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ABSTRACT

In recent years, data quality has emerged as an important factor for training massive
models. Analytical theories suggest that higher-quality data can lead to lower test
errors in models trained on a fixed data budget. Moreover, a model can be trained
on a lower compute budget without compromising performance if a dataset can be
stripped of its redundancies. Coreset selection (or data pruning) seeks to select a
subset of the training data so as to maximize the performance of models trained
on this subset, also referred to as coreset. There are two dominant approaches: (1)
geometry-based data selection for maximizing data diversity in the coreset, and
(2) functions that assign difficulty scores to samples based on training dynamics.
Optimizing for data diversity leads to a coreset that is biased towards easier samples,
whereas, selection by difficulty ranking omits easy samples that are necessary for
the training of deep learning models. This demonstrates that data diversity and
importance scores are two complementary factors that need to be jointly considered
during coreset selection. In this work, we represent a dataset as an undirected
graph and propose a novel pruning algorithm, D2 PRUNING, that uses message
passing over this dataset graph for coreset selection. D2 PRUNING updates the
difficulty scores of each example by incorporating the difficulty of its neighboring
examples in the dataset graph. Then, these updated difficulty scores direct a
graph-based sampling method to select a coreset that encapsulates both diverse and
difficult regions of the dataset space. We evaluate supervised and self-supervised
versions of our method on various vision and NLP datasets. Results show that
D2 PRUNING improves coreset selection over previous state-of-the-art methods at
low-to-medium pruning rates. Additionally, we find that using D2 PRUNING for
filtering large multimodal datasets leads to increased diversity in the dataset and
improved generalization of pretrained models. Our work shows that D2 PRUNING
is a versatile framework for understanding and processing datasets.1

1 INTRODUCTION

Deep learning models are evolving into massive architectures with trillions of learnable parameters
requiring enormous training datasets for optimal performance. Empirical experiments demonstrate
that the test error in such models falls off as a power law with model size as well as training dataset
size (Kaplan et al., 2020). Recently, Sorscher et al. (2022) developed an analytical theory that shows
that the power law association of test error with data size can be demoted to exponential scaling if one
has access to a high-quality data pruning metric for careful data selection. This has the implication
that for a fixed data budget, high-quality training data can yield lower test loss in deep learning
models. Coreset selection 2 (Mirzasoleiman et al., 2020; Guo et al., 2022) is a similar line of work
that aims to select a subset (coreset) of the most informative samples S from a large training dataset T
without significantly compromising the performance of the model. Existing coreset selection methods
(Toneva et al., 2018; Killamsetty et al., 2021a;b; Yang et al., 2022; Sorscher et al., 2022) demonstrate
promising performance on many vision datasets for one-shot coreset selection. However, significant

1Our code is available at https://github.com/adymaharana/d2pruning
2We use the terms coreset selection and data pruning interchangeably throughout the paper.
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progress remains to be made on the selection of better coresets, especially using self-supervised
approaches. Moreover, there is a lack of systematic evaluation of these methods on NLP datasets.

Real-world data distributions comprise high-density as well as low-density regions. Yu et al. (2020);
Chan et al. (2022) claim that maximizing the variance of intra-class features results in robust
representations. To this end, geometry-based coreset selection methods (Sener & Savarese, 2018;
Chen et al., 2010) operate under the assumption that samples located close to each other provide
redundant information, and try to remove those data points by selecting the samples most distant
from k-means cluster centers (Sorscher et al., 2022) or at a median distance from the class center
(Xia et al., 2023), in order to maximize diversity in the coreset. On the other hand, uncertainty-based
methods (Coleman et al., 2019) and error or loss-based methods (Toneva et al., 2018; Paul et al.,
2021) propose a score-based function to estimate the difficulty of each sample in the training dataset
from the model’s training dynamics and retain the most difficult samples. However, the distribution
of difficulty scores for the original data is highly skewed and contain way more low-difficulty (or
easy) samples (Swayamdipta et al., 2020), as we show in Figure 2(a). As low-difficulty samples
predominantly arise in densely populated regions (Sorscher et al., 2022), incorporating some of these
well-connected, low-difficulty samples into the coreset guarantees adequate representation of these
dense areas within the coreset (Zheng et al., 2022). At the same time, selecting high-difficulty samples
with higher connectivity increases the information content of the (Kim & Shin, 2022). Evidently,
example difficulty and data diversity are two crucial factors for selecting effective coresets, yet, there
has been little work towards combining them into a unifying framework for coreset selection.

To unify these two factors, we propose the D2 PRUNING method, where we represent the dataset S
as an undirected graph G and design a message-passing algorithm that unifies the difficulty scores
and the underlying spatial distribution of the dataset to select a coreset with balanced difficulty and
diversity. D2 PRUNING consists of three simple steps: (1) Graph Initialization: First, we create
a graph, G, where each node is an example from the dataset S and is connected to its k-closest
neighbors based on a notion of distance in the embedding space (see Fig. 1(A)). Each node has a
feature value that represents the difficulty score of the example. This graph can be used to understand
the connectivity of each sample with respect to the rest of the dataset (Ebert et al., 2012). (2) Forward
Message Passing: Next, we perform message passing (Gasteiger et al., 2020; Yadav et al., 2019)
over the dataset graph to update the difficulty scores of all examples by taking into account the
distance and difficulty of its neighboring examples in the graph (see Fig. 1(B)). Specifically, each
node collects a message from all of its neighbors (where the message is their difficulty scores scaled
by their distance) and uses these messages to update its own difficulty score. (3) Coreset Selection &
Reverse Message Passing: Finally, we use these updated scores to iteratively select a balanced subset
of samples from high-density low-difficulty regions and low-density high-difficulty regions. At each
step of selection, the neighbors of the selected sample are down-weighted via reverse message-passing
to promote diversity in the coreset (see Fig. 1(C)). Our design ensures that highly connected nodes of
low difficulty are on equal footing with sparsely connected nodes of high difficulty during selection.

We refer to this diversity-difficulty (D2) approach of coreset selection using message-passing as D2

PRUNING and evaluate this pruning method on multiple image classification and natural language
processing (NLP) datasets. We find that D2 PRUNING outperforms state-of-art methods for coreset
selection at low-to-medium pruning rates. Our analysis shows that D2 PRUNING selects a coreset with
a higher distribution of difficult samples for low pruning rates and with equitable distribution over
easy and difficult samples for medium-to-high pruning rates. Further, we adapt D2 PRUNING for self-
supervised and unsupervised data selection approaches and show improvements over existing methods
for self-supervised coreset selection and data filtering respectively. Importantly, the message-passing
framework for coreset selection opens up possibilities for exploring different message schemes,
possibly incorporating factors other than data diversity and difficulty, in an easy plug-and-play
framework. In summary, our contributions are:

• We propose D2 PRUNING, a one-shot coreset selection algorithm that represents datasets
as undirected graphs and uses message-passing to combine the influence of two important
factors, example difficulty and data diversity, for data selection.

• We evaluate our method on several image classification, NLP benchmarks and show state-of-
the-art results for low-to-medium pruning rates for supervised & self-supervised approaches.

• We show that D2 PRUNING selects diverse data pools when filtering massive multimodal
datasets, which improves the generalization of pretrained multimodal models.
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A. Graph Initialization B. Forward Message Passing

C. Reverse Message Passing

Figure 1: Overview of D2 PRUNING. (left) Our proposed algorithm contains three steps: (a)
Initialization of graph G using difficulty scores and edge weights based on feature distance, (b)
message passing between connected nodes to propagate difficulty scores of neighboring samples, and
(c) data selection and reverse message passing to avoid sampling from the same neighborhood. (right)
D2 PRUNING selects a balanced subset of samples (red) from sparse and dense regions.

2 PRELIMINARIES

In this section, we describe one-shot coreset selection and discuss the motivation behind our work.

2.1 ONE-SHOT CORESET SELECTION

Consider a training dataset S containing N examples {(xi, yi)}Ni=1 drawn i.i.d. from an underlying
distribution P . One-shot coreset selection refers to the selection of a subset S′ of the data at a given
pruning rate α such that the loss of the model θ trained on S′ using loss function L is minimized on
an evaluation set drawn from P . This results in the optimization problem as follows:

min
S′⊂S:

|S′|
|S| ≤(1−α)

Ex,y∼P [L(x, y; θ
∗(S′))] (1)

2.2 DESIDERATA OF CORESET

Coresets are representative subsets of larger datasets and aim to preserve the performance achieved
by training on the full dataset. Prior works on understanding training dynamics point towards two
important factors for ensuring the same i.e. example difficulty and data diversity.

Example difficulty. Multiple works have sought to define example difficulty in order to understand
how deep neural networks process data. Statistical metrics like consistency score (Jiang et al., 2021)
measure the probability of predicting the correct label of an instance when it is left out of the training
dataset. Sorscher et al. (2022) provide theoretical justification for retaining the hardest examples
when pruning large datasets for a perceptron learning setting. Swayamdipta et al. (2020) show that
examples that have a high degree of variance in the model’s predictions during training have the
largest impact on the model’s overall performance. Accordingly, coreset selection methods based on
difficulty score functions prioritize the selection of difficult examples for coresets (Guo et al., 2022).
However, it has been shown that deep learning models learn easy data and simple functions earlier in
training (Jiang et al., 2021; Toneva et al., 2018; Baldock et al., 2021) and easy examples ease the
optimization of deep learning networks in the high-dimensional data manifold. Moreover, Zheng et al.
(2022) demonstrate that it is necessary to include easy examples to ensure coverage in high-density
areas of the data distribution, which leads to the next factor of consideration i.e. data diversity.

Data diversity. Representation structure has been explored in several works as the key to the
generalization of deep learning models; variance in representations for each class should be as large
as possible while also being uncorrelated from other classes (Xia et al., 2023). The diversity of a
dataset can be captured in many ways such as coding rate (Yu et al., 2020; Chan et al., 2022), max
dispersion or convex hull volume (Yu et al., 2022) and coverage (Sener & Savarese, 2018; Zheng et al.,
2022). A set S′ is a r-cover of another set S, when a set of r-radius balls centered at each element in
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Figure 2: Sampling Methods. Density heat map of data distribution (left) and histogram of importance
scores (right) in (A) a single class in the CIFAR10 dataset, and coresets selected under 90% pruning
rate via (B) random sampling, diversity-only submodular approaches (C) facility location, (D) graph-
cut (Iyer et al., 2021), (E) Moderate selection (Xia et al., 2023) and (F) our method, D2 PRUNING,
designed to balance data diversity (pretrained ResNet18 features) and difficulty (Toneva et al., 2018).

S′ covers the entire S. The radius r can be used as a metric to measure coverage of S′ on S (Sener
& Savarese, 2018). Zheng et al. (2022) introduce the metric AUCpr (Area under coverage), which
is computed against test set Dtest i.e. AUCpr (S) = Ex∈Dtest [minx′∈Sd(x

′, x)] and theoretically
show that it is important to minimize the AUCpr for better generalization. Difficult samples tend
to be rarer samples found in the low-density areas of the data distribution whereas easy samples
tend to lie in high-density areas. An effective coreset should contain sufficient samples from both
areas to ensure maximum coverage. However, optimizing for diversity only leads to coresets with a
skewed distribution over example difficulty. As we show in Fig. 2(c), k-center selection minimizes
the distance of samples in S from S′ and has high coverage of the underlying data distribution. But,
the selected coreset contains a disproportionate number of easy samples, rendering it ineffective.

Example difficulty and diversity are two complementary factors that make an effective coreset. Hence,
coreset selection methods need to unify the influence of these factors in a constructive manner. To this
end, we represent the dataset S as a graph and introduce a novel message-passing algorithm (Vashishth
et al., 2019a;b), D2 PRUNING, that accounts for both factors when selecting samples for coreset.

3 D2 PRUNING: MESSAGE PASSING FOR CORESET SELECTION

Consider a dataset S, where each sample s is represented in an embedding space, i.e., s ∈ Rd.
We seek to select a coreset S′ consisting of a subset of the samples in S as outlined in Sec. 2.1.
Moreover, our goal is to combine the influence of embedding distance and difficulty scores when
selecting samples for coreset (see Sec. 2.2). This setting naturally lends itself to a representation
using undirected graph G, where each sample is represented as a node with node-feature xi, and edge
weights eij to indicate its connectivity with other samples in the embedding space (see Fig. 1(a)). We
use message-passing to ‘inform’ a sample about (a) its proximity to adjacent samples in an embedding
space, and (b) the difficulty scores of its neighbors. First, we briefly discuss message passing for
graphs, and then we discuss our proposed algorithm, D2 PRUNING.

3.1 MESSAGE PASSING

Message passing (Hamilton et al., 2017) is a widely-used operation performed on graphs to propagate
information from a node’s neighbors to itself and update the state of the node based on the newly
acquired information. For instance, Gilmer et al. (2017); Gasteiger et al. (2020) use message-passing
to encode molecular structures for chemical prediction. The message-passing phase is defined in
terms of a message function M and a node update function U . In the message passing phase, a given
node i receives messages from each of its neighbors and aggregates them to update its feature value:

mi =
∑

j∈N (i)

mij ; where mij = M(xj , ei,j) (2)

xi = U(xi,mi) (3)

where N (i) denotes the neighbors of node i in graph G. U is an aggregation function that accounts
for the messages received from all neighbors, as well as the node’s own feature.
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3.2 D2 PRUNING

D2 PRUNING consists of 3 stages i.e., (a) Graph initialization, (b) forward message passing, and (c)
data selection via reverse message passing.

Graph initialization. We create a single, sparse graph for the dataset S where each sample in S
is represented by a node i in the graph. In order to account for example difficulty during coreset
selection, we initialize the node feature as the difficulty score of the sample based on training
dynamics of the model θ trained on S, i.e., xi = fθ(si), where f(.) is the scoring function. In
practice, the scoring function can be one of the many metrics used to measure difficulty such as
forgetting (Toneva et al., 2018), consistency score (Jiang et al., 2021), and self-supervised metrics
like prototypicality (Sorscher et al., 2022) etc. Next, we collect the k nearest neighboring samples
for every sample in the dataset. Within the graph, the connecting edges between each node i and its
k nearest neighbors are initialized with a non-zero edge weight ei,j , where node j is one of the k
nearest neighbors (see Fig. 1(a)). All other edge weights are set to zero, leading to a sparse graphical
representation of the entire dataset S. The edge weight ei,j represents the proximity of the two
nodes i, j using the RBF kernel of the distance d(i, j). We use the Euclidean distance as the distance
function i.e., d(i, j) = ||vi − vj|| where vi is the embedding vector for sample i.

Forward message passing. In this step, each node i in the graph receives information about its
neighborhood via a single step of message propagation. Every connected node j sends a message M
to node i about its importance score which is scaled by the edge weight as,

M(xj , eij) = ei,j ∗ xj ; where ei,j = exp (−γf ∗ d(i, j)2) (4)

The intuition behind this definition is that samples that are farther away from the node but are of
higher difficulty should be weighted similarly to samples that are closer to the node and have lower
difficulty. This promotes diversity in the coreset by ensuring representation from all regions of
the data distribution. Finally, the receiving node i aggregates all of the messages received from its
neighboring nodes and updates its own feature value as,

Uf (xi,mi) = xi +
∑

j∈N (i)

M(xj , ei,j) (5)

This reinforces the importance of dense regions comprising easy samples or sparse regions comprising
difficult samples. Existing methods (Ash et al., 2019; Das et al., 2023) do not make a distinction
between easy-to-learn and hard-to-learn areas in the data representation space whereas, this step in D2

PRUNING increases the importance of a sample by an amount that is proportional to the importance
scores of the samples surrounding it, thus ranking an easy sample in a hard-to-learn area higher than
that in an easy-to-learn area. Therefore, in this way, we start with a graph G where connectivity is
based on the distance between two samples in the feature space and convert it into a graph based on
distance as well as difficulty scores via message passing.

Data selection via reverse message passing. In the final step, samples in S are ranked according
to their corresponding updated node feature values in G. Iteratively, the highest ranking sample
xk = argmaxi∈S xi is selected (Ebert et al., 2012), and its neighboring nodes are down-weighted
to maximize the diversity of the coreset. However, since the distance between two nodes is a
representation of their semantic similarity, neighboring nodes that are farther away from the selected
node must be down-weighted relatively less than those that are closer. We implement this via reverse
message passing, where the neighboring nodes receive a weighted message from the selected node
and use it to update their feature value as,

xj = xj − ek,j ∗ xk, ∀j ∈ N (k) ; where ek,j = exp (−γr ∗ d(k, j)2), (6)

where a lower value of γr causes larger updates in connected nodes and vice-versa. With these steps,
D2 PRUNING selects a coreset that contains samples from all regions of the data distribution and are
more uniformly distributed over the range of difficulty scores (see Fig. 2(f)).

4 EXPERIMENTAL SETUP

Tasks, Models & Datasets. We evaluate D2 PRUNING on three vision datasets i.e., CIFAR10,
CIFAR100 (Krizhevsky et al., 2009) and Imagenet-1K (Deng et al., 2009), and two NLP datasets
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i.e., a subset (2k train examples) of ImDB reviews for sentiment analysis, and the Adversarial NLI
(ANLI) dataset (Nie et al., 2020) for natural language inference. To the best of our knowledge, we are
the first to perform a systematic evaluation of coreset selection methods on NLP datasets. We evaluate
unsupervsied D2 PRUNING on the DataComp (small) dataset (Gadre et al., 2023). We use ResNet-18
for CIFAR10 and CIFAR100, ResNet-34 for ImageNet-1K and RoBERTa for NLP datasets.

Baselines. (Supervised) We compare D2 PRUNING with several score-based and geometry-based
coreset selection methods derived from the training dynamics of a model trained on the full dataset:
A) Random selection. B) Entropy (Coleman et al., 2019) of prediction vector. C) Forgetting
(Toneva et al., 2018) score. D) EL2N (Paul et al., 2021) i.e. L2 norm of error vectors. E) Area
under the margin (Pleiss et al., 2020) score. E) Moderate (Xia et al., 2023) coreset consisting of
samples at median distance from class center, F) CCS (Zheng et al., 2022) divides a range of difficulty
scores into equal-sized bins and randomly samples from each bin, G) CCS + k-Center, where
k-center samples are selected within each CCS bin, H) BADGE (Ash et al., 2019) that selects samples
using k-means++ in the gradient vector space, I) GLISTER (Killamsetty et al., 2021b) uses bi-level
optimization to select robust coresets, J) CAL-SDS2 (Das et al., 2023) combines a facility location
submodular function (Iyer et al., 2021) with forgetting scores, and J) INGENIOUS (Renduchintala
et al., 2023), a diversity-only approach using facility location function for NLP tasks. (Unsupervised)
We use self-supervised embeddings to compare D2 PRUNING with A) Prototypicality (Sorscher
et al., 2022) computes k-means clusters using embeddings and selects samples farthest from cluster
center, B) CCS over prototypicality scores, and C) Moderate selection (Xia et al., 2023).

Implementation. In the supervised approach of D2 PRUNING, graph nodes are initialized with
supervised difficulty score values and feature embeddings extracted from the model trained on the
entire dataset. We use the forgetting score for CIFAR10, CIFAR100 and AUM score for ImageNet-1K
(Zheng et al., 2022). We substitute the forgetting score with variance (Swayamdipta et al., 2020) for
NLP datasets since they are trained for fewer epochs and the [CLS] token representation in RoBERTa
models for feature embeddings. Self-supervised D2 PRUNING is initialized with feature embeddings
from SwAV (Caron et al., 2020) for ImageNet-1K and uniform difficulty scores over the dataset.

Computational Complexity of D2 PRUNING. Graph initialization involves getting the k-nearest
neighbors which are computed on a A100 GPU using PyTorch, taking <2 minutes for CIFAR10,
CIFAR100, Adversarial NLI and ImDB datasets, and approx. 12 minutes for ImageNet-1K at
quadratic time complexity O(vn2), where v is the vector dimension. We use faiss indexing (CPU)
to get the approximate nearest neighbors for the 12.8 M samples in the Datacomp dataset taking nearly
55 minutes (8 workers) at O(d log(d)) time complexity, where d=256K is the number of documents
in the faiss index (Johnson et al., 2019). Forward message passing is a parallelizable step of linear
time complexity that scales with k as O(nk). The iterative selection step in D2 PRUNING takes O(n)
time in our optimized implementation, completing in <5 minutes for DataComp (Sec. B, Appendix).

Algorithm Hyperparameters. We use the best reported hyperparameters for baseline methods.
For D2 PRUNING, we set the forward message passing weight γf to 1.0 and perform a sweep over
k = {1, 5, 10, 15} and γr = {0, 0.1, 0.2...1.0} for CIFAR10, CIFAR100 datasets. Insights from
these runs are used to select three configurations for each run on ImageNet-1K (see Sec. 5.2).

5 RESULTS & DISCUSSION

5.1 COMPARISON TO SUPERVISED CORESET SELECTION METHODS

We evaluate D2 PRUNING and other coreset selection methods outlined in Sec. 4 on three vision
datasets and present results in Tab. 1. D2 PRUNING demonstrates consistent gains over the previous
state-of-art for all datasets at low and medium pruning rates. D2 PRUNING yields significant gains
(p < 0.05) i.e., 1.0% and 1.4%, over the previous best for 50% and 80% pruning rates on ImageNet-
1K, showing the efficacy of graphs and message passing for coreset selection.3 Notably, random
pruning works surprisingly well for ImageNet-1K, especially for low pruning rates, and is hard to
beat. CCS (Zheng et al., 2022) remains a strong baseline for 90% pruning rate and only benefits a
little from additional diversity-based selection within the CCS bins (see CCS + k-Center in Tab. 1).
CCS enforces a uniform distribution of sample difficulty scores in the coreset, which is beneficial at

3Statistical significance computed by bootstrapping 100K samples (Noreen, 1989; Tibshirani & Efron, 1993)
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Table 1: Results on Vision Datasets. Performance (acc.) of D2 PRUNING and baselines on CIFAR10,
CIFAR100 using ResNet18, and ImageNet-1k using ResNet34 models. Higher is better.

Dataset (→) CIFAR10 CIFAR100 ImageNet-1K
Pruning Rate (→) 0% 30% 50% 70% 80% 90% 0% 30% 50% 70% 80% 90% 0% 30% 50% 70% 80% 90%
Random 95.5 94.3 93.4 90.9 88.0 79.0 78.7 74.6 71.1 65.3 57.4 44.8 73.1 72.2 70.3 66.7 62.5 52.3

Entropy (Coleman et al., 2019) - 94.8 92.9 90.1 84.1 72.1 - 74.7 68.9 60.3 49.6 35.0 - 72.3 70.8 64.0 55.8 39.0
Forgetting (Toneva et al., 2018) - 95.7 94.9 88.1 73.8 46.3 - 76.0 68.1 49.3 30.3 20.6 - 72.6 70.9 66.5 62.9 52.3
EL2N (Paul et al., 2021) - 95.4 94.8 89.2 78.6 30.3 - 75.6 68.1 47.2 24.8 11.8 - 72.2 67.2 48.8 31.2 12.9
AUM (Pleiss et al., 2020) - 95.6 95.1 87.9 68.0 40.0 - 75.0 67.9 40.1 26.4 13.1 - 72.5 66.6 40.4 21.1 9.9
GLISTER (Killamsetty et al., 2021b) - 95.1 94.5 90.9 85.8 69.3 - 78.1 74.1 68.2 58.1 52.4 - 68.7 65.6 61.4 60.3 52.0
CAL-SDS2 (Das et al., 2023) - 95.7 94.4 92.1 88.9 84.6 - 77.6 74.5 69.1 64.7 56.2 - 71.8 70.5 68.0 64.2 56.3
Moderate (Xia et al., 2023) - 93.9 92.6 90.6 87.3 81.0 - 74.6 71.1 65.3 58.5 45.5 - 72.0 70.3 65.9 61.3 52.1
CCS (Zheng et al., 2022) - 95.4 95.0 93.0 91.0 86.9 - 77.1 74.4 68.9 64.0 57.3 - 72.3 70.5 67.8 64.5 57.3
CCS + k-Center - 95.4 95.1 92.9 91.1 86.8 - 77.2 74.6 69.3 64.5 57.1 - 72.5 70.6 68.0 64.5 57.2
BADGE (Ash et al., 2019) - 94.0 92.1 90.7 88.1 82.5 - 74.7 71.8 65.2 58.9 47.8 - 71.7 70.4 65.8 61.7 53.4

D2 PRUNING - 95.7 94.9 93.3 91.4 87.1 - 78.2 75.9 70.5 65.2 56.9 - 72.9 71.8 68.1 65.9 55.6

Table 2: Results on NLP Datasets. Comparison of performance (acc.) of D2 PRUNING with existing
coreset selection methods on ANLI, ImDB reviews using pretrained RoBERTaLarge. Higher is better.

Dataset (→) Adversarial NLI (ANLI) ImDB Reviews (2k)
Pruning Rate (→) 0% 30% 50% 70% 80% 90% 0% 30% 50% 70% 80% 90%
Random 48.8 46.3 45.2 43.6 42.8 40.3 91.8 91.2 91.12 90.4 84.6 81.3

Entropy (Coleman et al., 2019) - 48.9 45.8 43.6 42.4 34.0 - 90.6 90.4 52.8 60.1 51.3
Variance (Swayamdipta et al., 2020) - 48.3 45.4 41.7 40.1 38.7 - 91.4 91.0 90.2 51.5 50.7
EL2N (Paul et al., 2021) - 47.7 46.3 43.9 41.1 40.3 - 91.6 91.4 51.0 50.6 50.3
AUM (Pleiss et al., 2020) - 47.9 46.2 42.7 41.0 39.6 - 91.6 91.6 53.4 50.3 50.3
GLISTER (Killamsetty et al., 2021b) - 48.6 46.2 43.8 43.1 39.9 - 90.9 91.2 90.1 89.1 87.4
CAL-SDS2 (Das et al., 2023) - 48.7 46.8 44.1 43.1 40.2 - 90.7 90.5 85.4 86.2 88.3
Moderate (Xia et al., 2023) - 46.1 44.5 43.2 42.8 40.3 - 91.4 91.2 90.9 89.8 85.4
CCS (Zheng et al., 2022) - 48.5 46.2 44.5 43.2 40.4 - 91.6 90.8 90.2 89.6 87.5
CCS + k-Center - 48.4 46.3 44.1 43.2 40.2 - 91.4 91.0 90.6 90.2 88.2
BADGE (Ash et al., 2019) - 47.3 45.8 44.0 43.1 39.5 - 91.3 90.9 90.0 90.1 89.5
INGENIOUS (Renduchintala et al., 2023) - 44.3 46.1 43.8 41.1 40.3 - 91.1 87.6 89.5 87.8 82.4

D2 PRUNING - 48.9 46.7 45.3 44.5 40.3 - 91.7 91.6 91.2 90.9 90.3

high pruning rates for providing even coverage over easy and difficult samples. However, at lower
pruning rates (or with increasing data budget), difficult training samples yield a lower test loss from
deep learning models (Sorscher et al., 2022). The hyperparameters k and γr in D2 PRUNING (see
Sec. 3) allow flexibility in the distribution of easy/difficult samples in coresets. We find that higher
values of γr and lower value of k in D2 PRUNING leads to a coreset that is skewed towards more
difficult samples and benefits performance at lower pruning rates. Conversely, low γr and high k lead
to an equitable distribution over easy/difficult samples and are more useful for higher pruning rates.
CAL-SDS2 (Das et al., 2023) also introduces a tunable hyperparameter for balancing difficulty and
diversity, however, its use of facility location (Iyer et al., 2021) for measuring diversity yields lower
gains than the graph-based local neighborhoods in D2 PRUNING. See discussion on hyperparameters
in Sec.5.2 and qualitative analysis of coresets in Sec. D, Appendix.

Results from the evaluation of various coreset selection methods, including D2 PRUNING, on NLP
datasets are presented in Tab. 2. First, we find that when pretrained language models (PLMs)
are finetuned on task-specific datasets, the models do not suffer from a catastrophic decline in
performance at high pruning rates, in contrast to models trained from scratch on vision datasets. For
IMDB reviews, the performance of finetuned RoBERTa goes from 91.8% at 0% pruning to 81.3%
at 90% pruning using random sampling. The performance improves to 87.5% using CCS coreset
selection and further improves to 90.3% (p < 0.05) using D2 PRUNING. The ANLI dataset has been
carefully crafted with an iterative, adversarial human-and-model-in-the-loop process, and hence, is
significantly less redundant than conventional NLP datasets. The performance for ANLI falls from
48.8% to 42.8% at 80% pruning using random sampling. In this case, CCS coreset selection does
not lead to a significant improvement in performance (43.2%), whereas D2 PRUNING improves the
performance by 1.7% to obtain 44.5% (p < 0.05). Score-based selection methods largely fail to yield
results better than random pruning at high pruning rates. Additionally, the use of facility location
function for representing diversity in CAL-SDS2 (Das et al., 2023) and INGENIOUS (Renduchintala
et al., 2023) yield less gains than our graph-based approach in D2 PRUNING.

5.2 ANALYSIS OF D2 PRUNING

D2 PRUNING contains two hyperparameters, k nearest neighbors and reverse message passing weight
γr (see Sec. 3) that allow various distributions of importance scores in the selected coreset. At low
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B.  

C.  

A.

Figure 3: Effect of k, γr. (A) Accuracy at 30%, 90% pruning of CIFAR100 for nearest neighbors (k)
and message passing weight γr values; Distribution of difficulty scores in the best coresets selected
via D2 PRUNING for 30% (center) and 70% (right) pruning of (B) CIFAR100, (C) ImageNet-1K.

pruning rates (see top, Fig. 3(a)), higher k has a small effect on performance when the updates during
reverse message passing are weak (γr=1.0). However, the coresets selected at high k and low γr
include a majority of the difficult samples from the full dataset, which works best for low pruning
rates on CIFAR100, as demonstrated by the distribution of importance scores in best-performing
coreset at 30% pruning rate (see Fig. 3(B), center). We use this insight to pick a similar configuration
of D2 PRUNING for ImageNet-1K and find that it transfers well. The distribution of difficulty scores
in the best-performing coreset of ImageNet-1K at 30% pruning rate is presented in Fig. 3(C).

Higher k improves performance when large updates (γr=0.0) are being made to the nodes connected
to the selected node at high pruning rates (see bottom, Fig. 3(a)). This is because low γr value leads
to aggressive downweighting of semantically similar samples when a sample is selected and promotes
diversity under a fixed data budget. The selected samples also form an equitable distribution over a
small range of difficulty scores. Consequently, such coresets work best for medium-to-high pruning
rates, as evidenced by the distribution of difficulty scores in the best performing coresets at 70%
pruning rate for CIFAR100 and ImageNet-1K (see Fig. 3(B,C), right).

5.3 SELF-SUPERVISED AND UNSUPERVISED APPROACHES USING D2 PRUNING

Existing methods for obtaining sample difficulty scores generally rely on a model trained on the
full dataset, which undermines their utility for scalably curating new datasets. Hence, we adopt D2

PRUNING for self-supervised and unsupervised data selection approaches.

Figure 4: Self-supervised pruning of
ImageNet-1K. D2 PRUNING performs as well
as supervised pruning at 30% and signifi-
cantly improves over existing methods.

Self-supervised coreset selection. Sorscher et al.
(2022) use embeddings from SwAV, a model trained
on ImageNet-1k in a self-supervised manner, and use
the spatial distribution of the samples in the embed-
ding space to assign difficulty scores (prototypicality).
This menthod suffers drastically at over 30% prun-
ing rates (see Fig. 4.). When combined with CCS, it
yields 10% gain for 90% pruning rate and lesser gains
for 70%, 80% pruning rates. We adopt D2 PRUNING
for a similar self-supervised approach by using SwAV
embeddings to compute sample distances and initial-
ize node features with a unit value. In the absence
of difficulty scores, D2 PRUNING ranks the samples
solely by the density of their neighborhood in the em-
bedding space. D2 PRUNING improves performance
by 3% at 80% pruning rate and provides similar gains
over prototypicality for lower pruning rates.

Unsupervised data filtering. Gadre et al. (2023) show that a simple strategy of retaining the samples
with a high CLIP score is a strong baseline filtering method (see Tab. 3) on DataComp, a massive
unfiltered corpus of images and texts to train CLIP-style models (Radford et al., 2021).4 However, a

4Our reproduced numbers are lower than Gadre et al. (2023) because some images in the original corpus fail
download. We report improvements using D2 PRUNING on this subset of images for fair comparison.
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Table 3: Results on DataComp. Comparison of performance (acc.) of D2 PRUNING with CCS
(Zheng et al., 2022) and data filtering methods presented in Gadre et al. (2023). Higher is better.

Filtering Strategy Dataset Size ImageNet ImageNet Dist. Shift VTAB Retrieval Average

No filtering (Gadre et al., 2023) 12.8M 2.5 3.3 14.5 11.4 13.2
Text-based filtering (Gadre et al., 2023) 3.2M 4.6 5.2 16.9 12.5 15.7
Image-based filtering (Gadre et al., 2023) 3.2M 4.3 4.7 17.8 12.1 15.9
CLIP score (L/14 30%) (Gadre et al., 2023) 3.8M 5.1 5.5 19.0 11.7 17.3

CLIP score (L/14 30%, reproduced) 3.8M 5.1 5.6 17.0 11.9 16.0

CCS (Zheng et al., 2022) 3.8M 2.6 3.7 14.3 14.2 13.8
D2 PRUNING (image + text) 3.8M 5.1 5.6 18.2 11.7 17.0
D2 PRUNING (image only) 3.8M 4.4 5.1 16.9 12.1 15.9
D2 PRUNING (text only) 3.8M 4.9 5.5 17.0 12.3 16.6

T-MARS (Maini et al., 2023) 2.5M 6.3 6.6 17.9 12.8 17.7
T-MARS + D2 PRUNING (image + text) 2.5M 6.5 6.7 19.1 12.8 18.8

strategy based on individual sample scores only ignores potential redundancies in the dataset and
may allot unnecessary data budget to an easy but dense region of the sample space. Hence, we
adapt D2 PRUNING for filtering DataComp by treating the CLIP score as the difficulty score and
using CLIP embeddings for computing sample distances. The data selected by D2 PRUNING using
both, CLIP text and image embeddings, for computing sample distances improves average zero-shot
performance on 38 image classification, multimodal datasets by 1% at same data budget (see Tab. 3.).
When combined with filtering method T-MARS (Maini et al., 2023) that removes images containing
overlapping textual content (with caption), D2 PRUNING achieves cumulative improvements.

6 RELATED WORK

Coreset Selection. Coreset selection has been widely studied in machine learning (Welling, 2009;
Chen et al., 2010; Feldman et al., 2011) for supervised learning. Recent works have focused on
large datasets and deep networks. Geometry-based methods remove redundant information (Welling,
2009; Sener & Savarese, 2018). Uncertainty/loss/error-based methods estimate the difficulty of a
sample from model confidence (Swayamdipta et al., 2020) or its training dynamics (Toneva et al.,
2018; Paul et al., 2021; Bachem et al., 2015). Submodular functions (Wei et al., 2015; Killamsetty
et al., 2023), gradient-matching (Mirzasoleiman et al., 2020), and optimization (Yang et al., 2022;
2023; Park et al., 2022) have been explored for coreset selection. Zhou & Bilmes (2018); Zhou et al.
(2020); Das et al. (2023) combine submodular functions with difficulty scores for selecting data.
Joshi & Mirzasoleiman (2023) study the importance of data samples for self-supervised learning via
submodular optimization. We combine data diversity and sample difficulty via graphs for selection.

Data Pruning in NLP. Works exploring coreset selection methods for NLP datasets have been far
and few (Fayyaz et al., 2022). Abbas et al. (2023) removes semantic duplicates from C4 dataset
(Raffel et al., 2020) to reduce data size and improve performance. Kaddour (2023) introduce a small
version of the Pile dataset (Gao et al., 2020) for pretraining BERT (Devlin et al., 2018; Liu et al.,
2019). We evaluate coreset selection methods on sentiment analysis, natural language inference tasks.

Graphs & Message Passing for Data Selection. Neural message passing (Yadav et al., 2019;
Yadati et al., 2019) is well-explored in graph neural networks for chemical structures (Gilmer et al.,
2017), however, has seen less exploration in the representation of datasets. Kim et al. (2021) use
message-passing to learn the topology of data in online learning. Ebert et al. (2012) use message-
passing based on feature distance only for performing graph-based density sampling during active
learning. Hongjin et al. (2022) construct a sparse graph from the k-nearest neighbors of in-context
examples and down-weight the selected example’s connected nodes, which is similar to the reverse
message-passing step in D2 PRUNING. In contrast, we initialize the nodes with sample importance
scores and first use forward message-passing to merge the influence of importance score and density
of local neighborhood to rank samples in D2 PRUNING.

7 CONCLUSION

We introduce a novel coreset selection algorithm, D2 PRUNING, based on message-passing within a
graph representing the dataset. Our algorithm combines data diversity and difficulty to select a coreset
that outperforms existing coreset selection methods at low-to-medium pruning rates on multiple
vision and NLP benchmarks, and can be adapted into self-supervised, unsupervised data selection.
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Reproducibility. We report the training hyperparameters used for our best models, as well as the
best hyperparameters for D2 PRUNING (see Sec. 3 and a discussion in Sec. 5.2) in the Appendix. The
code for running the experiments in our paper is available as part of the supplementary submission.
All datasets used in our experiments are openly available.
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OVERVIEW

The appendix is organized as follows:
Section A: Details of the datasets, baselines and the best hyperparameters for our models.
Section B: Computational complexity of D2 PRUNING for all datasets.
Section C: Additional results for high pruning rates and ablation experiments.
Section D: Qualitative analysis of coresets selected via D2 PRUNING.
Section E: Limitations and license.

A DATASETS & HYPERPARAMETERS

A.1 DATASETS

Vision Benchmarks. We use the CIFAR10, CIFAR100 (Krizhevsky et al., 2009) and ImageNet-1K
(Deng et al., 2009) image classification datasets for our experiments on vision benchmarks. The
CIFAR10 dataset consists of 60000 32x32 color images for 10 classes, with 6000 images per class.
The training and test splits contain 50000 and 10000 images respectively. The CIFAR100 dataset
has 100 classes containing 500 and 100 images per class in the training and test splits respectively.
Details about the class labels in CIFAR10, CIFAR100 datasets can be found here. The ImageNet-1K
dataset comprises approximately 1.2 million real-world images distributed over 1000 object classes.
It contains 1,281,167 and 50,000 images in training and validation splits respectively.

NLP Benchmarks. We select two popularly used NLP tasks i.e. natural language inference (NLI)
(Bowman et al., 2015) and sentiment analysis (Turney, 2002). For natural language inference, we
use the Adversarial NLI dataset (Nie et al., 2020) that has been created in an iterative human-and-
model-in-the-loop adversarial procedure. During each iteration, human annotators are instructed
to devise examples that the current best models are unable to answer correctly. The models are
trained on these challenging annotations for stronger performance. Multiple rounds of such iterations
result in a challenging NLI benchmark. We use the data created in the third (and final) round of
this process which contains 100459, 1200, and 1200 examples in the training, development, and test
splits respectively. We use the ImDB reviews dataset (Maas et al., 2011) for the sentiment analysis
task. The original dataset contains 25000 examples each in the training and test splits and is a binary
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Table 4: Best values of nearest-neighbors (k) and reverse message passing weight (γr) for vision
datasets. See a discussion on these hyperparameters in Sec. 5.2.

Dataset (→) CIFAR10 CIFAR100 ImageNet-1K
Pruning Rate (→) 0% 30% 50% 70% 80% 90% 0% 30% 50% 70% 80% 90% 0% 30% 50% 70% 80% 90%
Nearest Neighbors (k) - 10 5 1 2 2 - 10 10 10 5 15 - 50 50 100 10 10

Reverse Message Passing (γr) - 0.9 1.0 0.1 0.0 0.0 - 0.9 0.8 0.3 0.3 0.0 - 1.0 1.0 0.3 0.1 0.0

Table 5: Best values of nearest-neighbors (k) and reverse message passing weight (γr) for NLP
datasets and self-supervised D2 PRUNING of ImageNet-1K. See details in Sec. 5.2.

Dataset (→) Adversarial NLI ImDB(2K) ImageNet-1K (self-supervised)
Pruning Rate (→) 0% 30% 50% 70% 80% 90% 0% 30% 50% 70% 80% 90% 0% 30% 50% 70% 80% 90%
Nearest Neighbors (k) - 15 10 5 5 5 - 10 10 10 5 2 - 50 100 25 10 25

Reverse Message Passing (γr) - 1.0 1.0 0.1 0.1 0.0 - 1.0 0.8 0.3 0.0 0.0 - 1.0 1.0 0.5 0.5 0.0

classification dataset. Our experiments showed that models trained on 10% of this dataset achieved
nearly the same performance as 100% of the dataset. We observed similar trends for other popular
sentiment analysis benchmarks as well such as Yelp Reviews (Zhang et al., 2015), SST2 (Socher et al.,
2013) etc. Hence, we created an in-house version of the ImDB Reviews dataset that contains 2000,
and 1000 samples in the training and development splits respectively, that are randomly selected from
the original training set. We retain the original test split containing 25000 samples for evaluation in
our experiments.

A.2 BASELINES

(Supervised) We compare D2 PRUNING with several score-based and geometry-based coreset selec-
tion methods derived from the training dynamics of a model trained on the full dataset as discussed
in Zheng et al. (2022): A) Random selection of examples. B) Entropy (Coleman et al., 2019) of a
model’s prediction vector. C) Forgetting (Toneva et al., 2018) score for each example i.e., the number
of times a model predicts the example incorrectly after having predicted correctly in the previous
epoch. D) EL2N (Paul et al., 2021) i.e. L2 norm of error vectors. E) Area under the margin (Pleiss
et al., 2020) score that measures the gap between the prediction probability of the correct target and
the next highest probability target. E) Moderate coresets (Xia et al., 2023) that selects samples at
median distance from class center, F) Coverage-based Coreset Selection (CCS) (Zheng et al., 2022)
that divides a range of difficulty scores into equal-sized bins and randomly samples from each bin,
and is state-of-art for high pruning rates, G) CCS + k-Center, where k-center samples are selected
within each CCS bin, H) BADGE that selects diverse samples using k-means++ in the gradient
vector space, I) GLISTER (Killamsetty et al., 2021b) uses bi-level optimization to select robust
coresets, J) CAL-SDS2 (Das et al., 2023) combines a facilty location submodular function (Iyer et al.,
2021) with entropy scores to unify the effects of difficulty score and diversity, and J) INGENIOUS
(Renduchintala et al., 2023), a diversity-only approach that uses facility location as the information
gain function for NLP tasks. (Unsupervised) We compare D2 PRUNING with A) Prototypicality
(Sorscher et al., 2022) that uses self-supervised embeddings to compute k-means clusters and treats
samples at a farther distance from the cluster center as more important, B) CCS over prototypicality
scores, and C) Moderate coreset selection (Xia et al., 2023) over the self-supervised embeddings.

A.3 TRAINING HYPERPARAMETERS

Coreset Selection. We use the recommended hyperparameters in Zheng et al. (2022) for exper-
iments using Coverage-based coreset selection (CCS) i.e. 50 bins (or strata) for all pruning rates.
Models trained on vision datasets are also subjected to a hard cutoff rate β on the difficulty score for
eliminating outliers or erroneous samples (see Zheng et al. (2022) for the values). We report the best
hyperparameters for D2 PRUNING in Tabs. 4& 5.

Models. We follow the best training hyperparameters for ResNet18 model and ResNet34 models
as suggested in Zheng et al. (2022) to remain cmoparable to the numbers reported in their work.
For fine-tuning of pretrained RoBERTa on NLP datasets, we perform a grid search over learning
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rates {1e−5, 2e−5, 5e−5, 1e−4} and batch sizes {8, 16, 32} using 100% of the data, which results
in learning rate of 1e−4 and batch size of 32 for Adversarial NLI, ImDB (2k) datasets. Models are
trained on pruned datasets using the same hyperparameters that are used for training 100% of the
data. The maximum number of training steps is kept constant across all pruning rates. RoBERTa
models are trained for 10000 and 1500 training steps for Adversarial NLI and ImDB (2k) datasets
respectively, with early stopping.

Algorithm 1 D2 PRUNING for Data Selection
1: if selection = supervised then
2: Input Data: D = < x, y >
3: else
4: Input Data: D = < x >
5: end if
6: Validation Data: Dval = < x, y >
7: Input Data: Dtest = < x, y >
8:
9: Train:

10: θt ← initialize trainable parameters
11: for epoch = 1, 2, . . . , N do
12: Train θt on D
13: end for
14:
15: Optimize Data Selection using D2 PRUNING:
16: {k} ← grid search values for nearest-neighbor hyperparameter in D2 PRUNING
17: {γr} ← grid search values for reverse message passing hyperparameter in D2 PRUNING
18: |Ds| ← number of samples to be selected
19: for k in {k} do
20: for γr in {γr} do
21:
22: Select Ds ⊂ D using D2 PRUNING:
23: G ← initialize graph in D2 PRUNING using k, γr , θt
24: for d = 1, 2, . . . , D do
25: Perform forward message passing
26: end for
27: for i = 1, 2, . . . , |Ds| do
28: Select sample with highest node feature and add to Ds

29: Downweight neighbors of selected sample
30: end for
31: Obtain labels for Ds

32:
33: Train on Ds:
34: θv ← initialize trainable parameters
35: for epoch = 1, 2, . . . , N do
36: Train θv on Ds

37: end for
38: Evaluate θv on Dval

39:
40: end for
41: end for
42:
43: Evaluate best θv on Dtest

B COMPUTATIONAL COMPLEXITY OF D2 PRUNING

We divide the runtime of D2 PRUNING into: (1) Graph creation which includes graph initialization
and forward message passing, (2) Iterative selection (see Sec. 3) and present results in Tab. 6 for
100% data selection of the various datasets used in our experiments. Numbers are rounded to the
nearest minute. Runtime for iterative selection is proportional to the size of the coreset being selected.
Hence, in practice, the runtime for iterative selection is even lower since we only select a subset of
the data in our experiments. Time estimates of graph creation for different datasets are not strictly
comparable because we run jobs of different batch sizes according to the size of the dataset to prevent
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Table 6: Computational Overhead for D2 PRUNING. Comparison of runtime of D2 PRUNING for
100% selection of the various datasets in our experiments. D2 PRUNING can be divided into the
‘Graph creation’ and ‘Iterative selection’ steps (see General Response). Larger datasets like DataComp
have a ‘faiss indexing’ step to enable fast nearest-neighbor lookup. Results are computed using a
multi-thread implementation of D2 PRUNING using 8 workers on a CPU with 32 cores.

Dataset (→) CIFAR10 CIFAR100 Adv. NLI ImDB DataComp ImageNet-1K
faiss indexing - - - - 25m -
Graph creation 2m 1m 4m 1m 30m 15m
Iterative selection 1m 1m 2m 1m 7m 8m

Total selection time 3m 2m 6m 2m 1h 2m 23m

Training time 4h 30m 4h 45m 2h 15m 4h 15m 125h

Table 7: Results on Vision Datasets. Comparison of performance (acc.) of D2 PRUNING with existing
coreset selection methods for very high pruning rates on CIFAR10, CIFAR100 using ResNet18, and
ImageNet-1k using ResNet34 models. Higher is better.

Dataset (→) CIFAR10 CIFAR100 ImageNet-1K
Pruning Rate (→) 0% 90% 95% 99% 99.5% 99.9% 0% 90% 95% 99% 99.5% 99.9% 0% 90% 95% 99% 99.5% 99.9%
Random 95.5 79.0 70.0 39.8 35.8 23.8 78.7 44.8 28.7 10.8 6.13 3.5 73.1 52.3 41.1 9.6 4.1 0.9

CCS (Zheng et al., 2022) - 86.9 77.2 41.8 33.0 25.7 - 57.3 36.9 13.5 8.8 3.6 - 57.3 45.9 10.1 6.2 1.1

D2 PRUNING - 87.1 74.5 44.4 33.8 24.6 - 56.9 35.8 14.2 5.9 2.4 - 55.6 44.8 7.6 7.2 1.9

OOM issues when computing similarity matrix. Additionally, we provide the approximate training
times for each dataset computed on a single A100 GPU.

C ADDITIONAL RESULTS

C.1 RESULTS ON HIGH PRUNING RATES

We perform coreset selection at very high pruning rates (Guo et al., 2022) for CIFAR10, CIFAR100
and ImageNet-1K using D2 PRUNING and a select few baselines, and present results in Tab. 7. D2

PRUNING outperforms random selection as well as CCS (Zheng et al., 2022) in some scenarios, such
as by 3% and 0.5% at 99% and 99.5% pruning of CIFAR10 respectively. However, we do not see
any consistent trends in improvement using D2 PRUNING at very high pruning rates, especially for
ImageNet-1K. Improvement margins using CCS also go down at high pruning rates, suggesting that
diversity is not as important as difficulty when the data budget is extremely low (Sorscher et al.,
2022).

C.2 ABLATION EXPERIMENTS

Multiple message passing iterations. To better understand the effect of the forward message
passing procedure in D2 PRUNING, we visualize a random subset of CIFAR10 samples in a 2-
dimensional t-SNE (Van der Maaten & Hinton, 2008) embedding space in Fig. 5 before and after
forward message passing under various scenarios. When the graph is first initialized in D2 PRUNING,
the node feature is initialized with the sample’s importance score (see Fig. 5A). A single iteration of
a forward message passing over the local neighborhood of a sample consisting of k nearest neighbors
leads to the significant up-weighting of neighbors of a very important node. Thus, a higher k leads
up-weighting of a larger neighborhood of samples in the spatial dimension (see Fig. 5B vs. Fig. 5C).
Consequently, the distribution of normalized node feature values has a heavier tail with increasing
k, as compared to the distribution of original importance scores. In contrast, multiple iterations of
message passing at the same k have an effect similar to that of Gaussian smoothing in the embedding
space (see Fig. 5D). With increasing iterations, the local neighborhood of a node becomes increasingly
similar to that of other nodes in the graph, and hence, all nodes receive similar updates (see Fig. 5D
vs. Fig. 5E). As a result, the distribution of node features is biased towards a narrow spectrum of
values that no longer benefits the data selection task (see results in Tab. 8 in Appendix).
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Figure 5: Effect of forward message passing iterations. (top) Scatter plots of CIFAR10 samples’
normalized node feature values in a t-SNE embedding space (dim=2) and (bottom) corresponding
histograms for the following scenarios: (A) Initialization of graph in D2 PRUNING, one-shot forward
message passing with k=5 (B) and k=10 (C) nearest neighbors, and two-shot (D), three-shot (E)
forward message passing at k=10.

Table 8: Ablation Analysis. Results from ablations of D2 PRUNING by varying the embedding
representation (rows A-B), difficulty score (rows C-F), and multiple iterations of message passing
(rows H-J) on CIFAR10 and Adversarial NLI datasets. Higher is better.

Dataset (→) CIFAR10 Adversarial NLI
Pruning Rate (→) 0% 30% 50% 70% 80% 90% 0% 30% 50% 70% 80% 90%

A. Last Layer / [CLS] 95.5 95.7 94.9 93.3 91.4 87.1 48.8 48.9 46.7 45.3 44.5 40.3
B. Pre-final convolutional / non-[CLS] - 95.1 94.9 92.7 90.5 85.4 - 45.3 45.3 42.7 42.8 39.1

C. Forgetting / Variance 95.5 95.7 94.9 93.3 91.4 87.1 48.8 48.9 46.7 45.3 44.5 40.3
D. Entropy - 95.6 94.6 93.8 91.9 87.3 - 48.5 46.1 45.4 44.2 40.1
E. EL2N - 94.9 94.2 93.1 91.1 86.0 - 49.3 47.9 45.2 44.3 40.3
F. 1-shot 95.5 95.7 94.9 93.3 91.4 87.1 48.8 48.9 46.7 45.3 44.5 40.3
G. 2-shot - 94.0 94.1 89.9 89.2 85.6 - 47.4 45.2 44.9 43.1 40.4

Effect of importance scores. We experiment with different importance scores in D2 PRUNING
and present results in Tab. 8 in Appendix. We find that the entropy score (Coleman et al., 2019)
benefits performance on CIFAR10 at higher pruning rates, whereas EL2N (Paul et al., 2021) benefits
performance on Adversarial NLI for low pruning rates. Importantly, we do not see large drops in
performance with any of these score functions, suggesting that the idea of combining diversity and
difficulty in D2 PRUNING is universally beneficial. Further, improved difficulty metrics can be paired
with D2 PRUNING for larger improvements in data selection.

Effect of embedding sources. Next, we experiment with alternative sources of feature embeddings
for measuring the distance between two samples. Since final layers in a task-specific model are
known to be attuned to the task (Han & Tsvetkov, 2021), instead, we extract features from the last
convolutional layer in ResNet18 for CIFAR10 and use the average of non-[CLS] tokens in RoBERTa
for ImDB dataset (row B). We find that neither source is as effective as the features extracted from
the last layer of the model trained on the full dataset. Especially, we see large drops in performance
on the use of non-[CLS] token features for representing diversity. We leave the study of the utility of
different embedding spaces for measuring diversity to future work.

D ANALYSIS & DISCUSSION

Qualitative analysis of coresets selected by D2 PRUNING . In order to perform a qualitative
analysis of the merits of D2 PRUNING, we first use the connectivity graph G to extract meaningful
sub-populations from the entire ImageNet-1K dataset. For each sample, we recursively seek nearest
neighbors that are situated at a distance in the embedding space that is less than a predefined threshold.
Next, for each of these sub-populations, we differentiate the samples that appear in the coreset selected
by D2 PRUNING at 30% pruning of ImageNet-1K. We present and analyze a few representative
sub-populations in Fig. 6. First, we observe several cases where D2 PRUNING successfully avoids
selecting perceptual duplicates (Abbas et al., 2023) in the coreset (see top left and middle left in
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Figure 6: Example of coresets selected by D2 PRUNING from ImageNet-1K at 30% pruning rate.
Image sub-populations are extracted from ImageNet-1K by a recursive traversal of the connectivity
graph G initialized for D2 PRUNING. For each sub-population, we show the images retained in the
coreset with ✓ and the images left out of the coreset with X.

Fig. 6). Next, we see multiple cases where a composite image is selected for the coreset, and images
that contain one or more of the subjects/objects in the selected image are left out (see middle right in
Fig. 6). Finally, we find that relying on the semantic similarity of pretrained embeddings can lead to
the propagation of errors, as seen in the sub-population on the bottom right in Fig. 6. The images that
contain dolphins are left out of the coreset because of their similarity to an image depicting a water
landscape.

Visualization of data distribution in coresets. We showcase the results of various sampling
methods for a single class in the CIFAR10 dataset in Fig. 2. The features are obtained from a
ResNet18 network trained on the full training dataset and compressed to two dimensions using PCA
( 90% explained variance) for simpler visualization. As seen in Fig. 2(b), random sampling leads
to relatively larger samples from the denser region of the distribution and consequently, a higher
percentage of easy samples feature in the coreset after 90% pruning. By optimizing for diversity
only via facility location (Iyer et al., 2021) submodular optimization (Fig. 2(c)), the diversity of
the coreset remains high but it is plagued with the same problem as random sampling i.e. easier
samples are preferred. Alternatively, the use of graph-cut function with cosine similarity distance
(Iyer et al., 2021) as the information gain function results in the slection of a narrow sliver of data
from the 2-D space (Fig. 2(d)). Moderate coresets (Xia et al., 2023) also sample from a narrow area
in the distribution, resulting in poor diversity, but a slightly better balance between easy and difficult
samples (Fig. 2(e)). Finally, with our proposed method, the diversity remains high and the distribution
of difficulty scores in the coreset is also balanced (Fig. 2(f)).

E LIMITATIONS & LICENSE

E.1 LIMITATIONS

Access to Full Dataset & Pretrained Model. Similar to the many previous coreset selection
methods, our method relies on a model that has been pretrained or finetuned on the full dataset. We
leverage the pretrained embeddings as well as the difficulty scores from this model. In doing so, we
risk capturing the biases of the model. Further, one cannot use D2 PRUNING to create datasets from
scratch and reduce annotation costs by avoiding redundant samples in the dataset. We note that an
ideal data pruning method would not rely on access to the full dataset so that it can be used for creating
challenging and effective datasets in a cost-effective manner. Our experiments in self-supervised and
unsupervised data selection show promising results in this direction.
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E.2 LICENSE

We will publicly release our code and models. We use standard licenses from the community and
provide the following links to the licenses for the datasets that we used in the project.

CIFAR10, CIFAR100: Other
Adversarial NLI: Creative Commons
ImDB Reviews: Other
Counterfactual ImDB, NLI: Apache
DataComp: MIT
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