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Abstract

Affine Maximizer Auctions (AMAs), a generalized mechanism family from VCG,1

are widely used in automated mechanism design due to their inherent dominant-2

strategy incentive compatibility (DSIC) and individual rationality (IR). However,3

as the payment form is fixed, AMA’s expressiveness is restricted, especially in4

distributions where bidders’ valuations are correlated. In this paper, we propose5

Correlation-Aware AMA (CA-AMA), a novel framework that augments AMA with6

a new correlation-aware payment. We show that any CA-AMA preserves the DSIC7

property and formalize finding optimal CA-AMA as a constraint optimization8

problem subject to the IR constraint. Then, we theoretically characterize scenarios9

where classic AMAs can perform arbitrarily poorly compared to the optimal10

revenue, while the CA-AMA can reach the optimal revenue. For optimizing CA-11

AMA, we design a tailored loss function with a two-stage training algorithm. We12

derive that the target function’s continuity and the generalization bound on the13

degree of deviation from strict IR. Finally, extensive experiments showcase that14

our algorithm can find an approximate optimal CA-AMA in various distributions15

with improved revenue and a low degree of violation of IR.16

1 Introduction17

Differentiable economics [9, 16, 40, 43] has recently attracted significant attention within automated18

mechanism design. By leveraging advanced neural network architectures and gradient-based optimiza-19

tion algorithms, these approaches construct auctions demonstrating superior empirical performance.20

In revenue-maximizing auction design, existing methods are broadly categorized into two classes: (1)21

characterization-free methods, which directly employ neural networks to approximate auction mecha-22

nisms [13, 16, 25, 34, 37], and (2) characterization-based methods, which optimize within structured23

mechanism families possessing well-defined economic properties [9, 14, 15, 40, 43]. Among the latter,24

Affine Maximizer Auctions (AMAs), a family of mechanisms extended from Vickery-Clarke-Groves25

(VCG) [27, 42], are particularly notable for inherently guaranteeing dominant-strategy incentive26

compatibility (DSIC), individual rationality (IR), and preventing over-allocation. Recent work on27

optimizing AMAs has demonstrated strong empirical performance and balanced computational28

efficiency [9, 14, 15].29

However, prior AMA-based methods have primarily focused on evaluations under bidder-independent30

distributions, where the limitations in expressiveness of VCG-style payment rules may not be fully31

apparent. In certain bidder-correlated settings, this VCG-style payment rule exhibits a critical32

constraint: a bidder’s payment can only be a non-decreasing function of other bidders’ valuations.33

This inherent limitation significantly reduces their payment flexibility compared to characterization-34

free [16] or menu-based mechanisms [43]. For instance, consider a single-item auction with two35

bidders where valuations are perfectly negatively correlated (v1 = 1−v2) and each marginal valuation36
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is drawn uniformly from [0, 1]. Here, the optimal mechanism extracts full surplus by setting a reserve37

price of 1−min{v1, v2}. This implies that when v1 > 0.5, bidder 1 is allocated the item and pays38

1 − v2. Yet, for any AMA, the payment when bidder 1 wins must be non-decreasing in v2, thus39

rendering it incapable of expressing such a simple optimal mechanism.40

Motivated by this limitation, we aim to enhance AMA’s expressiveness in bidder-correlated settings41

while preserving its structural advantages and optimization efficiency. Existing research on bidder-42

correlated auctions has largely concentrated on theoretical designs, predominantly for single-item43

settings. The seminal Crémer-McLean auction [7, 8] established conditions under which DSIC and44

Bayesian IR mechanisms can extract full surplus. Subsequent studies have analyzed the computational45

complexity [6, 12, 33] and sample complexity [1, 19, 44] of optimal auctions under specific correlated46

priors, while others have investigated the robustness of existing mechanisms (e.g., second-price47

auctions) to correlation [5, 21, 45]. Closest to our work are [24] and [17]: Huo et al. [24] proposed48

a score-based payment rule trained via max-min neural networks, approximating optimal revenue49

in single-item auctions; The result by Feldman and Lavi [17] implies limitations of classic AMAs50

compared to optimal interim IR mechanism. Our results show that AMA can perform badly even51

compared to the optimal ex-post IR mechanism.52

In this paper, we introduce the Correlation-Aware Affine Maximizer Auction (CA-AMA), which53

incorporates an additional correlation-aware payment term, pCor
i , for each bidder. Since pCor

i is54

independent of bidder i’s bid, CA-AMA inherently maintains the DSIC property, and we formalize55

the problem of identifying the optimal CA-AMA as an optimization problem subject to IR constraints.56

Theoretically, we demonstrate that in single-item auctions under certain distributions, CA-AMA57

can achieve optimal revenue where classic AMAs perform arbitrarily poorly. We then derive a58

tailored loss function and a two-stage training algorithm for optimizing CA-AMA. The algorithm’s59

feasibility is supported by the continuity of the target function and a generalization bound on the60

degree of IR violation. Finally, we conduct extensive experiments across various distributions in61

single-item and multi-item auctions. The results demonstrate our algorithm’s effectiveness in finding62

an approximately IR CA-AMA and achieving significantly improved revenue compared to classic63

AMAs.64

The remainder of this paper is organized as follows: Section 2 introduces preliminaries. Section 365

demonstrates the limitations of classic AMAs and proposes the CA-AMA framework. Section 466

details the optimization of CA-AMA. Experimental results are presented in Section 5, and Section 667

concludes the paper. More details about related work are in Section A.68

2 Preliminary69

We consider the sealed-bid auction with n bidders [n] = {1, 2, . . . , n} and m items [m] =70

{1, 2, . . . ,m}. Each bidder i has a private valuation on all item combinations, denoted by71

vi = (vis)s⊆[m], where vis is the bidder’s valuation of an item combination s ⊆ [m]. We mainly72

consider the additive valuation, i.e., vis =
∑

j∈s vij for all i ∈ [n] and s ⊆ [m]. So a bidder’s73

valuation is expressed by vi = (vij)j∈[m].74

A valuation profile V = (v1,v2, . . . ,vn) is a collection of all bidders’ valuations. We assume that V75

has an underlying distribution F and the support is bounded, supp(F ) ⊆ [0, 1]n×m. In an auction,76

each bidder i reports a bid bi, which does not necessarily equal its real valuation vi. The auctioneer77

does not know the true valuation profile V nor the distribution F but can observe the bidding profile78

B = (b1, b2, . . . , bn). We use V−i = (v1, . . . ,vi−1,vi+1, . . . ,vn) to represent the valuation profile79

except for bidder i, and B−i with the similar meaning. The marginal distribution is represented80

by Fi(V−i) for bidder i’s valuation. When the bidders are independent, this marginal distribution81

does not depend on V−i, which means that Fi(V−i) ≡ Fi for any V−i. When the bidders’ valuation82

distributions are correlated, such a relationship does not hold.83

2.1 Revenue-Maximizing Auction Design84

An auction mechanism (g, p) consists of an allocation rule g and a payment rule p. For a given85

bidding profile B, g(B) ⊆ [0, 1]n×m is the allocation matrix. The allocation rule has to satisfies86

that
∑n

i=1 g(B)ij ≤ 1 for any j ∈ [m]. If the mechanism is deterministic, we further restrict that87

the allocation matrix g(B)ij ⊆ {0, 1} for all i and j. The payment rule pi(B) ≥ 0 determines the88
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value the bidder i has to pay. Following the literature [14, 16], we assume that the bidders are utility89

maximizers and have quasi-linear utility. For a mechanism (g, p), the utility of bidder i with true90

valuation vi when the bid profile is B can be written as ui(vi, B; g, p) := vi · g(B)i − pi(B). If91

the mechanism (g, p) which we are referring to does not raise ambiguity, we will use ui(vi, B) for92

simplicity.93

The auction mechanism will be announced publicly at first so bidders can statically report their94

valuation to gain a higher utility. We consider the following properties from classic auction theory [32].95

96

Definition 2.1. A mechanism (g, p) satisfies dominant-strategy incentive compatibility (DSIC) if97

ui(vi, (vi, B−i)) ≥ ui(vi, (bi, B−i)), ∀i, B−i,vi, bi. (DSIC)

Definition 2.2. A mechanism (g, p) satisfies individual rationality (IR) if98

ui(vi, (vi, B−i)) ≥ 0, ∀i, B−i,vi ∈ supp(Fi(B−i)). (IR)

Note that the definition is different from the ex-post IR, which requires ui(vi, (vi, B−i)) ≥ 0 for all99

i, vi and B−i. This is weaker than ex-post IR but stronger than ex-interim IR, as it requires the utility100

to be non-negative on each point (vi, B−i) that can be realized by F . As the mechanism we analyze101

in this paper always satisfies DSIC, it is reasonable to assume that all bidders will truthfully report102

and so that we can exclude some valuation profiles that will never be realized.103

The optimal auction design is to find the revenue-maximizing DSIC and IR auction mechanism under104

a certain distribution F , which can be formulated as the following optimization problem.105

max
g,p

REVF := EV∼F

n∑
i=1

pi(V )

s.t. Mechanism (g, p) satisfies DSIC and IR.

(OPT)

2.2 Affine Maximizer Auctions106

AMAs is a family of auction mechanisms generalized from the VCG [27, 42] auction. An AMA can107

be parameterized by (A,w,λ). A = {A1, · · · , AS} is a set of S distinct candidate allocations, wi108

is the weight for bidder i and λk is the boost for allocation Ak. A deterministic AMA refers to the109

AMA whose parameterA is fixed by all possible deterministic allocations, and so that S = (n+1)m110

(each item can be allocated to any of the n+ 1 bidders).111

Formally, with the parameter set as (A,w,λ), denote asw(k;V ) :=
∑n

i=1 wi(vi · (Ak)i) + λk the112

affine social welfare for k-th allocation under valuation profile V and asw−i(k;V ) = asw(k;V )−113

wi(vi · (Ak)i), the allocation and payment rule can be written as114

gAMA(V ;A,w,λ) = Ak∗ : k∗ = arg max
k∈[S]

asw(k;V ),

pAMA
i (V ;A,w,λ) =

1

wi

(
max
k∈[S]

asw−i(k;V )− asw−i(k
∗;V )

)
.

(AMA)

As AMA satisfies DSIC and IR regardless of the chosen parameters [38, 39], the problem of finding115

the revenue-maximizing AMA with a fixed size ofA, |A| = S, can be formulated as an unconstrained116

optimization.117

max
A:|A|=S,w,λ

REVS-AMA
F := EV∼F

n∑
i=1

pAMA
i (V ;A,w,λ). (AMA-OPT)

Specifically, we denote REVD-AMA
F the optimal revenue when fixing A to be the set of all deterministic118

allocations. Recent work on AMA has its advantage of interpretability and strong performance in the-119

ory and empirical [28] shows that AMA is “approximately universal” under certain distributions, and120

recent AMA-based work [9, 14, 15, 39] attain considerable empirical performance when combined121

with machine learning approaches, even compared with those approximate DSIC auctions.122
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Figure 1: The comparison between the optimization for classic Affine Maximizer Auctions (AMAs)
and our proposed Correlation Aware AMA (CA-AMA). In classic AMA-based methods [9, 14, 15, 39],
we only optimize the AMA parameters to improve the revenue. To enhance AMA’s performance
under bidder-correlated distributions, we introduce a correlation-aware payment pCor and hence add a
RegretIR term in our loss function.

3 Correlation-Aware Affine Maximizer Auctions123

This section begins by presenting a bidder-correlated single-item scenario where classic AMAs fail124

to achieve optimal revenue. We then define Correlation-Aware AMA (CA-AMA), a modification that125

introduces a correlation-aware payment term to enhance AMA’s expressiveness while preserving the126

desirable property of DSIC. The problem of finding the optimal CA-AMA is subsequently formulated127

as an optimization problem constrained by IR. Finally, we provide a theoretical comparison of the128

revenue achievable by optimal CA-AMA and classic AMA in single-item auctions.129

3.1 AMA Fails in Certain Correlated Distributions130

We begin by analyzing a potential shortcoming of AMA-OPT. In current AMA-based methods [9,131

14, 15, 39], AMA parameters (A,w,λ) are determined during training and remain fixed at test132

time to ensure DSIC. Consequently, this static nature prevents the mechanism from further utilizing133

information from a specific input bidding profile B during evaluation. Specifically, if bidders’134

valuations are linearly correlated, one bidder’s valuation vi can be inferred from the valuations of135

others, V−i. To illustrate this deficiency, we construct an asymmetric correlated distribution F where136

the optimal AMA’s revenue can be an arbitrarily small fraction of the optimal revenue.137

Proposition 3.1. In single-item auctions, for any number of bidders n and any ϵ > 0, there exists a138

distribution F such that REVD-AMA
F ≤ ϵ · REVF . Furthermore, REVS-AMA

F < REVF for any menu size139

S.140

The constructed distribution features a “dominant” bidder whose valuation is consistently the highest141

and is sampled from an equal revenue distribution. The valuations of other bidders are negatively142

linearly correlated with the dominant bidder’s valuation, allowing the dominant bidder’s exact143

valuation to be inferred from theirs. Under this distribution, a strict DSIC and IR mechanism can set144

a reserve price equal to the dominant bidder’s valuation and hence extract full surplus. However, we145

show that any deterministic AMA can perform arbitrarily poorly, and even any randomized AMA146

fails to extract the full surplus. The underlying reason is that in allocation regions where the dominant147

bidder (say, bidder 1) does not receive the item, revenue is upper-bounded by the (low) valuations148

of other bidders. Conversely, in any region [v, v′] where the item is allocated to bidder 1, the AMA149

payment structure indicates that bidder 1’s payment is non-decreasing in V−1 and thus (due to the150

negative correlation) non-increasing in v1. Consequently, the payment in this region is at most v,151

leading to sub-optimal revenue. This implies that even an optimally learned AMA will exhibit weak152

performance under such correlations.153

3.2 Correlation-Aware Payment154

Motivated by this failure case of classic AMAs, we propose a modification to address correlated155

valuation distributions. Specifically, we introduce an additional payment term for each bidder i,156
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pCor
i (V−i), which depends solely on the valuations of other bidders, V−i. Formally, the CA-AMA157

mechanism is defined as:158

gCA(V ;A,w,λ) = gAMA(V ;A,w,λ),

pCA
i (V ;A,w,λ, pCor) = pAMA

i (V ;A,w,λ) + pCor
i (V−i).

For any bidder i, since pCor
i (V−i) depends only on other bidders’ valuations, it acts as a constant from159

bidder i’s perspective when determining their optimal bid. Thus, the optimal bidding strategy remains160

unchanged from that in a classic AMA. Therefore, CA-AMA inherits the DSIC property from AMA.161

Proposition 3.2. For any A, w, λ and correlation-aware function pCor, the CA-AMA mechanism162

(gCA, pCA) satisfies DSIC.163

However, IR can be violated if pCor
i (V−i) is set inappropriately high. Considering this, we formulate164

the problem of finding the optimal CA-AMA as an IR-constrained optimization problem:165

max
A:|A|=S,w,λ,pCor

REVS-CA
F := EV∼F

[
n∑

i=1

pCA
i (V ;A,w,λ, pCor)

]
s.t. The mechanism (gCA, pCA) satisfies IR.

(CA-AMA-OPT)

Similar to the notation for AMA, we denote REVD-CA
F to be the optimal revenue obtained by CA-166

AMA with A fixed to be the set of all deterministic allocations. To highlight the importance of this167

formulation for correlated distributions, we analyze the relationship between the optimal revenues168

from AMA and CA-AMA. Our analysis primarily focuses on single-item auctions; we will also169

discuss the challenges in extending these theoretical guarantees to multi-item settings. The empirical170

performance of CA-AMA in multi-item auctions is demonstrated in Section 5.171

Clearly, for any distribution F , REVCA
F ≥ REVAMA

F , since setting pCor
i (V−i) = 0 for all i allows172

CA-AMA to replicate any classic AMA. We then present cases where this relationship can be further173

characterized.174

Theorem 3.3. In single-item auctions, for any number of bidders n:175

• If F is bidder-independent, then REVD-CA
F = REVD-AMA

F .176

• For any ϵ > 0, there exists a distribution F such that REVD-AMA
F ≤ ϵ · REVF , while177

REVD-CA
F = REVF . Furthermore, REVS-AMA

F < REVF for any menu size S.178

This result indicates that introducing the pCor
i (V−i) term offers no benefit over classic AMAs in179

bidder-independent single-item auctions when considering deterministic mechanisms. The second180

part of the theorem utilizes the same constructed distribution as in Proposition 3.1. Under such181

correlated distributions, CA-AMA demonstrates significantly greater expressiveness than classic182

AMAs, achieving optimal revenue where AMAs fail. While this theorem pertains to single-item183

auctions, we conjecture that similar results hold for multi-item auctions. Proving this for multi-item184

auctions is challenging due to several factors: firstly, the optimal revenue in multi-item settings185

is often unknown, and characterizing the optimal AMA itself is difficult. Secondly, in multi-item186

auctions, the allocation of one item can be interdependent with others; for instance, an item might187

be reserved if bidders’ valuations for other items are low, affecting overall allocation decisions.188

Therefore, we primarily validate the performance of CA-AMA in multi-item settings empirically in189

Section 5.190

So far, we have introduced the CA-AMA framework, formulated its optimization problem, and191

theoretically analyzed its potential for revenue improvement over classic AMAs. The subsequent192

section will propose a data-driven algorithm for optimizing CA-AMA.193

4 Optimization of CA-AMA194

This section details the optimization procedure for finding the optimal CA-AMA. Within a data-195

driven framework, we first design a loss function tailored to CA-AMA-OPT. A two-stage training196

algorithm is proposed to optimize both the AMA parameters and the correlation-aware payments pCor.197

Furthermore, we establish the continuity of the optimal pCor under mild assumptions and demonstrate198

that the generalization error for IR violation, i.e., the gap between training and test set performance,199

is bounded.200
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4.1 Loss Function Design201

Analogous to definitions of regret on DSIC [16] and over-allocation [43], we define the RegretIR for202

a single data point V . This metric quantifies the extent of IR violation:203

RegretIR(g, p, V ) :=

n∑
i=1

max{0,−ui(vi, V ; g, p)}.

A mechanism satisfies IR if and only if RegretIR(g, p, V ) = 0 for all V ∈ supp(F). To address the204

optimization problem CA-AMA-OPT, we design a loss function incorporating both the standard AMA205

payment pAMA
i and the correlation-aware term pCor

i . Given a dataset D = {V (1), V (2), . . . , V (K)}206

consisting of K samples, the empirical loss is:207

L(A,w,λ, {pCor
i }ni=1) :=

K∑
k=1

[
−Revenue(V (k)) + γ · RegretIR(V

(k))
]

=

K∑
k=1

(
n∑

i=1

−
[
pAMA
i (V (k)) + pCor

i (V
(k)
−i )

]
+ γ

n∑
i=1

max
{
0, pCor

i (V
(k)
−i )− uAMA

i (V (k))
})

.

(Loss)
The loss function comprises the negative total revenue from the batch, derived from both pAMA and208

pCor, and the term penalizes IR violations. Note that a bidder’s utility in CA-AMA, uCA
i (V ), is209

their utility under the classic AMA minus the additional correlation-aware payment: uCA
i (V ) =210

uAMA
i (V )− pCor

i (V−i) for all i ∈ [n]. The hyperparameter γ balances revenue maximization against211

IR satisfaction and is updated during training. Following Ivanov et al. [25], given a target regret for212

IR Rtarget, we estimate the batch RegretIR R(D) = 1
K

∑K
k=1 RegretIR(V

(k)) and update γ iteratively:213

γt+1 = clip (γt + γ∆ (logR(D)− logRtarget) , 1, γ̄) ,

where γ∆ is the learning rate for γ, and γ̄ is a predefined upper bound for γ.214

4.2 Training215

In our implementation, the AMA parameters (A,w,λ) and the correlation-aware payments pCor are216

determined by neural networks with parameters θ and ϕ, respectively. To attain a mechanism with217

high revenue and low RegretIR, we propose a two-stage optimization procedure: mutual training218

followed by post-training.219

Mutual Training. In this stage, the parameters θ (for AMA components) and ϕ (for pCor) are220

jointly trained. Note that the Loss function is non-differentiable to the AMA parameters, and hence221

θ, due to the argmax operation in the allocation rule. To enable gradient-based optimization, we222

follow [9, 14] to replace the argmax in the AMA allocation rule with a softmax approximation. This223

yields differentiable approximations for the AMA payments, p̂AMA
i , and utilities, ûAMA

i , used in the224

loss function during this stage. The primary objective of mutual training is to find AMA parameters225

that are close to optimal for the combined objective. However, because the true AMA utility is226

approximated by ûAMA, the actual regret of IR may not precisely meet the target Rtarget after this227

stage. Therefore, a subsequent post-training stage is introduced to further refine pCor.228

Post-Training. In this stage, the AMA parameters are frozen. Only the parameters ϕ are updated229

to fine-tune the correlation-aware payments pCor, aiming to maximize revenue while satisfying the230

target Rtarget. Since gradients of θ are not required, the exact AMA payments pAMA
i and utilities uAMA

i231

are used in the loss calculation for this stage. The rationale for fixing θ is that mutual training is232

assumed to have found a near-optimal configuration for the core AMA structure; post-training then233

performs a more precise adjustment of pCor
i . Furthermore, with fixed AMA components, optimizing234

pCor
i becomes a more focused and potentially simpler problem than the joint optimization in the235

mutual training stage.236

Detailed algorithmic descriptions for mutual training, post-training, and classic AMA optimization237

are provided in Appendix D.238
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4.3 Theoretical Characterizations239

To conclude this section, we present theoretical results that support the validity and tractability of our240

optimization approach. Our theoretical analysis focuses on the novel aspects compared to classic241

AMA: the correlation-aware term pCor and the RegretIR component of the loss.242

Continuity of Optimal pCor. For bidder i’s correlation-aware payment pCor
i , to maximize revenue243

subject to IR (uCA
i ≥ 0, which implies uAMA

i (V ) − pCor
i (V−i) ≥ 0), the largest such pCor

i (V−i) is244

given by:245

pOPT-core
i (V−i) := inf

vi∈supp(Fi(V−i))
uAMA
i ((vi, V−i);A,w,λ).

This means that to maximize revenue subject to IR, pCor
i (V−i) should ideally be set to the minimum246

utility bidder i would receive from the AMA mechanism. Intuitively, if pCor
i (V−i) exceeds this value,247

IR is violated; if it is less, the revenue is sub-optimal. We then establish continuity properties for this248

pOPT-core
i .249

Theorem 4.1. The target function pOPT-core
i is continuous with respect to the AMA parameters A,250

w, and λ. Furthermore, assume that there exists a constant CH > 0 such that for all V−i, V
′
−i,251

the Hausdorff distance h(supp(Fi(V−i)), supp(Fi(V
′
−i))) ≤ CH∥V−i − V ′

−i∥, then pOPT-core
i is also252

continuous with respect to V−i.253

This result demonstrates that the optimal pCor
i (V−i) is continuous to both the AMA parameters and254

the input V−i under these mild assumptions. This continuity supports the feasibility of parameterizing255

pCor
i with a neural network, which is a universal approximator for any continuous function [11, 23].256

Generalization Bound of RegretIR. We next provide a guarantee on the generalization of the IR257

regret term. This addresses the concern of whether a mechanism trained on a finite dataset will exhibit258

similarly low regret on unseen data drawn from the true underlying distribution F . Specifically, we259

aim to show that the empirical RegretIR, computed on the training set, is a reliable proxy for the true260

expected RegretIR under F . Our analysis considers the post-training stage, where AMA parameters261

are fixed, and only pCor is being learned. The following theorem bounds the difference between the262

empirical and expected RegretIR.263

Theorem 4.2 (Informal version of theorem C.1). For each i ∈ [n], let pCor
i be the output of a264

3-layer ReLU network whose weights have bounded spectral norms. Then, for any AMA parameters265

(A,w,λ), distribution F and i.i.d. sample D = {V (1), . . . , V (K)} ∼ FK , the following inequality266

holds uniformly over all such networks (i.e., all choices of parameters θ):267

sup
θ

∣∣∣ 1K K∑
k=1

RegretIR
(
V (k); θ

)
− EV∼F [RegretIR(V ; θ)]

∣∣∣ ≤ O
(√

log(1/δ)
K

)
with probability 1− δ.

This result guarantees that minimizing the empirical regret on a sufficiently large training set allows268

us to control the true expected regret of the learned mechanism. Combined with the continuity of269

pOPT-core, these results provide theoretical grounding for our proposed training algorithm. In the next270

section, we will evaluate the CA-AMA framework and training algorithm empirically.271

5 Experimental Results272

This section presents experimental results that demonstrate the effectiveness of our proposed CA-273

AMA optimization method across various simulated valuation distributions.274

5.1 Baselines and Implementation275

The main focus is on the comparison between CA-AMA and Randomized AMA, represented by276

LotteryAMA [9] and AMenuNet [14]. We also extend Conditional Auction Net (CAN) [24] to277

multi-item settings by applying CAN independently to each item, referred to as Item-CAN. The278

classic VCG auction [42] and an item-wise application of MyersonNet [16] (denoted Item-Myerson)279

are also included as baselines. GemNet [43] is a menu-based method, which also satisfies strict DSIC280
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Table 1: Revenue performance of CA-AMA and baseline methods under irregular bidder valuation
distributions. CA-AMA consistently outperforms other methods in most scenarios (1.72%, 4.92%
average improvements when setting Rtarget = 0.001 and Rtarget = 0.01) and maintains RegretIR close
to the targeted threshold.

Settings Item-Myerson Item-CAN VCG Randomized AMA CA-AMA (Rtarget = 0.001) CA-AMA (Rtarget = 0.01)
Revenue RegretIR Revenue RegretIR

2× 2 0.5082 0.6341 0.3911 0.6513 0.6729 (↑ 3.3%) 0.0018 0.6912 (↑ 6.1%) 0.0079
5× 2 1.3080 1.4376 1.3714 1.4643 1.4938 (↑ 2.0%) 0.0009 1.5525 (↑ 6.0%) 0.0090
8× 2 1.2077 1.6022 1.7237 1.7645 1.8087 (↑ 2.5%) 0.0009 1.8745 (↑ 6.2%) 0.0083
10× 2 1.4638 1.6581 1.9106 1.9344 1.9966 (↑ 3.2%) 0.0010 2.0714 (↑ 7.1%) 0.0075

2× 3 0.7623 0.9511 0.5876 1.0550 1.0512 (↓ 0.4%) 0.0008 1.0870 (↑ 3.0%) 0.0081
5× 3 1.9619 2.1563 2.0583 2.2682 2.2985 (↑ 1.3%) 0.0017 2.3604 (↑ 4.1%) 0.0085
8× 3 1.8116 2.4033 2.5844 2.6911 2.7368 (↑ 1.7%) 0.0009 2.8297 (↑ 5.1%) 0.0091
10× 3 2.1958 2.4871 2.8664 2.9287 2.9893 (↑ 2.1%) 0.0009 3.1033 (↑ 6.0%) 0.0086

2× 5 1.2705 1.5852 0.9761 1.8508 1.8604 (↑ 0.5%) 0.0011 1.8753 (↑ 1.3%) 0.0078
5× 5 3.2699 3.5939 3.4286 3.7471 3.7846 (↑ 1.0%) 0.0015 3.9075 (↑ 4.3%) 0.0082

in theory. We exclude it from our comparisons due to its implementation complexity, especially in281

multi-item settings.282

For implementation, we adopt an over-parameterization strategy for AMA parameters similar to283

that in AMenuNet [14]. The correlation-aware payment, pCor, is realized as a three-layer MLP with284

ReLU activation functions. Identical menu sizes, |A|, are used for Randomized AMA and CA-AMA285

within the same auction settings to ensure fair comparison. Parameters for the IR regret include286

target Rtarget ∈ {0.01, 0.001}, initial penalty coefficients γ0 ∈ {3, 6, 8, 10}, penalty learning rate287

γ∆ = 0.01, and a maximum penalty γ̄ = 20. The softmax temperature during mutual training is set288

to 500. Both mutual training and post-training phases consist of 2, 000 iterations, with 32, 768 new289

training samples generated per iteration. A fixed test dataset of 20, 000 samples is used for evaluation.290

Further details on parameter selections are provided in Appendix E.1.291

5.2 Revenue Performance292

We evaluate CA-AMA and baseline methods across several bidder-correlated valuation distributions.293

Irregular Multivariate Normal Distribution. We adapt the irregular bidder distribution from Huo294

et al. [24] to a multi-item scenario. Specifically, for each item, the vector of bidders’ valuations is295

drawn with probability 0.5 from one of two multivariate normal distributions. These distributions296

are constructed using randomly sampled matrices A1, A2 ∼ U [−0.2, 0.2]n×n and mean vectors297

µ1, µ2 ∼ U [0, 1]n. All resulting individual valuations are clamped to the range [0, 10]. We generate298

five distinct sets of distribution parameters (A1, A2, µ1, µ2) and evaluate across various auction scales299

(number of bidders n, number of items m).300

The average training result is reported in Table 1. Notably, CA-AMA achieves the highest revenue301

performance in all scenarios. With a target RegretIR of 0.001 and 0.01, CA-AMA surpasses the302

best-performing baselines by average margins of 1.72%, 4.92%. Furthermore, CA-AMA consistently303

maintains RegretIR near the specified target, even with larger numbers of bidders or items. These304

results underscore our method’s effectiveness in leveraging correlation, even when the underlying305

correlation structure is complex and not explicitly known to the mechanism.306

Linearly Correlated Valuations. We investigate scenarios with more explicit linear correlations307

between bidder valuations. The auction has two bidders, for each item j, the valuation of the first308

bidder, v1j , is sampled from U [0, 1]. We consider three types of correlation: In Symmetric Negative,309

with probability α, v2j = 1−v1j ; otherwise, v2j is independently drawn from U [0, 1]. In Symmetric310

Positive, with probability α, v2j = v1j ; otherwise, v2j is independently drawn from U [0, 1]. In311

Asymmetric Negative, with probability α, v2j = (1−v1j)/4; otherwise, v2j is independently drawn312

from U [0, 1/4]. Here, α ∈ [0, 1] controls the correlation strength: α = 1 signifies perfect linear313

correlation, while α = 0 indicates bidder independence.314

Results for varying α are shown in Figure 2. We observe that Item-CAN achieves optimal revenue315

when correlation is strong (α = 1) but underperforms significantly in bidder-independent scenarios.316
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Figure 2: Revenue comparison of CA-AMA against baselines under auctions with explicit linear
correlations. Scenarios include: (a) Symmetric Positive Correlation, (b) Symmetric Negative Correla-
tion, and (c) Asymmetric Negative Correlation. α controls the correlation strength: α = 1 signifies
perfect linear correlation, while α = 0 indicates bidder independence.
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Figure 3: Revenue surfaces of learned CA-AMA and Randomized AMA in a 2-bidder, 2-item
perfectly negative linear scenario (v21 = 1− v11 and v22 = 1− v12). Bidder 1’s valuations (v11, v12)
are on the x-y axes; revenue is on the z-axis. CA-AMA closely approximates the optimal revenue
surface, while Randomized AMA often reserves items and has sub-optimal revenue.

Conversely, Randomized AMA performs better in independent scenarios. In contrast, CA-AMA317

effectively balances these extremes, automatically leveraging available correlation information.318

Furthermore, CA-AMA exhibits a more substantial advantage over Randomized AMA in negatively319

correlated scenarios, aligning with our theoretical motivation. In positively correlated scenarios320

with α = 1, a simple second-price auction can already extract full surplus. However, in negatively321

correlated settings, Randomized AMA typically cannot implement payments that decrease with other322

bidders’ valuations (which would be optimal for revenue extraction), thereby limiting its capability.323

Visualization of Randomized AMA and CA-AMA. In Figure 3, we visualize the revenue surface324

of the learned CA-AMA and Randomized AMA in a 2-bidder, 2-item Symmetric Negative correlation325

scenario with α = 1. The figure plots the extracted revenue (z-axis) as a function of bidder 1’s326

valuations for the two items (v11 on the x-axis, v12 on the y-axis). CA-AMA’s learned revenue327

surface closely approximates the optimal outcome, demonstrating its ability to learn near-optimal328

allocation and payment rules. In contrast, Randomized AMA, while an improvement over VCG,329

deviates significantly from the optimal surface. Notably, it frequently reserves items even in regions330

of high valuation, underscoring its inherent limitations in such correlated settings.331

6 Conclusion332

In this paper, we address the critical limitation of existing AMAs in bidder-correlated settings,333

where their inherent VCG-style payment rules restrict flexibility and lead to suboptimal revenue334

extraction. To overcome this, we introduce the CA-AMA, an extended mechanism incorporating an335

additional correlation-aware payment term. We demonstrate that CA-AMA inherently preserves the336

DSIC property and can theoretically achieve optimal revenue in single-item auctions under certain337

correlated distributions where classic AMAs perform arbitrarily poorly. Furthermore, we develop338

a tailored loss function and a two-stage training algorithm for optimizing CA-AMA, supported by339

theoretical guarantees on continuity and generalization. Our extensive experimental evaluations340

across diverse single-item and multi-item auction scenarios confirm the empirical effectiveness of341

CA-AMA, showcasing its ability to find approximately IR mechanisms and achieve significantly342

improved revenue compared to AMAs.343
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[8] Jacques Crémer and Richard P McLean. Full extraction of the surplus in bayesian and dominant364

strategy auctions. Econometrica: Journal of the Econometric Society, pages 1247–1257, 1988.365

[9] Michael Curry, Tuomas Sandholm, and John Dickerson. Differentiable economics for ran-366

domized affine maximizer auctions. In Proceedings of the Thirty-Second International Joint367

Conference on Artificial Intelligence, pages 2633–2641, 2023.368

[10] Michael Curry, Vinzenz Thoma, Darshan Chakrabarti, Stephen McAleer, Christian Kroer,369

Tuomas Sandholm, Niao He, and Sven Seuken. Automated design of affine maximizer mecha-370

nisms in dynamic settings. In Proceedings of the AAAI Conference on Artificial Intelligence,371

volume 38, pages 9626–9635, 2024.372

[11] George Cybenko. Approximation by superpositions of a sigmoidal function. Mathematics of373

control, signals and systems, 2(4):303–314, 1989.374

[12] Shahar Dobzinski, Hu Fu, and Robert D Kleinberg. Optimal auctions with correlated bidders375

are easy. In Proceedings of the forty-third annual ACM symposium on Theory of computing,376

pages 129–138, 2011.377

[13] Zhijian Duan, Jingwu Tang, Yutong Yin, Zhe Feng, Xiang Yan, Manzil Zaheer, and Xiaotie Deng.378

A context-integrated transformer-based neural network for auction design. In International379

Conference on Machine Learning, pages 5609–5626. PMLR, 2022.380

[14] Zhijian Duan, Haoran Sun, Yurong Chen, and Xiaotie Deng. A scalable neural network for381

dsic affine maximizer auction design. Advances in Neural Information Processing Systems, 36:382

56169–56185, 2023.383

[15] Zhijian Duan, Haoran Sun, Yichong Xia, Siqiang Wang, Zhilin Zhang, Chuan Yu, Jian Xu,384

Bo Zheng, and Xiaotie Deng. Scalable virtual valuations combinatorial auction design by385

combining zeroth-order and first-order optimization method. arXiv preprint arXiv:2402.11904,386

2024.387

[16] Paul Dütting, Zhe Feng, Harikrishna Narasimhan, David C Parkes, and Sai Srivatsa Ravin-388

dranath. Optimal auctions through deep learning: Advances in differentiable economics. Journal389

of the ACM, 2023.390

[17] Ido Feldman and Ron Lavi. Optimal dsic auctions for correlated private values: Ex-post vs.391

ex-interim ir. In WINE, 2021.392

[18] Zhe Feng, Harikrishna Narasimhan, and David C Parkes. Deep learning for revenue-optimal393

auctions with budgets. In Proceedings of the 17th international conference on autonomous394

agents and multiagent systems, pages 354–362, 2018.395

10



[19] Hu Fu, Nima Haghpanah, Jason Hartline, and Robert Kleinberg. Optimal auctions for correlated396

buyers with sampling. In Proceedings of the fifteenth ACM conference on Economics and397

computation, pages 23–36, 2014.398

[20] Noah Golowich, Harikrishna Narasimhan, and David C Parkes. Deep learning for multi-facility399

location mechanism design. In IJCAI, pages 261–267, 2018.400

[21] Wei He and Jiangtao Li. Correlation-robust auction design. Journal of Economic Theory, 200:401

105403, 2022.402
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Limitation459

The main limitation of this work comes from the theoretical results, in which we mainly consider the460

single-item case. We have discussed the difficulty of analyzing multi-item auctions in the main paper,461

and we believe this can also serve as a valuable future work.462

A Detailed Related Work463

A.1 Affine Maximizer Auctions464

Affine maximizer auctions (AMAs) generalize the seminal VCG auction by assigning weights to465

both bidders and allocations, modifying the objective to maximize affine social welfare. Several466

restricted subclasses of AMA have been studied, including Virtual Valuations Combinatorial Auc-467

tions (VVCAs) [30, 31, 39], λ-auctions [26], mixed bundling auctions [41], and bundling-boosted468

auctions [2].469

The expressiveness of AMAs in comparison to arbitrary auction mechanisms has been formally470

analyzed in [28]. Beyond expressiveness, algorithmic aspects have also been explored. Sandholm471

and Likhodedov [39] present optimization methods for finding optimal AMA mechanisms, while472

Balcan et al. [3, 4] study the sample complexity required to learn such mechanisms. More recently,473

differentiable optimization techniques have been applied to this setting. For example, LotteryAMA [9]474

and AMenuNet [14] introduce differentiable approaches to optimize AMA-based auctions using475

neural networks.476

Our work proposes a new framework, CA-AMA, that extends the classical AMA by incorporating477

bidder correlations. We theoretically characterize its expressiveness relative to traditional AMA in478

single-item settings and empirically evaluate optimization algorithms for learning revenue-optimal479

CA-AMA mechanisms across various distributional settings.480

A.2 Differentiable Economics for Auctions481

Differentiable economics is a recent and active line of research in automated mechanism design,482

leveraging neural networks as flexible function approximators and optimizing them using gradient-483

based methods. Existing work in this area for revenue maximization can be broadly categorized into484

characterization-free and characterization-based approaches.485

Characterization-free methods do not assume a predefined structure for the mechanism. The foun-486

dational work, RegretNet [16], implements the allocation and payment rules as neural networks487

conditioned on bid profiles. Its loss function jointly optimizes revenue and penalizes violations of488

DSIC and IR. Building on this, Feng et al. [18] incorporate budget constraints, while Golowich et al.489

[20] generalize the framework to handle various objectives and constraints. Rahme et al. [37] reframe490

the design problem as a two-player game with a more efficient loss. Further extensions include491

PreferenceNet [34], which incorporates fairness preferences, and EquivariantNet [36], a permutation-492

equivariant architecture tailored for symmetric auctions. Transformer-based methods, such as those493
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introduced by Ivanov et al. [25] and Duan et al. [13], improve performance in settings with contextual494

information. Hertrich et al. [22] apply mode connectivity to provide a theoretical explanation for the495

empirical success of differentiable economics. The combinatorial auction extensions CANet and496

CAFormer [35] bring these ideas into richer valuation domains.497

Characterization-based approaches, by contrast, restrict optimization to a predefined family of498

mechanisms. AMAs are particularly suitable for this due to their inherent satisfaction of DSIC and499

IR. LotteryAMA [9] introduces randomized allocation menus over AMA structures, which simplifies500

optimization. AMenuNet [14] builds upon this with a more expressive architecture and applies it to501

contextual auctions. Further developments include contextual AMAs for ad auctions [29], dynamic502

AMA designs [10], and zeroth-order optimization for deterministic AMA mechanisms [15]. In503

addition, menu-based mechanisms have also been treated with differentiable tools. MenuNet [40]504

optimizes revenue for single-bidder auctions, while GemNet [43] extends to multi-bidder cases by505

incorporating over-allocation penalties and post-processing using mixed-integer linear programming.506

Our work fits within the characterization-based paradigm. We extend AMA to define CA-AMA, a507

mechanism that incorporates bidder correlations through a novel correlation-aware payment rule.508

This new structure retains the theoretical guarantees of classic AMA while significantly improving509

revenue, both in theory and in practice.510

A.3 Auctions with Bidder Correlations511

Modeling bidder correlation is a critical aspect of realistic auction settings. The foundational Crémer-512

McLean results [7, 8] demonstrate that under certain distributional conditions, it is possible to design513

mechanisms that are DSIC, interim IR, and extract the full surplus. However, like the Myerson514

auction, these mechanisms assume full knowledge of the valuation distribution and thus are primarily515

theoretical.516

Subsequent work has relaxed this assumption by exploring scenarios in which the auctioneer has517

incomplete information. Fu et al. [19], Albert et al. [1], and Yang and Bei [44] study the sample518

complexity needed to approximate Crémer-McLean-style mechanisms from empirical data. Because519

computing the optimal mechanism under general correlated settings is NP-hard, approximation520

algorithms have also been proposed. For instance, Dobzinski et al. [12] design polynomial-time521

mechanisms that achieve provable approximation guarantees under correlated priors. In contrast,522

Papadimitriou and Pierrakos [33] and Caragiannis et al. [6] provide upper bounds by constructing523

distributions where any polynomial-time algorithm performs poorly.524

More recent work addresses robustness to correlation. Bei et al. [5] study the correlation-robust design525

problem, while Zhang [45] and He and Li [21] show that the second-price auction is asymptotically526

optimal in worst-case correlated environments.527

These studies predominantly focus on theoretical designs for single-item auctions. In contrast, our528

goal is to demonstrate both the theoretical and empirical benefits of CA-AMA in richer combinatorial529

settings. The most closely related works are Huo et al. [24] and Feldman and Lavi [17]. The530

former proposes a score-based payment rule, optimized through a max-min neural architecture to531

approximate optimal revenue in single-item settings. The latter provides a theoretical analysis of532

the gap between ex-post and ex-interim IR mechanisms, showing that AMA can perform arbitrarily533

poorly in the presence of correlations. Our results extend this by showing that the performance534

gap holds even when comparing to ex-post IR mechanisms, and we demonstrate that CA-AMA535

overcomes this gap.536

B Omitted Proofs in Section 3537

Proposition 3.1. In single-item auctions, for any number of bidders n and any ϵ > 0, there exists a538

distribution F such that REVD-AMA
F ≤ ϵ · REVF . Furthermore, REVS-AMA

F < REVF for any menu size539

S.540

Proof. See the proof of Theorem 3.3.541

Proposition 3.2. For any A, w, λ and correlation-aware function pCor, the CA-AMA mechanism542

(gCA, pCA) satisfies DSIC.543
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Proof. We verify the DSIC property by definition. For any bidder i, its true valuation vi, other bidders’544

bid V−i and possible bid bi, we define Ak∗ := gAMA(vi, V−i), Ak′∗ := gAMA(bi, V−i) and Ak∗ :=545

gAMA(0, V−i). Then, we directly compare the utility under truthful report ui(vi, (vi, V−i)) and the546

utility when reporting bi, ui(vi, (bi, V−i)). For simplicity, let V−i = (v1, · · · ,vi−1,vi+1, · · · ,vn).547

ui(vi, (vi, V−i)) = vi · (Ak∗)i − pAMA
i (vi, V−i)− pCor

i (V−i)

= vi · (Ak∗)i −
1

wi

∑
j ̸=i

wjvj · (Ak∗
−i
)j + λk∗

−i
−
∑
j ̸=i

wjvj · (Ak∗)j − λk∗

− pCor
i (V−i)

=
1

wi

 n∑
j=1

wjvj · (Ak∗)j + λk∗

− 1

wi

∑
j ̸=i

wjvj · (Ak∗
−i
)j + λk∗

−i

− pCor
i (V−i)

(a)

≥ 1

wi

 n∑
j=1

wjvj · (Ak′∗)j + λk′∗

− 1

wi

∑
j ̸=i

wjvj · (Ak∗
−i
)j + λk∗

−i

− pCor
i (V−i)

= vi · (Ak′∗)i −
1

wi

∑
j ̸=i

wjvj · (Ak∗
−i
)j + λk∗

−i
−
∑
j ̸=i

wjvj · (Ak′∗)j − λk′∗

− pCor
i (V−i)

= vi · (Ak′∗)i − pAMA
i (bi, V−i)− pCor

i (V−i)

= ui(vi, (bi, V−i)).

The inequality (a) is from the definition of k∗, k∗ = argmaxk∈[S] asw(k; (vi, V−i)).548

Theorem B.1 (The first part of Theorem 3.3). In single-item auctions, for any number of bidders n:549

If F is bidder-independent, then REVD-CA
F = REVD-AMA

F .550

Proof. As bidders are independent, we assume that each valuation inf{vi : vi ∈ supp(Fi)} = li551

for each i ∈ [n]. We show that when fixing A to be set of all deterministic allocations, for an552

optimal solution (w,λ, (pCor
i )ni=1) of Problem CA-AMA-OPT, we can construct a feasible solution553

for Problem AMA-OPT which brings at least the same revenue. This is sufficient to say that the554

REVD-AMA ≥ REVD-CA.555

Let A be {A0, A1, A2, · · · , An}, where Ai is the outcome that allocates the item to bidder i and556

A0 is the outcome that reserves the item. The optimal solution of the CA-AMA is given by557

(w,λ, (pCor
i )ni=1). Consider two cases:558

If for any i and v−i, there is pCor
i (v−i) = 0, then the revenue of the CA-AMA is equal to the revenue559

from the AMA parameterized by (w,λ). Therefore, below we consider the case that there is at least560

one i∗ and v−i∗ , such that pCor
i∗ (v−i∗) > 0.561

Firstly, the condition pCor
i∗ (v−i∗) > 0 means that g(li∗ ,v−i∗ ;w,λ) = Ai∗ . Otherwise, the utility562

of bidder i∗ when it realizes its least valuation li∗ is negative, violating the IR constraint. From563

g(li∗ ,v−i∗ ;w,λ) = Ai∗ , we can get the following condition:564

wi∗ li∗ + λi∗ > max{max
j ̸=i∗

wjvj + λj , λ0} ≥ max{max
j ̸=i∗

wj lj + λj , λ0} ≥ λ0.

Note that this also implies that for any j ̸= i∗, pCor
j (v−j) ≡ 0 for any v−j . Otherwise, we have565

wi∗ li∗ + λi∗ > wj lj + λj and wi∗ li∗ + λi∗ < wj lj + λj simultaneously.566

Secondly, we construct a new AMA based on (w,λ). Without loss of generality, we set λ0 = 0567

and define b := wi∗ li∗ + λi∗ − λ0 > 0. The new parameters (w′,λ′) is conducted as w′ = w,568

λ′
i = λi − b for all i ∈ {1, 2, · · · , n}, and λ′

0 = λ0.569

We analyze the revenue brought by AMA with parameters (w′,λ′). Our goal is to show that for570

any v ∈ supp(F), the payment of the AMA parameterized by (w′,λ′) is at least the payment of the571

CA-AMA parameterized by (w,λ, (pCor
i )ni=1).572

For any v, we obverse that573

max
j

w′
jvj + λ′

j ≥ wi∗vi∗ + λ′
i∗ ≥ wi∗ li∗ + λ′

i∗ = wi∗ li∗ + λi∗ − b = λ0.
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Therefore, the item will always be allocated in the new AMA. Furthermore, as the boost variable λ574

other than A0 changes to the same value, the allocation remains the same. For this v, we consider575

two cases.576

1. The item is allocated to bidder j ̸= i∗.577

As pCor
j = 0, the original revenue comes solely from pAMA

j . In new AMA mechanism, the pAMA
j is578

computed by:579

w′
j p

AMA
j (v;w′,λ′) = max{A0,max

k ̸=j
w′

kvk + λ′
k} − λ′

j

= max{A0,max
k ̸=j

wkvk + λk − b} − λj + b

≥ max{A0,max
k ̸=j

wkvk + λk} − b− λj + b

= max{A0,max
k ̸=j

wkvk + λk} − λj

= wj p
AMA
j (v;w,λ) = w′

j p
AMA
j (v;w,λ).

2. The item is allocated to bidder i∗.580

We compare the revenue between pAMA
i∗ (v;w′,λ′) and pAMA

i∗ (v;w,λ) + pCor
i (v−i∗). Firstly,581

w′
i∗ pAMA

i∗ (v;w′,λ′) = max{A0,max
k ̸=i∗

w′
kvk + λ′

k} − λ′
i∗

= max{A0,max
k ̸=i∗

wkvk + λk − b} − λi∗ + b

≥ λ0 − λi∗ + b

= wi∗ li∗ + λi∗ − λ0 + λ0 − λi∗

= wi∗ li∗ .

For pCor
i∗ (v−i∗), by IR constraint, we have,582

pCor
i∗ (v−i∗) ≤ li∗ − pAMA

i∗ (li∗ ,v−i∗ ;w,λ)

= li∗ −max{A0,max
k ̸=i∗

wkvk + λk}+ λi∗

= li∗ − pAMA
i∗ (v;w,λ).

Therefore, pCor
i∗ (v−i∗) + pAMA

i∗ (v;w,λ) ≤ li∗ ≤ pAMA
i∗ (v;w′,λ′).583

Hence, for any valuation profile w, the revenue by AMA (w′,λ′) is at least the revenue given by584

CA-AMA (w,λ, (pCor
i )ni=1).585

Theorem B.2 (The second part of Theorem 3.3). In single-item auctions, for any number of bidders n586

and any ϵ > 0, there exists a distributionF such that REVD-AMA
F ≤ ϵ·REVF , while REVD-CA

F = REVF .587

Furthermore, REVS-AMA
F < REVF for any S.588

Proof. The valuation distribution for the single-item auction is set as follows: Bidder 1’s valuation589

follows a equal revenue distribution on [ϵ, 1], i.e., the pdf is given by f(v) = ϵ
(1−ϵ)v2 . The other590

bidders’ valuations are the same and are linear to v1, vi = ϵ1 · (1 − v1), for all i ≥ 2. We require591

0 < ϵ1 < ϵ < 1, with specific values to be determined later.592

Part 1: Showing REVF = REVD-CA
F .593

For this distribution, it is possible to extract the full social surplus maxi∈[n] vi as payment for every594

valuation profile v. In the CA-AMA framework, we achieve this by setting: pCor
1 (v−1) = (1− v2/ϵ),595

A to be set of all deterministic allocation, w = 1, λk = 0 for all k ∈ [S]. By this, the revenue is the596

same as first-price auction:597

REVF = REVCA
F =

∫ 1

ϵ

f(v)v dv =

∫ 1

ϵ

ϵ

(1− ϵ)v
dv =

ϵ ln(1/ϵ)

1− ϵ
.

Part 2: Showing the relationship between REVD-AMA
F and REVF .598

15



In deterministic AMA,A is fixed to be {A0, A1, A2, · · · , An}, where Ai is the outcome that allocates599

the item to bidder i and A0 is the outcome that reserves the item. We first show the following lemma:600

Lemma B.3. Under the constructed valuation, for any bidder 1’s valuation v < v′ and AMA601

parameter (w,λ), if bidder 1 wins the item on v, then it also wins the item on v′.602

Proof. When bidder 1’s valuation is v and wins the item, we have:603

w1v + λ1 ≥ max{λ0,max
j≥2

wjvj + λj} = max{λ0,max
j≥2

wjϵ1(1− v) + λj}.

Then for any valuation v′ > v, we still have that:604

w1v
′ + λ1 > w1v + λ1

≥ max{λ0,max
j≥2

wjϵ1(1− v) + λj}

≥ max{λ0,max
j≥2

wjϵ1(1− v′) + λj}.

This means that bidder 1 will also win the item.605

We consider two cases: (1) Bidder 1 never wins the item: then the payment will always be lower than606

the valuation of other bidders and hence is at most ϵ1. (2) Bidder 1 does not win when its valuation is607

less than v∗ and wins when its valuation is in [v∗, 1]. Still, the payment collected when its valuation is608

less than v∗ is at most ϵ1
∫ v∗
ϵ

f(v)dv ≤ ϵ1. The payment for the bidder 1 when it wins is bounded by609

pAMA
1 (v;w,λ) =

1

w1

(
max{λ0, λ1,max

j≥2
wjϵ1(1− v) + λj} − λ1

)
≤ 1

w1

(
max{λ0, λ1,max

j≥2
wjϵ1(1− v∗) + λj} − λ1

)
= pAMA

1 ((v∗, ϵ1(1− v∗));w,λ) ≤ v∗.

The last inequality is derived from the IR property of any AMA. Therefore, the upper bound of the610

payment for [v∗, 1] can be computed by:611 ∫ 1

v∗
v∗f(v)dv =

∫ 1

v∗
v∗

ϵ

(1− ϵ)v2
dv = v∗

ϵ

(1− ϵ)

(
1

v∗
− 1

)
≤ ϵ

(1− ϵ)
.

Therefore, the expected payment is bounded by ϵ
(1−ϵ) + ϵ1. As REVF = ϵ ln(1/ϵ)

1−ϵ . For any δ, we can612

easily set ϵ and ϵ1 so that REVD-AMA
F < δ · REVF .613

Part 3: Showing the relationship between REVS-AMA
F and REVF .614

As we consider the case that the size of the allocation menu is finite, i.e., |A| = S, S is a con-615

stant. Denote the winning allocation as a function to v1, k(v1) = argmaxk∈[S] w1v1(Ak)1 +616 ∑
j≥2 wjvj(Ak)j+λk = argmaxk∈[S] w1v1(Ak)1+

∑
j≥2 wjϵ1(1−v1)(Ak)j+λk. The function617

must be a piece-wise constant function, and the function has at most S change points by the following618

lemma.619

Lemma B.4. For any (A,w,λ), there is at most S = |A| change points of k(v1).620

Proof. We prove this result by contradiction. Assume that there are S + 1 change points, then, there621

must be a case that for v11 < v21 < v31 such that k = g(v11) = g(v31), k
′ = g(v21), and k ̸= k′. Then,622

by definition of AMA’s allocation rule, we have623

w1v
1
1(Ak)1 +

∑
j≥2

wjv
1
j (Ak)j + λk ≥ w1v

1
1(Ak′)1 +

∑
j≥2

wjv
1
j (Ak′)j + λk′ (1)

w1v
2
1(Ak′)1 +

∑
j≥2

wjv
2
j (Ak′)j + λk′ ≥ w1v

2
1(Ak)1 +

∑
j≥2

wjv
2
j (Ak)j + λk (2)

w1v
3
1(Ak)1 +

∑
j≥2

wjv
3
j (Ak)j + λk ≥ w1v

3
1(Ak′)1 +

∑
j≥2

wjv
3
j (Ak′)j + λk′ . (3)
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Inserting vj = ϵ1(1 − v1) ∀j ≥ 2, by (2) - (1), we have w1((Ak′)1 − (Ak)1) ≥624

ϵ1
∑

j≥2 wj((Ak′)j − (Ak)j). By (3) - (2), we have w1((Ak)1 − (Ak′)1) ≥ ϵ1
∑

j≥2 wj((Ak)j −625

(Ak′)j). The only feasible solution is that (Ak)j = (Ak′)j for all j ∈ [n], which means Ak = Ak′626

and hence brings a contradiction.627

Therefore, we know that there are at most S change points of g(v1). Suppose these S′ ≤ S change628

points are v01 = ϵ < v11 < v21 < · · · < vS
′

1 < vS
′+1

1 = 1 and the corresponding allocations are629

A0, A1, A2, · · · , AS′ . We only consider the interval [v01 , v
1
1). If in this interval, (A0)1 < 1, which630

means the item is not allocated to bidder 1 deterministically, then the payment loss compared to631

optimal revenue is at least (1− (A0)1)
∫ v1

1

v0
1=ϵ

(v − ϵ1)dv > 0.632

On the other hand, if the allocation satisfies that (A0)1 = 1. From a similar proof above, we know that633

the payment in this interval is at most v01 , which will also results in a gap of
∫ v1

1

v0
1=ϵ

(v−v01)f(v)dv > 0634

compared to the optimal revenue. Therefore, in both cases, we can induce that REVS-AMA
F <635

REVF .636

C Omitted Proofs in Section 4637

Theorem 4.1. The target function pOPT-core
i is continuous with respect to the AMA parameters A,638

w, and λ. Furthermore, assume that there exists a constant CH > 0 such that for all V−i, V
′
−i,639

the Hausdorff distance h(supp(Fi(V−i)), supp(Fi(V
′
−i))) ≤ CH∥V−i − V ′

−i∥, then pOPT-core
i is also640

continuous with respect to V−i.641

Proof. For simplicity, we use ϕ to represent AMA parameters (A,w,λ). Specifically, A =642

{A1, A2, · · · , AS}, w = {w1, w2, · · · , wn}, and λ = {λ1, λ2, · · · , λS}. For any matrices A,643

A′ (vectors v, v′), we denote notation d1(A,A′) (d1(v,v′)) the L1 distance. For two ϕ and ϕ′,644

denote645

d1(ϕ, ϕ
′) =

S∑
k=1

d1(Ak, A
′
k) + d1(w,w′) + d1(λ,λ

′).

Recall that asw(k;V, ϕ) is the affine social welfare given by the k-th allocation in A, which means:646

asw(k;V, ϕ) =

n∑
j=1

wj(vj · (Ak)j) + λk.

We first show that asw(k;V, ϕ) is continuous w.r.t ϕ. For any ϕ, ϵ, ϕ′ such that d1(ϕ, ϕ′) ≤ ϵ, and647

k ∈ [S], let w̄ := maxj wj , we have648

|asw(k;V, ϕ)− asw(k;V, ϕ′)| = |
n∑

j=1

wj(vj · (Ak)j) + λk −
n∑

j=1

w′
j(vj · (A′

k)j)− λ′
k|

= |
n∑

j=1

wj(vj · (Ak)j)−
n∑

j=1

wj(vj · (A′
k)j)

+

n∑
j=1

wj(vj · (A′
k)j)−

n∑
j=1

w′
j(vj · (A′

k)j) + λk − λ′
k|

≤
n∑

j=1

wjvj · ((Ak)j − (A′
k)j) +

n∑
j=1

|wj − w′
j |(vj · (A′

k)j) + |λk − λ′
k|

≤ w̄
n∑

j=1

d1(Ak, A
′
k) +md1(w,w′) + d1(λ,λ

′)

≤ max{w̄,m}d1(ϕ, ϕ′) ≤ max{w̄,m}ϵ.

This means that the continuity of ϕ holds.649
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(1) The continuity with respect to AMA parameters ϕ.650

We use asw to compute a bidder’s utility under AMA. By the allocation rule and payment rule defined651

by AMA, there is652

uAMA
i (vi, V ;ϕ) =

1

wi

(
max
k∈[S]

asw(k;V, ϕ)− max
k∈[S]

asw(k; (0, V−i), ϕ)

)
.

And for the target function,653

pOPT−Cor
i (V−i;ϕ) = inf

vi∈supp(Fi(V−i))
uAMA
i (vi, (vi, V−i);ϕ).

As both max and inf operations do not influence the continuity, we can conclude that654

pOPT−Cor
i (V−i;ϕ) is continuous w.r.t. ϕ for any V−i.655

(2) Continuity in the other bidders’ valuations V−i.656

Here, the AMA parameters ϕ are fixed; we first show that asw is also continuous to V . For any ϕ, k,657

V and V ′ , we have658

|asw(k;V, ϕ)− asw(k;V, ϕ)| = |
n∑

j=1

wj(vj · (Ak)j) + λk −
n∑

j=1

wj(v
′
j · (Ak)j)− λk|

= |
n∑

j=1

wj(vj · (Ak)j)−
n∑

j=1

wj(v
′
j · (Ak)j)|

≤
n∑

j=1

wj(|vj − v′
j | · (Ak)j)

=

n∑
j=1

wj

m∑
t=1

|vjt − v′
jt|(Ak)jt

=

m∑
t=1

n∑
j=1

wj |vjt − v′
jt|(Ak)jt

≤
m∑
t=1

max
j

wj |vjt − v′
jt|

≤ w̄d1(V, V
′)

Then, as the mechanism satisfies DSIC, we will use notation uAMA
i (vi, V−i;ϕ) to represent the659

original uAMA
i (vi, (vi, V−i);ϕ) as bidders’ will always truthfully report. As uAMA

i is a maximum of660

a finite number of continuous functions, for any vi, v′
i, V−i and V ′

−i,661

|uAMA
i (vi, V−i;ϕ)− uAMA

i (v′
i, V

′
−i;ϕ)| ≤ Ld1(vi,v

′
i) + Ld1(V−i, V

′
−i), L :=

2w̄

wi
. (4)

Now, for two valuation profiles V−i, V ′
−i, by definition of pOPT−Cor

i , for any ϵ > 0, we can find662

a vi ∈ suppFi(V−i) such that pOPT−Cor
i (V−i) ≤ uAMA

i (vi, V−i;ϕ) ≤ pOPT−Cor
i (V−i) + ϵ. By the663

Hausdorff assumption on suppFi(V−i) and suppFi(V
′
−i), we can find another v′

i ∈ suppFi(V
′
−i),664

such that665

d1(vi,v
′
i) ≤ CHd1(V−i, V

′
−i).

Therefore, we can bound the gap in the values666

pOPT−Cor
i (V−i;ϕ) ≥ uAMA

i

(
vi, (vi, V−i);ϕ

)
− ϵ

≥ uAMA
i

(
v′
i, (v

′
i, V

′
−i);ϕ

)
− Ld1(vi,v

′
i)− Ld1(V−i, V

′
−i)− ϵ

≥ uAMA
i

(
v′
i, (v

′
i, V

′
−i);ϕ

)
− L(CH + 1) d1(V−i, V

′
−i)− ϵ

≥ pOPT−Cor
i (V ′

−i;ϕ)− ϵ− L(CH + 1) d1(V−i, V
′
−i).
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It is obvious that the vice is also correct, so we can conclude that:667

|pOPT−Cor
i (V−i;ϕ)− pOPT−Cor

i (V ′
−i;ϕ)| ≤ ϵ+ L(CH + 1) d1(V−i, V

′
−i)

= ϵ+
2w̄

wi
(CH + 1) d1(V−i, V

′
−i).

As ϵ can be chosen sufficiently small, this means that pOPT−Cor
i (·;ϕ) is 2w̄

wi
(CH +1)-continuous w.r.t.668

V−i under L1 distance for any fixed ϕ under CH -Hausdorff assumption.669

Theorem C.1 (Uniform generalization bound for a 3-layer payment network). Let F be an arbitrary670

distribution over valuation profiles V ∈ [0, 1]n×m. For parameters θ = (W1,W2,W3) satisfying671

∥Wℓ∥2 ≤Mℓ for ℓ = 1, 2, 3, consider672

RegretIR(V ) =

n∑
i=1

max{0, pCor
i (V−i; θ)− uAMA

i (vi, V )},

where the payment network pCor
i ( · ; θ) : R(n−1)m→ R is the depth-3 ReLU network pi(x; θ) =673

W3 σ
(
W2 σ(W1x)

)
with σ(z) = max{0, z}. Let674

Bx =
√
(n− 1)m, Bp = Bx

3∏
ℓ=1

Mℓ.

For any i.i.d. sample D = {V (1), . . . , V (K)} ∼ FK and any confidence level δ ∈ (0, 1), with675

probability at least 1 − δ (over the draw of D) the following inequality holds simultaneously for676

every choice of parameters θ:677

sup
θ

∣∣∣∣∣ 1K
K∑

k=1

RegretIR(V
(k); θ)− ERegretIR(V ; θ)

∣∣∣∣∣ ≤ 2n
Bp

√
2 log(2d)√
K

+ nBp

√
log(2/δ)

2K
,

where d = max{(n− 1)m,h1, h2, 1} and h1, h2 are the widths of the first and second hidden layers.678

Proof. We use pCor
i (V−i; θ) and RegretIR(V ; θ) to represent the correlation-aware payment and679

RegretIR for input V when the neural network is parameterized by θ. Recall that,680

RegretIR(V ; θ) =

n∑
i=1

max{0, pCor
i (V−i; θ)− uAMA

i (vi, V )}.

Let681

Bx =
√
(n− 1)m, Bp = Bx

3∏
ℓ=1

Mℓ.

Since every valuation component lies in [0, 1], ∥V−i∥2 ≤ Bx =
√

(n− 1)m. For ReLU networks,682

the operator norm is non-expansive, hence,683

|pCor
i (V−i; θ)| ≤ ∥W3∥2 ∥W2∥2 ∥W1∥2 ∥V−i∥2 ≤ Bp.

Together with 0 ≤ ui(vi, V ) ≤ m we therefore have684

0 ≤ RegretIR(V ; θ) ≤ nBp.

Let P = {RegretIR(V ; θ) : θ ∈ Θ}. By standard symmetrisation (see, e.g., Bartlett & Mendelson,685

2002), for any fixed sample D686

sup
θ

∣∣∣∣∣ 1K
K∑

k=1

RegretIR(V
(k); θ)− EV∼F [RegretIR(V ; θ)]

∣∣∣∣∣ ≤ 2 R̂K(P) + nBp

√
log(2/δ)

2K

with probability ≥ 1− δ, where R̂K is the empirical Rademacher complexity.687
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Let Pi = {pCor
i (V−i; θ) : θ ∈ Θ} be the function class for a single payment component. For a depth-3688

ReLU network with spectral-norm bounds Mℓ, we have689

R̂K(Pi) ≤
Bx

(∏3
ℓ=1 Mℓ

)√
2 log(2d)

√
K

,

where d = max{(n− 1)m,h1, h2, 1} and h1, h2 are the widths of the first and second hidden layers.690

Since RegretIR(V ; θ) =
∑n

i=1 max{0, pCor
i (V−i; θ) − uAMA

i (vi, V )} and max{0, ·} is 1-Lipschitz,691

we have:692

R̂K(P) ≤
n∑

i=1

R̂K({pCor
i (V−i; θ)}) = n · R̂K(Pi).

Substituting the bound for R̂K(Pi):693

R̂K(P) ≤ n
Bp

√
2 log(2d)√
K

.

Substituting the complexity estimate for R̂K(P), and we finally get:694

sup
θ

∣∣∣∣∣ 1K
K∑

k=1

RegretIR(V
(k); θ)− EV∼F [RegretIR(V ; θ)]

∣∣∣∣∣ ≤ 2n
Bp

√
2 log(2d)√
K

+ nBp

√
log(2/δ)

2K
.

695

Remark C.2 (Fixed network). If θ is treated as fixed (e.g. after training), Hoeffding’s inequality696

immediately gives the simpler bound697 ∣∣∣∣∣ 1K ∑
k

fi,θ(V
(k))− Efi,θ(V )

∣∣∣∣∣ ≤ nBp

√
log(2/δ)

2K
,

so the capacity term vanishes.698

D Algorithm of CA-AMA699

We present the detailed algorithm description for classic randomized AMA optimization methods,700

including LotteryAMA [9] and AMenuNet [14] in algorithm 1. The two training phases, mutual701

training and post training, of our CA-AMA are presented in algorithm 2 and algorithm 3, respectively.702

For the softmax version of AMA, given a valuation profile V , the AMA parameters (A,w,λ) and703

temperature T , the approximated allocation is calculated as follows,704

ĝAMA(V ) =
∑
A∈A

easw(A;V )·T∑
A′∈A easw(A′;V )·T A,

ĝAMA
−i (V ) =

∑
A∈A

easw−i(A;V )·T∑
A′∈A easw−i(A′;V )·T A.

asw(k;V ) is defined as
∑n

j=1 wjvj · (Ak)j + λk and asw−i(k;V ) is
∑n

j=1,j ̸=i wjvj · (Ak)j + λk.705

Based on that, the payment and utility for bidder i is:706

p̂AMA
i (V ) =

1

wi

(
asw−i(ĝ

AMA
−i (V );V )− asw−i(ĝ

AMA(V );V )
)
,

ûAMA
i (V ) = vi · ĝAMA(V )i − p̂AMA

i (V ).

(5)

Note that in this approximated version, all operations are differentiable to the AMA parameters707

(A,w,λ). For other notations and equations, please refer to the previous section 4.708
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Algorithm 1 Classic Randomized AMA Optimization [9, 14]

Require: Data generator G, initial parameters θ, total iterations T , sample size |S|.
1: Initialize neural network pθ (AMA parameters).
2: Set initial penalty strength γ.
3: for t = 1 to T do
4: Generate dataset S = {V 1, V 2, . . . , V |S|} by G.
5: Get A, w, and λ from pθ.
6: for i = 1 to n do
7: Approximate AMA payment p̂AMA

i and utility ûAMA
i using softmax by Equation 5.

8: end for
9: Compute loss:

L(θ) = 1

|S|

|S|∑
k=1

n∑
i=1

−p̂AMA
i (V k).

10: Update pθ by gradient descent on L.
11: end for
Ensure: Optimized AMA parameters pθ.

Algorithm 2 Mutual Training of CA-AMA (Ours)

Require: Data generator G, initial parameters θ, ϕ, hyperparameters γ, γ∆, Rtarget, upper bound γ̄,
total iterations T , sample size |S|.

1: Initialize neural networks pθ (AMA parameters) and pϕ (correlation-aware payments).
2: Set initial penalty strength γ.
3: for t = 1 to T do
4: Generate dataset S = {V 1, V 2, . . . , V |S|} by G.
5: Get A, w, and λ from pθ.
6: for i = 1 to n do
7: Approximate AMA payment p̂AMA

i and utility ûAMA
i using softmax by Equation 5.

8: Get correlation-aware payment pCor
i by pϕ.

9: end for
10: Compute loss:

L(θ, ϕ) = 1

|S|

|S|∑
k=1

n∑
i=1

−
[
p̂AMA
i (V k) + pCor

i (V k
−i)
]
+ γmax{0, pCor

i (V k
−i)− ûAMA

i (V k)}.

11: Update pθ, pϕ by gradient descent on L.
12: Estimate regret:

R̃(S) =
1

|S|

|S|∑
k=1

n∑
i=1

max{0, pCor
i (V k

−i)− ûAMA
i (V k)}.

13: Update penalty γ:

γ ← clip
(
γ + γ∆(log R̃(S)− logRtarget), 1, γ̄

)
.

14: end for
Ensure: Partially optimized parameters pθ, pϕ.
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Algorithm 3 Post-Training of CA-AMA (Ours)

Require: Data generator G, parameters pθ from mutual training, parameters ϕ, hyperparameters γ,
γ∆, Rtarget, upper bound γ̄, total iterations T , sample size |S|.

1: Freeze neural network pθ.
2: for t = 1 to T do
3: Generate dataset S = {V 1, V 2, . . . , V |S|} by G.
4: Get A, w, and λ from pθ.
5: for i = 1 to n do
6: Compute exact AMA payment pAMA

i and utility uAMA
i using true argmax.

7: Get correlation-aware payment pCor
i by pϕ.

8: end for
9: Compute loss:

L(ϕ) = 1

|S|

|S|∑
k=1

n∑
i=1

−
[
pAMA
i (V k) + pCor

i (V k
−i)
]
+ γmax{0, pCor

i (V k
−i)− uAMA

i (V k)}.

10: Update pϕ by gradient descent on L.
11: Estimate regret R̃(S).
12: Update penalty γ:

γ ← clip
(
γ + γ∆(log R̃(S)− logRtarget), 1, γ̄

)
.

13: end for
Ensure: Fully optimized parameters pϕ.

Table 2: Hyperparameters and training times of CA-AMA and Randomized AMA methods.

Hyperparameter 2×2 5×2 8×2 10×2 2×3

Initial penalization term γ0 3 6 6 8 5
Menu size |A| 32 64 128 256 64
CA-AMA training time (min) 20 26 40 47 22
AMenuNet training time (min) 19 23 33 40 20

Hyperparameter 5×3 8×3 10×3 2×5 5×5

Initial penalization term γ0 6 8 8 3 10
Menu size |A| 1024 2048 2048 256 2048
CA-AMA training time (min) 40 80 90 27 70
AMenuNet training time (min) 40 75 85 24 65

E Further Experimental Descriptions709

E.1 Implementation Details710

Most hyperparameters are the same for all settings, as we have introduced in section 5. Only two711

hyperparameters vary for different settings: the initial penalization term γ0 and the menu size |A|.712

We present the choices taken in our experiments, and also present the total training time for different713

auction settings (n and m). As the implementation of CA-AMA only adds a computation for the714

RegretIR term and the correlation-aware payment is represented by simply a three-layer MLP, the715

training time does not significantly increase compared to [14].716

E.2 Further Experimental Results717

We consider a 2-bidder single-item auction setting. The two bidders are also linearly correlated: the718

first bidder’s valuation v1 is sampled from an equal revenue distribution clamped within [ϵ, 1]. The719

second bidder’s valuation v2 equals to ϵ
1−ϵ (1− v1). To make the outcome significant, we multiply720

22



0.02 0.04 0.06 0.08 0.10
Parameter 

0

5

10

15

20

25

Re
ve

nu
e

(a) Training Outcomes

AMenuNet
CA-AMA
VCG
FPA

0 500 1000 1500 2000
Iteration

0

1

2

3

4

5

Re
ve

nu
e

(b) Training Curve ( = 0.01)

0 500 1000 1500 2000
Iteration

0

2

4

6

8

Re
ve

nu
e

(c) Training Curve ( = 0.02)

0 500 1000 1500 2000
Iteration

0

5

10

15

Re
ve

nu
e

(d) Training Curve ( = 0.05)

0 500 1000 1500 2000
Iteration

5

0

5

10

15

20

Re
ve

nu
e

(e) Training Curve ( = 0.08)

0 500 1000 1500 2000
Iteration

5

0

5

10

15

20

25

Re
ve

nu
e

(f) Training Curve ( = 0.1)

(b)-(f) Legend
CA-AMA pAMA CA-AMA pCore CA-AMA pAMA + pCore AMenuNet pAMA VCG FPA

Figure 4: The revenue results and training curves of CA-AMA and Randomized AMA (implemented
by AMenuNet [14]) in auctions with the first bidder’s valuation v1 following equal revenue distribution
on [ϵ, 1] and the second bidder’s valuation v2 = ϵ

1−ϵ (1− v1). As the RegretIR in all cases is less than
1e− 5, it is not plotted in the figure.

all valuations by 100. This is the case we constructed in the proof of theorem 3.3, where we prove721

that when ϵ is sufficiently small, then the optimal revenue obtained by randomized AMA can be722

arbitrarily poorer than optimal CA-AMA.723

Different values of ϵ are selected, ranging from 0.01 to 0.1. We present the results for different724

ϵ and plot the training curves for some cases in Figure 4. As for comparison, the revenue gained725

by VCG and FPA (First Price Auction), which extracts the full surplus and hence represents the726

optimal revenue, and the revenue obtained by optimal Randomized AMA, are also plotted. As727

is demonstrated in the figure, CA-AMA succeeds in reaching the optimal revenue, significantly728

surpassing Randomized AMA. From the dynamics of payment pCor and pAMA, we observe that729

CA-AMA can effectively tell the correlation information in this distribution and hence pCor dominates730

in all cases. Compared to Randomized AMA, although the revenue part comes from AMA (CA-AMA731

pAMA) is less than AMenuNet pAMA, the total revenue CA-AMA pAMA + pCor is significantly higher732

than it.733

E.3 Influence of the Target Regret734

This section investigates the impact of the target level of IR regret, Rtarget, on the revenue achieved735

by our optimized CA-AMA mechanism. Experiments are conducted in a 2-bidder 2-item auction736

setting with irregular multivariate normal value distributions, as described in detail in Section 5. We737

evaluate Rtarget for values in the set {0.05, 0.02, 0.01, 0.005, 0.002, 0.001, 0.0005, 0.0001}. Figure 5738

presents the average revenue and the achieved IR regret over 5 independent test runs for CA-AMA739

at each target regret level. For comparison, the revenue achieved by Randomized AMA, VCG, and740

Item-CAN is also included.741

Firstly, we observe that after training, the achieved IR regret for CA-AMA is consistently close742

to the specified target value, even for very small targets like Rtarget = 0.0001. This demonstrates743

the effectiveness of our training algorithm in steering the mechanism towards a desired level of IR744
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compliance, mitigating the significant IR violations that can occur with standard AMA approaches.745

Secondly, as Rtarget approaches 0, the revenue obtained by CA-AMA tends to decrease. Nevertheless,746

CA-AMA consistently yields higher average revenue than Randomized AMA across all tested target747

regret levels.748
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Figure 5: Average revenue vs. achieved IR regret for the optimized CA-AMA under different target
IR regret (Rtarget). Results are averaged over 5 test runs in a 2-bidder, 2-item auction setting with
irregular multivariate normal value distributions. Revenue obtained by Randomized AMA, VCG, and
Item-CAN is included for comparison.
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NeurIPS Paper Checklist749

The checklist is designed to encourage best practices for responsible machine learning research,750

addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove751

the checklist: The papers not including the checklist will be desk rejected. The checklist should752

follow the references and follow the (optional) supplemental material. The checklist does NOT count753

towards the page limit.754

Please read the checklist guidelines carefully for information on how to answer these questions. For755

each question in the checklist:756

• You should answer [Yes] , [No] , or [NA] .757

• [NA] means either that the question is Not Applicable for that particular paper or the758

relevant information is Not Available.759

• Please provide a short (1–2 sentence) justification right after your answer (even for NA).760

The checklist answers are an integral part of your paper submission. They are visible to the761

reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it762

(after eventual revisions) with the final version of your paper, and its final version will be published763

with the paper.764

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.765

While ”[Yes] ” is generally preferable to ”[No] ”, it is perfectly acceptable to answer ”[No] ”766

provided a proper justification is given (e.g., ”error bars are not reported because it would be too767

computationally expensive” or ”we were unable to find the license for the dataset we used”). In768

general, answering ”[No] ” or ”[NA] ” is not grounds for rejection. While the questions are phrased769

in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your770

best judgment and write a justification to elaborate. All supporting evidence can appear either in the771

main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in772

the justification please point to the section(s) where related material for the question can be found.773

IMPORTANT, please:774

• Delete this instruction block, but keep the section heading “NeurIPS Paper Checklist”,775

• Keep the checklist subsection headings, questions/answers and guidelines below.776

• Do not modify the questions and only use the provided macros for your answers.777

1. Claims778

Question: Do the main claims made in the abstract and introduction accurately reflect the779

paper’s contributions and scope?780

Answer: [Yes]781

Justification: We are sure that the main claims made in the abstract and introduction782

accurately reflect the paper’s contributions and scope.783

Guidelines:784

• The answer NA means that the abstract and introduction do not include the claims785

made in the paper.786

• The abstract and/or introduction should clearly state the claims made, including the787

contributions made in the paper and important assumptions and limitations. A No or788

NA answer to this question will not be perceived well by the reviewers.789

• The claims made should match theoretical and experimental results, and reflect how790

much the results can be expected to generalize to other settings.791

• It is fine to include aspirational goals as motivation as long as it is clear that these goals792

are not attained by the paper.793

2. Limitations794

Question: Does the paper discuss the limitations of the work performed by the authors?795

Answer: [Yes]796
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Justification: The discussion is put in the appendix.797

Guidelines:798

• The answer NA means that the paper has no limitation while the answer No means that799

the paper has limitations, but those are not discussed in the paper.800

• The authors are encouraged to create a separate ”Limitations” section in their paper.801

• The paper should point out any strong assumptions and how robust the results are to802

violations of these assumptions (e.g., independence assumptions, noiseless settings,803

model well-specification, asymptotic approximations only holding locally). The authors804

should reflect on how these assumptions might be violated in practice and what the805

implications would be.806

• The authors should reflect on the scope of the claims made, e.g., if the approach was807

only tested on a few datasets or with a few runs. In general, empirical results often808

depend on implicit assumptions, which should be articulated.809

• The authors should reflect on the factors that influence the performance of the approach.810

For example, a facial recognition algorithm may perform poorly when image resolution811

is low or images are taken in low lighting. Or a speech-to-text system might not be812

used reliably to provide closed captions for online lectures because it fails to handle813

technical jargon.814

• The authors should discuss the computational efficiency of the proposed algorithms815

and how they scale with dataset size.816

• If applicable, the authors should discuss possible limitations of their approach to817

address problems of privacy and fairness.818

• While the authors might fear that complete honesty about limitations might be used by819

reviewers as grounds for rejection, a worse outcome might be that reviewers discover820

limitations that aren’t acknowledged in the paper. The authors should use their best821

judgment and recognize that individual actions in favor of transparency play an impor-822

tant role in developing norms that preserve the integrity of the community. Reviewers823

will be specifically instructed to not penalize honesty concerning limitations.824

3. Theory assumptions and proofs825

Question: For each theoretical result, does the paper provide the full set of assumptions and826

a complete (and correct) proof?827

Answer: [Yes]828

Justification: All assumptions and rigorous proofs are provided.829

Guidelines:830

• The answer NA means that the paper does not include theoretical results.831

• All the theorems, formulas, and proofs in the paper should be numbered and cross-832

referenced.833

• All assumptions should be clearly stated or referenced in the statement of any theorems.834

• The proofs can either appear in the main paper or the supplemental material, but if835

they appear in the supplemental material, the authors are encouraged to provide a short836

proof sketch to provide intuition.837

• Inversely, any informal proof provided in the core of the paper should be complemented838

by formal proofs provided in appendix or supplemental material.839

• Theorems and Lemmas that the proof relies upon should be properly referenced.840

4. Experimental result reproducibility841

Question: Does the paper fully disclose all the information needed to reproduce the main ex-842

perimental results of the paper to the extent that it affects the main claims and/or conclusions843

of the paper (regardless of whether the code and data are provided or not)?844

Answer: [Yes]845

Justification: The full information combined with the code is provided.846

Guidelines:847

• The answer NA means that the paper does not include experiments.848
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• If the paper includes experiments, a No answer to this question will not be perceived849

well by the reviewers: Making the paper reproducible is important, regardless of850

whether the code and data are provided or not.851

• If the contribution is a dataset and/or model, the authors should describe the steps taken852

to make their results reproducible or verifiable.853

• Depending on the contribution, reproducibility can be accomplished in various ways.854

For example, if the contribution is a novel architecture, describing the architecture fully855

might suffice, or if the contribution is a specific model and empirical evaluation, it may856

be necessary to either make it possible for others to replicate the model with the same857

dataset, or provide access to the model. In general. releasing code and data is often858

one good way to accomplish this, but reproducibility can also be provided via detailed859

instructions for how to replicate the results, access to a hosted model (e.g., in the case860

of a large language model), releasing of a model checkpoint, or other means that are861

appropriate to the research performed.862

• While NeurIPS does not require releasing code, the conference does require all submis-863

sions to provide some reasonable avenue for reproducibility, which may depend on the864

nature of the contribution. For example865

(a) If the contribution is primarily a new algorithm, the paper should make it clear how866

to reproduce that algorithm.867

(b) If the contribution is primarily a new model architecture, the paper should describe868

the architecture clearly and fully.869

(c) If the contribution is a new model (e.g., a large language model), then there should870

either be a way to access this model for reproducing the results or a way to reproduce871

the model (e.g., with an open-source dataset or instructions for how to construct872

the dataset).873

(d) We recognize that reproducibility may be tricky in some cases, in which case874

authors are welcome to describe the particular way they provide for reproducibility.875

In the case of closed-source models, it may be that access to the model is limited in876

some way (e.g., to registered users), but it should be possible for other researchers877

to have some path to reproducing or verifying the results.878

5. Open access to data and code879

Question: Does the paper provide open access to the data and code, with sufficient instruc-880

tions to faithfully reproduce the main experimental results, as described in supplemental881

material?882

Answer: [Yes]883

Justification: The data is mainly simulated from certain distributions, which are described in884

the paper.885

Guidelines:886

• The answer NA means that paper does not include experiments requiring code.887

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/888

public/guides/CodeSubmissionPolicy) for more details.889

• While we encourage the release of code and data, we understand that this might not be890

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not891

including code, unless this is central to the contribution (e.g., for a new open-source892

benchmark).893

• The instructions should contain the exact command and environment needed to run to894

reproduce the results. See the NeurIPS code and data submission guidelines (https:895

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.896

• The authors should provide instructions on data access and preparation, including how897

to access the raw data, preprocessed data, intermediate data, and generated data, etc.898

• The authors should provide scripts to reproduce all experimental results for the new899

proposed method and baselines. If only a subset of experiments are reproducible, they900

should state which ones are omitted from the script and why.901

• At submission time, to preserve anonymity, the authors should release anonymized902

versions (if applicable).903
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• Providing as much information as possible in supplemental material (appended to the904

paper) is recommended, but including URLs to data and code is permitted.905

6. Experimental setting/details906

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-907

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the908

results?909

Answer: [Yes]910

Justification: All details are provided.911

Guidelines:912

• The answer NA means that the paper does not include experiments.913

• The experimental setting should be presented in the core of the paper to a level of detail914

that is necessary to appreciate the results and make sense of them.915

• The full details can be provided either with the code, in appendix, or as supplemental916

material.917

7. Experiment statistical significance918

Question: Does the paper report error bars suitably and correctly defined or other appropriate919

information about the statistical significance of the experiments?920

Answer: [Yes]921

Justification: We have clarified the error bar in the text.922

Guidelines:923

• The answer NA means that the paper does not include experiments.924

• The authors should answer ”Yes” if the results are accompanied by error bars, confi-925

dence intervals, or statistical significance tests, at least for the experiments that support926

the main claims of the paper.927

• The factors of variability that the error bars are capturing should be clearly stated (for928

example, train/test split, initialization, random drawing of some parameter, or overall929

run with given experimental conditions).930

• The method for calculating the error bars should be explained (closed form formula,931

call to a library function, bootstrap, etc.)932

• The assumptions made should be given (e.g., Normally distributed errors).933

• It should be clear whether the error bar is the standard deviation or the standard error934

of the mean.935

• It is OK to report 1-sigma error bars, but one should state it. The authors should936

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis937

of Normality of errors is not verified.938

• For asymmetric distributions, the authors should be careful not to show in tables or939

figures symmetric error bars that would yield results that are out of range (e.g. negative940

error rates).941

• If error bars are reported in tables or plots, The authors should explain in the text how942

they were calculated and reference the corresponding figures or tables in the text.943

8. Experiments compute resources944

Question: For each experiment, does the paper provide sufficient information on the com-945

puter resources (type of compute workers, memory, time of execution) needed to reproduce946

the experiments?947

Answer: [Yes]948

Justification: All experiments can be run on a single A100 GPU.949

Guidelines:950

• The answer NA means that the paper does not include experiments.951

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,952

or cloud provider, including relevant memory and storage.953

28



• The paper should provide the amount of compute required for each of the individual954

experimental runs as well as estimate the total compute.955

• The paper should disclose whether the full research project required more compute956

than the experiments reported in the paper (e.g., preliminary or failed experiments that957

didn’t make it into the paper).958

9. Code of ethics959

Question: Does the research conducted in the paper conform, in every respect, with the960

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?961

Answer: [Yes]962

Justification: We have checked.963

Guidelines:964

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.965

• If the authors answer No, they should explain the special circumstances that require a966

deviation from the Code of Ethics.967

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-968

eration due to laws or regulations in their jurisdiction).969

10. Broader impacts970

Question: Does the paper discuss both potential positive societal impacts and negative971

societal impacts of the work performed?972

Answer: [NA]973

Justification: There is no societal impact of the work performed.974

Guidelines:975

• The answer NA means that there is no societal impact of the work performed.976

• If the authors answer NA or No, they should explain why their work has no societal977

impact or why the paper does not address societal impact.978

• Examples of negative societal impacts include potential malicious or unintended uses979

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations980

(e.g., deployment of technologies that could make decisions that unfairly impact specific981

groups), privacy considerations, and security considerations.982

• The conference expects that many papers will be foundational research and not tied983

to particular applications, let alone deployments. However, if there is a direct path to984

any negative applications, the authors should point it out. For example, it is legitimate985

to point out that an improvement in the quality of generative models could be used to986

generate deepfakes for disinformation. On the other hand, it is not needed to point out987

that a generic algorithm for optimizing neural networks could enable people to train988

models that generate Deepfakes faster.989

• The authors should consider possible harms that could arise when the technology is990

being used as intended and functioning correctly, harms that could arise when the991

technology is being used as intended but gives incorrect results, and harms following992

from (intentional or unintentional) misuse of the technology.993

• If there are negative societal impacts, the authors could also discuss possible mitigation994

strategies (e.g., gated release of models, providing defenses in addition to attacks,995

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from996

feedback over time, improving the efficiency and accessibility of ML).997

11. Safeguards998

Question: Does the paper describe safeguards that have been put in place for responsible999

release of data or models that have a high risk for misuse (e.g., pretrained language models,1000

image generators, or scraped datasets)?1001

Answer: [NA]1002

Justification: The paper poses no such risks.1003

Guidelines:1004

• The answer NA means that the paper poses no such risks.1005
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• Released models that have a high risk for misuse or dual-use should be released with1006

necessary safeguards to allow for controlled use of the model, for example by requiring1007

that users adhere to usage guidelines or restrictions to access the model or implementing1008

safety filters.1009

• Datasets that have been scraped from the Internet could pose safety risks. The authors1010

should describe how they avoided releasing unsafe images.1011

• We recognize that providing effective safeguards is challenging, and many papers do1012

not require this, but we encourage authors to take this into account and make a best1013

faith effort.1014

12. Licenses for existing assets1015

Question: Are the creators or original owners of assets (e.g., code, data, models), used in1016

the paper, properly credited and are the license and terms of use explicitly mentioned and1017

properly respected?1018

Answer: [NA]1019

Justification: The paper does not use existing assets.1020

Guidelines:1021

• The answer NA means that the paper does not use existing assets.1022

• The authors should cite the original paper that produced the code package or dataset.1023

• The authors should state which version of the asset is used and, if possible, include a1024

URL.1025

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.1026

• For scraped data from a particular source (e.g., website), the copyright and terms of1027

service of that source should be provided.1028

• If assets are released, the license, copyright information, and terms of use in the1029

package should be provided. For popular datasets, paperswithcode.com/datasets1030

has curated licenses for some datasets. Their licensing guide can help determine the1031

license of a dataset.1032

• For existing datasets that are re-packaged, both the original license and the license of1033

the derived asset (if it has changed) should be provided.1034

• If this information is not available online, the authors are encouraged to reach out to1035

the asset’s creators.1036

13. New assets1037

Question: Are new assets introduced in the paper well documented and is the documentation1038

provided alongside the assets?1039

Answer: [NA]1040

Justification: The paper does not release new assets.1041

Guidelines:1042

• The answer NA means that the paper does not release new assets.1043

• Researchers should communicate the details of the dataset/code/model as part of their1044

submissions via structured templates. This includes details about training, license,1045

limitations, etc.1046

• The paper should discuss whether and how consent was obtained from people whose1047

asset is used.1048

• At submission time, remember to anonymize your assets (if applicable). You can either1049

create an anonymized URL or include an anonymized zip file.1050

14. Crowdsourcing and research with human subjects1051

Question: For crowdsourcing experiments and research with human subjects, does the paper1052

include the full text of instructions given to participants and screenshots, if applicable, as1053

well as details about compensation (if any)?1054

Answer: [NA]1055

Justification: The paper does not involve crowdsourcing nor research with human subjects.1056
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Guidelines:1057

• The answer NA means that the paper does not involve crowdsourcing nor research with1058

human subjects.1059

• Including this information in the supplemental material is fine, but if the main contribu-1060

tion of the paper involves human subjects, then as much detail as possible should be1061

included in the main paper.1062

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,1063

or other labor should be paid at least the minimum wage in the country of the data1064
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