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Abstract

Affine Maximizer Auctions (AMAs), a generalized mechanism family from VCG,
are widely used in automated mechanism design due to their inherent dominant-
strategy incentive compatibility (DSIC) and individual rationality (IR). However,
as the payment form is fixed, AMA’s expressiveness is restricted, especially in
distributions where bidders’ valuations are correlated. In this paper, we propose
Correlation-Aware AMA (CA-AMA), a novel framework that augments AMA with
a new correlation-aware payment. We show that any CA-AMA preserves the DSIC
property and formalize finding optimal CA-AMA as a constraint optimization
problem subject to the IR constraint. Then, we theoretically characterize scenarios
where classic AMAs can perform arbitrarily poorly compared to the optimal
revenue, while the CA-AMA can reach the optimal revenue. For optimizing CA-
AMA, we design a tailored loss function with a two-stage training algorithm. We
derive that the target function’s continuity and the generalization bound on the
degree of deviation from strict IR. Finally, extensive experiments showcase that
our algorithm can find an approximate optimal CA-AMA in various distributions
with improved revenue and a low degree of violation of IR.

1 Introduction

Differentiable economics [9, |16 140, 43]] has recently attracted significant attention within automated
mechanism design. By leveraging advanced neural network architectures and gradient-based optimiza-
tion algorithms, these approaches construct auctions demonstrating superior empirical performance.
In revenue-maximizing auction design, existing methods are broadly categorized into two classes: (1)
characterization-free methods, which directly employ neural networks to approximate auction mecha-
nisms [[13}[16} 125,134} |37]], and (2) characterization-based methods, which optimize within structured
mechanism families possessing well-defined economic properties [9} [14}[15,/40,143]]. Among the latter,
Affine Maximizer Auctions (AMAs), a family of mechanisms extended from Vickery-Clarke-Groves
(VCQG) [27, 142]), are particularly notable for inherently guaranteeing dominant-strategy incentive
compatibility (DSIC), individual rationality (IR), and preventing over-allocation. Recent work on
optimizing AMAs has demonstrated strong empirical performance and balanced computational
efficiency [9} 14, [15]].

However, prior AMA-based methods have primarily focused on evaluations under bidder-independent
distributions, where the limitations in expressiveness of VCG-style payment rules may not be fully
apparent. In certain bidder-correlated settings, this VCG-style payment rule exhibits a critical
constraint: a bidder’s payment can only be a non-decreasing function of other bidders’ valuations.
This inherent limitation significantly reduces their payment flexibility compared to characterization-
free [L6] or menu-based mechanisms [43]]. For instance, consider a single-item auction with two
bidders where valuations are perfectly negatively correlated (v; = 1—v5) and each marginal valuation
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is drawn uniformly from [0, 1]. Here, the optimal mechanism extracts full surplus by setting a reserve
price of 1 — min{wv, vy }. This implies that when v; > 0.5, bidder 1 is allocated the item and pays
1 — vy. Yet, for any AMA, the payment when bidder 1 wins must be non-decreasing in vy, thus
rendering it incapable of expressing such a simple optimal mechanism.

Motivated by this limitation, we aim to enhance AMA’s expressiveness in bidder-correlated settings
while preserving its structural advantages and optimization efficiency. Existing research on bidder-
correlated auctions has largely concentrated on theoretical designs, predominantly for single-item
settings. The seminal Crémer-McLean auction [7, [8]] established conditions under which DSIC and
Bayesian IR mechanisms can extract full surplus. Subsequent studies have analyzed the computational
complexity [6,[12}133] and sample complexity [[1}[19}44] of optimal auctions under specific correlated
priors, while others have investigated the robustness of existing mechanisms (e.g., second-price
auctions) to correlation [5, 121} 45]]. Closest to our work are [24] and [[17]: Huo et al. [24] proposed
a score-based payment rule trained via max-min neural networks, approximating optimal revenue
in single-item auctions; The result by Feldman and Lavi [17] implies limitations of classic AMAs
compared to optimal interim IR mechanism. Our results show that AMA can perform badly even
compared to the optimal ex-post IR mechanism.

In this paper, we introduce the Correlation-Aware Affine Maximizer Auction (CA-AMA), which
incorporates an additional correlation-aware payment term, p$®, for each bidder. Since p$°r is
independent of bidder ’s bid, CA-AMA inherently maintains the DSIC property, and we formalize
the problem of identifying the optimal CA-AMA as an optimization problem subject to IR constraints.
Theoretically, we demonstrate that in single-item auctions under certain distributions, CA-AMA
can achieve optimal revenue where classic AMAs perform arbitrarily poorly. We then derive a
tailored loss function and a two-stage training algorithm for optimizing CA-AMA. The algorithm’s
feasibility is supported by the continuity of the target function and a generalization bound on the
degree of IR violation. Finally, we conduct extensive experiments across various distributions in
single-item and multi-item auctions. The results demonstrate our algorithm’s effectiveness in finding
an approximately IR CA-AMA and achieving significantly improved revenue compared to classic
AMA:s.

The remainder of this paper is organized as follows: Section [2]introduces preliminaries. Section 3]
demonstrates the limitations of classic AMAs and proposes the CA-AMA framework. Section
details the optimization of CA-AMA. Experimental results are presented in Section[5] and Section [6]
concludes the paper. More details about related work are in Section

2 Preliminary

We consider the sealed-bid auction with n bidders [n] = {1,2,...,n} and m items [m] =
{1,2,...,m}. Each bidder i has a private valuation on all item combinations, denoted by
v; = (Vis)sC[m]> Where v;; is the bidder’s valuation of an item combination s C [m]. We mainly
consider the additive valuation, i.e., v;s = Y .. v;; forall ¢ € [n] and s C [m]. So a bidder’s

valuation is expressed by v; = (Vi;) jem]-

JESs

A valuation profile V = (v, vs,...,v,) is a collection of all bidders’ valuations. We assume that V'
has an underlying distribution F and the support is bounded, supp(F') C [0, 1]**™. In an auction,
each bidder ¢ reports a bid b;, which does not necessarily equal its real valuation v;. The auctioneer
does not know the true valuation profile V' nor the distribution F but can observe the bidding profile
B = (by,bs,...,b,). Weuse V_; = (v1,...,0;_1,Vi+1,-- ., Vp) to represent the valuation profile
except for bidder ¢, and B_; with the similar meaning. The marginal distribution is represented
by F;(V_;) for bidder i’s valuation. When the bidders are independent, this marginal distribution
does not depend on V_;, which means that F;(V_;) = F; for any V_;. When the bidders’ valuation
distributions are correlated, such a relationship does not hold.

2.1 Revenue-Maximizing Auction Design

An auction mechanism (g, p) consists of an allocation rule g and a payment rule p. For a given
bidding profile B, g(B) C [0, 1]™*™ is the allocation matrix. The allocation rule has to satisfies
that Y | g(B);; < 1forany j € [m]. If the mechanism is deterministic, we further restrict that
the allocation matrix g(B);; C {0,1} for all ¢ and j. The payment rule p;(B) > 0 determines the



89
90
91
92
93

94
95
96

97

98

99
100
101
102
103

104
105

106

107
108
109
110
111

112
113
114

115
116
17

118
119
120
121
122

value the bidder ¢ has to pay. Following the literature [14,[16], we assume that the bidders are utility
maximizers and have quasi-linear utility. For a mechanism (g, p), the utility of bidder ¢ with true
valuation v; when the bid profile is B can be written as u;(v;, B; g,p) = v; - g(B); — p;(B). If
the mechanism (g, p) which we are referring to does not raise ambiguity, we will use w;(v;, B) for
simplicity.

The auction mechanism will be announced publicly at first so bidders can statically report their
valuation to gain a higher utility. We consider the following properties from classic auction theory [32].

Definition 2.1. A mechanism (g, p) satisfies dominant-strategy incentive compatibility (DSIC) if
u; (v, (05, B—;)) > ui(vi, (bi, B—;)), Vi,B_;,v;,b;. (DSIC)
Definition 2.2. A mechanism (g, p) satisfies individual rationality (IR) if
u; (v, (v, B_;)) >0, Vi, B_;,v; € supp(F;(B_;)). (IR)

Note that the definition is different from the ex-post IR, which requires w;(v;, (v;, B—;)) > 0 for all
i, v; and B_;. This is weaker than ex-post IR but stronger than ex-interim IR, as it requires the utility
to be non-negative on each point (v;, B_;) that can be realized by F. As the mechanism we analyze
in this paper always satisfies DSIC, it is reasonable to assume that all bidders will truthfully report
and so that we can exclude some valuation profiles that will never be realized.

The optimal auction design is to find the revenue-maximizing DSIC and IR auction mechanism under
a certain distribution F, which can be formulated as the following optimization problem.

max REVrz:=Ey. i(V
na F % f;]ﬂ( )

s.t.  Mechanism (g, p) satisfies DSIC and IR.

(OPT)

2.2 Affine Maximizer Auctions

AMAs is a family of auction mechanisms generalized from the VCG [27,42] auction. An AMA can
be parameterized by (A, w,X). A= {A4;,---, Ag}is asetof S distinct candidate allocations, w;
is the weight for bidder ¢ and )y, is the boost for allocation Aj. A deterministic AMA refers to the
AMA whose parameter A is fixed by all possible deterministic allocations, and so that S = (n + 1)™
(each item can be allocated to any of the n + 1 bidders).

Formally, with the parameter set as (A, w, A), denote asw(k; V) := > w;(v; - (Ag);) + Ai, the
affine social welfare for k-th allocation under valuation profile V and asw_;(k; V') = asw(k; V') —
w;(v; - (A);), the allocation and payment rule can be written as

MV A w N) = Ay - k= arg ’Icllé[l;(] asw(k; V),
€

) (AMA)

1
AMA . A) = — i k: . i k*
PN (Vi A w, A) o ]rcré?;(} asw_;(k; V) —asw_;(k*; V)

As AMA satisfies DSIC and IR regardless of the chosen parameters [38],139], the problem of finding
the revenue-maximizing AMA with a fixed size of A, |A| = S, can be formulated as an unconstrained
optimization.

REVE"MA .= Ey o MMAV; A w, N). AMA-OPT
A¢|Al?j§(,w,>\ 7 v ]—‘;p, (Vi A, w, A) ( )

Specifically, we denote REVI}'AMA the optimal revenue when fixing A to be the set of all deterministic
allocations. Recent work on AMA has its advantage of interpretability and strong performance in the-
ory and empirical [28] shows that AMA is “approximately universal” under certain distributions, and
recent AMA-based work [9, [14} 15 39] attain considerable empirical performance when combined
with machine learning approaches, even compared with those approximate DSIC auctions.
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Figure 1: The comparison between the optimization for classic Affine Maximizer Auctions (AMAs)
and our proposed Correlation Aware AMA (CA-AMA). In classic AMA-based methods [9,[14}15,139],
we only optimize the AMA parameters to improve the revenue. To enhance AMA’s performance
under bidder-correlated distributions, we introduce a correlation-aware payment p°" and hence add a
Regret, term in our loss function.

3 Correlation-Aware Affine Maximizer Auctions

This section begins by presenting a bidder-correlated single-item scenario where classic AMAs fail
to achieve optimal revenue. We then define Correlation-Aware AMA (CA-AMA), a modification that
introduces a correlation-aware payment term to enhance AMA’s expressiveness while preserving the
desirable property of DSIC. The problem of finding the optimal CA-AMA is subsequently formulated
as an optimization problem constrained by IR. Finally, we provide a theoretical comparison of the
revenue achievable by optimal CA-AMA and classic AMA in single-item auctions.

3.1 AMA Fails in Certain Correlated Distributions

We begin by analyzing a potential shortcoming of In current AMA-based methods [9}
141 [15] 39], AMA parameters (A, w, A) are determined during training and remain fixed at test
time to ensure DSIC. Consequently, this static nature prevents the mechanism from further utilizing
information from a specific input bidding profile B during evaluation. Specifically, if bidders’
valuations are linearly correlated, one bidder’s valuation v; can be inferred from the valuations of
others, V_;. To illustrate this deficiency, we construct an asymmetric correlated distribution F where
the optimal AMA’s revenue can be an arbitrarily small fraction of the optimal revenue.

Proposition 3.1. In single-item auctions, for any number of bidders n and any € > 0, there exists a
distribution F such that REV%AMA < € REVx. Furthermore, REVfr'AMA < REVx for any menu size
S.

The constructed distribution features a “dominant” bidder whose valuation is consistently the highest
and is sampled from an equal revenue distribution. The valuations of other bidders are negatively
linearly correlated with the dominant bidder’s valuation, allowing the dominant bidder’s exact
valuation to be inferred from theirs. Under this distribution, a strict DSIC and IR mechanism can set
a reserve price equal to the dominant bidder’s valuation and hence extract full surplus. However, we
show that any deterministic AMA can perform arbitrarily poorly, and even any randomized AMA
fails to extract the full surplus. The underlying reason is that in allocation regions where the dominant
bidder (say, bidder 1) does not receive the item, revenue is upper-bounded by the (low) valuations
of other bidders. Conversely, in any region [v, v’] where the item is allocated to bidder 1, the
payment structure indicates that bidder 1’s payment is non-decreasing in V_; and thus (due to the
negative correlation) non-increasing in v;. Consequently, the payment in this region is at most v,
leading to sub-optimal revenue. This implies that even an optimally learned AMA will exhibit weak
performance under such correlations.

3.2 Correlation-Aware Payment

Motivated by this failure case of classic AMAs, we propose a modification to address correlated
valuation distributions. Specifically, we introduce an additional payment term for each bidder <,
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pl-c"r(V,Z-), which depends solely on the valuations of other bidders, V_;. Formally, the CA-AMA
mechanism is defined as:

gV A w, A) = "MV A w, A,

pSA(V A w, A p™) = pPMA (VA w, X) + pS (Vo).

For any bidder i, since p$*(V_;) depends only on other bidders’ valuations, it acts as a constant from

bidder ¢’s perspective when determining their optimal bid. Thus, the optimal bidding strategy remains
unchanged from that in a classic AMA. Therefore, CA-AMA inherits the DSIC property from AMA.

Proposition 3.2. For any A, w, X and correlation-aware function p’, the CA-AMA mechanism
(g, p“1) satisfies DSIC.

However, IR can be violated if p$°(V_;) is set inappropriately high. Considering this, we formulate

the problem of finding the optimal CA-AMA as an IR-constrained optimization problem:

n
max REVE{CA =Eyor ZpiCA(V; A, w, X, p)

A:|A|=S,w, X, pCor Pl (CA-AMA-OPT)

s.t.  The mechanism (¢g*, p“*) satisfies IR.

Similar to the notation for AMA, we denote REV%CA to be the optimal revenue obtained by CA-
AMA with A fixed to be the set of all deterministic allocations. To highlight the importance of this
formulation for correlated distributions, we analyze the relationship between the optimal revenues
from AMA and CA-AMA. Our analysis primarily focuses on single-item auctions; we will also
discuss the challenges in extending these theoretical guarantees to multi-item settings. The empirical
performance of CA-AMA in multi-item auctions is demonstrated in Section 5]

Clearly, for any distribution F, REV?:A > REV;MA, since setting pf"r(V,i) = 0 for all 7 allows
CA-AMA to replicate any classic AMA. We then present cases where this relationship can be further
characterized.

Theorem 3.3. In single-item auctions, for any number of bidders n:
o If F is bidder-independent, then REVF“* = REVZAMA,

e For any ¢ > 0, there exists a distribution F such that REVL})-'AMA < € - REVx, while
REVIJZ-'CA = REVr. Furthermore, REVSf'AMA < REV £ for any menu size S.

This result indicates that introducing the p$°r

7°"(V_;) term offers no benefit over classic AMAs in
bidder-independent single-item auctions when considering deterministic mechanisms. The second
part of the theorem utilizes the same constructed distribution as in Proposition Under such
correlated distributions, CA-AMA demonstrates significantly greater expressiveness than classic
AMAs, achieving optimal revenue where AMAs fail. While this theorem pertains to single-item
auctions, we conjecture that similar results hold for multi-item auctions. Proving this for multi-item
auctions is challenging due to several factors: firstly, the optimal revenue in multi-item settings
is often unknown, and characterizing the optimal AMA itself is difficult. Secondly, in multi-item
auctions, the allocation of one item can be interdependent with others; for instance, an item might
be reserved if bidders’ valuations for other items are low, affecting overall allocation decisions.
Therefore, we primarily validate the performance of CA-AMA in multi-item settings empirically in
Section[3

So far, we have introduced the CA-AMA framework, formulated its optimization problem, and
theoretically analyzed its potential for revenue improvement over classic AMAs. The subsequent
section will propose a data-driven algorithm for optimizing CA-AMA.

4 Optimization of CA-AMA

This section details the optimization procedure for finding the optimal CA-AMA. Within a data-
driven framework, we first design a loss function tailored to A two-stage training
algorithm is proposed to optimize both the AMA parameters and the correlation-aware payments p“°".
Furthermore, we establish the continuity of the optimal p©* under mild assumptions and demonstrate
that the generalization error for IR violation, i.e., the gap between training and test set performance,
is bounded.
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4.1 Loss Function Design

Analogous to definitions of regret on DSIC [16] and over-allocation [43]], we define the Regret, for
a single data point V. This metric quantifies the extent of IR violation:

Regretz (g,p, V ZmaX{O i(vi,Vi9,p0)}

A mechanism satisfies |[R|if and only if Regretz (¢, p, V) = 0 for all V' € supp(F). To address the
optimization problem|CA-AMA-OPT] we design a loss function incorporating both the standard AMA

payment pAMA and the correlation-aware term p$°". Given a dataset D = {V(l), ve o vE )}
consisting of K samples, the empirical loss is:
K
LA, w, X\, {p§o7 ) = [—Revenue(V(k)) +- RegretIR(V(k))]
k=1
K n
=2 (Z [PV 0) 4 50V 7S mae {0, pEr (V) - u?MA<v<’“>>}> :
k=1 \i=1 i=1
(Loss)
The loss function comprises the negative total revenue from the batch, derived from both p"M4 and

pC°, and the term penalizes IR violations. Note that a bidder’s utility in CA-AMA, u$*(V), is
their utility under the classic AMA minus the additional correlation-aware payment: u$*(V) =
utMA (V) — pSor(V_,;) for all i € [n]. The hyperparameter « balances revenue maximization against
IR satisfaction and is updated during training. Following Ivanov et al. [25]], given a target regret for
IR Riager, We estimate the batch Regretyy R(D) = + Zle Regret;, (V (*)) and update v iteratively:

Yt+1 = Clip (% + AN (log R(D) - IOg Rtargel) ) 17 ’7) ’

where A is the learning rate for ~y, and 7 is a predefined upper bound for .

4.2 Training

In our implementation, the AMA parameters (A, w, A) and the correlation-aware payments p°" are
determined by neural networks with parameters 6 and ¢, respectively. To attain a mechanism with
high revenue and low Regret;, we propose a two-stage optimization procedure: mutual training
followed by post-training.

Mutual Training. In this stage, the parameters § (for AMA components) and ¢ (for p©) are
jointly trained. Note that the [Coss|function is non-differentiable to the AMA parameters, and hence
6, due to the argmax operation in the allocation rule. To enable gradient-based optimization, we
follow [9}14] to replace the argmax in the[AMA|allocation rule with a softmax approximation. This
yields differentiable approximations for the AMA payments, p2MA, and utilities, 42™4, used in the
loss function during this stage. The primary objective of mutual training is to find AMA parameters
that are close to optimal for the combined objective. However, because the true AMA utility is
approximated by 4*MA, the actual regret of IR may not precisely meet the target Ry after this
stage. Therefore, a subsequent post-training stage is introduced to further refine p©'.

Post-Training. In this stage, the AMA parameters are frozen. Only the parameters ¢ are updated
to fine-tune the correlation-aware payments p©°, aiming to maximize revenue while satisfying the
target Rurger. Since gradients of ¢ are not required, the exact AMA payments pAMA and utilities uMA
are used in the loss calculation for this stage. The rationale for fixing 6 is that mutual training is
assumed to have found a near-optimal configuration for the core AMA structure; post-training then
performs a more precise adjustment of pS°'. Furthermore, with fixed AMA components, optimizing
pS°r becomes a more focused and potentially simpler problem than the joint optimization in the
mutual training stage.

Detailed algorithmic descriptions for mutual training, post-training, and classic AMA optimization
are provided in Appendix
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4.3 Theoretical Characterizations

To conclude this section, we present theoretical results that support the validity and tractability of our
optimization approach. Our theoretical analysis focuses on the novel aspects compared to classic
AMA: the correlation-aware term p“°" and the Regret;; component of the loss.

Continuity of Optimal p°".  For bidder 4’s correlation-aware payment p$, to maximize revenue
subject to IR (u$* > 0, which implies ufMA (V) — pSr(V_;) > 0), the largest such p$(V_;) is
given by:
OPT-core : AMA
- V)= f » v, Vo), A, w, ).
p; (V=) uiesupg(l}-‘i(v,i)) up (v i) )

This means that to maximize revenue subject to IR, p$°(V_;) should ideally be set to the minimum
utility bidder ¢ would receive from the AMA mechanism. Intuitively, if pic"r(V,i) exceeds this value,
IR is violated; if it is less, the revenue is sub-optimal. We then establish continuity properties for this
OPT-core

b;
Theorem 4.1. The target function p{*T<°" is continuous with respect to the AMA parameters A,

w, and . Furthermore, assume that there exists a constant Cr > 0 such that for all V_;, V',
the Hausdorff distance h(supp(F;(V_;)),supp(F:;(V',))) < Cu||V_; = V', OPT-core

i is also
continuous with respect to V_;.

, then p

This result demonstrates that the optimal p$° (V_;) is continuous to both the AMA parameters and

the input V_, under these mild assumptions. This continuity supports the feasibility of parameterizing

pf"r with a neural network, which is a universal approximator for any continuous function [11}23].

Generalization Bound of Regret;z. We next provide a guarantee on the generalization of the IR
regret term. This addresses the concern of whether a mechanism trained on a finite dataset will exhibit
similarly low regret on unseen data drawn from the true underlying distribution F. Specifically, we
aim to show that the empirical Regret, computed on the training set, is a reliable proxy for the true
expected Regret;; under F. Our analysis considers the post-training stage, where AMA parameters
are fixed, and only p©°" is being learned. The following theorem bounds the difference between the
empirical and expected Regret,y.

Theorem 4.2 (Informal version of theorem . For each i € [n], let p$° be the output of a
3-layer ReLU network whose weights have bounded spectral norms. Then, for any AMA parameters
(A, w, \), distribution F and i.i.d. sample D = {V ) .. VI ~ FK the following inequality
holds uniformly over all such networks (i.e., all choices of parameters 0):

K
sgp‘ % ZRegretIR(V(k); 9) — Ev.r[Regretiz(V; 9)}‘ <0 (\/ %) with probability 1 — 4.

k=1

This result guarantees that minimizing the empirical regret on a sufficiently large training set allows
us to control the true expected regret of the learned mechanism. Combined with the continuity of
pOPTeore these results provide theoretical grounding for our proposed training algorithm. In the next
section, we will evaluate the CA-AMA framework and training algorithm empirically.

5 Experimental Results

This section presents experimental results that demonstrate the effectiveness of our proposed CA-
AMA optimization method across various simulated valuation distributions.

5.1 Baselines and Implementation

The main focus is on the comparison between CA-AMA and Randomized AMA, represented by
LotteryAMA [9] and AMenuNet [[14]. We also extend Conditional Auction Net (CAN) [24] to
multi-item settings by applying CAN independently to each item, referred to as Item-CAN. The
classic VCG auction [42]] and an item-wise application of MyersonNet [16]] (denoted Item-Myerson)
are also included as baselines. GemNet [43]] is a menu-based method, which also satisfies strict DSIC
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Table 1: Revenue performance of CA-AMA and baseline methods under irregular bidder valuation
distributions. CA-AMA consistently outperforms other methods in most scenarios (1.72%, 4.92%
average improvements when setting Riyrger = 0.001 and Riareee = 0.01) and maintains Regret; close
to the targeted threshold.

CA-AMA (Ryger = 0.001)  CA-AMA (Rigger = 0.01)

Settings | Item-Myerson Item-CAN  VCG  Randomized AMA Revenue Regrety Revenue Regret

2% 2 0.5082 0.6341 03911 0.6513 0.6729 (13.3%)  0.0018  0.6912 (1 6.1%)  0.0079
5% 2 1.3080 14376 13714 1.4643 14938 (1 2.0%)  0.0009  1.5525 (1 6.0%)  0.0090
8% 2 1.2077 16022 1.7237 17645 1.8087 (1 2.5%)  0.0009  1.8745 (1 6.2%)  0.0083
10 x 2 1.4638 16581 1.9106 1.9344 1.9966 (13.2%)  0.0010  2.0714 (1 7.1%)  0.0075
2% 3 0.7623 09511  0.5876 1.0550 1.0512 (1 0.4%)  0.0008 1.0870 (1 3.0%) 0.0081
5% 3 1.9619 21563  2.0583 2.2682 22985 (1 1.3%) 0.0017 2.3604 (+4.1%)  0.0085
8x3 1.8116 24033 2.5844 2.6911 27368 (1 1.7%) 0.0009 2.8297 (15.1%)  0.0091
10x3 2.1958 24871 2.8664 2.9287 29893 (12.1%) 0.0009 3.1033 (1 6.0%) 0.0086
2%5 1.2705 15852 0.9761 1.8508 1.8604 (1 0.5%) 0.0011  1.8753 (1 1.3%)  0.0078
5x5 3.2699 35939 3.4286 37471 37846 (1 1.0%)  0.0015  3.9075 (1 4.3%)  0.0082

in theory. We exclude it from our comparisons due to its implementation complexity, especially in
multi-item settings.

For implementation, we adopt an over-parameterization strategy for AMA parameters similar to
that in AMenuNet [14]. The correlation-aware payment, p°°, is realized as a three-layer MLP with
ReLU activation functions. Identical menu sizes, |.A|, are used for Randomized AMA and CA-AMA
within the same auction settings to ensure fair comparison. Parameters for the IR regret include
target Rigreer € {0.01,0.001}, initial penalty coefficients v € {3,6,8, 10}, penalty learning rate
va = 0.01, and a maximum penalty 4 = 20. The softmax temperature during mutual training is set
to 500. Both mutual training and post-training phases consist of 2, 000 iterations, with 32, 768 new
training samples generated per iteration. A fixed test dataset of 20, 000 samples is used for evaluation.
Further details on parameter selections are provided in Appendix

5.2 Revenue Performance

We evaluate CA-AMA and baseline methods across several bidder-correlated valuation distributions.

Irregular Multivariate Normal Distribution. We adapt the irregular bidder distribution from Huo
et al. [24] to a multi-item scenario. Specifically, for each item, the vector of bidders’ valuations is
drawn with probability 0.5 from one of two multivariate normal distributions. These distributions
are constructed using randomly sampled matrices A1, Ao ~ U[—0.2,0.2]"*™ and mean vectors
w1, 2 ~ U0, 1]™. All resulting individual valuations are clamped to the range [0, 10]. We generate
five distinct sets of distribution parameters (A1, As, 111, o) and evaluate across various auction scales
(number of bidders n, number of items m).

The average training result is reported in Table [T} Notably, CA-AMA achieves the highest revenue
performance in all scenarios. With a target Regret;; of 0.001 and 0.01, CA-AMA surpasses the
best-performing baselines by average margins of 1.72%, 4.92%. Furthermore, CA-AMA consistently
maintains Regret;; near the specified target, even with larger numbers of bidders or items. These
results underscore our method’s effectiveness in leveraging correlation, even when the underlying
correlation structure is complex and not explicitly known to the mechanism.

Linearly Correlated Valuations. We investigate scenarios with more explicit linear correlations
between bidder valuations. The auction has two bidders, for each item j, the valuation of the first
bidder, vy, is sampled from U0, 1]. We consider three types of correlation: In Symmetric Negative,
with probability a, vo; = 1 —v1;; otherwise, vo; is independently drawn from U[0, 1]. In Symmetric
Positive, with probability o, vo; = v1;; otherwise, vy; is independently drawn from U [0,1]. In
Asymmetric Negative, with probability «, vo; = (1 —v1;)/4; otherwise, vy; is independently drawn
from U0, 1/4]. Here, a € [0, 1] controls the correlation strength: o = 1 signifies perfect linear
correlation, while a = 0 indicates bidder independence.

Results for varying « are shown in Figure[2] We observe that Item-CAN achieves optimal revenue
when correlation is strong (o = 1) but underperforms significantly in bidder-independent scenarios.



317
318

320
321
322
323

324
325

327
328
329
330
331

332

333
334
335
336

338
339
340
341
342
343

3 VG 25 VG 25 VCG
Item-CAN Item-CAN Item-CAN
30 AMA 20 AMA AMA
CA-AMA (Ours) CA-AMA (Ours) 20 CA-AMA (Ours)
25
9 9 g
3 3 s 3
g 20 g 21s
3 ] g
& 1s < 10 T
10
0s 05
05
o o 0.
10 08 06 04 02 00 10 08 06 04 02 00 1o 08 06 04 02 0o
Correlation Strength a Correlation Strength a Correlation Strength a
(a) 2-bidder 5-item, Symmetric Negative Correlation (b) 2-bidder 5-item, Symmetric Positive Correlation (c) 2-bidder 5-item, Asymmetric Negative Correlation
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Figure 3: Revenue surfaces of learned CA-AMA and Randomized AMA in a 2-bidder, 2-item
perfectly negative linear scenario (ve; = 1 —v11 and v9o = 1 — v12). Bidder 1’s valuations (v11, v12)
are on the x-y axes; revenue is on the z-axis. CA-AMA closely approximates the optimal revenue
surface, while Randomized AMA often reserves items and has sub-optimal revenue.

Conversely, Randomized AMA performs better in independent scenarios. In contrast, CA-AMA
effectively balances these extremes, automatically leveraging available correlation information.

Furthermore, CA-AMA exhibits a more substantial advantage over Randomized AMA in negatively
correlated scenarios, aligning with our theoretical motivation. In positively correlated scenarios
with o = 1, a simple second-price auction can already extract full surplus. However, in negatively
correlated settings, Randomized AMA typically cannot implement payments that decrease with other
bidders’ valuations (which would be optimal for revenue extraction), thereby limiting its capability.

Visualization of Randomized AMA and CA-AMA. In Figure[3] we visualize the revenue surface
of the learned CA-AMA and Randomized AMA in a 2-bidder, 2-item Symmetric Negative correlation
scenario with o = 1. The figure plots the extracted revenue (z-axis) as a function of bidder 1’s
valuations for the two items (vy; on the x-axis, vi2 on the y-axis). CA-AMA’s learned revenue
surface closely approximates the optimal outcome, demonstrating its ability to learn near-optimal
allocation and payment rules. In contrast, Randomized AMA, while an improvement over VCG,
deviates significantly from the optimal surface. Notably, it frequently reserves items even in regions
of high valuation, underscoring its inherent limitations in such correlated settings.

6 Conclusion

In this paper, we address the critical limitation of existing AMAs in bidder-correlated settings,
where their inherent VCG-style payment rules restrict flexibility and lead to suboptimal revenue
extraction. To overcome this, we introduce the CA-AMA, an extended mechanism incorporating an
additional correlation-aware payment term. We demonstrate that CA-AMA inherently preserves the
DSIC property and can theoretically achieve optimal revenue in single-item auctions under certain
correlated distributions where classic AMAs perform arbitrarily poorly. Furthermore, we develop
a tailored loss function and a two-stage training algorithm for optimizing CA-AMA, supported by
theoretical guarantees on continuity and generalization. Our extensive experimental evaluations
across diverse single-item and multi-item auction scenarios confirm the empirical effectiveness of
CA-AMA, showcasing its ability to find approximately IR mechanisms and achieve significantly
improved revenue compared to AMAs.
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Limitation

The main limitation of this work comes from the theoretical results, in which we mainly consider the
single-item case. We have discussed the difficulty of analyzing multi-item auctions in the main paper,
and we believe this can also serve as a valuable future work.

A Detailed Related Work

A.1 Affine Maximizer Auctions

Affine maximizer auctions (AMAs) generalize the seminal VCG auction by assigning weights to
both bidders and allocations, modifying the objective to maximize affine social welfare. Several
restricted subclasses of AMA have been studied, including Virtual Valuations Combinatorial Auc-
tions (VVCAs) [30, 131, 139], A-auctions [26]], mixed bundling auctions [41], and bundling-boosted
auctions [2].

The expressiveness of AMAs in comparison to arbitrary auction mechanisms has been formally
analyzed in [28]. Beyond expressiveness, algorithmic aspects have also been explored. Sandholm
and Likhodedov [39] present optimization methods for finding optimal AMA mechanisms, while
Balcan et al. [3} 4] study the sample complexity required to learn such mechanisms. More recently,
differentiable optimization techniques have been applied to this setting. For example, Lottery AMA [9]
and AMenuNet [14] introduce differentiable approaches to optimize AMA-based auctions using
neural networks.

Our work proposes a new framework, CA-AMA, that extends the classical AMA by incorporating
bidder correlations. We theoretically characterize its expressiveness relative to traditional AMA in
single-item settings and empirically evaluate optimization algorithms for learning revenue-optimal
CA-AMA mechanisms across various distributional settings.

A.2 Differentiable Economics for Auctions

Differentiable economics is a recent and active line of research in automated mechanism design,
leveraging neural networks as flexible function approximators and optimizing them using gradient-
based methods. Existing work in this area for revenue maximization can be broadly categorized into
characterization-free and characterization-based approaches.

Characterization-free methods do not assume a predefined structure for the mechanism. The foun-
dational work, RegretNet [16]], implements the allocation and payment rules as neural networks
conditioned on bid profiles. Its loss function jointly optimizes revenue and penalizes violations of
DSIC and IR. Building on this, Feng et al. [18] incorporate budget constraints, while Golowich et al.
[20] generalize the framework to handle various objectives and constraints. Rahme et al. [37] reframe
the design problem as a two-player game with a more efficient loss. Further extensions include
PreferenceNet [34]], which incorporates fairness preferences, and EquivariantNet [36], a permutation-
equivariant architecture tailored for symmetric auctions. Transformer-based methods, such as those
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introduced by Ivanov et al. [25] and Duan et al. [13]], improve performance in settings with contextual
information. Hertrich et al. [22] apply mode connectivity to provide a theoretical explanation for the
empirical success of differentiable economics. The combinatorial auction extensions CANet and
CAFormer [35] bring these ideas into richer valuation domains.

Characterization-based approaches, by contrast, restrict optimization to a predefined family of
mechanisms. AMAs are particularly suitable for this due to their inherent satisfaction of DSIC and
IR. LotteryAMA [9] introduces randomized allocation menus over AMA structures, which simplifies
optimization. AMenuNet [[14] builds upon this with a more expressive architecture and applies it to
contextual auctions. Further developments include contextual AMAs for ad auctions [29], dynamic
AMA designs [10], and zeroth-order optimization for deterministic AMA mechanisms [[15]. In
addition, menu-based mechanisms have also been treated with differentiable tools. MenuNet [40]]
optimizes revenue for single-bidder auctions, while GemNet [43]] extends to multi-bidder cases by
incorporating over-allocation penalties and post-processing using mixed-integer linear programming.

Our work fits within the characterization-based paradigm. We extend AMA to define CA-AMA, a
mechanism that incorporates bidder correlations through a novel correlation-aware payment rule.
This new structure retains the theoretical guarantees of classic AMA while significantly improving
revenue, both in theory and in practice.

A.3 Auctions with Bidder Correlations

Modeling bidder correlation is a critical aspect of realistic auction settings. The foundational Crémer-
McLean results [7, 18] demonstrate that under certain distributional conditions, it is possible to design
mechanisms that are DSIC, interim IR, and extract the full surplus. However, like the Myerson
auction, these mechanisms assume full knowledge of the valuation distribution and thus are primarily
theoretical.

Subsequent work has relaxed this assumption by exploring scenarios in which the auctioneer has
incomplete information. Fu et al. [19]], Albert et al. [1], and Yang and Bei [44] study the sample
complexity needed to approximate Crémer-McLean-style mechanisms from empirical data. Because
computing the optimal mechanism under general correlated settings is NP-hard, approximation
algorithms have also been proposed. For instance, Dobzinski et al. [[12] design polynomial-time
mechanisms that achieve provable approximation guarantees under correlated priors. In contrast,
Papadimitriou and Pierrakos [33] and Caragiannis et al. [6] provide upper bounds by constructing
distributions where any polynomial-time algorithm performs poorly.

More recent work addresses robustness to correlation. Bei et al. [S]] study the correlation-robust design
problem, while Zhang [45]] and He and Li [21]] show that the second-price auction is asymptotically
optimal in worst-case correlated environments.

These studies predominantly focus on theoretical designs for single-item auctions. In contrast, our
goal is to demonstrate both the theoretical and empirical benefits of CA-AMA in richer combinatorial
settings. The most closely related works are Huo et al. [24]] and Feldman and Lavi [17]. The
former proposes a score-based payment rule, optimized through a max-min neural architecture to
approximate optimal revenue in single-item settings. The latter provides a theoretical analysis of
the gap between ex-post and ex-interim IR mechanisms, showing that AMA can perform arbitrarily
poorly in the presence of correlations. Our results extend this by showing that the performance
gap holds even when comparing to ex-post IR mechanisms, and we demonstrate that CA-AMA
overcomes this gap.

B Omitted Proofs in Section

Proposition 3.1. In single-item auctions, for any number of bidders n and any € > 0, there exists a
distribution F such that REVY*M* < ¢ . REVx. Furthermore, REVS*MA < REV r for any menu size
S.

Proof. See the proof of Theorem 3.3 O

Proposition 3.2. For any A, w, X and correlation-aware function p’, the CA-AMA mechanism
(g%, p) satisfies DSIC.
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s44  Proof. We verify the DSIC property by definition. For any bidder <, its true valuation v;, other bidders’
545 bid V_; and possible bid b;, we define Ay := gAMA(v;, V_;), Apr := ¢"MA(b;, V_;) and Ay =
s6 g"MA(0,V_;). Then, we directly compare the utlhty under truthful report ui(vi, (vi, V_;)) and the
s47  utility when reporting b;, u;(v;, (b;, V_;)). For simplicity, let V_; = (v1, -+ ,0;—1,Vix1," " ,Vp)-

ui (v, (03, Vo)) = v - (Ape)i — pPMA (0, Vo) — 05 (V)

1
=i+ (Ap-)i = D wivy e (A )y 4 e, — Y wivy - (Age )y — M | =57 (Vos)
b\ i

- 1

> wivs - (Age)j + M | — e > wivg - (Age )i+ ke, | = p5 (Vo)

= b\

Zwﬂ’] (Apr)j + A | = — ijvj (Ap= )i+ X, | =25 (Vo)
Wi JFi

(a) 1

1 Cor .
=v; - (Ap)i — w D wivy e (A )j 4 e, — Y wivg - (Age )y — A | = p§ (Vo)
' \G#i i
= v; - (A )i — p (03, Vo) — pF (Vo)
= u;(vg, (bs, V_;)).

s48 The inequality (a) is from the definition of k¥, k* = arg maxy¢(g) asw(k; (v, V_y)). O

s49 Theorem B.1 (The first part of Theorem . In Slnﬁ[ e-item auctions, for any number of bidders n:
sso If F is bidder-independent, then REVJDT' ¢ RE VD A

551 Proof. As bidders are independent, we assume that each valuation inf{v; : v; € supp(F;)} = I;
ss2  for each i € [n]. We show that when fixing A to be set of all deterministic allocations, for an
ss3  optimal solution (w, X\, (p$7)*_,) of Prablem we can construct a feasible solution
554 for Problem which brings at least the same revenue. This is sufficient to say that the
ss5. REVPAMA > REVDCA,

ss6 Let A be {Ag, A1, Aa, -+, A, }, where A; is the outcome that allocates the item to bidder ¢ and
ss7  Ag is the outcome that reserves the item. The optimal solution of the CA-AMA is given by

ss8 (w, A, (p$°)™_ ;). Consider two cases:

ss9 If for any ¢ and v_;, there is pcor( _;) = 0, then the revenue of the CA-AMA is equal to the revenue
se0 from the AMA parameterized by ('w ). Therefore, below we consider the case that there is at least
61 one i* and v_;«, such that pS (v_;+) > 0.

se2  Firstly, the condition p§°"(v_;«) > 0 means that g(l;«,v_;;w, ) = A;«. Otherwise, the utility
s63 of bidder ¢* when it realizes its least valuation /;- is negative, violating the IR constraint. From
s64  g(l=,v_j»;w, A) = A;«, we can get the following condition:

Wix L + Age > max{r&aijvj + A, Ao} > max{r&aijlj +Xj, Ao} > Ao
JF* JF*

565 Note that this also implies that for any j # ", Cor(v_]) = 0 for any v_;. Otherwise, we have
566 Wix i+ + Aj= > wjl; + Ay and wislix + A < wjl + A; simultaneously.

s67  Secondly, we construct a new AMA based on (w, A). Without loss of generality, we set A\g = 0

ses and define b := w;+l;» + \j» — A\g > 0. The new parameters (w’, A’) is conducted as w’' = w,
se0 A, =X\ —bforalli € {1,2,---,n},and A\, = Ao.

570 We analyze the revenue brought by AMA with parameters (w’, X’). Our goal is to show that for
571 any v € supp(F), the payment of the AMA parameterized by (w’, X’) is at least the payment of the
52 CA-AMA parameterized by (w, A, (p$°)™_,).

’L —

573 For any v, we obverse that

J
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Therefore, the item will always be allocated in the new AMA. Furthermore, as the boost variable \
other than Ay changes to the same value, the allocation remains the same. For this v, we consider
two cases.

1. The item is allocated to bidder j # i*.

As pc"r = 0, the original revenue comes solely from pJAMA. In new AMA mechanism, the p?MA is
computed by:

wj p; (o', X') = max{Ao, maxwivr + X} — )

= max{ Ay, r]?;zjx Wrvp + A — b} — Aj +b

> max{Ao,IE;wakvk + M} —b—X;+0b
]

max{ Ay, max wyvg + Ap} — A;
k#j
= w; p?MA(v;w)\) =) p?MA(U;w,)\).

2. The item is allocated to bidder ¢*.

We compare the revenue between pAMA (v; w’, X') and pAMA (v; w, A) + p§° (v_;~). Firstly,
wh ppMA(v;w’, X)) = max{ A, max WivE + A} — A
2
= max{A4,, Ig;axwkvk + A —b}—Ai-+b
s

= Wixlp + Ajx — Ao + Ao — A
= wi*li*.

Cor (

For p*"(v_; ), by IR constraint, we have,

P (Vi) < L — pEMA (L v w0, A)
= l;» — max{ Ay, ir;a_x WEVE + Ak b+ A
=l — piMA(v;w, N).
Therefore, pS (v_;) + paMA(v;w, A) < 1w < pAMA(v;w’, X).
Hence, for any valuation profile w, the revenue by AMA (w’, \’) is at least the revenue given by
CA-AMA (w, A, (p§)™ ;). O

Theorem B.2 (The second part of Theorem[3.3). In single-item auctions, for any number of bidders n
and any € > 0, there exists a distribution F such that REVZ*M* < ¢.REV z, while REVY¥“* = REV r.

Furthermore, REV:*M* < REVx for any S.

Proof. The valuation distribution for the single-item auction is set as follows: Bidder 1’s valuation
follows a equal revenue distribution on [e, 1], i.e., the pdf is given by f(v) = {i—g0=- The other
bidders’ valuations are the same and are linear to vy, v; = €1 - (1 — vy), for all i > 2. We require
0 < €1 < € < 1, with specific values to be determined later.

Part 1: Showing REV 7 = REV“A,

For this distribution, it is possible to extract the full social surplus max;e,) v; as payment for every
valuation profile v. In the CA-AMA framework, we achieve this by setting: p§° (v_1) = (1 — va/e),
A to be set of all deterministic allocation, w = 1, A, = 0 for all k¥ € [S]. By this, the revenue is the
same as first-price auction:

1 1
B ca B € _eln(1/e)
REVy =REVZ 7/6 f(v)vdvf/6 = dv = T

Part 2: Showing the relationship between REV]DEAMA and REV r.
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In deterministic AMA, A is fixed to be { A, A1, Aa, - -+ , A, }, where A; is the outcome that allocates
the item to bidder 7 and Ay is the outcome that reserves the item. We first show the following lemma:

Lemma B.3. Under the constructed valuation, for any bidder 1’s valuation v < v' and AMA
parameter (w, N), if bidder 1 wins the item on v, then it also wins the item on v'.
Proof. When bidder 1’s valuation is v and wins the item, we have:

wiv 4 A > max{)\g,m%(wjvj +A} = max{)\o,mfgcwjel(l —v)+ A}
iz 3>

Then for any valuation v’ > v, we still have that:

wlv’ + A1 > wiv+ A
> max{)\o,m>a§<wjel(1 —v)+ A}
3>

> max{\o, max wjier (1 —v") + A}
J>
This means that bidder 1 will also win the item. O

We consider two cases: (1) Bidder 1 never wins the item: then the payment will always be lower than
the valuation of other bidders and hence is at most €. (2) Bidder 1 does not win when its valuation is
less than v* and wins when its valuation is in [v*, 1]. Still, the payment collected when its valuation is
less than v* is at most €; f:* f(v)dv < €. The payment for the bidder 1 when it wins is bounded by

1
PV (v;w, A) = — (maX{)\o, A, maxwjer (1 —v) + Az} — Al)
w1 j>2

1 *
< o (max{)\o,)\17r§1§§<wjel(1 —v")+ A} - )\1)
="M (v e (1 —v%));w, A) < o™

The last inequality is derived from the IR property of any AMA. Therefore, the upper bound of the
payment for [v*, 1] can be computed by:

/1 vt f(v)do = /1 v*mdv :v*ﬁ (vl - 1) < ﬁ

eln(1/

Therefore, the expected payment is bounded by %6) +e€1. ASREVE = —- <. For any &, we can

@
easily set e and ¢; so that REVAMA < 5. REV £.

Part 3: Showing the relationship between REV%AMA and REV .

As we consider the case that the size of the allocation menu is finite, i.e., |[A] = S, S is a con-
stant. Denote the winning allocation as a function to vy, k(v1) = argmaxye(g) wivy(Ax)1 +
2o Wivi(Ag)j + Ay = arg maxge(s) w101 (Ag)1 + 3550 wier(1—v1)(Ak); + Ag. The function
must be a piece-wise constant function, and the function has at most S change points by the following
lemma.

Lemma B.4. For any (A, w, \), there is at most S = | A| change points of k(v1).
Proof. We prove this result by contradiction. Assume that there are .S + 1 change points, then, there

must be a case that for v} < v? < v} such that k = g(vi) = g(v}), ¥’ = g(v?), and k # k’. Then,
by definition of AMA’s allocation rule, we have

wiv} (Ap)1 + > wiv} (Ag)j + Ak = wiof (Ap)r + > wio) (Ag); + A (D
Jj=2 Jj=2
wlv%(Ak/)l —+ ijU?(Ak/)j + A > wlvf(Ak)l + Zw]U?(Ak)] + Ak 2)
Jj=2 j>2
wlv:{’(Ak)l + ij’l)?(Ak)j + A\ > wlvf(Ak/)l + ijU?(Ak/)j + A 3)
=2 Jj=2
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Inserting v; = e (1 —wv1) Vj > 2, by (2) - (1), we have wi((Aw)1 — (Ar)1) >
€1 5o Wi((Awr)j — (Ak);). By (3) - (2), we have w1 ((Ag)1 — (Aw)1) = €1 30 5o wj((Ak)j —
(Akr);)- The only feasible solution is that (Ay); = (Ay); for all j € [n], which means Aj, = Ay

and hence brings a contradiction. O

Therefore, we know that there are at most S change points of g(v;). Suppose these S’ < S change

points are v = € < v] < v} < .-+ < vf/ < US 1 = 1 and the corresponding allocations are
Ap, Ay, Ay, -+, Agr. We only cons1der the 1nterval [vl, v1). If in this interval, (Ag); < 1, which

means the item 1s not allocated to bidder 1 deterministically, then the payment loss compared to
1

optimal revenue is at least (1 — (Ag)1) [ 0_ (v — €1)dv > 0.
0

On the other hand, if the allocation satisfies that (A4g); = 1. From a similar proof above, we know that

v—19)f(v)dv >0

compared to the optimal revenue. Therefore, in both cases, we can induce that REV_S;iAMA <
REV £. O

the payment in this interval is at most v, which will also results in a gap of f 0_6

C Omitted Proofs in Section 4]
Theorem 4.1. The target function p{*T<°" is continuous with respect to the AMA parameters A,
w, and . Furthermore, assume that there exists a constant Cy > 0 such that for all V_;, V',
the Hausdorff distance h(supp(F;(V_;)),supp(F;(V',))) < Cu||V_; OFT-core
continuous with respect to V_;.

is also

Proof. For simplicity, we use ¢ to represent AMA parameters (A, w, ). Specifically, A =
{A41,As, -+ ,As}, w = {wy,wa, - ,wp}, and A = {A1, Ag, -+, As}. For any matrices A,
A’ (vectors v, V'), we denote notation d, (A, A’) (dy(v,v")) the L, distance. For two ¢ and ¢’,
denote

s
dy(¢,¢') = di(Ag, A}) + di(w,w') + dy (A, X).
k=1
Recall that asw(k; V, ¢) is the affine social welfare given by the k-th allocation in .A, which means:
asw(k; V, ¢) = Z w;(v ) + Ak

We first show that asw(k; V, ¢) is continuous w.r.t ¢. For any ¢, €, ¢’ such that d; (¢, ¢') < ¢, and
k € [S], let w := max; w;, we have

lasw(k; V, ¢) — asw(k; V, ¢)| = |§nj 5 (05 - (A +Ak—2w il
w;(v; - (A});)

w)(v; - (AR);) + Ak = Al
S}nj - (Ar); +Z|w] (v - (A7) + [ —

1

<Y di(Ag, A}) +mdy (w,w') + di (A, X)
j=1

< max{w, m}d; (¢, ¢") < max{w,m}e.

This means that the continuity of ¢ holds.
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(1) The continuity with respect to AMA parameters ¢.

We use asw to compute a bidder’s utility under AMA. By the allocation rule and payment rule defined
by AMA, there is

1
AMA
; i Vi) = — k;V,¢) — k; (0,V_;), :
up (i, Vi 9) o (ggﬁ;ﬁ asw(k; V. 9) max asw (k; ( ) ¢>)>
And for the target function,

OPT—Cor : AMA

i) = inf u; v, (0, V_5); 0).
pi (V=is ) s v ) (vs, ( )i 9)

As both max and inf operations do not influence the continuity, we can conclude that
OPT=Cor(y/ ;- $) is continuous w.r.t. ¢ for any V_;.

(2) Continuity in the other bidders’ valuations V_,.

Here, the AMA parameters ¢ are fixed; we first show that asw is also continuous to V. For any ¢, k,
V and V', we have

lasw(k; V, ¢) —asw(k; V, )| = | > wj(v; - (Ak)y) + M — > w;(v) - (Ak);) — Ml

-ﬂéww<mm—éww<mm
<EMMvﬂwm
=§w§mtﬂmw
=§§ww (A

< wdy(V,V")

Then, as the mechanism satisfies DSIC, we will use notation u2MA(v;, V_;; ¢) to represent the
original uM4 (v;, (v;, V_;); ¢) as bidders’ will always truthfully report. As u2M4 is a maximum of
a finite number of continuous functions, for any v;, v}, V_; and V’ ,

[ufMA (07, Vois ) — utMA (0], V5 6)| < Ldy (v, v)) + Ldi(Voi, V), Li="—. (4

!, by definition of p?PT*C‘“, for any € > 0, we can find
awv; € suppF;(V_;) such that pOFT=Cr(V_) < utMA (v, V5 ¢) < pOPT=C(V_,) + e. By the
Hausdorff assumption on suppF;(V_;) and suppF;(V’,), we can find another v, € suppF;(V",),
such that

Now, for two valuation profiles V_;, V’

dl(,v%v;) S CHdl(V—MV/ )

Therefore, we can bound the gap in the values

p?PT COT(V_i; ¢) > uAMA(vZ, (v, V_; ,925) €
> uMA(vl, (0], V)5 0) — Ldi (v, 0]) — Ldi(V_3, V') —
> uMA(vl, (0], V)5 0) — L(Cy + 1) di(V_y, V) —
> pOPT=Con(y! ) —e — L(Cyr + 1) dr(V_y, V7).
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It is obvious that the vice is also correct, so we can conclude that:
PPNV 9) = pPTTTCN(VE 9)| < € L(C 1) da (Vo VY
2w
=c+ 7(0}1 + 1) dq (V,i, Vil)

w;

As € can be chosen sufficiently small, this means that pO* "= (-; ¢) is 22 (C 11 + 1)-continuous w.r.t.
V_; under L, distance for any fixed ¢ under C';-Hausdorff assumptlon O

Theorem C.1 (Uniform generalization bound for a 3-layer payment network). Let F be an arbitrary
distribution over valuation profiles V' € [0,1]"*™. For parameters 0 = (Wy, Wa, W3) satisfying
([Wella < My for £ = 1,2,3, consider

Regret;,(V ZmaX{O P (Vois 0) — uf™ (v, V)1,

where the payment network p$(-;0) : R"=U™ — R s the depth-3 ReLU network p;(z;0) =
W3 o(Wa o(Wiz)) with o(z) = max{0, z}. Let

3
B, = \/(n—1)m, B, = B, [[ M.

For any i.id. sample D = {V) .. VUV ~ FK and any confidence level § € (0,1), with
probability at least 1 — § (over the draw of D) the following inequality holds simultaneously for
every choice of parameters 0:

K
SPIK > " Regret;y(V*);0) — ERegret q(V;0)| < 2 \/T Og /

where d = max{(n — 1)m, hy, ho, 1} and hy, ho are the widths of the first and second hidden layers.

Proof. We use pS*(V_;;0) and Regrety (V;6) to represent the correlation-aware payment and
Regret, for input V when the neural network is parameterized by . Recall that,

Regret;z (V;0) Zmax{() P (Voi; 0) — ulM (v, V) )

Let .
B, = \/(n—-1)m, B, = B, [[ M.

Since every valuation component lies in [0, 1], [|[V_;||2 < B, = /(n — 1)m. For ReLU networks,
the operator norm is non-expansive, hence,

S (Vois 0)] < [Will2 [Wall2 [Wal2 [[V=ill2 < By
Together with 0 < w;(v;, V') < m we therefore have
0 < Regret (V;0) < nB,.

Let P = {Regretiz (V;60): 6 € ©}. By standard symmetrisation (see, e.g., Bartlett & Mendelson,
2002), for any fixed sample D

log(2/96)

< 2Rk (P)+nB, o

bup Z Regrety, (V*); 0) — By [Regret, (V; 6)]

with probability > 1 — 4, where R x 1s the empirical Rademacher complexity.
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Let P; = {pS°(V_;;0): 6 € O} be the function class for a single payment component. For a depth-3

ReLU netW(;rk with spectral-norm bounds A,, we have

- B, (TTj—; Me) \/21og(2d

RK(Pz) < ac(Hz,l E) g( )’
VK

where d = max{(n — 1)m, hy, ha, 1} and hq, ho are the widths of the first and second hidden layers.

Since Regretg (V;0) = >0 max{0, p§(V_;; 0) — ut™A(v;, V)} and max{0, -} is 1-Lipschitz,

we have:

Ri(P) <Y Rx({p§(Voi30)}) = n- Ric(Py).

i=1
Substituting the bound for Ry (P;):

EK('P) < an\/?/l%g(2d)

Substituting the complexity estimate for R Kk (P), and we finally get:

B,+/2log(2d log(2
<om p\/V%g( )+an 0g2(K/5).

sup

K

1 .

o E Regret, (V*); ) — By [Regrety (V; )]
k=1

O

Remark C.2 (Fixed network). If 6 is treated as fixed (e.g. after training), Hoeffding’s inequality
immediately gives the simpler bound

<nbB, 710%(}2{/5) ,

3 0 (V) ~Efig(V)
k

so the capacity term vanishes.

D Algorithm of CA-AMA

We present the detailed algorithm description for classic randomized AMA optimization methods,
including LotteryAMA [9] and AMenuNet [[14] in algorithm[I] The two training phases, mutual
training and post training, of our CA-AMA are presented in algorithm [2]and algorithm [3] respectively.
For the softmax version of AMA, given a valuation profile V, the AMA parameters (A, w, A) and
temperature 7', the approximated allocation is calculated as follows,

AMA easw(A;V)-T
g (V) = =~ ZA’GA easw(AV).T 4,
asw_; (A;V)-T
~ AMA €
9% (V) = = ZA’eA easw—i (A V)T A

asw(k; V) is defined as 37, wjv; - (Ay); + A and asw (ks V) is D77, o wivs - (Ag); + A
Based on that, the payment and utility for bidder 7 is:

FVAWV) = = (asw GV V) — asw (A (V) V) s

A(V) = oy VAV — pA(V).

7

Note that in this approximated version, all operations are differentiable to the AMA parameters
(A, w, ). For other notations and equations, please refer to the previous section
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Algorithm 1 Classic Randomized AMA Optimization [9} [14]

Require: Data generator G, initial parameters 6, total iterations 7', sample size |S]|.
1: Initialize neural network p? (AMA parameters).
2: Set initial penalty strength .
3: fort =1toT do

4:  Generate dataset S = {V1, V2 ... VISl by G.
5. Get A, w, and X from p?.
6. fori=1tondo
7: Approximate AMA payment p>M* and utility 4*M* using softmax by Equation
8: end for
9:  Compute loss:
ISI n .
HAMA (1K)
“HLL

10:  Update p? by gradient descent on L.
11: end for
Ensure: Optimized AMA parameters p’.

Algorithm 2 Mutual Training of CA-AMA (Ours)

Require: Data generator G, initial parameters ¢, ¢, hyperparameters 7y, ya, Rirget, upper bound 7,

total iterations 7', sample size |S|.
1: Initialize neural networks pe (AMA parameters) and p? (correlation-aware payments).
2: Set initial penalty strength +y.
3: fort =1to T do
Generate dataset S = {V1, V2 ... VISl by G.
Get A, w, and X from p?.
fori =1tondo
Approximate AMA payment p*MA and utility 42MA using softmax by Equation
Get correlation-aware payment pS° by p?.
end for
Compute loss:

~AMA

VR I>2N R

S| n
0.0 FZZ [PVA(VE) 4 5 (VED] 5 mac{0, pF0(VE) — afMA(VF)}.
k=1 i=1

11:  Update p?, p? by gradient descent on L.
12:  Estimate regret:

S| n

|S‘ szax{o pCOr Vk) AAMA(Vk)}

k=11i=1
13:  Update penalty ~:
v + clip (*y + ~va(log R(S) — log Riarger)s 1, ’7) .

14: end for
Ensure: Partially optimized parameters p?, p?.

21



710

71
712
713
714
715
716

7

718
719
720

Algorithm 3 Post-Training of CA-AMA (Ours)

Require: Data generator G, parameters p? from mutual training, parameters ¢, hyperparameters -,
YA, Riarger, upper bound 7, total iterations 7', sample size |S|.
1: Freeze neural network p?.
2: fort =1to T do
3:  Generate dataset S = {V1 V2 ... VISl by G.
4:  Get A, w, and X from p?.
5. fori=1tondo
6: Compute exact AMA payment pAM” and utility u#M” using true argmax.
7 Get correlation-aware payment pS° by p?.
8 end for
9 Compute loss:

n

[S|
(o) = ﬁ S5 = [EMAWE) + pCr(VE)] + 4 max{0, pET(VE) — ubMA(VE)}.
k=1 1=1

10:  Update p? by gradient descent on L.
11:  Estimate regret R(S5).
12:  Update penalty ~:

~ <« clip (fy + va(log R(S) — log Riarget), 1, ﬁ) .

13: end for
Ensure: Fully optimized parameters p®.

Table 2: Hyperparameters and training times of CA-AMA and Randomized AMA methods.

Hyperparameter 2x2 5x2 8x2 10x2 2x3
Initial penalization term g 3 6 6 8 5
Menu size |A| 32 64 128 256 64

CA-AMA training time (min) 20 26 40 47 22
AMenuNet training time (min) 19 23 33 40 20

Hyperparameter 5x3 8x3 10x3 2x5 5x5
Initial penalization term o 6 8 8 3 10
Menu size |A| 1024 2048 2048 256 2048

CA-AMA training time (min) 40 80 90 27 70
AMenuNet training time (min) 40 75 85 24 65

E Further Experimental Descriptions

E.1 Implementation Details

Most hyperparameters are the same for all settings, as we have introduced in section[5] Only two
hyperparameters vary for different settings: the initial penalization term 7, and the menu size |.A|.
We present the choices taken in our experiments, and also present the total training time for different
auction settings (n and m). As the implementation of CA-AMA only adds a computation for the
Regret; term and the correlation-aware payment is represented by simply a three-layer MLP, the
training time does not significantly increase compared to [[14].

E.2 Further Experimental Results

We consider a 2-bidder single-item auction setting. The two bidders are also linearly correlated: the
first bidder’s valuation v; is sampled from an equal revenue distribution clamped within [e, 1]. The

second bidder’s valuation v equals to 1= (1 — v;). To make the outcome significant, we multiply
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Figure 4: The revenue results and training curves of CA-AMA and Randomized AMA (implemented
by AMenuNet [14]) in auctions with the first bidder’s valuation v following equal revenue distribution
on [e, 1] and the second bidder’s valuation vy = ;% (1 —v1). As the Regretyg in all cases is less than
le — 5, it is not plotted in the figure.

all valuations by 100. This is the case we constructed in the proof of theorem [3.3] where we prove
that when ¢ is sufficiently small, then the optimal revenue obtained by randomized AMA can be
arbitrarily poorer than optimal CA-AMA.

Different values of € are selected, ranging from 0.01 to 0.1. We present the results for different
¢ and plot the training curves for some cases in Figure[d As for comparison, the revenue gained
by VCG and FPA (First Price Auction), which extracts the full surplus and hence represents the
optimal revenue, and the revenue obtained by optimal Randomized AMA, are also plotted. As
is demonstrated in the figure, CA-AMA succeeds in reaching the optimal revenue, significantly
surpassing Randomized AMA. From the dynamics of payment p©° and p“MA, we observe that
CA-AMA can effectively tell the correlation information in this distribution and hence p°" dominates
in all cases. Compared to Randomized AMA, although the revenue part comes from AMA (CA-AMA
pAMA) is less than AMenuNet pAMA, the total revenue CA-AMA p*MA + pCor is significantly higher
than it.

E.3 Influence of the Target Regret

This section investigates the impact of the target level of IR regret, Riyge, On the revenue achieved
by our optimized CA-AMA mechanism. Experiments are conducted in a 2-bidder 2-item auction
setting with irregular multivariate normal value distributions, as described in detail in Section[5] We
evaluate Ry for values in the set {0.05,0.02,0.01, 0.005,0.002,0.001, 0.0005, 0.0001}. Figure
presents the average revenue and the achieved IR regret over 5 independent test runs for CA-AMA
at each target regret level. For comparison, the revenue achieved by Randomized AMA, VCG, and
Item-CAN is also included.

Firstly, we observe that after training, the achieved IR regret for CA-AMA is consistently close
to the specified target value, even for very small targets like Riareee = 0.0001. This demonstrates
the effectiveness of our training algorithm in steering the mechanism towards a desired level of IR
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compliance, mitigating the significant IR violations that can occur with standard AMA approaches.
Secondly, as Ruger approaches 0, the revenue obtained by CA-AMA tends to decrease. Nevertheless,
CA-AMA consistently yields higher average revenue than Randomized AMA across all tested target
regret levels.
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Figure 5: Average revenue vs. achieved IR regret for the optimized CA-AMA under different target
IR regret (Rireet). Results are averaged over 5 test runs in a 2-bidder, 2-item auction setting with
irregular multivariate normal value distributions. Revenue obtained by Randomized AMA, VCG, and
Item-CAN is included for comparison.
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NeurlIPS Paper Checklist

The checklist is designed to encourage best practices for responsible machine learning research,
addressing issues of reproducibility, transparency, research ethics, and societal impact. Do not remove
the checklist: The papers not including the checklist will be desk rejected. The checklist should
follow the references and follow the (optional) supplemental material. The checklist does NOT count
towards the page limit.

Please read the checklist guidelines carefully for information on how to answer these questions. For
each question in the checklist:

* You should answer [Yes] , ,or [NA].

* [NA] means either that the question is Not Applicable for that particular paper or the
relevant information is Not Available.

* Please provide a short (1-2 sentence) justification right after your answer (even for NA).

The checklist answers are an integral part of your paper submission. They are visible to the
reviewers, area chairs, senior area chairs, and ethics reviewers. You will be asked to also include it
(after eventual revisions) with the final version of your paper, and its final version will be published
with the paper.

The reviewers of your paper will be asked to use the checklist as one of the factors in their evaluation.
While ”[Yes] ” is generally preferable to ” ”, it is perfectly acceptable to answer ”
provided a proper justification is given (e.g., error bars are not reported because it would be too
computationally expensive” or ”we were unable to find the license for the dataset we used”). In
general, answering ”’ ” or ’[NA] ” is not grounds for rejection. While the questions are phrased
in a binary way, we acknowledge that the true answer is often more nuanced, so please just use your
best judgment and write a justification to elaborate. All supporting evidence can appear either in the
main paper or the supplemental material, provided in appendix. If you answer [Yes] to a question, in
the justification please point to the section(s) where related material for the question can be found.

IMPORTANT, please:

I

* Delete this instruction block, but keep the section heading ‘“NeurIPS Paper Checklist”,
* Keep the checklist subsection headings, questions/answers and guidelines below.

* Do not modify the questions and only use the provided macros for your answers.

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We are sure that the main claims made in the abstract and introduction
accurately reflect the paper’s contributions and scope.

Guidelines:
e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

25



797
798
799
800
801

802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824

825

826
827

828

829

830

831

832
833

834

835
836
837

838
839

840

841

842
843
844

845

846

847

848

Justification: The discussion is put in the appendix.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate ”Limitations” section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms

and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to

address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
Justification: All assumptions and rigorous proofs are provided.

Guidelines:

» The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: The full information combined with the code is provided.
Guidelines:

* The answer NA means that the paper does not include experiments.
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* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: The data is mainly simulated from certain distributions, which are described in
the paper.

Guidelines:

» The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).
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* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: All details are provided.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]
Justification: We have clarified the error bar in the text.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer ”Yes” if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

o If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: All experiments can be run on a single A100 GPU.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.
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* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: We have checked.
Guidelines:

» The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: There is no societal impact of the work performed.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: The paper poses no such risks.
Guidelines:

* The answer NA means that the paper poses no such risks.
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* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

» The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

* The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

¢ For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

» The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper does not involve crowdsourcing nor research with human subjects.
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Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]

Justification: The core method development in this research does not involve LLMs as any
important, original, or non-standard components.

Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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