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Abstract
We consider a toy model that exhibits grokking, recently advanced by [9], and take advantage of
the simple setting to derive the dynamics of the train and test loss using Dynamical Mean Field
Theory (DMFT). This gives a closed-form expression for the gap between train and test loss that
characterizes grokking in this toy model, illustrating how two parameters of interest – NTK align-
ment and network laziness – control the size of this gap and how grokking emerges as a uniquely
offline property during repeated training over the same dataset. This is the first quantitative charac-
terization of grokking dynamics in a general setting that makes no assumptions about weight decay,
weight norm, etc.

1. Introduction

Grokking is an empirical phenomenon discovered by [15] where there is a sharp decrease in test
error long after train loss reaches a low value. It is an example of abrupt and unexpected change
in a neural network’s performance, and has been under close empirical study since its discovery
[6, 7, 10, 11, 14, 17, 18]. A number of theories have been proposed to explain the causes of grokking;
initially, most attributed grokking to weight decay and weight norm decrease at late time, [11, 18].
Here, we consider a toy model from [9] that groks without weight decay or adaptive optimizers, and
derive the test and train loss dynamics to identify the source of the separation between test and train
loss.

Our toy model is a two-layer MLP trained on a polynomial regression task using vanilla gradient
descent. Here, we use a technique from statistical physics called Dynamical Mean Field Theory to
derive the full train and test loss dynamics of this toy model in terms of two parameters: alignment
of the Neural Tangent Kernel [8] and network laziness [5]. Solving the resulting DMFT equations
illustrates the origins of the test-train loss gap due to these two parameters.

2. Related work

Grokking. Since discovery by [15], there has been much work on understanding why it happens.
[14] mechanistically interpret the algorithm learned during grokking for modular addition tasks, [17]
attribute grokking to an optimization anomaly of adaptive optimizers. [6] observe that grokking and
double descent share similarities in dynamics, [11] find empirically that parameter weight norm
at initialization can control grokking, and [18] propose a heuristic for cross-entropy training with
weight decay. [9] suggest grokking is when a network transitions from a lazy, kernel regime to a
rich, feature learning regime.
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Dynamical Mean Field Theory. DMFT is a mathematical technique that has its origin in
condensed matter physics, but it has since then shown to be a useful tool to describe the weight and
loss dynamics of neural networks [3, 4, 13] in the “thermodynamic limit” where dataset size and
data dimension jointly go to infinity. [12] study the transition from a lazy to rich regime in a simple
setting with weight decay, whereas our dynamical theory make no assumptions about weight decay
and instead takes a proportional asymptotic in data dimension and number of data points.

3. The Setting: Polynomial regression in a two layer perceptron

We consider a one-hidden layer MLP with polynomial activations on a high-dimensional polynomial
regression task. Because grokking persists when we fix the readout weighs, we do so in pursuit of
the simplest setting in which to study grokking; this is the model studied by [9], though they do not
provide any theory for the dynamics at play.

The model f(w,x) and target function y(x) are defined in terms of input x ∈ RD as

f(w,x) =
α

N

N∑
i=1

ϕ(wi · x) , ϕ(h) = h+
ϵ

2
h2 , y(x) =

1

2
(β⋆ · x)2 (1)

The value of α controls the scale of the output, and consequently the speed of feature learning
[5]. The value of ϵ alters how difficult the task is for the initial NTK since it controls the power the
network puts in quadratic (vs linear) functions, which is the form the target takes. We train on a fixed
dataset {(xµ, yµ)}Pµ=1 of P samples. The inputs x are drawn from an isotropic Gaussian distribution
x ∼ N (0, 1

DI). We introduce the following two summary statistics (known in statistical physics as
“order parameters”) w̄ = 1

N

∑N
i=1wi ∈ RD , M = 1

N

∑N
i=1wiw

⊤
i ∈ RD×D Using these two

moments of the weights, we can write the neural network function as f(x) = αw̄x + αϵ
2 x

⊤Mx.
Then, we have that the NTK can be written as K(x,x′) = x · x′ + ϵ(x · x′) w̄ · (x+ x′) + ϵ2(x ·
x′) x⊤Mx′. At initialization in a wide network, w̄ = 0 and M = I . With this setup, we proceed
to derive the dynamics of this network to see what is the regime in α, ϵ, and the dataset size in which
it exhibits grokking. 1 illustrates the learning curves of this toy model during training, showcasing
a gap of several thousand epochs between the fall in train and test loss.
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Figure 1: Grokking in our toy model. Fall in test loss happens thousands of epochs after fall in train
loss (note the logarithmic scale in epochs). This used α = 0.5, ϵ = 0.05, and this test-train gap (i.e.,
time to grok) is increasing in α, for theoretical reasons we explain in the following section.
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4. Train and Test Error for Grokking from DMFT

To gain insight into the typical train and test loss dynamics in this setting, we investigate the high
dimensional limit D,P → ∞ with P = γD with hidden neurons N held fixed, see Appendix A for
details of the following derivation.

Intuitively, grokking happens in a data regime where we don’t have too much data (otherwise
the network learns features immediately), so the equations that result predict a gap between test and
train can emerge as γ becomes smaller. We will see that α, ϵ show up in the resulting Equation (5)
in a way that explains why they have the effects they do on grokking dynamics. The derivation of
the DMFT equations is deferred to Appendix A, and we state and interpret the resulting equations
here instead. We also present numerical solutions to these equations and show they illustrate where
grokking comes from in this toy model. The DMFT is summarized by self-averaging (concentrat-
ing) correlation and response functions, which are defined as

Cw
ij(t, s) ≡

1

D
wi(t) ·wj(t) , Ai(t) ≡

1

D
wi(t) · β⋆ , R

w
ij(t, s) ≡

1

D

D∑
k=1

δwik(t)

δvwjk(s)

Cg
ij(t, s) ≡

1

P

P∑
µ=1

gµi (t)g
µ
j (s) , R

h
ij(t, s) ≡

1

P

P∑
µ=1

δgµi (t)

δhµj (s)
, Rh⋆

i (t) ≡ 1

P

P∑
µ=1

δgµi (t)

δhµ⋆
, (2)

where gµi (t) = ϕ̇(hµi (t))(yµ−fµ) are the gradients and the vik(t) are fictitous source terms added to
the weight dynamics (see Appendix A.5 for more details). In the high dimensional limit, the weights
for each input dimension become statistically independent and identically distributed, allowing for
a reduced (lower) dimensional description of the network dynamics. We provide some theoretical
solutions in Figure 2 and Appendix Figure 3 obtained by integrating the DMFT equations.

Using solved dynamics to identify the source of grokking on our model. While the resulting
equations coupling the correlation and response functions are complicated, we provide them below
to see how grokking can emerge as these three introduced quantities of interest (α, γ, ϵ) vary.

d

dt
wi(t) = uwi (t) +

∫ t

0
ds

N∑
j=1

Rh
ij(t, s)wj(s) +Rh⋆

i (t)β , uw ∼ GP(0, γ−1Cg) (3)

hi(t) = uhi (t) +
1

γ

∫ t

0
ds

N∑
j=1

Rw
ij(t, s)gj(s) , [u

h
i , u

h⋆ ] ∼ GP (0, Q) , Q =

[
Cw A
A⊤ 1

]
(4)

where Cw, A,Cg are correlations computed over the statistics of the above stochastic processes.

Overfitting effects at finite γ Now we analyze what (3) and (4) tells us about the effect of γ
on the initial memorization (overfitting) phase of grokking. While the γ → ∞ limit recovers the
dynamics of online learning from [16], at finite γ we have the following complications

• Noise uw(t) in the weight dynamics which is correlated across time and neurons

• Non-Gaussian correction to hi(t) (the integral in h equation) which accelerates overfitting.

• The response function Rh
ij(t, s) becomes non-local in time (not proportional to δ(t − s)),

generating non-Markovian weight updates.
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Overfitting is caused by the finite γ correction to hi(t), generating a gap in train and test loss

Ltest(t)− Ltrain(t) ∼
2α

γN

N∑
ij=1

∫ t

0
dsRw

ij(t, s)C
g
ij(t, s) +O(γ−2) (5)

This quantitative characterization of the test-train gap is a key result of the DMFT because it
allows us to see exactly where grokking comes from as a function of γ, α, ϵ, since grokking takes
place exactly when Ltest(t) − Ltrain(t) is large. The key idea is that grokking cannot happen in the
online limit γ → ∞ because train loss tracks test loss, and grokking is precisely when train loss
is egregiously unrepresentative of progress on improving test risk. Equation 5 illustrates how this
gap can become large (grokking) in the middle of training as we move from the online to the offline
training regime. But γ is not the only parameter in this model that quantitatively controls grokking,
as we will see now.
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Figure 2: We compare the train (dashed) and test (solid) losses of different networks with N = 2
hidden neurons and data of dimension D = 3500 in a randomly initialized network (with constant
initialization) and random training sets of size P = γD to the DMFT train and test loss predictions.
Error bars represent standard deviation over 10 datasets. See Appendix Figure 3 for additional plots
of DMFT correlation and response functions.

Effect of ϵ and α The scale parameter α and quadratic component ϵ enter into the dynamics
through the gradient signals gi(t) = [1 + ϵhi(t)]

(
1
2h

2
⋆ − α

N

∑
k

[
hk +

ϵ
2h

2
k

])
which are averaged

to compute Cg. This indicates that ϵ and α both have interesting effects on response functions
Rh, Rh⋆ .

• First, we see that if α is small, the train and test losses will be closer to one another (no
grokking) based on equation (5). Early in training the weight dynamics are dominated by
updates in the signal β direction, representing useful feature learning. The losses will both
begin to drop at time t ∼ 2

3ϵ ln
(

1
A0α

)
, where A0 is the scale of initial alignment (see App.

A.3 and Figure 2 b). For large α, Rh will have a large effect on the dynamics, delaying
alignment and causing grokking.

• If ϵ is small, then we expect the alignment to initially decrease followed by a subsequent
increase at later time (more grokking). If ϵ is large, then we expect it is possible for hk to
evolve close to an interpolation condition before w aligns to β. All these predictions are tested
in Figure 2.
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Above in 2(a), we can see first the offline effects described earlier of γ ≪ ∞. In 2(b) we can see
how making α bigger (and thus the network lazier, so it tracks its linearized dynamics more closely
for longer during training [5]) causes a gap to emerge between the train and test loss. We include
more detailed derivations in the Appendix that discuss more of the interpretation of the DMFT
equations and their origins. This is the first quantitative characterization of grokking dynamics, to
the best of our knowledge, that makes no assumptions about weight norm, weight decay, etc.
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Figure 3: DMFT captures the effect of data repetition in the Gaussian data model. We see that
data repetition (finite γ) causes (a) a change in the weight correlations, and the (b) preactivation
response functions become non-diagonal reflecting a transition to non-Markovian dynamics. (c)
The alignment of each of the two neurons to β⋆ is well predicted by DMFT but not the online limit.
(d) The time-time diagonal entries in Cw are well predicted by DMFT.
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Appendix A. Dynamical Mean Field Theory for Asymptotic Risk Evolution

In this section we derive a set of DMFT equations which describe the dynamics of a two-layer
network with N = O(1) hidden neurons in a proportional limit P,D → ∞ with P = γD. The
general framework for DMFT for models trained on random data can be found in prior works [4, 13].
Our goal is to analyze the following gradient flow dynamics

d

dt
wi(t) =

1

γ

P∑
µ=1

gµi (t)x
µ , gµi (t) = (yµ − fµ)ϕ̇(h

µ
i (t)) , h

µ
i (t) = wi(t) · xµ (6)

where the labels yµ = σ(hµ⋆ ) = σ(β · x) are determined by the target function and fµ(t) =
α
N

∑N
i=1 ϕ(h

µ
i (t)) is the model’s output on data point xµ. The vector β can be regarded as a random

vector independent entries with
〈
β2
〉
= 1. The key idea of DMFT is that the above dynamics on

ND weights {wi}Ni=1 can be reduced to 2N + 1 stochastic processes (One weight wi(t) for each
hidden neuron and one gradient for each hidden neuron gi(t) and one additional for the target field
h⋆) which are summarized by correlation and response functions. Each entry of the weight vector
wi becomes an independent stochastic process with the following dynamics

d

dt
wi(t) = uwi (t) +

∫ t

0
ds

N∑
j=1

Rh
ij(t, s)wj(s) +Rh⋆

i (t)β , uw ∼ GP
(
0, γ−1Cg

)
hi(t) = uhi (t) +

1

γ

N∑
j=1

∫ t

0
dsRw

ij(t, s)gj(s) , h⋆ = uh
⋆

Cg
ij(t, s) = ⟨gi(t)gj(s)⟩ , Cw

ij(t, s) = ⟨wi(t)wj(s)⟩ (7)

where uhi (t), uh⋆ are jointly Gaussian with covariance〈
uhi (t)u

h
j (s)

〉
= Cw(t, s) ,

〈
uhi (t)u

h⋆
〉
= Ai(t) ≡ ⟨wi(t)β⟩ ,

〈[
uh

⋆
]2〉

=
〈
β2
〉
= 1 (8)
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Lastly, we can compute the response functions R as averages over the above stochastic processes

Rw
ij(t, s) =

〈
δwi(t)

δuwj (s)

〉
, Rh

ij(t, s) =

〈
δgi(t)

δuhj (s)

〉
, Rh⋆

i (t) =

〈
δgi(t)

δuh⋆

〉
(9)

These equations close self-consistently. We derive these equations in Appendix A.5 using a dynam-
ical cavity method. In the next section, we discuss some special limits of this theory where we can
gain some insight. We note that while the stochastic process for wi(t) is Gaussian for any choice of
nonlinearity, the preactivations hi(t) are non-Gaussian if we use nonlinear link functions ϕ.

A.1. The Large γ Limit Coincides With Online Learning Dynamics

To gain insight into the equations, we first investigate the large data limit γ → ∞. Unfortunately,
this limit cannot exhibit grokking as train and test losses coincide, however it will prove a useful
starting point for our analysis. In this case, we have the following simplifications

Rh
ij(t, s) → Rh

ij(t)δ(t− s) , hi(t) → uhi (t)

d

dt
wi(t) →

N∑
j=1

Rh
ij(t)wj(t) +Rh⋆

i (t)β (10)

Using these simplifications, we can close the equations for Cw and Ai as

d

dt
Ai(t) =

∑
j

Rh
ij(t)Aj(t) +Rh⋆

i (t) (11)

d

dt
Cw
ij(t, s) =

∑
k

Rh
ik(t)C

h
kj(t, s) +Rh⋆

i (t)Aj(s) (12)

where we have the equal-time response functions

Rh
ij(t, s) =

〈
δgi(t)

δuhj (t)

〉
, Rh⋆

i (t) =

〈
δgi(t)

δuh⋆

〉
(13)

This exactly coincides with the online learning equations of [16]. For our choice of noninearities
ϕ(h) = h+ ϵ

2h
2 and σ(h) = 1

2h
2, we have the following response functions

Rh
ij(t) = δijϵ

〈(
1

2
h2⋆ −

1

N

∑
k

[
hk(t) +

ϵ

2
hk(t)

2
])〉

− 1

N
⟨(1 + ϵhi(t)) (1 + ϵhj(t))⟩

=
ϵ

2
δij

[
1− ϵ

N

∑
k

Cw
kk(t)

]
− 1

N

[
1 + ϵ2Cij(t)

]
Rh⋆(t) = ⟨(1 + ϵhi(t))h⋆⟩ = ϵAi(t) (14)
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Thus, we obtain the following closed ordinary differential equations for {Ai(t), C
w
ij(t, s)}

d

dt
Ai(t) =

ϵ

2

[
1− 1

N

∑
k

Cw
kk(t)

]
Ai(t)−

1

N

∑
j

[1 + ϵ2Cw
ij(t)]Aj(t) + ϵAi(t)

d

dt
Cw
ij(t) = ϵ

[
1− 1

N

∑
k

Cw
kk(t)

]
Cw
ij(t)−

1

N

∑
k

Cw
ik(t)C

w
kj(t)[2 + ϵ2Cik(t) + ϵ2Ckj(t)]

+ 2ϵAi(t)Aj(t) (15)

We see that this dynamical system has fixed points for Ai at A = 0. This is the cause for potential
slow timescales for alignment from generic initial conditions in high dimensions even in online
learning since the initial value for Ai is generally O(D−1/2) [1, 2]. We note however, that this is
not a statistical sample complexity issue as we are still in the P = γD scaling but with γ ≫ 1.

A.2. Leading Expression for Test/Train Loss Gap

We can use the following expressions for the train and test losses to derive a formula for their gap
valid at large but finite γ

Ltest =

〈(
α

N

N∑
i=1

ϕ(uhi (t))− σ(h⋆)

)2〉
, Ltrain =

〈(
α

N

N∑
i=1

ϕ(hi(t))− σ(h⋆)

)2〉
(16)

Using the fact that uhi (t) = hi(t)− 1
γ

∫
ds
∑

j R
w
ij(t, s)gj(s) we can expand the test loss around the

training loss at large γ this gives

Ltest(t) ∼

〈 α

N

N∑
i=1

ϕ(hi(t))−
α

γN

N∑
i=1

ϕ̇(hi(t))

∫
ds
∑
j

Rw
ij(t, s)gj(s)− σ(h⋆)

2〉

∼ Ltrain +
2α

γN

N∑
i=1

∫
ds
∑
j

Rw
ij(t, s)

〈
ϕ̇(hi(t))∆(t)gj(s)

〉
+O(γ−2) (17)

Recognizing that gi(t) = ϕ̇(hi(t))∆(t), we can express the leading order correction as

Ltest − Ltrain ∼ 2α

γN

∫ t

0
ds
∑
ij

Rw
ij(t, s)C

g
ij(t, s) +O(γ−2) (18)

We could now evaluate this expression at large γ so that Rw, Cg can be replaced with its value at
γ → ∞ (the solution in the Saad-Solla limit).

A.3. Early dynamics at Small α

We can also make some progress analytically in the case where α ≪ 1 and γ ≫ 1. The early
dynamics are

d

dt
wi(t) ∼ uwi (t) +

ϵ

2
wi(t) + ϵAi(t)β

=⇒ d

dt
Ai(t) =

3ϵ

2
Ai(t) =⇒ Ai(t) = exp

(
3ϵ

2
t

)
Ai(0) (19)
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In order to reduce the loss appreciably, we need A(t) to reach a scale of α−1 since f = αϕ(h). To
reach an alignment of scale 1

α , we need to train for time

t ∼ 2

3ϵ
ln

(
1

α A(0)

)
(20)

This is why the small α experiments train more slowly in Figure 2. We note that in high dimension
under random initial conditions A(0) ∼ 1√

D
so the time to escape the saddle point at initialization

is O(lnD), consistent with prior works on one-pass SGD [1, 2].

A.4. General Response Function Recursions

We need a way to compute Rh
ij(t, s). This requires knowledge of the linear responses in the non-

Markovian hi(t) system. To obtain these we note the following implicit relations.

δhi(t)

δuj(s)
= δ(t− s)δij +

1

γ

∫ t

0
dt′
∑
k

Rw
ik(t, t

′)
δgk(t

′)

δuj(s)

δgi(t)

δuj(s)
= ϕ̈(hi(t))

δhi(t)

δuj(s)
∆(t)

− ϕ̇(hi(t))

[
1

N

∑
k

ϕ̇(hk(t))
δhk(t)

δuj(s)

]
δhi(t)

δuh⋆
=

1

γ

∫ t

0
dt′
∑
j

Rw
ij(t, t

′)
δgj(t)

δuh⋆

δgi(t)

δuh⋆
= ϕ̇(hi(t))

[
σ̇(h⋆)−

1

N

∑
k

δhk(t)

δuh⋆
ϕ̇(hk(t))

]
+ ϕ̈(hi(t))

δhi(t)

δuh⋆
∆ (21)

where ∆(t) = σ(h⋆)− 1
N

∑
k ϕ(hk(t)) are the instantaneous errors.

A.5. Cavity Derivation of DMFT Equations

In this section we quickly derive the limiting DMFT equations for the infinite data and dimension
limit with P = γD with γ = O(1). This computation consists of two parts. First, we consider the
effect of adding a single data point to the training set and computing the marginal statistics on this
new training point. Then we proceed to add a single dimension to the data and then calculate the
dynamics for the weight associated with this dimension. These lead to scalar stochastic processes
which can be sampled and solved for in terms of correlation and response functions. To make the
calculation simpler, we consider adding fictitious source terms vw(t) and vhµ(t) which perturb the
dynamics

d

dt
wi(t) =

1

γ

P∑
µ=1

gµi (t)x
µ + vw

i (t) (22)

hµi (t) = wi(t) · xµ + vhµ,i(t) (23)

10
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We will define the following two response functions

Rw
ij(t, s) = lim

vw→0

δwi(t)

δvw
j (s)

, Rh
ij,µν(t, s) = lim

{vhµi}→0

δgµi (t)

δvhνj(s)
, Rh⋆

i,µν(t) =
δgµi (t)

δhν⋆
(24)

Adding One Data Point We consider the effect of adding a data point x0 ∼ N (0, 1
DI) to the

dataset. This addition leads to a small perturbation in the dynamics of the weights. Let w̃(t)
represent the weights in the P +1 data point system (including x0) while w(t) is the weights in the
P data system. By linear response theory, we have the following perturbed dynamics for w̃

w̃i(t) ∼ wi(t) +
1

γ

∫ t

0
ds

N∑
j=1

g0j (s)R
w
ij(t, s)x

0. (25)

Now, we can compute the perturbed preactivation statistics h0i (t) on the new data point

h0i (t) ∼ wi(t) · x0 +
1

γ

∫ t

0
ds

N∑
j=1

g0j (s)x
0⊤Rw

ij(t, s)x
0. (26)

In the first, term, the random variables wi(t) are statistically independent from x0 so this first term
is just a Gaussian with mean zero and variance

wi(t)
〈
x0x0⊤

〉
wj(s) =

1

D
wi(t) ·wj(s) ≡ Cw

ij(t, s) (27)

This covariance matrix will concentrate as D → ∞. Next, we consider the second term, which also
concentrates around its average

x0⊤Rw
ij(t, s)x

0 ∼ 1

D
Tr Rw

ij(t, s) ≡ Rw
ij(t, s) (28)

Thus we have the following marginal stochastic process for h0i (t)

h0i (t) = uhi (t) +
1

γ

∫
ds
∑
j

Rw
ij(t, s)g

0
j (s) (29)

where uh ∼ GP(0, Cw).

Adding a feature dimension We next consider adding a dimension so that we have D+1 instead
of a D dimensional weight vector and data vectors. Upon the addition of a single dimension, the
gradient signals are perturbed as

g̃µi (t) = gµi (t) +

∫ t

0
ds

P∑
ν=1

N∑
j=1

Rh
ij,µν(t, s)x

ν
0wj0(s) +

P∑
ν=1

Rh⋆
i,µν(t)x

ν
0β0. (30)

As a consequence the dynamics of the new trainable weight wi0(t) have the form

d

dt
wi0(t) =

1

γ

P∑
µ=1

gµi (t)x
0
µ +

1

γ

∫ t

0
ds
∑
jµν

Rh
ij,µν(t, s)x

µ
0x

ν
0wj0(s) +

1

γ

∑
µν

Rh⋆
i,µν(t)x

µ
0x

ν
0β0

∼ uwi (t) +

∫ t

0
ds
∑
j

Rh
ij(t, s)wj0(s) +Rh⋆

i (t)β0

uw ∼ GP
(
0, γ−1Cg

)
, Cg

ij(t, s) ≡ ⟨gi(t)gj(s)⟩ (31)
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where we invoked the same central limit theorem and concentration ideas as the previous section.
These equations and corresponding averages give us the DMFT presented in the previous sections.

A.6. How to Solve DMFT Equations

We are currently using a fixed point iteration scheme to solve the DMFT equations numerically.

1. Solve the online limit γ → ∞ of the DMFT equations for {Cw, A,Cg, Rw, Rh, Rh⋆} directly,
leveraging the Gaussianity of w, h, h⋆.

2. Using these correlations and response functions, draw many Monte Carlo samples for uh.
Integrate the equations for the preactivations, resulting in many non-Gaussian samples for h.
Use these samples to construct a Monte Carlo estimate of Cg, Rh, Rh⋆ .

3. Solve for the weight covariance Cw, alignment A and response Rw directly utilizing the
Gaussianity of w.

4. Update all of the order parameters {Cw, A,Cg, Rw, Rh, Rh⋆} in the direction of the new
estimate.

When this iteration procedure converges, it usually takes around 20− 50 iterations, though it takes
longer for smaller γ (since the initial guess for order parameters is farther away from the fixed
point). In the provided figures, we used 8000 Monte Carlo samples at each step and updated each
order parameter Cn at step n of the above procedure as

Cn+1 =
1

2
Cn +

1

2
CMC
n . (32)

where CMC is the Monte-Carlo estimate of C at step n.
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