Probability distributions of this form arise most famously in quantum mechanics [16].
This idea has also been used to model distributions in machine learning, though not quite in the way
proposed here. Novikov et al. [38] propose a tensor train-based model for density estimation, but they
do not consider orthogonal basis sets. Similarly, Loconte et al. [33] obtain distributions by squaring a
mixture model with negative weights, and they study this model in conjunction with probabilistic
circuits. By contrast in this work, we consider this idea in the context of variational inference, and
we focus specifically on the use of orthogonal function expansions, which have many simplifying
properties; additionally, the specific objective we optimize leads to a minimum eigenvalue problem.

4 Experiments

We evaluate EigenVI on 9 synthetic targets and 8 real data targets. In these experiments we use the
orthogonal family induced by normalized Hermite polynomials (see Table 1), whose lowest-order
expansion is Gaussian. Thus, this variational family can model non-Gaussian behavior with the
higher-order functions in its basis. We first study 2D synthetic targets and use them to demonstrate
the expressiveness of these higher-order expansions. Next, we experiment with target distributions
where we systematically vary the tail heaviness and amount of skew. Finally, we apply EigenVI to a
set of hierarchical Bayesian models from real-world applications and benchmark its performance
against other Gaussian BBVI algorithms.

4.1 2D synthetic targets

We first demonstrate how higher-order expansions of the variational family yield more accurate
approximations on a range of 2D non-Gaussian target distributions (Figure 3); see Appendix E.2
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Figure 3: 2D target functions (column 1): a 3-component Gaussian mixture distribution (row 1), a
funnel distribution (row 2), and a cross distribution (row 3). We report the KL(p; q) for the resulting
optimal variational distributions obtained using score-based VI with a Gaussian variational family
(column 2) and the EigenVI variational family (columns 3–5), where K=K1K2.

for details. We report an estimate of KL(p; q) above each variational approximation. The Gaussian
variational approximation is fit using batch and match VI [6], which minimizes a score-based
divergence. For EigenVI, the target distributions were not standardized before fitting EigenVI (we
compare the costs of the methods in Figure E.1), and the total number of basis functions is K=K1K2.

4.2 Non-Gaussianity: varying skew and tails in the sinh-arcsinh distribution

We now consider the sinh-arcsinh normal distribution [19, 20], which is induced by transforming a
multivariate Gaussian using parameters that control the amount of skew and the weight of the tails.
We construct several targets (D = 2, 5) of increasing amounts of non-Gaussianity in the skew or the
tails of the distribution, and we refer to these targets as slight skew and tails, more skew and tails, and
slight skew and heavier tails; see Appendix E.3 for details. In Figure 4a, we visualize the 2D targets
and the EigenVI fits along with their forward KLs. Before applying EigenVI, we standardize the
target using a mean and covariance estimated from batch and match VI [6]. In Figure 4b, we measure
the EigenVI forward KL under varying numbers of samples B and across increasing numbers of
basis functions, given by K=

∏D
d=1 Kd. We also present the forward KL resulting from batch and

match VI (BaM) and automatic differentiation VI (ADVI), which both use Gaussian variational
families and are run using the same budget in terms of number gradient evaluations. Next we consider
similar targets with D = 5, which are visualized in in Figure E.2, along with the resulting EigenVI
variational approximations. In Figure 4c, we observe greater differences in the number of importance
samples needed to lead to good approximations, especially as the number of basis functions increase.

4.3 Hierarchical modeling benchmarks from posteriordb

We now evaluate EigenVI on a set of hierarchical Bayesian models [7, 35, 42], which are summarized
in Table E.1. The goal is posterior inference: given data observations x1:N , the posterior of z is

p(z |x1:N ) ∝ p(z)p(x1:N | z) =: ρ(z), (17)

where p(z) is the prior and p(x1:N | z) denotes the likelihood.

We compare EigenVI to 1) automatic differentation VI (ADVI) [27], which maximizes the ELBO over
a full-covariance Gaussian family (ADVI), 2) Gaussian score matching (GSM) [37], a score-based
BBVI approach with a full-covariance Gaussian family, and 3) batch and match VI (BaM) [6], which
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Figure 4: Sinh-arcsinh normal distribution synthetic target. Panel (a) shows the three targets we
consider in 2D, and their resulting EigenVI fit. Panel (b) shows measures KL(p; q) for D = 2, and
panel (c) shows KL(p; q) for D = 5; the x-axis shows the number of basis functions, K=

∏
d Kd.

minimizes a regularized score-based divergence over a full-covariance Gaussian family. In these
examples, we standardize the target using either GSM or BaM before applying EigenVI.

In these models, we do not have access to the target distribution, p(z |x1:N ), only the unnormalized
target ρ. Thus, we cannot evaluate an estimate of the forward KL. Instead, to evaluate the fidelity
of the fitted variational distributions, we compute the empirical Fisher divergence using reference
samples from the posterior obtained via Hamiltonian Monte Carlo (HMC):

1

S

S∑
s=1

∥∇ log ρ(zs)−∇ log q(zs)∥2 , zs ∼ p(z |x1:N ). (18)

Note that this measure is not the objective that EigenVI minimizes; it is analogous to the forward KL
divergence, as the expectation is taken with respect to p. We report the results in Figure 5, computing
the Fisher divergence for EigenVI with increasing numbers of basis functions. We typically found
that with more basis functions, the scores becomes closer to that of the target.

Finally, we provide a qualitative comparison with real-NVP normalizing flows (NFs) [12], a flexible
variational family that is fit by minimizing the reverse KL. We found that after tuning the batch-size
and learning rate, NFs generally had a suitable fit. We visualize the posterior marginals for a subset
of dimensions from 8schools in the top three rows, comparing EigenVI, the NF, and BaM. Here,
we observe that the Gaussian struggles to fit the tails of this target distribution. On the other hand,
EigenVI provides a competitive fit to the normalizing flow. In Appendix E.4, we show the full corner
plot in Figure E.3 and marginals of the garch11 model in Figure E.4.

5 Discussion of limitations and future work

In this work, we introduced EigenVI, a new approach for score-based variational inference based on
orthgonal function expansions. The score-based objective for EigenVI is minimized by solving an
eigenvalue problem, and thus this framework provides an alternative to gradient-based methods for
BBVI. Importantly, many computations in EigenVI can be parallelized with respect to the batch of
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Figure 5: Results on posteriordb models. Top three rows: marginal distributions of the even
dimensions from 8-schools. Reference samples from HMC are outlined in gray, and the VI samples
are in green. Bottom two rows: evaluation of methods with the (forward) Fisher divergence. The
x-axis shows the number of basis functions, K=

∏
d Kd. Shaded regions represent standard errors

computed with respect to 5 random seeds.

samples, unlike in iterative methods. We applied EigenVI to many synthetic and real-world targets,
and these experiments show that EigenVI provides a principled way of improving upon Gaussian
variational families.

Many future directions remain. First, the approach described in this paper relies on importance
sampling, and thus it may benefit from more sophisticated methods for adaptive importance sam-
pling. Second, it may be useful to construct variational families from different orthogonal function
expansions. Our empirical study focused on the family built from normalized Hermite polynomials.
But this family may require a very high-order expansion to model highly non-Gaussian targets, and
such an expansion will be very expensive in high dimensions. Though this family was sufficient for
many of the targets we simulated, others will be crucial for modeling highly non-Gaussian targets.
Another direction is to develop variational families whose orthogonal function expansions scale more
favorably with the dimension, perhaps by incorporating low rank structure in the target’s covariance.
Finally, it would be interesting to explore iterative versions of EigenVI in which each iteration solves
a minimum eigenvalue problem on some subsample of data points. With such an approach, EigenVI
could potentially be applied to very large-scale problems in Bayesian inference.
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A Sampling from orthogonal function expansions

In this appendix we show how to sample from a density on RD constructed from a Cartesian product
of orthogonal function expansions. Specifically, we assume that the density is of the form

q(z1, z2, . . . , zD) =

(
K1∑

k1=1

· · ·
KD∑

kD=1

αk1k2...kD
ϕk1(z1)ϕk2(z2) · · ·ϕkD

(zD)

)2

, (A.1)

where {ϕk(·)}∞k=1 define a family of orthonormal functions on R and where the density is normalized
by requiring that ∑

k1k2...kD

α2
k1k2...kD

= 1. (A.2)

To draw samples from this density, we describe a sequential procedure based on inverse transform
sampling. In particular, we obtain a sample z ∈ RD by the sequence of draws

z1 ∼ q(z1), (A.3)
z2 ∼ q(z2|z1), (A.4)

...
zD ∼ q(zD|z1, z2, . . . , zD−1). (A.5)

This basic strategy can also be used to sample from distributions whose domains are Cartesian
products of different one-dimensional spaces.

In what follows, we first introduce a “core primitive” density, and we show how to sample efficiently
from its distribution. We then show how the sampling procedure in Eqs. A.3–A.5 reduces to sampling
from this core primitive; a key component of this procedure is the property of orthogonality, which
helps facilitate the efficient computation of marginal distributions.

Core primitive

First we describe the core primitive that we will use for each of the draws in Eqs. A.3–A.5. To begin,
we observe the following: if S is any positive semidefinite matrix with trace(S)=1, then

ρ(ξ) =

K∑
k,ℓ=1

Skℓϕk(ξ)ϕℓ(ξ), (A.6)

defines a normalized density over R. In particular, since S ⪰ 0, it follows that ρ(ξ)≥0 for all ξ∈R,
and since trace(S)=1, it follows that∫ ∞

−∞
ρ(ξ) dξ =

K∑
k,ℓ=1

Skℓ

∫ ∞

−∞
ϕk(ξ)ϕℓ(ξ) dξ =

K∑
k,ℓ=1

Skℓδkl = trace(S) = 1. (A.7)

The core primitive that we need is an efficient procedure to sample from a normalized density of this
form. We will see later that all of the densities in Eqs. A.3–A.5 can be expressed in this form.

Inverse transform sampling

Since the density in Eq. A.6 is one-dimensional, we can obtain the draw we need by inverse transform
sampling. In particular, let C(ξ) denote the cumulative distribution function (CDF) associated with
Eq. A.6, which is given by

C(ξ) =
∫ ξ

−∞
ρ(z) dz, (A.8)

and let C−1(ξ) denote the inverse CDF. Then at least in principle, we can draw a sample from ρ by
the two-step procedure

u ∼ Uniform[0, 1], (A.9)

ξ = C−1(u). (A.10)
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Next we consider how to implement this procedure efficiently in practice, and in particular, how to
calculate the definite integral for the CDF in Eq. A.8. As shorthand, we define the doubly-indexed set
of real-valued functions

Φkℓ(ξ) =

∫ ξ

−∞
ϕk(z)ϕℓ(z) dz. (A.11)

It follows from orthogonality that Φkl(+∞) = δkl and from the Cauchy-Schwartz inequality that
|Φkℓ(ξ)| ≤ 1 for all ξ ∈ R. Our interest in these functions stems from the observation that

C(ξ) =
K∑

k,ℓ=1

SkℓΦkl(ξ) = trace[SΦ(ξ)], (A.12)

so that if we have already computed the functions Φkℓ(ξ), then we can use Eq. A.12 to compute the
CDF whose inverse we need in Eq. A.10. In practice, we can use numerical quadrature to pre-compute
Φkℓ(ξ) for many values along the real line and then solve Eq. A.10 quickly by interpolation; that is,
given u, we find ξ satisfying trace[SΦ(ξ)] = u. The result is an unbiased sample drawn from the
density ρ(ξ) in Eq. A.6.

Sequential sampling

Finally we show that each draw in Eqs. A.3–A.5 reduces to the problem described above. As in
Section 2.1, we work out the steps specifically for an example in D=3, where we must draw the
samples z1 ∼ q(z1), z2 ∼ q(z2|z1) and z3 ∼ q(z3|z1, z2). This example illustrates all the ideas
needed for the general case but with a minimum of indices.

Consider the joint distribution given by

q(z1, z2, z3) =

K1∑
i=1

K2∑
j=1

K3∑
k=1

βijk ϕi(z1)ϕj(z2)ϕk(z3)

2

where
∑
ijk

β2
ijk = 1. (A.13)

From this joint distribution, we can compute marginal distributions by integrating out subsets of
variables, and each integration over R gives rise to a contraction of indices, as in Eq. 7, due to the
property of orthogonality. In particular, expanding the square in Eq. A.13, we can write this joint
distribution as

q(z1, z2, z3) =

K3∑
k,k′=1

 K1∑
i,i′=1

K2∑
j,j′=1

βijk βi′j′k′ ϕi(z1)ϕi′(z1)ϕj(z2)ϕj′(z2)

ϕk(z3)ϕk′(z3),

(A.14)
and we can then contract the index k′ when integrating over z3, since

∫
ϕk(z3)ϕk′(z3)dz3 = δkk′ .

In this way we find that the marginal distributions are

q(z1, z2) =

K2∑
j,j′=1

 K1∑
i,i′=1

K3∑
k=1

βijkβi′j′kϕi(z1)ϕi′(z1)

ϕj(z2)ϕj′(z2), (A.15)

q(z1) =

K1∑
i,i′=1

K2∑
j=1

K3∑
k=1

βijkβi′jk

ϕi(z1)ϕi′(z1). (A.16)

Now note from the brackets in Eq. A.16 that this marginal distribution is already in the quadratic
form of Eq. A.6 with coefficients

S
(1)
ii′ =

K2∑
j=1

K3∑
k=1

βijkβi′jk. (A.17)

From this first quadratic form, we can therefore use inverse transform sampling to obtain a draw
z1 ∼ q(z1).
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Next we consider how to sample from the conditional q(z2|z1) = q(z1, z2)/q(z1). Again, from the
brackets in Eq. A.15, we see that this conditional distribution is also in the quadratic form of Eq. A.6
with coefficients

S
(2)
jj′ =

∑K1

i,i′=1

∑K3

k=1 βijkβi′j′kϕi(z1)ϕi′(z1)

q(z1)
. (A.18)

From this second quadratic form, we can therefore use inverse transform sampling to obtain a draw
z2 ∼ q(z2|z1). Finally, we consider how to sample from q(z3|z1, z2) = q(z1, z2, z3)/q(z1, z2).
From Eq. A.14, we see that this conditional distribution is also in the quadratic form of Eq. A.6 with
coefficients

S
(3)
kk′ =

∑K1

i,i′=1

∑K2

j,j′=1 βijkβi′j′k′ϕi(z1)ϕi′(z1)ϕj(z2)ϕj′(z2)

q(z1, z2)
(A.19)

From this third quadratic form, we can therefore use inverse transform sampling to obtain a draw
z3 ∼ q(z3|z1, z2). Finally, from the sums in Eq. A.19, we see that the overall cost of this procedure
is O(K2

1K
2
2K

2
3 ), or quadratic in the total number of basis functions.

B Calculation of moments

In this appendix we show how to calculate the low-order moments of a density constructed from the
Cartesian product of orthogonal function expansions. In particular, we assume that the density is
over RD and of the form

q(z1, z2, . . . , zD) =

(
K1∑

k1=1

· · ·
KD∑

kD=1

αk1k2...kD
ϕk1

(z1)ϕk2
(z2) · · ·ϕkD

(zD)

)2

, (B.1)

where {ϕk(·)}∞k=1 are orthogonal functions on R and where the coefficients are properly normalized
so that the density integrates to one. For such a density, we show that the calculation of first and
second-order moments boils down to evaluating one-dimensional integrals of the form

µij =

∫ ∞

−∞
ϕi(z)ϕj(z) z dz, (B.2)

νij =

∫ ∞

−∞
ϕi(z)ϕj(z) z

2 dz. (B.3)

We also show how to evaluate these integrals specifically for the orthogonal family of weighted
Hermite polynomials.

First we consider how to calculate moments such as Eq[z
p
d ], where p ∈ {1, 2}, and without loss of

generality we focus on calculating Eq[z
p
1 ]. We start from the joint distribution in Eq. B.1 and proceed

by marginalizing over the variables (z2, z3, . . . , zD). Exploiting orthogonality, we find that

Eq[z
p
1 ] =

∫
q(z1, z2, . . . , zD) zp1 dz1 dz2 . . . dzD, (B.4)

=

∫ ( K1∑
k1=1

· · ·
KD∑

kD=1

αk1k2...kD
ϕk1(z1)ϕk2(z2) · · ·ϕkD

(zD)

)2

zp1 dz1 dz2 . . . dzD, (B.5)

=

K1∑
k1,k′

1=1

[
K2∑

k2=1

· · ·
KD∑

kD=1

αk1k2...kD
αk′

1k2...kD

]∫
ϕk1

(z1)ϕk′
1
(z1) z

p
1 dz1. (B.6)

We can rewrite this expression more compactly as a quadratic form over integrals of the form in
Eqs. B.2–B.3. To this end, we define the coefficients

Aij =

K2∑
k2=1

· · ·
KD∑

kD=1

αik2...kD
αjk2...kD

, (B.7)
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which simply encapsulate the bracketed term in Eq. B.6. Note that there are K2
1 of these coefficients,

each of which can be computed in O(K2K3 . . .KD). With this shorthand, we can write

Eq[z1] =

K1∑
i,j=1

Aijµij , (B.8)

Eq[z
2
1 ] =

K1∑
i,j=1

Aijνij , (B.9)

where µij and νij are the integrals defined in Eqs. B.2–B.3. Thus the problem has been reduced to a
weighted sum of one-dimensional integrals.

A similar calculation gives the result we need for correlations. Again, without loss of generality, we
focus on calculating Eq[z1z2]. Analogous to Eq. B.7, we define the tensor of coefficients

Bijkℓ =

K3∑
k3=1

· · ·
KD∑

kD=1

αikk3...kD
αjℓk3...kD

, (B.10)

which arises from marginalizing over the variables (z3, z4, . . . , zD). There are K2
1K

2
2 of these

coefficients, each of which can be computed in O(K3K4 . . .KD). With this shorthand, we can write

Eq[z1z2] =

K1∑
i,j=1

K2∑
k,ℓ=1

Bijkℓµijµkℓ. (B.11)

where µij is again the integral defined in Eq. B.2). Thus the problem has been reduced to a weighted
sum of (the product of) one-dimensional integrals.

Finally, we show how to evaluate the integrals in Eqs. B.2–B.3 for the specific case of orthogonal
function expansions with weighted Hermite polynomials; similar computations apply in the case of
Legendre polynomials. Recall in this case that

ϕk+1(z) =
(√

2πk!
)− 1

2
(
e−

1
2 z

2
) 1

2

Hk(z), (B.12)

where Hk(z) are the probabilist’s Hermite polynomials given by

Hk(z) = (−1)ke
z2

2
dk

dzk

[
e−

z2

2

]
. (B.13)

To evaluate the integrals for this particular family, we can exploit the following recursions that are
satisfied by Hermite polynomials:

Hk+1(z) = zHk(z)−H ′
k(z), (B.14)

H ′
k(z) = kHk−1(z). (B.15)

Eliminating the derivatives H ′
k(z) in Eqs. B.14–B.15, we see that zHk(z) = Hk+1(z) + kHk−1(z).

We can then substitute Eq. B.12 to obtain a recursion for the orthogonal basis functions themselves:

zϕk(z) =
√
kϕk+1(z) +

√
k−1ϕk−1(z). (B.16)

With the above recursion, we can now read off these integrals from the property of orthogonality. For
example, starting from Eq. B.2, we find that

µij =

∫ ∞

−∞
ϕi(z)ϕj(z) z dz, (B.17)

=

∫ ∞

−∞
ϕi(z)

[√
jϕj+1(z) +

√
j−1ϕj−1(z)

]
dz, (B.18)

= δi,j+1

√
j + δi,j−1

√
i, (B.19)
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where δij is the Kronecker delta function. Next we consider the integral in Eq. B.3, which involves a
power of z2 in the integrand. In this case we can make repeated use of the recursion:

νij =

∫ ∞

−∞
ϕi(z)ϕj(z) z

2 dz, (B.20)

=

∫ ∞

−∞

[√
iϕi+1(z) +

√
i−1ϕi−1(z)

] [√
jϕj+1(z) +

√
j−1ϕj−1(z)

]
dz, (B.21)

= δij

[√
ij +

√
(i−1)(j−1)

]
+ δi−1,j+1

√
j(j+1) + δj−1,i+1

√
i(i+1). (B.22)

Note that the matrices in Eq. B.19 and Eq. B.22 can be computed for whatever size is required by the
orthogonal basis function expansion in Eq. B.1. Once these matrices are computed, it is a simple
matter of substitution1 to compute the moments Eq[z1], Eq[z

2
1 ], and Eq[z1z2] from Eqs. B.8–B.9

and Eq. B.11. Finally, we can compute other low-order moments (such as Eq[z5] or Eq[z3z7]) by an
appropriate permutation of indices.

C Eigenvalue problem

In this appendix we show in detail how the optimization for EigenVI reduces to a minimum eigenvalue
problem. In particular we prove the following.

Lemma C.1. Let {ϕk(z)}∞k=1 be an orthogonal function expansion, and let q ∈ QK be the variational
approximation parameterized by

q(z) =

[
K∑

k=1

αkϕk(z)

]2
, (C.1)

where the weights satisfy
∑K

k=1 α
2
k = 1, thus ensuring that the distribution is normalized. Suppose

furthermore that q is chosen to minimize the empirical estimate of the Fisher divergence given, as in
eq. (10), by

D̂π(q, p) =

B∑
b=1

q(zb)

π(zb)

∥∥∇ log q(zb)−∇ log p(zb)
∥∥2.

Then the optimal variational approximation q in this family can be computed by solving the minimum
eigenvalue problem

min
q∈QK

[
D̂π(q, p)

]
= min

∥α∥=1
α⊤Mα =: λmin(M), (C.2)

where M is given in Eq. 13 and α = [α1, . . . , αK ] ∈ RK . The optimal weights α are given (up to an
arbitrary sign) by the corresponding eigenvector of this minimal eigenvalue.

Proof. The scores of q in this variational family are given by

∇ log q(zb) =
2
∑

k αk∇ϕk(z
b)∑

k αkϕk(zb)
.

1With further bookkeeping, one can also exploit the sparsity of µij and νij to derive more efficient calculations
of these moments.
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Substituting the above into the empirical divergence, we find that

D̂π(q, p) =

B∑
b=1

q(zb)

π(zb)

∥∥∇ log q(zb)−∇ log p(zb)
∥∥2

=

B∑
b=1

(∑
k αkϕk(z

b)
)2

π(zb)

∥∥∥∥2∑k αk∇ϕk(z
b)∑

k αkϕk(zb)
−∇ log p(zb)

∥∥∥∥2

=

B∑
b=1

1

π(zb)

∥∥∥∥∥2∑
k

αk∇ϕk(z
b)−

[∑
k

αkϕk(z
b)

]
∇ log p(zb)

∥∥∥∥∥
2

=

B∑
b=1

1

π(zb)

∥∥∥∥∥∑
k

αk

[
2∇ϕk(z

b)− ϕk(z
b)∇ log p(zb)

]∥∥∥∥∥
2

= α⊤Mα,

where M is given in (13) and α = [α1, . . . , αK ] ∈ RK . Thus the optimal weights α are found by
minimizing the quadratic form α⊤Mα subject to the constraint α⊤α = 1. Equivalently, a solution
can be found by minimizing the Rayleigh quotient

argmin
v

v⊤Mv

v⊤v
(C.3)

and setting α = v/∥v∥. It then follows from the Rayleigh-Ritz theorem [8] for symmetric matrices
that α is the eigenvector corresponding to the minimal eigenvalue of M , and this proves the lemma.

D Practical considerations of EigenVI

D.1 EigenVI vs gradient-based BBVI

Recall that EigenVI has two hyperparameters: the number of basis functions K and the number of
importance samples B. We note there is an important difference between these two hyperparameters
and the learning rate in ADVI and other gradient-based methods. Here, as we use more basis functions
and more samples, the resulting fit is a better approximation. So, we can increase the number of
basis functions and importance samples until a budget is reached, or until the resulting variational
approximation is a sufficient fit. On the other hand, tuning the learning rate in gradient-based
optimization is much more sensitive because it cannot be too large or too small. If it is too large,
ADVI may diverge. If the learning rate is too small, it may take too long to converge in which case it
may exceed computational budgets.

Another fundamental difference in setting the number of basis functions as compared to the learning
rate or batch size of gradient based optimization is that once we have evaluated the score of the target
distribution for the samples, these same samples can be reused for solving the eigenvalue problem
with any choice of the number of basis functions, as these tasks are independent. By contrast, in
iterative BBVI, the optimization problem needs to be re-solved for every choice of hyperparameters,
and the samples from different runs cannot be mixed together.

Furthermore, solving the eigenvalue problem is fast, and scores can be computed in parallel. In our
implementation, we use off-the-shelf eigenvalue solvers, such as ARPACK [30] or Julia’s eigenvalue
decomposition function, eigen. In many problems with complicated targets, the main cost comes
from gradient evaluation and not the eigenvalue solver.

D.2 Choosing the number of samples B

Intuitively, if the target p is in the variational family Q (i.e., it can be represented using an order-K
expansion), then we should choose the number of samples B to roughly equal the number of basis
function K. If p is very different from Q, we need more samples, and in our experiments, we use
a multiple of the number of basis functions (say of order 10). As discussed before, once we have
evaluated a set of scores, these can be reused to fit a larger number of basis functions.
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Figure E.1: We compare the number of score evaluations wallclock vs FKL divergence for the
target distributions in Figure 3: the Gaussian mixture (column 1), the funnel (column 2), and the
cross (column 3) distributions. The K used for EigenVI is reported in each figure legend, where
K = K1K2. The black star denotes the number of gradient evaluations for the Gaussian method.

E Additional experiments and details

E.1 Computational resources

The experiments were run on a Linux workstation with a 32-core Intel(R) Xeon(R) w5-3435X
processor and with 503 GB of memory. Experiments were run on CPU. In the sinh-arcsinh and
posteriordb experiments, computations to construct the matrix M were parallelized over 28 threads.

E.2 2D synthetic targets

We considered the following synthetic 2D targets:

• 3-component Gaussian mixture:

p(z) = 0.4N (z | [−1, 1]⊤,Σ) + 0.3N (z | [1.1, 1.1]⊤, 0.5I) + 0.3N (z | [−1,−1]⊤, 0.5I),

where we define Σ =

[
2 0.1
0.1 2

]
.

• Funnel distribution with σ2 = 1.2:

p(z) = N (z1 | 0, σ2)N (z2 | 0, exp(z1/2)).

• Cross distribution:

p(z) = 1
4N (z | [0, 2]⊤,Σ1) +

1
4N (z | [−2, 0]⊤,Σ2) +

1
4N (z | [2, 0]⊤,Σ2) +

1
4N (z | [0,−2]⊤,Σ1),

where Σ1 =

[
0.150.9 0

0 1

]
and Σ2 =

[
1 0
0 0.150.9

]
.

These experiments were conducted without standardization with a Gaussian VI estimate. The EigenVI
proposal distribution π used was a uniform([−9, 9]) distribution.

In Figure E.2, we run EigenVI for increasing numbers of importance samples B and report the
resulting forward KL divergence. The blue curves denote variational families with different K1 =
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K2 = K values used, i.e., 3, 6, and 10 (resulting in a total number of basis functions of 32, 62,
and 102). In the bottom row of the plot, we also show wall clock timings (computed without
parallelization) to show how the cost grows with the increase in the number of basis functions and
importance samples. The horizontal dotted line denotes the result from batch and match VI, which
fits a Gaussian via score matching; here a batch size of 16 was used and a learning rate of λt =

BD
t+1 .

The black star denotes the number of score evaluations used by the Gaussian VI method.

E.3 Sinh-arcsinh targets

The sinh-arcsinh normal distribution [19, 20] has parameters s ∈ RD, τ ∈ RD
+ ,Σ ∈ S++; it is

induced by transforming a Gaussian Z0 ∼ N (0,Σ) to Z = Ss,τ (Z0), where

Ss,τ (z) := [Ss1,τ1(z1), . . . , SsD,τD (zD)]⊤, Ssd,τd(zd) := sinh
(

1
τd

sinh−1(zd) +
sd
τd

)
. (E.1)

Here sd controls the amount of skew in the dth dimension, and τd controls the tail weight in that
dimension. When sd=0 and τd=1 in all dimensions d, the distribution is Gaussian.

The sinh-arcsinh normal distribution has the following density:

p(z; s, τ,Σ) = [(2π)D|Σ|]− 1
2

D∏
d=1

{
(1 + z2d)

− 1
2 τd Csd,τd(zd)

}
exp

(
−1

2
Ss,τ (z)

⊤Σ−1Ss,τ

)
,

(E.2)

where we define the functions

Csd,τd(zd) := (1 + S2
sd,τd

(z))
1
2 , (E.3)

and

Ssd,τd(zd) := sinh(τd sinh
−1(zd)− sd), Ss,τ (z) = [Ss1,τ1(z1), . . . , SsD,τD (zD)]⊤. (E.4)

We constructed 3 targets in 2 dimensions and 3 targets in 5 dimensions, each with varying amounts of
non-Gaussianity. The details of each target are below. In all experiments, EigenVI was applied with
standardization, where a Gaussian was fit using batch and match VI with a batch size of 16 and a
learning rate λt =

BD
t+1 .

For all experiments, we used a proposal distribution π that was uniform on [−5, 5]2.

2D sinh-arcsinh normal experiment For D = 2 (Figure 4b), we consider the slight skew and
tails target with parameters s = [0.2, 0.2], τ = [1.1, 1.1], the more skew and tails target with
s = [0.2, 0.5], τ = [1.1, 1.1], and the slight skew and heavier tails with s = [0.2, 0.2], τ = [1.4, 1.1].
Note that s = [0, 0], τ = [1, 1] recovers the multivariate Gaussian. These three target are visualized
in Figure 4a.

5D sinh-archsinh normal experiment We constructed three targets P1 (slight skew and tails), P2

(more skew and tails), and P3 (slight skew and heavier tails) each with

Σ =


2.2 0.3 0 0 0.3
0.3 2.2 0 0 0
0 0 2.2 0.3 0
0 0 0.3 2.2 0
0.3 0 0 0 2.2

 . (E.5)

The skew and tail weight parameters used were: s1 = [0., 0., 0.2, 0.2, 0.2]; τ1 = [1., 1., 1., 1., 1.1],
s2 = [0.0, 0.0, 0.6, 0.4,−0.5]; τ2 = [1., 1., 1., 1., 1.1], and s3 = [0.2, 0.2, 0.2, 0.2, 0.2]; τ3 =
[1.1, 1.1, 1., 1.4, 1.6]. See Figure E.2 for a visualization of the marginals of each target distribu-
tion. In the second row, we show examples of resulting EigenVI fit (visualized using samples from q)
from B = 20,000 and K = 10.
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Figure E.2: Targets (top) for the 5D sinh-arcsinh normal distribution example and EigenVI fits
(bottom) with the KL divergence in the figure title.

Table E.1: Summary of posteriordb models
Name Dimension Model description

kidscore 3 linear model with a Cauchy noise prior
sesame 3 linear model with uniform prior
gp_regr 3 Gaussian process regression with squared exponential kernel
garch11 4 generalized autoregressive conditional heteroscedastic model
logearn 4 log-log linear model with multiple predictors
arK-arK 7 autoregressive model for time series

logmesquite 7 multiple predictors log-log model
8-schools 10 non-centered hierarchical model for 8-schools

E.4 Posteriordb experiments

We consider 8 real data targets from posteriordb, a suite of benchmark Bayesian models for
real data problems. In Table E.1, we summarize the models considered in the study. These target
distributions are non-Gaussian, typically with some skew or different tails. To access the log target
probability and their gradients, we used the BridgeStan library [42], which by default transforms the
target to be supported on RD.

For all experiments, we fixed the number of importance samples to be B = 40,000; to construct the
EigenVI matrix M , the computations were parallelized over the samples. These experiments were
repeated over 5 random seeds, and we report the mean and standard errors in Figure 5; for lower
dimensions, there was little variation between runs.

The target distributions were standardized using a Gaussian fit from score matching before applying
EigenVI. In most cases, the proposal distribution π was chosen to be uniform over [−6, 6]D. For
the models 8-schools, which has a longer tail, we used a multivariate Gaussian proposal with zero
mean and a scaled diagonal covariance σI , with σ = 32.

For the Gaussian score matching (GSM) method [37], we chose a batch size of 16 for all experiments.
We generally found the results were not too sensitive in comparison to other batch sizes of 4,8, and
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Figure E.3: Comparison of EigenVI, normalizing flow, and Gaussian score-based BBVI methods on
8schools.
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Figure E.4: Comparison of EigenVI, normalizing flow, and Gaussian score-based BBVI methods
on garch11. Note that the Gaussian approximation over/underestimates the tails, while the more
expressive families fit the tails better.
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32. For the batch and match (BaM) method [6], we chose a batch size of 16. The learning rate was
fixed at λt =

BD
t+1 , which was a recommended schedule for non-Gaussian targets.

For all ELBO optimization methods (full covariance Gaussian family and normalizing flow fam-
ily), we used Adam to optimize the ELBO. We performed a grid search over the learning rate
0.01, 0.02, 0.05, 0.1 and batch size B = 4, 8, 16, 32. For the normalizing flow model, we used a real
NVP [12] with 8 layers and 32 neurons. We found empirically that the computational of the scores
was unreliable [26, 49]; hence we do not show their Fisher divergence in Figure 5.

In Figure E.3 and Figure E.4, we show the corner plots that compare an EigenVI fit, a normalizing
flow fit, and a Gaussian fit (BaM). In each plot, we plot the samples from the variational distribution
against samples from Hamiltonian Monte Carlo. We observe that the two more expressive families
EigenVI and the normalizing flow are able to model the tails of the distribution better than the
Gaussian fit.

F Broader impacts

EigenVI adds to the literature on BBVI, which has been an important line of work for developing
automated, approximate Bayesian inference methods. In terms of positive societal impacts, Bayesian
models are used throughout the sciences and engineering, and advances in fast and automated
inference will aid in advances in these fields. In terms of negative societal impacts, advances in BBVI
could be used to train generative models with malicious or unintended uses.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?
Answer: [Yes]
Justification: We describe propose EigenVI, a new eigenvalue-based approach for BBVI
based on score matching.
Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Limitations are discussed throughout the paper, and we summarize the main
limitations again in Section 5.
Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [Yes]
Justification: We provide further derivations for moments, sampling, and the objective in the
appendix.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: We have aimed to provide these details in the additional experiments section
in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
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Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
Answer: [No]
Justification: We provide a Julia implementation of EigenVI at https://github.com/
dicai/eigenVI and a demonstration on several examples.
Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?
Answer: [Yes]
Justification: We provide additional experimental details in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?
Answer: [Yes]
Justification: We report the standard errors as shaded regions around the mean over 5 random
seeds.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We discuss experimental compute resources in the appendix.
Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Yes we conform to the code of ethics.
Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).
10. Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have a broader impacts section in the appendix.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: We do not believe the paper poses such risks.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: We cite the benchmark models we used.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: We do not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: We do not perform research with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: There were no study participants used.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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