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Abstract

Conformal Prediction (CP) is a popular framework for constructing prediction
bands with valid coverage in finite samples, while being free of any distributional
assumption. A well-known limitation of conformal prediction is the lack of adap-
tivity, although several works introduced practically efficient alternate procedures.
In this work, we build upon recent ideas that rely on recasting the CP problem
as a statistical learning problem, directly targeting coverage and adaptivity. This
statistical learning problem is based on reproducible kernel Hilbert spaces (RKHS)
and kernel sum-of-squares (SoS) methods. First, we extend previous results with
a general representer theorem and exhibit the dual formulation of the learning
problem. Crucially, such dual formulation can be solved efficiently by accelerated
gradient methods with several hundreds or thousands of samples, unlike previous
strategies based on off-the-shelf semidefinite programming algorithms. Second,
we introduce a new hyperparameter tuning strategy tailored specifically to target
adaptivity through bounds on test-conditional coverage. This strategy, based on the
Hilbert-Schmidt Independence Criterion (HSIC), is introduced here to tune kernel
lengthscales in our framework, but has broader applicability since it could be used
in any CP algorithm where the score function is learned. Finally, extensive experi-
ments are conducted to show how our method compares to related work. All figures
can be reproduced with the accompanying code at gitlab.com/drti/ksos-bands|

1 Introduction

In many applications, machine learning regression models require a trustworthy uncertainty quan-
tification in their predictions. This is especially true for high-stakes applications such as design
optimization, non-destructive testing, medical diagnostics, autonomous vehicles, or financial fore-
casting, where decisions based on model predictions can have significant impacts. Having a reliable
uncertainty quantification is thus fundamental. Several machine learning models come with un-
certainty quantification in their predictions, such as Gaussian Processes [Rasmussen and Williams),
2005]], Random Forests [Breiman, 2001]] or Bayesian Neural Networks [Wang and Yeung, [2020],
among many others, but these models generally provide inaccurate prediction bands: coverage guar-
antees typically hold asymptotically or with strong distributional assumptions. In practice, however,
especially for high-stakes decisions, we should at least provide marginal coverage guarantees that
hold in finite sample and without making any distributional assumptions on the data. In addition, a
desirable feature is adaptivity: we would like prediction bands to be wide when either the model lacks
confidence or if the variability in the data is high, and narrow when both the model is confident and
the variability is low. Having adaptive prediction bands means having an uncertainty quantification
that is informative on either the performance of the model or the variability of the data, which is key
in crucial applications.
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Conformal Prediction (CP) (see, e.g., [Gammerman et al.||1998| [Papadopoulos et al., 2002} [Shafer
and Vovk! 2008 or [Angelopoulos and Bates||2023]] for a modern introduction) has been designed
from the ground up to be an uncertainty quantification statistical framework that provides marginal
coverage guarantees in finite sample while being distribution-free. In particular, the split conformal
procedure proposed by [Papadopoulos et al.| [2002] is especially easy to implement. CP is becoming
widely used in many different applications (see [Balasubramanian et al.,|2014, |Vazquez and Facelli,
2022] and references therein), but unfortunately, by construction, standard CP does not provide
adaptive prediction bands. A lot of research has been done in this direction, which we will review
later.

In parallel, for specific statistical learning problems, Marteau-Ferey et al| [2020] introduced a
new kernel framework known as kernel sum-of-squares (SoS), tailored specifically to estimate
non-negative functions. Their key idea is to characterize such functions of interest by a linear
positive semidefinite Hermitian operator, which admits a finite-dimensional representation through a
representer theorem. Since then, it has been leveraged for non-convex optimization [Rudi et al.,2025],
estimation of optimal transport distances [Vacher et al., 2021]], modeling of probability densities
[Rudi and Ciliberto, 2021]] and PSD-constrained functions [Muzellec et al., [2022]]. Very recently,
kernel SoS was also identified as a powerful framework for constructing more adaptive prediction
bands by |Liang| [2022]] and |[Fan et al.| [2024]]. They were the first to propose to build prediction
bands as solutions of such a learning problem, where adaptive coverage is targeted with additional
constraints. This point of view is the one we adopt and generalize in this paper.

Outline and contributions. We start by presenting CP in Section [2] as well as recent variants
developed to improve adaptivity. We also introduce the kernel SoS framework, since our proposed
method extensively relies on it. In Section [3] we introduce our approach that learns a CP score
function by solving a statistical optimization problem with several ingredients: an objective function
controlling both the width and the regularity of the prediction bands, and constraints for coverage.
We also discuss a new criterion dedicated to the tuning of kernel lengthscales, with local coverage as
an objective. In Section ] we finally conduct extensive experiments to compare our method to other
conformal prediction methods that provide adaptive bands.

Our contributions are as follows:

* We generalize the previously introduced kernel SoS point of view for prediction bands and
precisely analyze the contribution and practical effect of each term in the objective function,

* We provide a representer theorem that makes the problem numerically tractable,

* We derive a dual formulation of this problem and propose an accelerated gradient algorithm
to enable faster computation on large datasets, unlike previous work that was limited to
small datasets,

* We introduce a new criterion to tune kernel hyperparameters based on the Hilbert-Schmidt
Independence Criterion (HSIC), which is also applicable to any other CP method. In
particular, we provide both theoretical and empirical evidence of the effectiveness of this
metric to achieve better adaptivity.

2 Conformal prediction and kernel sum-of-squares

2.1 Conformal prediction

Split conformal prediction. CP was introduced by Gammerman et al.|[[1998]], with the so-called
full-variant, but we focus here on the split variant, introduced by |[Papadopoulos et al.|[2002]. Suppose
we have a training dataset Dy = {(X;,Y;)}Y, from a pair (X,Y) ~ Pxy where X € X C R?
and Y € Y C R. This dataset is split in two parts: a pre-training dataset D,, = {(X;,Y;)}_, and a
calibration one D, = {(X;,Y;)}, with N = n + m.

The pre-training dataset D,, is used to first fit a predictive model 7, (-), which can be any machine
learning algorithm. The second step consists in computing performance scores associated to 77, on
the hold-out calibration dataset D,,,. The usual score in the literature is defined as the absolute errors
S(X.,Y;) :=8; = |Y; — m,(X;)| for i € D,,, which are used to compute the quantile g,, of the set

S; }iep,, with an adjusted level [(1 — a)(m + 1)]/m, where « is the desired error rate. Finally,



for a new observation X 1, the split CP prediction bands are C N(Xni1) = [Mn(XNt1) £ Qals
which satisfy the marginal coverage

P(Yvi1 € Cn(Xni)) 21-a ()

for any N as long as (X1,Y7),...,(Xn,Yn), (Xn+1,YN41) are exchangeable. Unfortunately,
as underlined by Romano et al.|[2019]], these prediction bands cannot be adaptive since they have
constant width 2¢,,. The research direction in recent years has been to adjust CP procedures to target
more adaptive bands.

The quest for adaptivity. Historically the first idea was to change the score function by rescaling the
scores with an estimate of the variability &,,(-) > 0. The new scores are thus defined as S; = |Y; —
My (X;)|/on(X;), © € Dy, with prediction bands Cn(Xn11) = [Mn(Xn41) £ @00 (Xnt1)]-
Lei and Wasserman| [2014] first proposed to use an estimate of the conditional mean absolute de-
viation for &, (-). Another sensible choice is to scale the scores by an estimate of the standard
deviation, as was suggested for several machine learning models like Gaussian Processes, Ran-
dom Forests and Bayesian Neural Networks [Johansson et al., 2014} [Papadopoulos, [2024, {Jaber
et al}2025]. However, such scaling functions are rarely estimated in a goal-oriented way, without
quantitative and explicit consideration for adaptive coverage. This often leads in practice to poorly
adaptive prediction bands. In a parallel line of work, the popular Conformalized Quantile Regres-
sion (CQR) [Romano et al., 2019] proposes to change the score function by leveraging quantile
regression. Instead of using an interval built around an estimate m,,(-) of the regression function,

they rely on estimates g%ow< () and g, “"**"(+) of the conditional quantiles, and build an interval

Cn(Xn41) = [ (XN41) = Qas @n """ (XN41) + Ga| Where now g, is the adjusted quantile
of the set {max (g%owe (X;) — Y3, Y; — ¢n """ (X)) , i € Dy, }. In other words, the score function
is chosen as S(X,Y) = max (¢3ower (X) = Y,Y — g "**"(X)). By design, the CQR model is
adaptive and generally provides sensible prediction bands. However, it suffers from two practical
limitations: (a) decision-making people usually prefer a point estimate with an interval around this
estimate and (b) quantile regression in a small data regime can be quite challenging. Also note that

a regularized version of CQR tailored to target test-conditional coverage was recently proposed by
Feldman et al.|[2021]].

Another line of work consists in modifying the calibration step. For example, |Guan|[2023] and [Hore
and Barber|[2024] propose to weight the scores when computing the adjusted level quantile, where the
weights depend on the test point X 1 1: this directly implies that the quantile changes with X 1,
and as a result the prediction bands are adaptive. More precisely, given a kernel H (-, -) that defines a
density H(z,-) for all z € X, sample X 1 from H(X 41, -). The quantile Go (X n41, Xn41) 1S
computed on the empirical distribution Y. | w;ds, + Wn+10+00, Where the weights are computed
as w; = H(X,, XN_H)/(Z;":l H(X;,Xnt+1) + H(Xnt+1,Xn+1)). Although appealing, such
modifications to the score function have some practical shortcomings. First, computing different
weights for all test points can be computationally demanding during inference. Second, the method
suffers in practice from the randomization induced by the sampling of X ;. To overcome this issue
Hore and Barber| [[2024]] propose the m-RLCP methods that averages the predictions bands over m
sampling of X 1. However this leads to a marginal coverage equal to 1 — 2« and the computational
cost increases significantly. Finally, and perhaps more importantly, the kernel H (-, -) involved in the
definition of the weights depends on a bandwidth hyperparameter that must be tuned. This choice has
a strong impact on the shape of the prediction bands as shown in|Hore and Barber|[2024]. We will
come back to this point later since our framework shares the same characteristic. Finally, another
reweighting method based instead on Jackknife+ was proposed by |[Deutschmann et al.|[2024]].

2.2 Kernel sum-of-squares

Since our proposed method is based on kernel SoS for positive functions, we give a brief overview
following Marteau-Ferey et al.| [2020].

Let ‘H be a RKHS with associated kernel k£ and ¢: X — 7H one of its feature map such that
k(z,2") = ¢(X) T ¢(X). Let S(H) be the set of bounded Hermitian linear operator from H to H.
For A € S(H), we write A = 0 when A is a positive semi-definite (PSD) operator, and S () the



set of such PSD operators. For all z € X, we define f4(X) = ¢(X) T A¢(X), A € S, (H) which is
non-negative by construction. Kernel SoS refers to a statistical learning problem where the unknown
nonparametric function is constrained to be non-negative and obtained as the solution of

inf L(fa(X1),, fa(Xn)) + M Al + Ao Al @

where ||A|« and ||.A]| » denote the nuclear norm and the Frobenius norm of operator .4, respectively.
Interestingly, Marteau-Ferey et al.| [2020] show a representer theorem for Equation (2), which makes
kernel SoS computationally tractable in finite-dimension and is recalled below.

Theorem 1 (Marteau-Ferey et al.|[2020]) Assume L: R” — R U {400} to be a lower semi-
continuous and bounded below loss function. Equation admits a solution A* which can be
written A* = ZZi:l B (X:)d(X;) T for some matrix B* € R B* = 0. Furthermore
A* is unique if L is convex and Ao > 0. The corresponding non-negative function is given by
far(X) = 221:1 Bk(Xy, X)k(X;, X).

Theorem [I| provides a finite-dimensional equivalent problem which involves an unknown PSD matrix
B. But Marteau-Ferey et al.|[2020]] also propose an equivalent formulation: considering K the
kernel matrix with elements K,; = k(X;, X;) and V its upper Cholesky decomposition, we can
define ®(X) = V™ Tkx with kx = (k(X, X;))i=1,. . and fA(X) = ®(X)TA®P(X). With
these notations, the following proposition shows that we obtain the same solution if we optimize the
PSD matrix A instead of B.

Proposition 1 (Marteau-Ferey et al.|[2020]) Under the assumptions of Theoreml[l] the following
problem has at least one solution, which is unique if Ao > 0 and L is convex:

inf L(fa(X1),- s FA(X0)) + M| AL + Ao A7 (©)

For any given solution A* € R"*™ of Equation , the function fA* is also solution of Equation .

Although such a result may appear of minor impact, the A formulation actually yields significant
computational savings in practice, as we illustrate in our numerical experiments (see Appendix B.5).

Remark 1 Operator A is PSD, hence it admits an eigendecomposition A ="~ \ju; @ w; with
N\ > 0and w; € H. By the reproducing property, we have fa(X) =35, Aw(X)u (X) . Hence,
fa(X) is an infinite sum of squared functions in H. Equivalently in finite dimension, for a PSD
matrix B = UDU" we have fg(X) =k, UDU "kx = >", (O, uuk(X, X;))% Thus fs
is a function defined as a linear combination of squared functions from H.

3 Regularized kernel SoS for adaptive prediction bands

We now come back to our initial problem of building adaptive prediction bands. To do so, we focus
on the split CP setting with two i.i.d. datasets D,, = {(X;,Y;)}; and D,,, = {(X;,Y:)},, and
consider estimating a score function in a specific supervised learning problem to achieve better
adaptivity.

3.1 Learning the scores through an optimization problem

A general framework for learning score functions was recently introduced by |Xie et al.| [2024a]:
given a task-specific loss (e.g. conditional coverage or minimum interval width), an optimized
score function is obtained via a boosting algorithm. In this work, the score function S(X,Y) =
max (1 (X) =Y, Y — pa(X)) /o(X) is inspired by CQR and is parameterized by three unknown
functions (f41, p2,0) such that g1 (-) < po(-) and o(-) > 0, which are iteratively optimized during
boosting rounds. From a practical viewpoint however, the constraints on these functions are not
inherently accounted for in the boosting algorithm.

We advocated before the use of prediction intervals built around a point estimate, which corresponds
to the particular case m = pu; = o and yields a score function S(X,Y) = |Y — m(X)|/o(X), or
equivalently S(X,Y) = (Y — m(X))?/f(X) with f(-) := o(-)? since only the score quantiles are



involved in the final prediction interval: we thus recover the rescaled conformal score setting where
we learn the rescaling function f(-), with an additional non-negativity constraint. The kernel SoS
framework is thus a natural candidate for this learning task.

Kernel SoS formulation for prediction intervals. We introduce two RKHSs H™ and H associ-
ated to kernels k™ with lengthscales 6™ and k7 with lengthscales 6/, respectively. The regression
function m will be estimated in the RKHS H"* while the non-negative scaling function f will be
estimated using the kernel SoS framework in the RKHS H/. The first step is to derive our proposed
infinite-dimensional learning problem from the properties that we impose on prediction bands:

) a n ) b n )
f SN - mix; Z Xi) + A A 4
weron M a3 20 0 = O+ D52 A4C0) + ML+ dellAlE @

=1
st fa(Xs) > (Vi —m(X,))?, i e n], 5)
[ml[3m < s. (©6)

In this problem, we propose to include several key components:

1. Accurate mean estimation (first term in (@) with regularity penalty (6), as in standard kernel
ridge regression [[Scholkopf and Smolal [2002],

2. Prediction intervals with minimum mean width (second term in (@)) and an additional
regularity penalty (third and fourth terms in (@),

3. 100% coverage on pre-training data , later calibrated on the calibration dataset.

Minimizing the nuclear norm with coverage constraints was originally proposed by [Liang| [2022]],
and minimizing the mean width was later proposed by [Fan et al.|[2024]]. Our proposition essentially
differs from their work for a broader and more efficient practical applicability: (a) we place ourselves
in the split CP setting, whereas |Liang| [2022] and |Fan et al.[[2024] propose different calibration
procedures that are harder to implement in practice, with theoretical coverage guarantees that depend
on hyperparameters (see Appendix A.3), (b) we rely on a dual formulation which can handle several
hundreds of samples, (c) we propose a goal-oriented tuning strategy for #/, and (d) our proposal is
more general and we give better understanding of why this targets adaptivityﬂ In particular, adaptivity
can actually be controlled through the complexity of the scaling function f, in three different ways:

1. The sparsity in the linear combination. This can be controlled by the nuclear norm ||.A||,,
which acts as a lasso-type penalty (see[Recht et al.[[2010]),

2. The ¢5 norm of the coefficients in the linear combination, which is equal to the Frobenius
norm ||A|| r and is similar to a ridge penalty,

3. The RKHS #H7 which impacts the functions (), and notably the lengthscales 6.

To further illustrate point 3., if we take k¥ (z, 2') = (z, 2’) (RHKS of linear functions), the rescaling
function will be a second-order polynomial (thus not complex), while with a Gaussian kernel if
67 — +oo the prediction intervals will be constant (not adaptive enough) and if 7 is small they
will be very wiggly (too adaptive). We thus see that in between, we can target better adaptivity: we
propose in Section[3.2]a new goal-oriented criterion related to local coverage to tune the lengthscales
6. Note also that 1 — « instead of 100% coverage can be considered in the constraints, but this
unfortunately leads to a non-convex optimization problem [Braun et al.| [2025].

Before discussing in detail the choice of our problem hyperparameters, we first derive a representer
theorem which makes the optimization numerically tractable.

Theorem 2 (Representer theorem) Let (a,b, s, A1) € Ry and Ay > 0. Then Equation @) admits
a unique solution (m*, fa+) of the form m*(X) = Y"1 | v7k™(X;, X) = YTk and fa«(X) =
®(X)" A*®(X) for some vector v* € R"™ and matrix A* € R™" A* = 0.

The detailed proof, based on Marteau-Ferey et al|[2020]] and Muzellec et al.|[2022], can be found in
Appendix A.l. This representer theorem leads to the following tractable semi-definite programming

'This lack of understanding is for example pointed out by [Liang et al.| [2024].



(SDP) problem:

n n
; a  Temy2, b 3 , 2
sl ey w2 (G TRR) 4 00 a0 + MillAll + all Al
] )
st fa(X) > (Yi—~'K%,)", i€ [n], )
v K™y <s.

In practice, such SDP problem can be solved using off-the-shelf solvers like SCS [[O’Donoghue
et al., [2016], as was advocated by |[Liang| [2022] and [Fan et al.| [2024]. However, our numerical
experiments show that this strategy does not scale past a few hundreds pre-training samples: this is
thus a severe practical limitation which, in our opinion, heavily weakens the kernel SoS point of view.
To circumvent this major issue, we rely instead on a dual formulation of Equation (7).

Dual formulation. First note that this formulation is possible only when Ay > 0 (thus excluding
Liang|[2022]] framework) and that it consists of an optimization problem over (n + 1) variables rather
than (n + n x n) variables.

Proposition 2 (Dual formulation) Let (a,b,s, A1) € R%, Xy > 0and A := R';"". Equation
admits a dual formulation of the form
sup r(T,0) " Diag(Ta)r(T,0) + 0(y(T,0) " K™~(T,0) — s) — Q*(VDiag(T_,)V") (8)
(r,0)eA
where (T, 0) = Y —K™~(T',6), 4(T',0) = C (I',0) " Diag(T',)Y, C (T, ) = Diag (T';) K™ +
01, Q*(B) = &H[B — ML), |3 and Vo € R, Diag (T,) := Diag (T) 4+ £L,. Moreover, if
(f‘, 5) is solution of Equation , a solution of Equation () can be retrieved as

N N 1 N N 1 N
5= (Diag(I‘a)Km + GIn) Diag(Ta)Y and A= [VDiag(r_b)VT - ML

2

where [A] | denotes the positive part of AEI

A detailed proof is given in Appendix A.2 as well as the dual analytical gradient. Interestingly, this
dual formulation can be efficiently optimized using accelerated gradient-ascent algorithms [Ruder,
2017, Xi1e et al., 2024Db]], see FigureE] for an illustration of the numerical speed-up.

Final prediction bands. Solving the dual formulation yields estimates m(X)

= ‘)\/Tkgg and
fa(X) = ®(X)TA®(X), from which we derive the estimated score function S(X,Y

)= -
m(X)|/4/ Ia (X). Following standard split CP, our prediction interval is given by

On(Xni1) = [WXNH)—aa\/fMXNH),m(XNHHaa fA<XN+1>} ©)

where ¢, is the adjusted quantile of the estimated score function on the calibration set. By design (see
Appendix A.3), they satisfy the same marginal coverage guarantee as split CP, as formalized below.

Proposition 3 If the samples (X1,Y1),...,(Xn,Yn), (XN+1, YN41) are exchangeable, then the
prediction interval (9) satisfies the marginal coverage ().

Extensions. Similarly to Liang|[2022], if a point estimate m(-) is available beforehand from any
machine learning model trained on a separate dataset, our dual formulation can be easily modified.
More importantly, it is also straightforward to consider non-symmetric intervals by estimating two

functions fa (+) and Faw (+), at the cost of increasing the dual problem dimension to (2n + 1), see
Appendix B.5. We also strongly believe that incorporating constraints of the form pq(-) < pa(+)
as proposed by |Xie et al.| [2024a] is possible with kernel SoS, by taking inspiration from |Aubin{
Frankowski and Rudi|[2024]]. Kernel SoS is also complementary to [Hore and Barber| [2024]], as our
learned score can be post-processed with their approach. Finally, since we aim for 100% coverage,
our framework may lack robustness with respect to outliers: however, we can take advantage of our
preliminary estimate mgp(-) (see next section) to filter out samples with large residuals.

?For a PSD matrix A with eigendecomposition A = UDU', its positive part is defined as [A] L=
Umax(0,D)UT.



3.2 Hyperparameter tuning

First, the hyperparameters ™ and s related to the regression function m(-) are fixed with a preliminary
estimate mgp(-) obtained from Gaussian Process (GP) regression with kernel £™: 6™ is optimized
by maximum likelihood and s = ||mgp||%,. Second, our numerical experiments in Appendix B.2
show that A5 has a very small impact on the shape of the intervals, as long as Ay > 0. Not only
does it make the initial problem strongly convex and makes the dual formulation possible, but it also
facilitates numerical optimization. In the following, we thus fix it at Ay = 1.

Hyperparameters a, b, A\; and 6/ necessitate more attention. We observe numerically that a has
very little influence on mean squared-errors when the noise is symmetric (see Appendix B.2). This
phenomenon was commented in [Fan et al.| [2024]], where they argue that the coverage constraints
have the additional effect to reduce mean squared-errors, but here we insist that this is true only for
symmetric noise. Our experiments confirm this intuition, we simply set a = 0 for the symmetric case.
Furthermore, they also show that b and A; have highly different influence. This may seem surprising,
given how they interact in the dual formulation through the last term in (8). A potential explanation
is that b controls a data-driven term, unlike A1, and the latter does not have a strong impact on the
optimal solution provided it is positive. As a result, we choose to set A\; = 1. On the contrary, b has
the expected behavior, in the sense that higher values yield narrower intervals, at the cost of increasing
the nuclear norm, that is the function complexity. But the last hyperparameter #/ also controls
such complexity: we thus expect a compensation between these two hyperparameters through an
interaction. Numerical experiments in Section [ actually confirm this phenomenon and show that as
long as b is sufficiently large (e.g. 10 or 100, we recommend to test these two values), it is possible to
tune only 67 to reach the same level of adaptivity. #/ thus requires specific consideration, since it has
the largest impact when b is fixed. This is the one we focus on below.

Goal-oriented criterion. Adaptivity is tightly related to local coverage P(Yn11 € C(Xn41) |
XnN41 = x) > 1 — «, which is impossible to achieve exactly in a distribution-free setting [[Vovk,
2012, Barber et al.,|2021]]. We focus ourselves on a weaker version, where we condition on X being
in a small neighborhood wx € Fx from the event space Fx such thatforallz € X, P(x € wy) > 0:
P(Yni1 € C(Xn+1)|XN+1 € wx) > 1 — a. Recently, |[Deutschmann et al.|[2024] showed that
such coverage with split CP can be controlled with the mutual information (MI) between the inputs
and the score function, namely

P(Y € Cp, (X)|Dy, X €wx)>1—a— %\/1 —exp(—MI(X, Sp, (X,Y))).  (10)

Note that contrary to Deutschmann et al.[[2024], we explicitly write the coverage conditionally on
the training set D . Inherently this bound is uninformative for low-probability sets, but interestingly
we can counterbalance this effect by choosing a score function which is as independent as possible of
the inputs in order to get MI(X, S(X,Y")) close to 0, seeDeutschmann et al.|[2024]]. However, this
implies computing MI for a random vector in dimension d: from a practical perspective, MI suffers
from the curse of dimensionality and rapidly becomes numerically unstable. Instead, for a re-scaled
score function, we show that a similar bound holds with MI between one-dimensional variables,
which is more robust. Furthermore, using recent inequalities between the total variation distance and
the maximum mean discrepancy [Wang and Tay, [2023]], we also extend our result to replace MI with
HSIC [Gretton et al.,[2005]], for which we observe in practice much improved numerical stability.

Proposition 4 Let Cp ~ be the prediction intervals built from a score function S(X,Y) = |Y —
m(X)|/+/f(X) through split CP with Dy = D, U D,. Then for any wx in Fx such that
P(X € wx) > 6, denoting pp,, = P(Yny1 € Coy (XN+1)|DN, XN11 € wx ) we have:

1 =
poy > 1 -0~ 21— a1 exp(Mi(r, (X1, Yasr), Fo, (Xov:1))) an

where ay does not depend on f(-) and rp, (X, Y) = |Y — mp, (X)| In addition, we have

aq

1
ppy > 1l—a——,[/1— —
g 1 — aHSIC(rp, (XN+1, YN41), fD, (XN11))

where oy only depends on the kernel used for HSIC, which must be characteristic.

(12)



To target local coverage, we can then maximize HSIC(r(X,Y"), f(X)): in our kernel SoS procedure,
this means that #/ can be tuned efficiently according to this criterion. For HSIC estimation, we need
samples Xy independent of D,, and thus rely on a cross-validation procedure. Finally, to handle
cases where the noise is homoscedastic, we implement as a last step a HSIC test of independence: if
the p-value is large, we set @/ to an arbitrary large value. See Appendix A.3 for the proof and B.3 for
implementation details.

Remark 2 We believe that Propositiond|is also of interest beyond kernel SoS, in the sense that it
provides a principled way to tune hyperparameters in all score functions, such as in|Hore and Barber|
[2024|] or \Braun et al.|[2025] for example. However, its true potential would lie in generalizing
Equation (12)) to other score functions, which is left as future work. It could also be directly used as a
loss function in|Xie et al.| [20244d]], instead of estimating local coverage.

4 Experiments

4.1 Small data experiments

For all experiments, we consider a Matérn 5/2 kernel for k™ and k7. Our proposed kernel SoS
algorithm is first compared in the small data regime to standard competitors for split CP: CQR (with
random forests, following experiments from Romano et al.| [2019], Hore and Barber| [2024]]) and
rescaled scores. For the latter, we only consider two variants of GP for fair comparison, since we also
place ourselves in the RKHS setting. We focus on a homoscedastic and heteroscedastic [Binois et al.}
2018|] GP model, and consider here Y = m(X) + o(X)e with:

‘ m(X), Z=10X +1 ‘ o(X) | X | e
Case | | sin(2%2 4+ 0.2422) 1 x<g6 + (5 — Dlxso6 | VO.1+2X2 | U[-1,1] | N(0,1)
Case 2 X/2 | sin(X)| N(0,1) | N(0,1)

We begin by illustrating the interaction between b and 67 in Figure 1| left. For all values of b, we
observe a consistent HSIC behaviour: it first increases with 7, thus improving adaptivity, until it
reaches a peak and then decreases. Interestingly, we also note that the higher b, the higher the optimal
67: this clearly shows that both hyperparameters have opposite effects on adaptivity. Furthermore,
we see that for b > 10 we reach a plateau for the optimal HSIC. In practice it is thus sufficient to only
optimize A/ as soon as b is fixed at a large enough value. Figure also shows that a small value for
67 leads to overly adaptive bands, while the HSIC-optimized 67 produces smooth and adaptive ones.
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b=1
— b=10
— b=100
— b= 1000
—— b= 10000

9 HSIC=51x10"" L 9 HSIC=13x107"

0.0012
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0.0004

1
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Figure 1: Test case 2 with n = 100. Left: HSIC criterion between r(X,Y") and f(X) as a function
of b and 67 (confidence intervals obtained by bootstrap and optimal values of #/ in dashed lines).
Middle / Right: optimal prediction bands with too small and optimized lengthscale, respectively.

In the following we now fix b = 10 and compare kernel SoS with HSIC-optimized 6/ to CQR and
rescaled GPs on test case 1 with 20 replications. In Figure[2] we investigate several metrics related to
adaptivity: mean width, MI and local coverage, see also Appendix B.5 for complementary discussion.
We note that CQR and standard GP yield larger intervals and local coverage with great variability
around the target. Heteroscedastic GP produces intervals similar to ours, but with higher mean width.
In contrast, kernel SoS gives prediction intervals with both small width and satisfying local coverage
properties. Additional experiments confirming this behavior are to be found in Appendix B.5.
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Figure 2: Test case 1 with n = 100. Adaptivity metrics and density of local coverage.

4.2 Real-world and large scale experiments

Finally, we demonstrate that our dual formulation for solving the kernel SoS problem can scale to
several hundreds or thousands of training points, unlike previous work that relies on SDP solvers.
Figure [3]left, shows that a SDP solver can only handle up to n = 200 training samples, while our
dual solver scales easily to n = 1000 (see Appendix B.4). When we optimize 7 with HSIC, we
retrieve the optimal solution in Figure [3]right.

Dual solver Bands Prediction
40 Primalsolver (SCS) 4 o . —— Mean prediction

—— Oracle T /

Test Data
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10 .
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0 200 400 600 800 1000 —1.0 —0.5 0.0 0.5 1.0
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Figure 3: Test case 1. Left: time for SDP and dual formulation as a function of n (a = b = 0, 6/ =
0.3, max iter = 10%). Right: optimal solution of dual formulation for n = 2000.

At last, we consider six real-world datasets commonly used for regression, which are detailed in
Appendix B.5. Table|[I|reports the mean width of prediction intervals on a test set for all methods.
We consider two variants of kSoS: one where 67 is chosen to minimize the mean width, and the other
where we optimize it with HSIC. Note that for Bio, which exhibits strong asymmetric noise, we use
our asymmetric kSoS variant and do not use the HSIC criterion to tune 67, since at the moment it
only applies to symmetric intervals. Such asymmetric noise heavily favors CQR, which outperforms
all methods on this example. For all other cases except for Concrete which we comment below,
kernel SoS targeting mean width achieves better adaptivity when measured by mean width. No
other competitor, although they generally have strong performance, achieves this robustness. For
completeness, we also provide the marginal coverage for all datasets and methods in Appendix B.5.

Dataset CQR Het GP Hom GP kSoS kSoS
Best mean width Opt. HSIC

Concrete | 0.586 +£0.032  0.508 £0.052  0.543 £ 0.044 0.556 + 0.044 0.568 & 0.06

Bike 1.114 £0.062  1.000 £0.079  0.809 £0.024 0.803 £0.031  0.803 £+ 0032
Bio 1.879 £0.046  2.21 £0.100 2.194 £0.119 2.03 £0.07 -
Diabetes | 188.62+9.33 191.24+£11.95 190.58£11.19 185.83 £14.47 187.6+16.18
MPG 9.89 £ 0.82 9.70 £ 1.06 9.71+0.73 9.15+£0.8 9.36 = 0.82

Housing | 1.816 +0.045 1.585+0.099 1.453 +0.068 1.468 +£0.094 1.586 4+ 0.104
Table 1: Mean width of prediction intervals for six real-world datasets (mean+sd on 10 repetitions).




At first sight, the kSoS variant based on HSIC produces larger bands and appears to be less adaptive
if only mean width is considered. However, a more meaningful criterion to evaluate adaptivity is
local coverage. Since it is unfortunately out of reach for real datasets, we rely instead on the worst-set
coverage min;—1 1 P(Yy11 € Cpy (Xn+1)|Xn+1 € Ry) where {R;}1=1,.. 1 is a partition of
the input space, see Thurin et al.|[2025]]. We observe in Figure [f] that kSoS with HSIC stays closer to
the target o = 0.9 than all other methods. For Concrete, heteroscedastic GP has the smaller mean
width, but at the cost of producing intervals with lower worst-set coverage. Similarly, on Housing
both homoscedastic GP and kSoS focusing on mean width exhibit the lowest mean width, but are
further from the target. This illustrates once again that our HSIC criterion focuses on local adaptivity.

kSoS Best mean width s i _.-;—
kSoS Opt. HSIC| | _-;—
Heteroscedastic GP{ ——— o ——
Homoscedastic GP | —— :
CQR with RF{ i
0.800  0.825  0.850  0.875  0.900 0.800  0.825  0.850  0.875  0.900

Housing Concrete

Figure 4: Housing (left, with b = 100) and Concrete (right, with b = 10) datasets. Mean and standard
deviation of worst-set coverage on 10 regions with 100 test points each, 10 repetitions.

5 Limitations

Although our experiments show that kernel SoS is a competitor worth trying to build adaptive bands
in a moderate sample size regime, we can still identify limitations that would necessitate extensions:

* Kernel SoS performs well for dimensions up to 10 or 15, a limitation shared by all kernel
methods without specific strategies. For high-dimensional objects with structure (time series,
probability distributions, molecules, strings, graphs,....), it is however straightforward to
plug specifically designed kernels in our framework. On the other hand, for high-dimensional
tabular data, a common strategy is to rely on additive kernels, which are left as future work.

» Kernel SoS can scale up to 2000 samples thanks to the dual formulation, but handling much
more samples than that would be highly time consuming. This is inherently a limitation that
comes from kernels rather than from the dual formulation. Indeed, each objective function
and gradient computation involves the usual kernel regression formulas, which scale as
O(n?3). A usual workaround is to use Nystrom-type approximations or Random Fourier
Features, which could be easily integrated in our problem.

¢ Due to the 100% coverage constraint, kernel SoS is less robust to outliers than CQR. In such
cases, a pre-processing step using another model (e.g. the initial GP model we use in our
procedure or an heteroscedastic GP model) is recommended.

6 Conclusion

We introduce a generalized kernel sum-of-squares framework for building scalable and adaptive
prediction bands for conformal prediction. Scalability is achieved through a new representer theorem
together with a dual formulation which can be solved efficiently with accelerated gradient algorithms.
Unlike previous work, this makes the kernel SoS paradigm for CP able to scale up to thousands of
training points, as we illustrate in our experiments. On the other hand, adaptivity and local coverage
are targeted by optimizing hyperparameters with a new HSIC-based criterion, which is numerically
robust and has excellent practical performance. Since such a criterion appears promising, as a
perspective, we plan to investigate its extension to more general score functions.
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Answer: [Yes]
Justification: The accompanying code can be used to reproduce all our results.
Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https !
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized

versions (if applicable).

Providing as much information as possible in supplemental material (appended to the

paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We provide in the Appendix an entire section dedicated to all the experimental
setting.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

 The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: When applicable, we always add error bars or boxplots on our experiments.
We also describe the factors of variability.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).
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8.

10.

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

* It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: We detail in the Appendix the computer resources we used for all our experi-
ments.

Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]

Justification: Our work has no potential harmful consequence, and as far as data are
concerned, we only used synthetic and publicly available datasets.

Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: NA.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.
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» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We only use synthetic datasets.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: We do not rely on existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.
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* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: NA.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: NA.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]

Justification: NA.

Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: NA.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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