
Look Before You Leap: A GUI-Critic-R1 Model for
Pre-Operative Error Diagnosis in GUI Automation

Yuyang Wanyan1,2,3†∗ , Xi Zhang3∗, Haiyang Xu3‡, Haowei Liu3, Junyang Wang3, Jiabo Ye3,
Yutong Kou1, Ming Yan3‡, Fei Huang3, Xiaoshan Yang1,2‡, Weiming Dong1,2, Changsheng Xu1,2

1MAIS, Institute of Automation, Chinese Academy of Sciences, China
2School of Artificial Intelligence, University of Chinese Academy of Sciences, China

3Alibaba Group
wanyanyuyang2021@ia.ac,cn, xiaoshan.yang@nlpr.ia.ac.cn,

{shuofeng.xhy, ym119608}@alibaba-inc.com

Abstract

In recent years, Multimodal Large Language Models (MLLMs) have been exten-
sively utilized for multimodal reasoning tasks, including Graphical User Interface
(GUI) automation. Unlike general offline multimodal tasks, GUI automation is
executed in online interactive environments, necessitating step-by-step decision-
making based on the real-time status of the environment. This task has a lower
tolerance for decision-making errors at each step, as any mistakes may cumulatively
disrupt the process and potentially lead to irreversible outcomes like deletions or
payments. To address these issues, we introduce a pre-operative critic mecha-
nism that provides effective feedback prior to the actual execution, by reasoning
about the potential outcome and correctness of actions. Specifically, we propose
a Suggestion-aware Group Relative Policy Optimization (S-GRPO) strategy to
construct our pre-operative critic model GUI-Critic-R1, incorporating a novel sug-
gestion reward to enhance the reliability of the model’s feedback. Furthermore,
we develop a reasoning-bootstrapping based data collection pipeline to create a
GUI-Critic-Train and a GUI-Critic-Test, filling existing gaps in GUI critic data.
Static experiments on the GUI-Critic-Test across both mobile and web domains
reveal that our GUI-Critic-R1 offers significant advantages in critic accuracy com-
pared to current MLLMs. Dynamic evaluation on GUI automation benchmark
further highlights the effectiveness and superiority of our model, as evidenced by
improved success rates and operational efficiency. The code is available at https:
//github.com/X-PLUG/MobileAgent/tree/main/GUI-Critic-R1.

1 Introduction

Recently, Multi-modal Large Language Models (MLLMs), leveraging their remarkable perception
and reasoning capabilities, have demonstrated outstanding capabilities in various domains [2, 41].
Among these, GUI automation, as a practical multi-modal application scenario, is emerging as a
significant technological revolution in artificial intelligence interactions [38, 16, 50, 15, 44, 26, 27].
To be specific, given an online GUI device and a natural language instruction, it requires the GUI
agent driven by MLLMs to generate a series of precise operations similar to how humans do [48, 32],
such as click, type, and scroll.

Unlike traditional offline multimodal tasks such as visual question answering [19] and optical
character recognition [14], GUI automation task operates within an online interactive environment

*Equal contribution. †Work done during internship at Tongyi Lab, Alibaba Group. ‡Corresponding Author.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/X-PLUG/MobileAgent/tree/main/GUI-Critic-R1
https://github.com/X-PLUG/MobileAgent/tree/main/GUI-Critic-R1

Task Instruction: Turn on the Bluetooth. Baseline
Pre-Critic Qwen-7B

Pre-Critic Qwen-72B
Pre-Critic GPT-4o

Swipe up

(a)
Pre-Critic GUI-Critic-R1

Click (Setting
APP)

Click (connected
devices)

Click (connection
preference) Click (Bluetooth) Click (Button) Finish

20-

15-

22.4
20.7

22.4

27.6

Su
cc

es
s R

at
e

(%
)

Success Rate on AndroidWorld

25- 23.2

30-

(d)

(b)

Click the Fourth Button

⚠ The action “click Delete” fails
to fulfill the user‘s instruction
and can cause unnecessary loss!
The correct operation should be
“Click Rename button."

Click the First button

Task Instruction: Rename the second audio to ‘my_audio’.

GUI Agent

GUI Agent

Pre-Critic

Step 5 Step 6

(c)

Swipe up to open the
app drawer.

Opening Bluetooth from the
Settings app is an optional action,
but it's not the most optimal. The
quickest way is to swipe down
the screen and turn on Bluetooth
directly from the Control Center.

Down the screen to open
the Control Center.

Task Instruction: Turn on the Bluetooth.

GUI Agent

GUI Agent

Pre-Critic

Step 1 Step 2Step 9

Figure 1: (a) shows an example of GUI automation. Case studies in (b-c) demonstrate how pre-
critic prevents erroneous and redundant actions in GUI automation. (d) illustrates the quantitative
performance comparison between pre-critic methods and baseline on AndroidWorld [27].

and has some inherent key challenges [32]. To be specific, the agents are required to generate
coherent and sequential operations step by step. In this way, an error in one step can have cumulative
effects on subsequent operations (e.g., delete a file shown in Figure 1(b)), thereby disrupting the
entire interactive process. However, constrained by limited reflection capabilities, current MLLMs
usually struggle to detect errors independently [34]. Therefore, to ensure the single-step accuracy,
it is necessary to provide MLLM-based agents with additional feedbacks that incorporates critic
analysis, such as assessments of the action correctness, potential outcomes, and action suggestions.
Nevertheless, in the dynamic environment, erroneous operations usually require additional steps to
correct (e.g., refunding after an incorrect payment), and some dangerous errors may be irreparable
(e.g., deleting files as shown in Figure 1(b)). Therefore, to prevent these issues from happening,
we believe that the critical feedback should be provided to the agent before the action is actually
executed. Additionally, completing a user instruction on a GUI device typically entails multiple
pathways. From an application perspective, the GUI agent is expected to complete instructions with
an optimal path that contains the least number of steps. In this way, the prior critical feedback may
also prevent the model from selecting a sub-optimal path with more steps as shown in Figure 1(a),
thereby enhancing the efficiency of completing instructions.

Considering the above issues, in this paper, we propose a pre-operative critic (pre-critic) mechanism
for GUI automation. Specifically, before performing an operation in online environments, the pre-
critic mechanism first evaluates whether the operation generated by the agent is beneficial to the
instruction completion, through comprehending the screenshot and analyzing potential results of
the operation. Then, it provides real-time critical feedback to the agent, including the underlying
causes of errors and corrective suggestions, to assist in refining its decision-making process. For
example, as shown in Figure 1(b), given the instruction Rename the current audio to ‘my_audio’,
the agent initially predicts the action of click (delete button) in the 5-th step. Such operation may
cause the audio file to be deleted and the task to fail. Fortunately, with the pre-critic mechanism,
we can catch the dangerous error before executing, and provide objective feedback to the agent.
Besides, Figure 1(c) illustrates a case where the pre-critic identifies a more efficient method to turn
on Bluetooth (i.e., enabling Bluetooth via the control center), thereby reducing the operation steps.
We also exhibit some statistic results in Figure 1(d), where the pre-critic helps increase the success
rate of baseline from 22.4% to 27.6% in the dynamic GUI automation [27] *. In conclusion, these
figures demonstrate that the introduction of pre-critic can effectively alleviate the aforementioned
issues of error revision and operational inefficiency in online environments.

An intuitive approach to implementing a pre-critic model is leveraging existing MLLMs. However,
closed-source models [13] incur heavy efficiency and cost issues, making them unsuitable for real-time
GUI automation. Besides, open-source models [5, 2, 41] struggle as pre-critic models due to inherent

*More detailed experimental results about efficiency can be found in Table 2

2

limitations in comprehending GUI interface and forecasting interaction outcomes [16, 36, 51]. To this
end, we propose a specialized 7B model GUI-Critic-R1 that harmonizes performance and efficiency
for GUI pre-critic. In particular, to enhance the model’s GUI reasoning and generalization capabilities,
we introduce a Suggestion-aware Group Relative Policy Optimization (S-GRPO). In S-GRPO, a
suggestion reward is innovatively designed to refine the model’s critic reasoning process and ensure
it provides reliable suggestions for fixing the error operation. Moreover, since it lacks both training
and test datasets for pre-critic in GUI automation, we develop a reasoning-bootstrapping based data
collection pipeline to construct a GUI-Critic-Train and a GUI-Critic-Test dataset. Specifically,
GUI-Critic-Train contains 6K high-quality chain-of-thought data about mobile devices for robust
training. GUI-Critic-Test includes 1k samples encompassing both mobile and web scenarios, and
aims to explicitly evaluate the pre-critic model’s diagnostic capabilities when exposed to novel
instructions or applications. In experiments, we first compare our GUI-Critic-R1 with advanced
MLLMs on the GUI-Critic-Test, and find that our model achieves satisfactory results in the critic
accuracy. Then, we also apply the GUI-Critic-R1 to a real-time GUI automation benchmark (i.e.,
AndroidWorld [27]), the improvements on the success rate further demonstrate the effectiveness of
the proposed method.

Our main contributions are summarized as follows:

1. To the best of our knowledge, we are the first to investigate a pre-operative critic mechanism
for diagnosing GUI operations. To achieve it, we propose a Suggestion-aware Group
Relative Policy Optimization strategy integrating a novel suggestion reward, and develop
our pre-critic model GUI-Critic-R1. This model is capable of delivering constructive and
insightful feedback to refine the GUI reasoning process.

2. We present a reasoning-bootstrapping based data collection pipeline to construct a GUI-
Critic-Train dataset, comprising 6k high-quality chain-of-thought annotations. Additionally,
a GUI-Critic-Test dataset is developed to comprehensively evaluate the critic model’s
performance in both mobile and web domains.

3. Extensive experiments on both GUI-Critic-Test dataset and dynamic GUI automation bench-
mark validate the efficacy of our GUI-Critic-R1 model in producing reliable judgments and
feedback for GUI operations.

2 Related Work

LLM-based GUI Agent. Recently, significant attention has been directed toward Graphical User
Interface (GUI) agents for task automation on smart devices designed for the mobile and web
environments [50, 15, 36, 49, 56, 45, 10, 52, 20, 30, 39, 40]. Despite these advancements, GUI
agents frequently make erroneous decisions. Some research has incorporated reflection modules in
GUI automation frameworks to verify operation correctness based on the both current screenshot and
the screenshot after execution [?, 16, 1]. For example, Mobile-Agent-v2 frameworks [36] employ
multi-agent architectures that separate planning, decision-making, and reflection to optimize task
tracking, memory, and error correction. But these methods require additional steps to undo actions
and pose the risk of irreversible operations, resulting in lower efficiency and accuracy. In this paper,
we introduces a pre-critic mechanism for diagnosing potential errors.

Critic Model for LLMs. Large language models (LLMs) do not always generate the best reasoning
output when performing challenging inference tasks [34]. To address this limitation, several studies
propose self-refinement[21, 31, 24] and self-reflect techniques [29, 9, 35, 47, 55, 6, 7] to reifine the
output themselves. However, their effectiveness is largely restricted by their reliance on the inherent
capabilities of LLMs, which may hinder the broader application and scalability of these methods [11].
In contrast, several studies [22, 43, 42] explore employing an independent critic model to produce
natural language feedback for the evaluation of outputs generated by Large Language Models (LLMs).
Critic-V [51] extends this inspiration to the area of VLMs to train a critic vision-language model to
locate imperfections in visual content perception and errors in reasoning steps. However, they focus
on general offline tasks. Differently, we explore the application of a critic model in more complex
scenarios of GUI automation, which presents increased challenges due to its operation in an online
environment. In this paper, we perform pre-operative critic to resolve the challenges.

Reinforcement Learning for Reasoning. Recent research has increasingly focused on enhancing
the reasoning capabilities of LLMs through Reinforcement Learning (RL), drawing inspiration from

3

Data Collection Pipeline with Reasoning Bootstrapping

Task Instruction: Search for someone ‘s post
on Twitter and send it to tom33@gmail.com
via Google Mail
Operation History: 1. Open Twitter 2. Click the
search icon 3. Click on the search box 4. Click on
Musk in Recent for a quick access
Correct Action: Click share button of first post

Data Filtering

Negative Operations Sampling

Action: Click the
“Letter” button.

Click the stop
recording button.

GUI Operations Collection

<thinking> **Observation**: The screenshot shows
the Twitter feed with a list of posts, including …
Possible Result: If the agent clicks the “Letter”
button, it will likely not achieve any meaningful
action… **Critique**: The decision to click the
“Letter” button is incorrect because it does not
align with the current state of the application…
</thinking>
<score> Incorrect </score>
<suggestion> The agent should instead select a
desired tweet and clicking the share button of it.
</suggestion>

Reasoning Bootstrapping.

There is a multimodal agent that can perform a series of actions on a smart
device (phone or PC) ... In some steps, the action decided by the mobile agent may
be wrong.Now, you are a critic model used to evaluate the agent's decision. I will
provide you with the following information: 1. User instruction. 2. History: The
action history of the agent in the previous steps. 3. Decision: The decision of the
agent for this step. 4. Image: The screenshot before executing this action.
<thinking> **Observation**: Describe the screenshot.
Possible Result: Analysis from the possible result perspective.
Critique: Criticize why the decision is correct or incorrect. </thinking>
<score> Correct or Incorrect </score>
<suggestion> If correct, provide a brief summary; if incorrect, suggest a better
decision briefly. </suggestion>

Progressive CoT Paradigm

Click the “Letter”
button is False

GUI Critiques Generation

<thinking>…</thinking>
<score>…</score>
<suggestion>…</suggestion>

<thinking>…</thinking>
<score>…</score>
<suggestion>…</suggestion>

<thinking>…</thinking>
<score>…</score>
<suggestion>…</suggestion>

<thinking>…</thinking>
<score>…</score>
<suggestion>…</suggestion>

Prompt

GUI-Critic-R1

Suggestion-Aware Group Relative Policy Optimization (S-GRPO)

RFT Cold-Start

<thinking>…</thinking>
<score>…</score>
<suggestion>…</suggestion>

<thinking>…</thinking>
<score>…</score>
<suggestion>…</suggestion>

GUI-Critic Dataset

Baseline
Model

RFT Initialized
Model

Reinforced
Fine-Tuning

Task Instruction; Operation History;
Screenshot; Action

𝑜! 𝑜" 𝑜#

𝑟! 𝑟" 𝑟#

𝐴! 𝐴" 𝐴#

Group Computation

Optimization

Query

Output

Reward

Advantage

• Suggestion Reward

• Format Reward

• Accuracy Reward

<thinking> … </thinking>
<score> … </score>
<suggestion> … </suggestion>

<suggestion> The agent should instead
select a desired tweet and clicking the
share button of it. </suggestion>

<score> Incorrect </score>

Annotation: Click share button of first post

Consistency
Measurement

<score>…</score>
<suggestion>…</suggestion>

<score>…</score>
<suggestion>…</suggestion>

<score>…</score>
<suggestion>…</suggestion>

Instruction
History

Instruction
HistoryInstruction

History

Instruction
History

Instruction
HistoryInstruction

History

Click the
“Letter”
button.
False

Select! Select!

Task Instruction; Operation History; Screenshot; Action

Figure 2: The left shows our reasoning-bootstrapping based data collection pipeline, including the GUI
operations collection and GUI critiques generation. Specifically, a progressive CoT paradigm and a reasoning-
bootstrapping strategy are employed to ensure the quality of critiques. The right illustrates the training strategy
for our GUI-Critic-R1 model. The process begins with a RFT cold-start on the GUI-Critic-Train dataset, and
followed by the implementation of our proposed S-GRPO. Besides, a novel suggestion reward is employed to
constrain the correctness of suggestions.

models such as DeepSeek-R1 [8] and Kimi-1.5 [33]. These models employ rule-based reward mecha-
nisms to enhance reasoning performance. Several studies attempt to adapt the idea of reinforcement
learning with verifiable rewards in multimodal scenarios. For instance, R1-V [53] investigates the
application of rule-based RL in geometry problems and object-counting tasks, while Visual-RFT [17]
extends this approach to open vocabulary and few-shot detection, reasoning grounding, and fine-
grained few-shot classification. Recent studies [12, 25, 23, 53, 46] further generalize the algorithm
to address more general tasks such as multimodal mathematical reasoning, decision-making, and
planning. In this paper, we extend the reinforcement learning algorithm to train a critic model that
diagnoses operations in GUI automation, and propose a S-GRPO strategy with a novel suggestion
reward to enhance the model’s reasoning capabilities.

3 Method

3.1 Problem Definition of Pre-Operative Critic

The GUI automation task can be formally characterized as a Markov Decision Process: M =
(E ,A,P, πagent). The state of the environment ϵ ∈ E consists of a user instruction, historical
interactions, and the current screenshot of the device. The action space A encompasses all available
operations (actions) including click, long press, type, scroll, home, back, and done. At each step, the
MLLM-based agent πagent observes the environment ϵ and selects an action a. Upon executing a, it
receives a novel observation ϵ′, with the probability given by the state transition function P(ϵ′|ϵ, a).
The agent iterates this process until accomplishing the desired instruction or encountering a terminal
state.

In this paper, we propose a pre-operative critic model πcritic(ϵ, a) to critique the decision-making
process of πagent, before the action is actually executed. Specifically, taking state ϵ and action a as
inputs, the model produces a correctness score l ∈ [0, 1] that reflects the rightness of a. Besides, it
generates critique c and corrective suggestion s in natural language, with the former explaining the
rationale behind the correctness judgment and the latter suggesting a better action if a is incorrect.

3.2 Data Collection Pipeline with Reasoning Bootstrapping
In this section, we detail the data collection pipeline of our proposed GUI-Critic-Train and GUI-
Critic-Test datasets. Each sample in the dataset includes the environmental state ϵ of the step, a
operation candidate a, as well as annotations for correctness score l and suggestion s. This section

4

commences by introducing the collection of operations in Section 3.2.1, followed by the presentation
of our reasoning bootstrapping method for generating critique c in Section 3.2.2.

3.2.1 GUI Operations Collection

To begin with, we collect successful automation trajectories from publicly accessible datasets,
encompassing correct step-level operations across various GUI scenarios. The action in a specific
state ϵ is considered as the operation candidate whose correctness score is positive (l = 1), and the
corresponding action description is considered as the suggestion s.

Negative Operations Sampling. Subsequently, we collect samples with negative score (l = 0)
based on the states of the above correct operations. To be specific, given these states, open-source
MLLM-based agents are first employed to predict a set of operations. Then, these operations are
evaluated according to rule-based criteria, and we retain those deemed incorrect. In this way, the
obtained negative operations are aligned as closely as possible with the real error distribution in GUI
environments, thus ensuring the quality of the dataset. The corrective suggestions for these samples
are the same as the corresponding positive samples.

Data Filtering. The data collected using the aforementioned methods may not be entirely reliable.
This is because that public datasets could contain erroneous annotations, and the rule-based criteria
are not entirely reliable, as they may also erroneously penalize some correct operations. Consequently,
further data cleaning is necessary. Specifically, we adopt GPT-4o [13] as a pre-critic model to judge
the rightness of the operations in the collected samples, and we retain the samples for which the
annotated scores are consistent with the judgment by GPT-4o. Finally, we denote the collected
samples as Dc_action = {(ϵn, an, ln, sn)}Nn=1.

3.2.2 GUI Critiques Generation

The Dc_action collected in the above section still lacks the critique c that elucidates why an action is
considered as correct or incorrect. In this section, we resort to Chain-of-Thought (CoT) technique to
enabling MLLMs to handle the challenging critique generation.

Progressive CoT Paradigm. We design a progressive CoT paradigm to helps MLLMs to
perform deliberate, structured, and analytical thinking about the GUI operations. Specifi-
cally, our paradigm contains three parts <thinking>...</thinking> <score>...</score>
<suggestion>...</suggestion>, which respectively corresponding to intermediate logical
thought t, correctness score l, and suggestion s. The reasoning t contains the content of critique c. In
particular, the logical reasoning in the <thinking> field is composed of several essential components:

1. Observation: Analyze the screenshot’s state, ignoring user instructions.
2. Possible Result: Speculate the most possible result of the action.
3. Critique: Assess correctness of the action with reasoning.

Observation enhances the model’s perceptual acuity by demanding a comprehensive understanding
of spatial and contextual elements present in GUI. Possible Result boosts foresight by prompting
the model to predict outcomes from current observations. Finally, Critique involves a critical
analysis of actions to verify their correctness.

Reasoning Bootstrapping. Following the above format, we leverage current MLLMs to generate
CoT reasoning progress. However, performing reverse annotation of CoT conditioned on ground-truth
score l and suggestion s is harmful. This is because that the MLLMs may overly depend on pre-known
annotations, potentially biasing the thought process toward these outcomes rather than reflecting
the actual critique reasoning sequence. Therefore, we propose a reasoning bootstrapping strategy
to generate high-quality thoughts without prior knowledge of the ground-truth l and s. Specifically,
merely provided with environmental states ϵ and action candidates a, it forces the model to simulate
a genuine critic reasoning process for max times as follows:

E(ϵ,a,l,s)∼Dc_action
(t̄i, l̄i, s̄i)

max
i=1 = π̄(ϵ, a), Select (t̄i, l̄i, s̄i) | (l̄i = l) ∧ (s̄i = s), (1)

where π̄ is an excellent MLLM and t̄ denotes the generated thought. We select reasoning outputs
containing the correctness score and suggestion that match with annotations to compile Dc_cot =
{(ϵm, am, lm, sm, tm)}Mm=1.

5

Finally, the GUI-Critic-Train dataset is constructed by aggregating the collected datasets, which can
be represented as Dc = Dc_action ∪ Dc_cot. For the GUI-Critic-Test dataset that does not require the
annotation of reasoning process, we construct it with the pipeline introduced in Section 3.2.1.

3.3 GUI-Critic-R1

Constructing a pre-critic model for GUI automation is not easy since it requires a thorough under-
standing of GUI knowledge, multimodal processing, and logical reasoning abilities. In this section,
to cultivate the deliberative analysis ability of the pre-critic model for complex GUI scenarios, we
propose a Suggestion-aware Group Relative Policy Optimization (S-GRPO) strategy for our GUI-
Critic-R1. Specifically, we first employ Reinforcement Fine-Tuning Initialization (RFT cold-start) to
stabilize the model’s reasoning process. Then, the S-GRPO is adopted to further enhance the model’s
ability for GUI pre-critic.

3.3.1 RFT Cold-Start

We initiate model training with Reinforced Fine-Tuning (RFT) on collected GUI-Critic dataset Dc:

Lrft = E(ϵ,a,l,s)∼Dc_action, (ϵ̂,â,l̂,ŝ,t̂)∼Dc_cot
− log(πcritic(l, s|ϵ, a))− log(πcritic(l̂, ŝ, t̂|ϵ̂, â)). (2)

The cold-start stage distills GUI knowledge from human annotations (i.e., correct operations in
Dc_action) and distill reasoning experience from existing MLMs (i.e., progressive reasoning processes
in Dc_cot), thereby equipping the model with foundational capabilities needed for generating operation
critiques and valid feedbacks.

3.3.2 Suggestion-aware Group Relative Policy Optimization

After the RFT cold-start, we enable the pre-critic model to self-improve its reasoning ability via online
reinforcement learning. Standard GRPO [8] approach samples a group of generated outputs for each
input from the policy model, where each output includes CoT thought and an answer. Subsequently,
the model is encouraged to favor better answers with a high reward value within the group. Since the
pre-critic model is required to output additional valuable critiques and suggestions of the operation,
only employing the typical reward that focus on the correctness of format and answer is not enough.
Therefore, we introduce a suggestion-aware GRPO method, incorporating a novel suggestion reward
specifically designed for GUI pre-critic.

Suggestion Reward. Given the suggestion annotation s′, the suggestion reward rs evaluates the
model’s constructive outputs as follows:

rs(o) = Isimilar(s, s
′), (3)

where o = (l, s, c) is the output of pre-critic model πcritic. Isimilar(·) calculates the similarity
between the inputs leveraging large language models, and output a binary judgment. Based on Eq. (3),
rs provides a quantitative and objective metric to assess the correctness of suggestions, thereby
facilitating more precise evaluations of πcritic efficacy. Moreover, this direct feedback enables
models to learn from their outputs iteratively, refining their progressive CoT reasoning process to
produce more accurate action critique and corrective suggestions.

Format and Accuracy Reward. Additionally, we adopt the rewards introduced in DeepSeek-R1 [8]:
format reward rf (o) and accuracy reward ra(o). The former evaluates whether the outputs follow the
structure described in Section 3.2.2. The latter evaluates whether the generated correctness score align
with ground-truth. These rewards imposes constraints solely on the format and final answer, leaving
the thought process unregulated, resulting in stimulating the model’s intrinsic ability to reason.

Optmization. The final reward function r(o) can be defined as: r(o) = λf · rf (o)+λs · rs(o)+(1−
λf − λs) · ra(o), where λf and λs adjust the importance of the format and suggestion rewards. For
each input (ϵ, a), we first sample a group of generated outputs G = {o1, o2, · · · , oG} from the frozen
policy model πθold , where each output o = (c, l, s) includes critique c, score l and the suggestion s.
Then we maximize the following objective and optimizes the critic model πcritic:

LGRPO =
1

|G|

G∑
i=1

min
(πcritic(oi | ϵ, a)

πθold(oi | ϵ, a)
Ai, clip

(πcritic(oi | ϵ, a)
πθold(oi | ϵ, a)

, 1−ε, 1+ε
)
Ai

)
− β D

(
πcritic

∥∥πref

)
,

(4)

6

where ε and β are the PPO clipping hyperparameters and the coefficient controlling the Kull-
back–Leibler (KL) penalty, respectively. D

(
πcritic ∥πref

)
= πref(oi|ϵ,a)

πcritic(oi|ϵ,a) − log
(

πref(oi|ϵ,a)
πcritic(oi|ϵ,a)

)
− 1

is the KL divergence. The relative advantage for the i-th response is computed by normalizing the
rewards across the group: Ai =

r(oi)−mean({r(o1),...,r(oG)})
std({r(o1),...,r(oG)}) .

4 Experiment

4.1 Experiment Settings

Dataset and Benchmark. (1) GUI-Critic-Train. The data in GUI-Critic-Train were sourced from
publicly available GUI operation datasets, including AITZ [54], AMEX [3], Odyssey [18], and
AITW [28]. We utilize Qwen2.5-VL-7B [2] to generate negative operations, which were simply
deemed incorrect based on rule-based criteria. GPT-4o [13] and Qwen2.5-VL-72B [2] are utilized to
generate the Chain of Thought (CoT) processes for Dc_cot outlined in Section 3.2.2. Consequently,
GUI-Critic-Train dataset comprises approximately 11k entries, with 6k annotated by high-quality
Chain-of-Thought (CoT) processes. (2) GUI-Critic-Test. To comprehensively evaluate the pre-
critic capabilities of MLLMs, we established three main benchmark settings in GUI-Critic-Test:
Mobile-Instruction Generalization (GUI-I), Mobile-Scenario Generalization (GUI-S), and Web-
Scenario Generalization (GUI-W). Specifically, GUI-I test data are sourced from the AMEX [3], with
instructions different from those in the training set. GUI-S test data are drawn from the Odyssey [18],
comprising mobile applications that differ from those seen in the training set. Besides, shifting
from mobile to web, GUI-Web contains the samples about the web automation, which are randomly
sampled from the GUICourse [4]. Each of the settings, GUI-I, GUI-S, and GUI-Web, is manually
annotated to ensure label accuracy, resulting in dataset sizes of 656, 114, and 418, respectively. We
present critic accuracy and suggestion accuracy as the metrics. The former reflects the ability to assess
the correctness of GUI operations, while the latter reflects the suggestion quality by quantifying the
similarity between the generated suggestion and the annotation, which is calculated by prompting the
Qwen2.5-VL-72B [2].

Implementation Details. We employ Qwen2.5-VL-7B [2] as the backbone. For the RFT cold-start, it
is conducted for one epoch on mobile scenarios (GUI-I and GUI-S) and two epochs on web scenarios
(GUI-W) via supervised fine-tuning (SFT). Next, we train the model on the Dc_action by S-GRPO
for 10 epochs, with a learning rate of 3e−6 and a batch size of 128. The suggestion and format
reward weights (λs, λf) are both set to 0.1, while the group size is set to 6. In accordance with the
methodology outlined in [57], the KL divergence coefficient is set to 1e−2 by default. All experiments
are conducted on eight NVIDIA A100 Tensor Core GPUs.

4.2 Comparision Results

To analyze the performance of our GUI-Critic-R1 comprehensively, we construct experiments from
both static and dynamic aspects. Firstly, we evaluate the model’s ability to determine operational
correctness and suggest the corrective operation on our static GUI-Critic-Test benchmark. Addi-
tionally, a crucial application of GUI-Critic lies in its functionality as a pre-critic model within the
dynamic GUI automation processes. To this end, we implement online evaluation experiments on
AndroidWorld [27] to validate the effectiveness of our approach.

4.2.1 Static Evaluation

Table 1 illustrates the quantitative results of our GUI-Critic-R1 and a variety of baselines on GUI-
Critic-Test benchmark. It showcases that GUI-Critic-R1 performs competitively on different scenarios
compared to closed- and open-source MLMs in both critic accuracy and suggestion accuracy. For
close source MLMs, Claude-3.5 achieves best performance on most settings. Despite the capabilities
of close source MLMs, our GUI-Critic-R1 achieves state-of-the-art (SoTA) performance on the GUI-I
test dataset. Compared to the base model, GUI-Critic-R1 achieved a significant improvement in critic
accuracy from 54.88% to 69.05%. Compared to the excellent GPT-4o, our model also achieves a
3.19% critic accuracy improvement and a 11.89% advantage in suggestion accuracy. When faced
with GUI-S, the novel application scenarios containing complex cross-application instructions from
Odyssey [18], our model demonstrated commendable generalization capabilities as well. Although

7

Table 1: Static evaluation performance comparison of closed-source and open-source MLLMs on
our GUI-Critic-Test, including three different settings: GUI-I, GUI-S, and GUI-W.

Model GUI-I GUI-S GUI-W

Critic
Accuracy

Suggestion
Accuracy

Critic
Accuracy

Suggestion
Accuracy

Critic
Accuracy

Suggestion
Accuracy

Close Source MLMs

Claude-3.5 67.26 40.71 64.27 46.11 65.55 37.64
GPT-4o 66.01 40.54 62.28 33.33 68.45 28.27
Gemini-2.0-Flash 66.76 42.98 64.91 38.59 62.85 38.78

Open Source MLMs

Deepseek-VL2-7B [41] 44.36 0.00 43.85 0.00 10.28 0.00
InternVL2.5-8B [5] 53.96 19.35 52.63 14.91 54.67 24.53
InternVL2.5-8B-MPO [5] 51.06 20.42 51.75 19.30 55.37 24.06
Qwen2.0-VL-7B [37] 52.59 21.04 54.42 19.30 53.50 38.78
Qwen2.0-VL-72B [37] 54.27 30.03 53.51 29.80 51.86 21.96
Qwen2.5-VL-7B [2] 54.88 43.14 57.02 37.72 59.11 36.21
Qwen2.5-VL-72B [2] 56.40 49.08 59.65 38.79 60.05 38.79

Ours (GUI-Critic-R1) 69.20 52.43 58.77 47.37 63.08 39.48
∆ (Ours - Qwen2.5-VL-7B) +14.32 +9.29 +1.75 +9.65 +3.97 +3.27

our model achieves a relatively insignificant improvement in critic accuracy (1.75%), it performs a
9.65% advantage in suggestion accuracy. It demonstrates that our model has a robust understanding
of operations even in a new environment. In the web scenarios, where domain differences are more
significant, our model exhibits commendable performance, indicating that it not only enhances the
ability to determine the operation correctness but also generates effective suggestions. These results
validate the superiority and robustness of our proposed S-GRPO.

4.2.2 Dynamic Evaluation
Table 2: Dynamic evaluation results on
the AndroidWorld [27] benchmark.

Model SR(↑) EAR(↑)

Baseline 22.4 -
Post-Critic

GPT-4o [13] 25.0 18.3
Pre-Critic

Qwen2.5-vl-7B [2] 20.3 21.8
Qwen2.5-vl-72B [2] 23.2 24.4
GPT-4o [13] 22.4 26.1

Ours 27.6 31.8

We further evaluate our model on the AndroidWorld [27]
benchmark, which provides a live Android emulator and
116 tasks across 20 mobile apps. Specifically, in this
platform, the GUI agent can perform operations on an em-
ulated Android phone to attain human instructions, and the
results are evaluated automatically. Our pre-critic model
can serve as an error diagnosis module in the framework
in a plug-and-play manner. For a fair comparison, we
conduct both post-operative and pre-operative critic with
existing MLLMs as the baseline. The results in Table 2
illustrate that GUI-Critic-R1 achieves the best success rate
on the benchmark, verifying the ability of error correction
and suggestion of our model. We observe that both post- and pre-critic can improve the performance
of the GUI agent, indicating that pre-critic can avoid some potential mistakes, and post-critic can
also remedy some accomplished errors. Despite the capabilities of GPT-4o, we find that it can
sometimes produce inaccurate critiques and suggestions to mislead the agent when performing as the
pre-critic, primarily due to its insufficient common-sense knowledge of the GUI. GPT-4o outperforms
the prior-critic on the post-critic because the prior-critic requires the model to predict the potential
outcomes of GUI operations, which GPT-4o lacks the common-sense reasoning ability. Furthermore,
we evaluated the efficiency of GUI task execution across different approaches. We introduced a
metric called Efficiency Advantage Rate (EAR) for fair comparison, which measures the proportion
that the ‘baseline + critic’ model achieves an efficiency advantage (fewer steps) than the baseline, for
tasks where they achieve consistent results. The results shown in Table 2 reveal that our model tends
to complete tasks in fewer steps, thereby demonstrating its efficiency. In contrast, post-critic methods
typically require a greater number of steps.

8

Table 3: Ablation study on the dataset collec-
tion pipeline.

Model GUI-I GUI-S

Critic
Accuracy

Suggestion
Accuracy

Critic
Accuracy

Suggestion
Accuracy

w/o NOS 50.46 1.22 50.30 5.26
w/o DF 67.23 49.54 54.39 42.98
w/o GCG 67.84 51.22 56.14 42.11
Ours 69.20 52.43 58.77 47.37

Table 4: Ablation study on training strategies.

RFT S-GRPO GUI-I GUI-S

rf ra rs
Critic

Accuracy
Suggestion
Accuracy

Critic
Accuracy

Suggestion
Accuracy

✓ ✗ ✗ ✗ 63.16 45.61 55.26 34.21
✗ ✓ ✓ ✗ 67.98 43.44 54.38 39.47
✗ ✓ ✓ ✓ 69.05 49.24 56.14 42.10
✓ ✓ ✓ ✗ 66.01 47.71 57.89 40.35
✓ ✓ ✓ ✓ 69.20 52.43 58.77 47.37

Group
2
3
4
5
6

lambda_r
0

66.01
67.84 69.2

66.62 67.07 67.07

47.71
50.3

52.43 52.74 53.2 53.51

40

50

60

70

80

0 0.05 0.1 0.2 0.5 0.8

A
cc

u
ra

cy
 (%

)

Critic Accuracy
Suggestion Reward Weight

Suggestion Accuracy

66.62
68.75 67.53 67.07

69.2

50.76
47.56

49.7
51.22 52.43

40

50

60

70

80

2 3 4 5 6

A
cc

u
ra

cy
 (

%
)

Group Size

Figure 3: Analysis of suggestion reward
weight λs and Group Size on the GUI-I
setting.

Task Instruction: How many attendees were present in the meeting titled 'Employee
Performance Evaluation' in the Joplin app?

Critique: The decision to go

back is incorrect because it does
not align with the goal of finding the
specific note containing information
about the meeting attendees. The user
instruction requires identifying the
number of attendees in a particular
meeting, which cannot be achieved by
going back.

Reflection: A better action

would be to search for the
note titled ‘Employee
Performance Evaluation’

Step 1

Step 2

Step 3 Step 4

Scroll up

Click “Joplin”

Step 5

Step 6

Type ‘Employee
Performance Evaluation’

Click search bar

Click the suggestion

25 attendees

Step 7

Thought: The target
file is invisible, so we
need to revert back
Decision: Back

Figure 4: A case of pre-critic on GUI automation.

4.3 Ablation Study

Analysis of Dataset Collection Pipeline. We first conduct ablation studies for the proposed
data collection pipeline to verify the contributions of three key components on GUI-I and GUI-S
settings. Corresponding to Table 3, we first substitute Negative Operations Sampling (NOS) with a
strategy of random decision replacements to acquire negative samples. It underscores that negative
samples sampled by random substitution are too naive to undermine the model’s capability to detect
errors and suggest corrections. Secondly, we substitute the data filtering (DF) phase with a random
sample selection approach. Without DF, the quality of training samples may be compromised,
potentially degrading the effectiveness of the training process. Finally, we omit the GUI Critique
Generation (GCG) process by utilizing only Dc_action in the RFT cold-start stage. The absence of
GCG leads to a 1.36% decline in critic accuracy on GUI-I, highlighting its crucial contribution to the
model’s generalization and cognitive capabilities. These findings collectively emphasize the pivotal
importance of our data collection process, establishing it as an integrated mechanism for boosting
model training and operational efficiency.

Analysis of Training Strategy. In order to analyze the impact of training strategies on model
performance, we conduct ablation experiments focusing on the RFT cold-start and reward components
in the GRPO stage. As depicted in Table 4, the results in the first and third lines indicate that the
utilization of RFT cold-start provided a robust initial boost to the model’s decision-making capabilities,
and S-GRPO further increases the ability. Towards the second line, we observe that employing GRPO
alone was insufficient to activate the model’s GUI-Critic abilities, as the model does not yet possess the
basic GUI critic ability, making it difficult to produce high-quality outputs when sampling randomly.
In the fourth line, we ablate the suggestion reward, which led to an obvious decrease in suggestion
accuracy, indicating this reward is necessary for the model to suggest correct GUI operations. These
observations underscore the crucial significance of the RFT cold-start and the proposed suggestion
reward in S-GRPO, incrementally enhancing the capability of our GUI-Critic-R1.

Analysis of parameters. Figure 3 illustrates the impact of different suggestion reward weight λs

or the group size in the R-GRPO phase. Note that when varying λs, the weights for ra and rf are
maintained at a ratio of 4:1, ensuring that the total sum of weights remains equal to 1. By adjusting
λs, we observe that excessively low values inadequately constrain the suggestion, while excessively
high values may compromise accuracy. Consequently, a value of 0.1 was selected as an optimal
parameter. Additionally, the size of the group plays a crucial role in balancing performance with
resource utilization. Therefore, a compromise was made by selecting a group size of 6.

9

Swipe up Click ‘Camera’
APP

Click ‘MODE
LIST’ Change Mode Click ‘Start’ Click ‘Stop’ Click ‘Start’

<thinking>
Observation: The screenshot shows a camera app interface with a visible Video button at the bottom center, which is
typically used for recording videos. The screen displays a room scene, indicating the camera is ready to capture.
Possible Result: Clicking the video button will likely start recording a video, as this is the standard function of such a
button in camera apps.
Critique: The decision to click the Video button at (540, 2211) is incorrect. Since the instruction necessitates taking a
video, and one has already been produced, starting another recording is unnecessary.
</thinking>
<score> Incorrect </score >
<suggestion>
The appropriate decision is to terminate the task.
</suggestion >

Task Instruction: Take one video.
Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

Finish

Click ‘Start’

Finish

Step 7

Figure 5: An instance of GUI-Critic-R1 avoiding a redundant action within GUI automation through
a pre-operative critique approach.

4.4 Case Study

Figure 4 illustrates an example drawn from the AndroidWorld benchmark [27], demonstrating how
our model guides the GUI agent to achieve a correct and effective trajectory. Specifically, the agent is
tasked with finding a file in the Joplin app but encounters an interface without the target file visible,
prompting it to mistakenly consider rolling back. Our model suggests clicking the search box to
locate the target file, thereby assisting the agent in successfully completing the task.

In Figure 5, we depict another example of pre-operative critic for GUI automation. The agent
successfully navigates steps 1 through 6, initiating the camera app and completing a video recording.
Nonetheless, at step 7, the agent erroneously decides to press the record button again. This action
is incorrect, as the instruction clearly stipulates recording only one video. Given that the agent has
fulfilled this requirement, the task should be stopped rather than continuing the recording. Our model
precisely delineates the state of the current interface and, based on historical operation, identifies the
agent’s decision as redundant. Consequently, our model advises the agent to terminate the task at this
step.

5 Conclusion
In this paper, we introduce a pre-operative critic mechanism aimed at performing error diagnosis
in GUI Automation, prior to executing actions within interactive environments. To develop our
pre-critic model GUI-Critic-R1, we propose a Suggestion-aware Gradient Policy Optimization
(S-GRPO) strategy with a novel suggestion reward. It is designed to ensure effective corrective
discrimination for operations and provides reliable feedback for improvement. Futhermore, We
develop a reasoning-bootstrapping based data collection pipeline to construct a GUI-Critic-Train and
GUI-Critic-Test dataset, addressing existing gaps in GUI critic data. Through extensive static and
dynamic experiments, we demonstrate the the efficacy of our approach across diverse GUI scenarios,
highlighting its potential to significantly enhance the success rate of automated tasks.

10

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grants 62322212,
U23A20387), the Beijing Natural Science Foundation (No. L221013), and the CAS Project for
Young Scientists in Basic Research (YSBR-116).

References

[1] Saaket Agashe, Kyle Wong, Vincent Tu, Jiachen Yang, Ang Li, and Xin Eric Wang. Agent
s2: A compositional generalist-specialist framework for computer use agents. arXiv preprint
arXiv:2504.00906, 2025.

[2] Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025.

[3] Yuxiang Chai, Siyuan Huang, Yazhe Niu, Han Xiao, Liang Liu, Dingyu Zhang, Peng Gao,
Shuai Ren, and Hongsheng Li. Amex: Android multi-annotation expo dataset for mobile gui
agents. arXiv preprint arXiv:2407.17490, 2024.

[4] Wentong Chen, Junbo Cui, Jinyi Hu, Yujia Qin, Junjie Fang, Yue Zhao, Chongyi Wang, Jun
Liu, Guirong Chen, Yupeng Huo, et al. Guicourse: From general vision language models to
versatile gui agents. arXiv preprint arXiv:2406.11317, 2024.

[5] Zhe Chen, Weiyun Wang, Yue Cao, Yangzhou Liu, Zhangwei Gao, Erfei Cui, Jinguo Zhu, Shen-
glong Ye, Hao Tian, Zhaoyang Liu, et al. Expanding performance boundaries of open-source
multimodal models with model, data, and test-time scaling. arXiv preprint arXiv:2412.05271,
2024.

[6] Zi-Yi Dou, Cheng-Fu Yang, Xueqing Wu, Kai-Wei Chang, and Nanyun Peng. Re-rest:
Reflection-reinforced self-training for language agents. arXiv preprint arXiv:2406.01495,
2024.

[7] Dayuan Fu, Keqing He, Yejie Wang, Wentao Hong, Zhuoma Gongque, Weihao Zeng, Wei Wang,
Jingang Wang, Xunliang Cai, and Weiran Xu. Agentrefine: Enhancing agent generalization
through refinement tuning. arXiv preprint arXiv:2501.01702, 2025.

[8] Daya Guo, Dejian Yang, Haowei Zhang, Junxiao Song, Ruoyu Zhang, Runxin Xu, Qihao Zhu,
Shirong Ma, Peiyi Wang, Xiao Bi, et al. Deepseek-r1: Incentivizing reasoning capability in
llms via reinforcement learning. arXiv preprint arXiv:2501.12948, 2025.

[9] Priyanshu Gupta, Shashank Kirtania, Ananya Singha, Sumit Gulwani, Arjun Radhakrishna,
Sherry Shi, and Gustavo Soares. Metareflection: Learning instructions for language agents
using past reflections. arXiv preprint arXiv:2405.13009, 2024.

[10] Wenyi Hong, Weihan Wang, Qingsong Lv, Jiazheng Xu, Wenmeng Yu, Junhui Ji, Yan Wang,
Zihan Wang, Yuxiao Dong, Ming Ding, et al. Cogagent: A visual language model for gui agents.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition,
pages 14281–14290, 2024.

[11] Jie Huang, Xinyun Chen, Swaroop Mishra, Huaixiu Steven Zheng, Adams Wei Yu, Xinying
Song, and Denny Zhou. Large language models cannot self-correct reasoning yet. arXiv preprint
arXiv:2310.01798, 2023.

[12] Wenxuan Huang, Bohan Jia, Zijie Zhai, Shaosheng Cao, Zheyu Ye, Fei Zhao, Yao Hu, and
Shaohui Lin. Vision-r1: Incentivizing reasoning capability in multimodal large language models.
arXiv preprint arXiv:2503.06749, 2025.

[13] Aaron Hurst, Adam Lerer, Adam P Goucher, Adam Perelman, Aditya Ramesh, Aidan Clark,
AJ Ostrow, Akila Welihinda, Alan Hayes, Alec Radford, et al. Gpt-4o system card. arXiv
preprint arXiv:2410.21276, 2024.

[14] Noman Islam, Zeeshan Islam, and Nazia Noor. A survey on optical character recognition system.
arXiv preprint arXiv:1710.05703, 2017.

[15] Yanda Li, Chi Zhang, Wanqi Yang, Bin Fu, Pei Cheng, Xin Chen, Ling Chen, and Yunchao Wei.
Appagent v2: Advanced agent for flexible mobile interactions. arXiv preprint arXiv:2408.11824,
2024.

11

[16] Haowei Liu, Xi Zhang, Haiyang Xu, Yuyang Wanyan, Junyang Wang, Ming Yan, Ji Zhang,
Chunfeng Yuan, Changsheng Xu, Weiming Hu, et al. Pc-agent: A hierarchical multi-agent
collaboration framework for complex task automation on pc. arXiv preprint arXiv:2502.14282,
2025.

[17] Ziyu Liu, Zeyi Sun, Yuhang Zang, Xiaoyi Dong, Yuhang Cao, Haodong Duan, Dahua Lin, and
Jiaqi Wang. Visual-rft: Visual reinforcement fine-tuning. arXiv preprint arXiv:2503.01785,
2025.

[18] Quanfeng Lu, Wenqi Shao, Zitao Liu, Fanqing Meng, Boxuan Li, Botong Chen, Siyuan Huang,
Kaipeng Zhang, Yu Qiao, and Ping Luo. Gui odyssey: A comprehensive dataset for cross-app
gui navigation on mobile devices. arXiv preprint arXiv:2406.08451, 2024.

[19] Jie Ma, Pinghui Wang, Dechen Kong, Zewei Wang, Jun Liu, Hongbin Pei, and Junzhou Zhao.
Robust visual question answering: Datasets, methods, and future challenges. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 2024.

[20] Xinbei Ma, Zhuosheng Zhang, and Hai Zhao. Coco-agent: A comprehensive cognitive mllm
agent for smartphone gui automation. arXiv preprint arXiv:2402.11941, 2024.

[21] Aman Madaan, Niket Tandon, Prakhar Gupta, Skyler Hallinan, Luyu Gao, Sarah Wiegreffe, Uri
Alon, Nouha Dziri, Shrimai Prabhumoye, Yiming Yang, et al. Self-refine: Iterative refinement
with self-feedback. Advances in Neural Information Processing Systems, 36:46534–46594,
2023.

[22] Nat McAleese, Rai Michael Pokorny, Juan Felipe Ceron Uribe, Evgenia Nitishinskaya, Maja
Trebacz, and Jan Leike. Llm critics help catch llm bugs. arXiv preprint arXiv:2407.00215,
2024.

[23] Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Botian
Shi, Wenhai Wang, Junjun He, Kaipeng Zhang, et al. Mm-eureka: Exploring visual aha moment
with rule-based large-scale reinforcement learning. arXiv preprint arXiv:2503.07365, 2025.

[24] Jiayi Pan, Yichi Zhang, Nicholas Tomlin, Yifei Zhou, Sergey Levine, and Alane Suhr. Au-
tonomous evaluation and refinement of digital agents. arXiv preprint arXiv:2404.06474, 2024.

[25] Yingzhe Peng, Gongrui Zhang, Miaosen Zhang, Zhiyuan You, Jie Liu, Qipeng Zhu, Kai Yang,
Xingzhong Xu, Xin Geng, and Xu Yang. Lmm-r1: Empowering 3b lmms with strong reasoning
abilities through two-stage rule-based rl. arXiv preprint arXiv:2503.07536, 2025.

[26] Yujia Qin, Yining Ye, Junjie Fang, Haoming Wang, Shihao Liang, Shizuo Tian, Junda Zhang,
Jiahao Li, Yunxin Li, Shijue Huang, et al. Ui-tars: Pioneering automated gui interaction with
native agents. arXiv preprint arXiv:2501.12326, 2025.

[27] Christopher Rawles, Sarah Clinckemaillie, Yifan Chang, Jonathan Waltz, Gabrielle Lau, Mary-
beth Fair, Alice Li, William Bishop, Wei Li, Folawiyo Campbell-Ajala, et al. Androidworld: A
dynamic benchmarking environment for autonomous agents. arXiv preprint arXiv:2405.14573,
2024.

[28] Christopher Rawles, Alice Li, Daniel Rodriguez, Oriana Riva, and Timothy Lillicrap. An-
droidinthewild: A large-scale dataset for android device control. Advances in Neural Information
Processing Systems, 36:59708–59728, 2023.

[29] Noah Shinn, Federico Cassano, Ashwin Gopinath, Karthik Narasimhan, and Shunyu Yao.
Reflexion: Language agents with verbal reinforcement learning. Advances in Neural Information
Processing Systems, 36:8634–8652, 2023.

[30] Yunpeng Song, Yiheng Bian, Yongtao Tang, Guiyu Ma, and Zhongmin Cai. Visiontasker: Mo-
bile task automation using vision based ui understanding and llm task planning. In Proceedings
of the 37th Annual ACM Symposium on User Interface Software and Technology, pages 1–17,
2024.

[31] Haotian Sun, Yuchen Zhuang, Lingkai Kong, Bo Dai, and Chao Zhang. Adaplanner: Adaptive
planning from feedback with language models. Advances in neural information processing
systems, 36:58202–58245, 2023.

[32] Fei Tang, Haolei Xu, Hang Zhang, Siqi Chen, Xingyu Wu, Yongliang Shen, Wenqi Zhang,
Guiyang Hou, Zeqi Tan, Yuchen Yan, et al. A survey on (m) llm-based gui agents. arXiv
preprint arXiv:2504.13865, 2025.

12

[33] Kimi Team, Angang Du, Bofei Gao, Bowei Xing, Changjiu Jiang, Cheng Chen, Cheng Li,
Chenjun Xiao, Chenzhuang Du, Chonghua Liao, et al. Kimi k1. 5: Scaling reinforcement
learning with llms. arXiv preprint arXiv:2501.12599, 2025.

[34] Gladys Tyen, Hassan Mansoor, Victor Cărbune, Peter Chen, and Tony Mak. Llms cannot find
reasoning errors, but can correct them given the error location. arXiv preprint arXiv:2311.08516,
2023.

[35] Haoyu Wang, Tao Li, Zhiwei Deng, Dan Roth, and Yang Li. Devil’s advocate: Anticipatory
reflection for llm agents. arXiv preprint arXiv:2405.16334, 2024.

[36] Junyang Wang, Haiyang Xu, Haitao Jia, Xi Zhang, Ming Yan, Weizhou Shen, Ji Zhang, Fei
Huang, and Jitao Sang. Mobile-agent-v2: Mobile device operation assistant with effective
navigation via multi-agent collaboration. arXiv preprint arXiv:2406.01014, 2024.

[37] Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhihao Fan, Jinze Bai, Keqin Chen, Xuejing
Liu, Jialin Wang, Wenbin Ge, et al. Qwen2-vl: Enhancing vision-language model’s perception
of the world at any resolution. arXiv preprint arXiv:2409.12191, 2024.

[38] Zhenhailong Wang, Haiyang Xu, Junyang Wang, Xi Zhang, Ming Yan, Ji Zhang, Fei Huang,
and Heng Ji. Mobile-agent-e: Self-evolving mobile assistant for complex tasks. arXiv preprint
arXiv:2501.11733, 2025.

[39] Hao Wen, Yuanchun Li, Guohong Liu, Shanhui Zhao, Tao Yu, Toby Jia-Jun Li, Shiqi Jiang,
Yunhao Liu, Yaqin Zhang, and Yunxin Liu. Autodroid: Llm-powered task automation in
android. In Proceedings of the 30th Annual International Conference on Mobile Computing
and Networking, pages 543–557, 2024.

[40] Hao Wen, Hongming Wang, Jiaxuan Liu, and Yuanchun Li. Droidbot-gpt: Gpt-powered ui
automation for android. arXiv preprint arXiv:2304.07061, 2023.

[41] Zhiyu Wu, Xiaokang Chen, Zizheng Pan, Xingchao Liu, Wen Liu, Damai Dai, Huazuo Gao,
Yiyang Ma, Chengyue Wu, Bingxuan Wang, Zhenda Xie, Yu Wu, Kai Hu, Jiawei Wang, Yaofeng
Sun, Yukun Li, Yishi Piao, Kang Guan, Aixin Liu, Xin Xie, Yuxiang You, Kai Dong, Xingkai Yu,
Haowei Zhang, Liang Zhao, Yisong Wang, and Chong Ruan. Deepseek-vl2: Mixture-of-experts
vision-language models for advanced multimodal understanding, 2024.

[42] Yufei Xiang, Yiqun Shen, Yeqin Zhang, and Nguyen Cam-Tu. Retrospex: Language agent
meets offline reinforcement learning critic. In Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pages 4650–4666, 2024.

[43] Tianyi Xiong, Xiyao Wang, Dong Guo, Qinghao Ye, Haoqi Fan, Quanquan Gu, Heng Huang,
and Chunyuan Li. Llava-critic: Learning to evaluate multimodal models. arXiv preprint
arXiv:2410.02712, 2024.

[44] Yiheng Xu, Zekun Wang, Junli Wang, Dunjie Lu, Tianbao Xie, Amrita Saha, Doyen Sahoo, Tao
Yu, and Caiming Xiong. Aguvis: Unified pure vision agents for autonomous gui interaction.
arXiv preprint arXiv:2412.04454, 2024.

[45] An Yan, Zhengyuan Yang, Wanrong Zhu, Kevin Lin, Linjie Li, Jianfeng Wang, Jianwei Yang,
Yiwu Zhong, Julian McAuley, Jianfeng Gao, et al. Gpt-4v in wonderland: Large multimodal
models for zero-shot smartphone gui navigation. arXiv preprint arXiv:2311.07562, 2023.

[46] Yi Yang, Xiaoxuan He, Hongkun Pan, Xiyan Jiang, Yan Deng, Xingtao Yang, Haoyu Lu,
Dacheng Yin, Fengyun Rao, Minfeng Zhu, et al. R1-onevision: Advancing generalized
multimodal reasoning through cross-modal formalization. arXiv preprint arXiv:2503.10615,
2025.

[47] Siyu Yuan, Zehui Chen, Zhiheng Xi, Junjie Ye, Zhengyin Du, and Jiecao Chen. Agent-r: Train-
ing language model agents to reflect via iterative self-training. arXiv preprint arXiv:2501.11425,
2025.

[48] Chaoyun Zhang, Shilin He, Jiaxu Qian, Bowen Li, Liqun Li, Si Qin, Yu Kang, Minghua Ma,
Guyue Liu, Qingwei Lin, et al. Large language model-brained gui agents: A survey. arXiv
preprint arXiv:2411.18279, 2024.

[49] Chaoyun Zhang, Liqun Li, Shilin He, Xu Zhang, Bo Qiao, Si Qin, Minghua Ma, Yu Kang,
Qingwei Lin, Saravan Rajmohan, et al. Ufo: A ui-focused agent for windows os interaction.
arXiv preprint arXiv:2402.07939, 2024.

13

[50] Chi Zhang, Zhao Yang, Jiaxuan Liu, Yucheng Han, Xin Chen, Zebiao Huang, Bin Fu, and Gang
Yu. Appagent: Multimodal agents as smartphone users. arXiv preprint arXiv:2312.13771, 2023.

[51] Di Zhang, Junxian Li, Jingdi Lei, Xunzhi Wang, Yujie Liu, Zonglin Yang, Jiatong Li, Weida
Wang, Suorong Yang, Jianbo Wu, et al. Critic-v: Vlm critics help catch vlm errors in multimodal
reasoning. arXiv preprint arXiv:2411.18203, 2024.

[52] Jiaqi Zhang, Chen Gao, Liyuan Zhang, Yong Li, and Hongzhi Yin. Smartagent: Chain-of-user-
thought for embodied personalized agent in cyber world. arXiv preprint arXiv:2412.07472,
2024.

[53] Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng
Tao. R1-vl: Learning to reason with multimodal large language models via step-wise group
relative policy optimization. arXiv preprint arXiv:2503.12937, 2025.

[54] Jiwen Zhang, Jihao Wu, Yihua Teng, Minghui Liao, Nuo Xu, Xiao Xiao, Zhongyu Wei, and
Duyu Tang. Android in the zoo: Chain-of-action-thought for gui agents. arXiv preprint
arXiv:2403.02713, 2024.

[55] Wenqi Zhang, Ke Tang, Hai Wu, Mengna Wang, Yongliang Shen, Guiyang Hou, Zeqi Tan, Peng
Li, Yueting Zhuang, and Weiming Lu. Agent-pro: Learning to evolve via policy-level reflection
and optimization. arXiv preprint arXiv:2402.17574, 2024.

[56] Jiani Zheng, Lu Wang, Fangkai Yang, Chaoyun Zhang, Lingrui Mei, Wenjie Yin, Qingwei Lin,
Dongmei Zhang, Saravan Rajmohan, and Qi Zhang. Vem: Environment-free exploration for
training gui agent with value environment model. arXiv preprint arXiv:2502.18906, 2025.

[57] Yaowei Zheng, Junting Lu, Shenzhi Wang, Zhangchi Feng, Dongdong Kuang, and Yuwen
Xiong. Easyr1: An efficient, scalable, multi-modality rl training framework. https://github.
com/hiyouga/EasyR1, 2025.

14

https://github.com/hiyouga/EasyR1
https://github.com/hiyouga/EasyR1

Appendix

A Limitations and Future Works

In this paper, we explore the pre-operative critic mechanism for GUI automation to enhance success
rates and decrease the number of operational steps. Future endeavors have the potential to extend
our method to lighter models, such as Qwen2.5-VL-3B, to achieve more efficient and improved
critic performance. Furthermore, our algorithm is based on single-step GUI visual information and
semantic operation history.

Our approach can be enhanced by integrating the trajectory-level critic in future studies, which
involves taking a sequence of screenshots as input. It has the potential to provide more comprehensive
insights.

B More Dynamic Evaluation

In this paper, we conduct the dynamic evaluation on AndroidWorld [27] and illustrate the experiment
results in the main text (Section 4.2.2). In this section, we introduce more details of the implementation
of the experiments and more experimental results.

B.1 Supplementary Implementation Detials

We adopt the M3A (Multimodal Autonomous Agent for Android) framework introduced in Android-
World [27] as the backbone. In the M3A framework, the decision agent is provided with a list of
available action types, guidelines for operating the phone, and a list of UI elements derived from
the leaf nodes of the Android accessibility tree. The agent receives the current screenshot along
with a Set-of-Mark annotated screenshot, which includes bounding boxes with numeric labels at the
top-left corner of each UI element. At this stage, the agent attempts to execute the generated action,
referencing specific marks. Prior to action execution, we insert a pre-operative critic to evaluate
whether the agent’s proposed action is conducive to achieving the instruction. If the action is deemed
correct, it proceeds to execution as normal. Conversely, if the action is considered incorrect, we
input the critic model’s analytical recommendations to the decision agent, prompting it to reassess
and formulate a new decision. After action execution, another agent is adopted to deliver a concise
summary following the execution of the action. We leverage such semantic summaries to serve as
a record of the action history. We follow the Androidworld to configure the UI element detection
procedure and the definition of the action space.

B.2 Supplementary Experiments

Table 5: Supplementary dynamic evaluation
results on the AndroidWorld [27] benchmark
with GPT-4o [13] as the baseline.

Model SR(↑) EAR(↑)

Baselines

Qwen2.5-VL-72B [2] 22.4 -
GPT-4o [13] 23.9 -

GPT4o+Post-Critic

GPT-4o [13] 26.4 31.6

GPT4o+Pre-Critic

Qwen2.5-VL-7B [2] 16.9 32.4
Qwen2.5-VL-72B [2] 25.9 36.8
GPT-4o [13] 24.0 43.1

Ours 29.4 46.2

We extend the dynamic evaluation experiment to in-
corporate GPT-4o [13] as the decision agent. As
evidenced in Table 5, employing GPT-4o [13] as the
decision-making agent yields performance benefits
over Qwen2.5-VL-72B [2], underscoring GPT-4o’s
robust perception and reasoning capabilities. The pre-
operative critic improves accuracy and exemplifies
the efficacy of the baseline in detecting erroneous
decisions and offering constructive improvement sug-
gestions. In comparison with other pre-operative
models, our GUI-Critic-R1 exhibits superior perfor-
mance outcomes. When utilizing GPT-4o as the base-
line, the advantage of the pre-critic in terms of the
Efficient Advantage Rate (EAR) becomes more pro-
nounced. GPT-4o tends to engage in excessive explo-
ration during GUI automation, often opting to attempt
further actions rather than terminating early, thereby
resulting in a greater number of steps. In contrast, the
pre-critic effectively anticipates erroneous or redundant exploration, thereby reducing unnecessary
steps and manifesting a superior EAR metric.

15

Swipe up Swipe up Click ‘Pro
Expense’ APP

Click
‘Menu’

Click ‘Statistic’
Click Item Click ‘Delete’

<thinking>
Observation: The screenshot shows the Pro Expense app's menu with options like
"Home," "Expense Logs," "Statistics," "Backup," "Feedback," "About," and "Settings."
The "Statistics" option is highlighted, indicating it might be the target for interaction.
Possible Result: Clicking on "Statistics" will likely open a new screen or page related
to statistical data about expenses, which may not directly help in identifying duplicates for
deletion.
Critique: The decision to click on "Statistics" is incorrect because it does not align
with the user's instruction to delete duplicate expenses. The user needs to access the
expense logs or similar functionality to identify duplicates before proceeding with deletion.
The current action does not contribute to the task's completion.
</thinking>
<score>Incorrect</score >
<suggestion>
A better action would be to click on "Expense Logs" to view detailed expense records.
</suggestion >

Task Instruction: Delete all but one of any expenses in pro expense that are exact
duplicates, ensuring at least one instance of each unique expense remains.

Step 1 Step 2 Step 3 Step 4 Step 5 Step 6 Step 7

Click
‘Confirm’ Finish

Step 8 Step 9

Click ‘Expense Log’

Click ‘Statistic’

Click ‘Expense Log’

Step 5

Figure 6: An instance of GUI-Critic-R1 correcting an erroneous decision within GUI automation
through a pre-operative critique approach.

B.3 Additional Case Study

Figure 6 illustrates an operational process of GUI automation with pre-operative critic by our GUI-
Critic-R1. In this example, the GUI agent initially demonstrates correct behavior by opening the
Pro Expense app and accessing the menu. However, at step 5, the agent erroneously decides to click
the “statistics" button, which is incorrect. Our GUI-Critic-R1 model successfully identifies this as
an incorrect action and analyzes the reason behind the error. The model determines that selecting
this button would navigate to a new interface displaying expense statistics, which is irrelevant to
the instruction requiring the removal of duplicate expenses. Furthermore, our model provides a
suggestion for correction: click on “Expense Logs" to view detailed expense records.

C GUI-Critic Dataset

To construct the GUI-Critic-Train and GUI-Critic-Test datasets, we extract step-level data from pub-
licly available GUI operation datasets, encompassing user instructions, current interface screenshots,
text-based operative history, and corresponding correct actions. In the following section, we provide
an overview of the datasets employed in our study.

16

0
500

1000
1500
2000

2500
3000
3500
4000

AMEX AITZ AITW Odyssey

GUI-Critic-Train w/o CoT
possitive
negative

54%
46%

GUI-Critic-Train

GUI-Critic-Train w/ CoT
GUI-Critic-Train w/o CoT

0
500

1000
1500
2000

2500
3000
3500
4000

AMEX AITZ AITW Odyssey

GUI-Critic-Train w/ CoT
possitive
negative

Figure 7: Illustration of the data composition for the GUI-Critic-Train dataset. The left displays the
proportion of data without Chain-of-Thought (CoT) annotations versus with CoT. The central part
shows the sources of data without CoT annotations, along with the ratio of correct to incorrect actions.
The right section depicts the sources of data with CoT annotations, also detailing the ratio of correct
to incorrect actions.

C.1 Public Datasets

Firstly, we review the publicly available datasets employed in our research.

Android in the Wild (AITW) [28] dataset comprises human demonstrations of device interactions,
encompassing both screen captures and actions, alongside corresponding natural language instructions.
It includes a substantial collection of 715,000 episodes covering 30,000 unique instructions, across
four versions of the Android operating system (v10–13) and eight different device models ranging
from the Pixel 2 XL to Pixel 6, each with distinct screen resolutions. The dataset involves complex
multi-step tasks necessitating nuanced semantic understanding of both language and visual context.

Android-In-The-Zoo (AITZ) [54] dataset contains 18,643 screen-action pairs together with chain-
of-action-thought annotations, spanning over 70 Android apps, coupled with 4× useful annotations
compared with action coordinate labels only. Based on the screen episodes from AITW [28], the
authors generate candidate answers for the screen descriptions, action thinkings and next action
descriptions. These candidates are further validated and refined by human to guarantee alignment
with the screenshots.

GUI Odyssey [18] is a comprehensive dataset for training and evaluating cross-app navigation agents.
GUI Odyssey comprises 7735 episodes, meticulously curated from 6 different mobile devices such as
Pixel Pro and Tablet. It encompasses 6 types of cross-app navigation tasks spanning from general
system tool use to media entertainment, requiring navigating through 201 different apps and 1399
app combos from various fields such as video, music, reading

Android Multi-annotation EXpo (AMEX) [3] is a comprehensive, large-scale dataset designed for
generalist mobile GUI-control agents. Their capabilities of completing complex tasks by directly
interacting with the graphical user interface (GUI) on mobile devices are trained and evaluated
with the proposed dataset. AMEX comprises over 104K high-resolution screenshots from 110
popular mobile applications, which are annotated at multiple levels. AMEX includes three levels of
annotations: GUI interactive element grounding, GUI screen and element functionality descriptions,
and complex natural language instructions, each averaging 13 steps with stepwise GUI-action chains.

GUICourse [4]. In this paper, the author constructed GUIAct, a GUI navigation dataset in website
and android scenarios for enhancing VLMs’ knowledge of GUI systems, including 67k single-step
and 15k multi-step action instructions.

C.2 GUI-Critic Dataset Components

In this subsection, we delineate the origins, constituent parts, and foundational principles of the
construction of our GUI-Critic-Train and GUI-Critic-Test datasets.

17

Action: {"action": "click", "coordinate": [639, 836]}

Screenshot marked with the
candidate action.

Possible Result: If the agent clicks on "Cairo" as marked, it will likely allow editing Cairo as the destination city for the second flight
segment. However, this action is redundant since the city "Cairo" is already correctly assigned as the destination for the second segment. The
focus should now shift to modifying the third flight segment to Cairo → Amsterdam with the departure date set as May 12.
This click neither promotes progress toward completing the intended user instruction nor aligns with the detailed requirements of modifying the
third segment.
Critique: This decision is incorrect. Based on the history, Cairo is already correctly set as the destination for the second segment. The agent
should now focus on correcting the third flight segment, currently set as Cairo → Rome on July 12, to reflect Cairo → Amsterdam on May 12
(per user instructions). Clicking "Cairo" in the second segment achieves no necessary action for advancing the core task.
</thinking>
<score> Incorrect </score >
<suggestion>
Change the third segment of the itinerary: Click on "ROM" and type "Amsterdam."
</suggestion>

Instruction: Open Wego. Find multi-city flights from Amsterdam to Athens on May 5, from Athens to
Cairo on May 8 and from Cairo back to Amsterdam on May 12. 1 adult. First class. Sort by price and filter
only book on Wego. The price must be under US$3000. set as May 12.

History: Step 1: Tap on the 'Wego Flights' app icon to open it. Step 2: Tap on the back arrow to return to the main flight
search screen. Step 3: Tap on the 'MULTI-CITY' option to change the search type. Step 4: Tap on the first city to change it to
Amsterdam. Step 5: Type 'Amsterdam' into the search field. Step 6: Tap on the 'Amsterdam' option to select it. Step 7: Tap on
'GVA' to change it to 'Athens.' Step 8: Type 'Athens' in the search bar to set it as the arrival city. Step 9: Tap on the first option,
'Athens,' to select it as the destination city. Step 10: Tap on the destination city of the second segment and change Madrid to
Cairo. Step 11: Swipe up to navigate to the month of May and locate May 8 on the calendar. Step 12: Tap on May 8, 2024, to
select it as the departure date from Athens to Cairo. Step 13: Tap to change the destination from Madrid to Cairo in the
second segment. Step 14: Select 'Cairo, Egypt' from the list of popular cities. Step 15: Select 'Cairo, Egypt' as the destination.

Generated CoT process:
<thinking>
Observation: The screenshot is of the "Flights Search" interface within the Wego app. The search
type is set to "MULTI-CITY." The current itinerary includes the following segments:
1. Amsterdam (AMS) to Athens (ATH), departing May 5, Sunday.
2. Athens (ATH) to Cairo (CAI), departing May 8, Wednesday.
3. Cairo (CAI) to Rome (ROM), departing July 12, Friday.
The red translucent marker is highlighting the city "Cairo" in the second segment of the itinerary. Below
are options to add passengers, change cabin class (currently set to "Business Class"), and payment types.
The history so far involves setting the multi-city search and filling in destinations (Amsterdam, Athens,
Cairo) for the first two segments. Based on the user instruction, the third flight segment should have Cairo
as the departure city and Amsterdam as the destination, with the departure date set to May 12.

Figure 8: A data sample in GUI-Critic-Train dataset.

C.2.1 GUI-Critic-Train

Figure 7 provides a visualization of the data sources utilized in our training set. For the construction of
our training dataset, we predominantly selected data from AMEX[3] due to its extensive repository of
high-quality GUI operation data. The raw data encompasses decision-making processes enriched with
reasoning, which contributes to the reliability of the annotated correct actions. Detailed methodologies
for the generation of incorrect decisions and the formulation of Chain-of-Thought (CoT) critiques are
elaborated in the main text (Section 3.2). We preserved a higher proportion of samples containing
incorrect decisions to facilitate the model’s acquisition of enhanced error correction competencies.
Figure 8 illustrates a data sample with the generated CoT process in GUI-Critic-Train dataset.

C.2.2 GUI-Critic-Test

Mobile-Instruction Generalization (GUI-I). Data in GUI-I originates from the AMEX dataset [3].
We ensure that the instructions in GUI-I are distinct from those in GUI-Critic-Train. After human
annotation, GUI-I retains 656 GUI screenshots, each accompanied by a user instruction, operational
history, and a set of candidate actions.

Mobile-Scenario Generalization (GUI-S). We collect 114 test data from the Odyssey dataset [18]
for GUI-I. We select the data with applications different from those in GUI-Critic-Train. Specifically,
the novel applications are:

1. TikTok: A popular social media application for sharing and watching short-form videos,
fostering a global community of creators and viewers.

2. Chaton: An innovative application powered by intelligent conversation models, designed to
enhance user interactions through AI-driven dialogues.

18

3. ClevCalc: A multifunctional calculator tool app that offers a wide range of mathematical
operations and unit conversions for everyday use.

4. Remix: A versatile audio editing application that allows users to mix, cut, and enhance
soundtracks with a variety of editing features.

5. Redfin Houses: A comprehensive app for real estate transactions, providing listings, pricing,
and market insights for prospective home buyers and sellers.

6. Tripadvisor: A travel review platform app where users can rate and explore travel destina-
tions, accommodations, and restaurants worldwide.

Web-Scenario Generalization (GUI-W). It contains 418 samples of web automation, which are
randomly sampled from the GUICourse [4]. Although the action space in web environments differs
from mobile platforms (e.g., limitations on swipe direction and the incorporation of double-tapping),
the underlying operational logic largely remains consistent across both scenarios.

D Agent Prompt

In Table 6, Table 7, Table 8, and Table 9, we present the prompts for pre-critic, post-critic, action sim-
ilarity evaluation, and adding critiques to the GUI agent decision process. Note that, we conduct mini-
mal modifications to the pre-critic prompt, resulting in the post-critic prompt. These modifications in-
clude the removal of predictions concerning possible results and the adjustment of requirements from
generating corrective suggestions to remedial suggestions in the <suggestion>...</suggestion>.
The action similarity evaluation prompt is leveraged in calculating the suggestion reward in S-GRPO
and the suggestion accuracy.

19

System
There is a multimodal agent that can perform a series of actions on a smart device (phone or PC) to automate
the completion of user instructions.
Possible actions include "click" / "left_click" at (x,y) position, "long press" at (x,y) position, "swipe" from
(x1,y1) to (x2,y2), "scroll" down or up, "drag" from (x1,y1) to (x2,y2), "type" (text content), "back", "home",
"enter" and so on.
User instructions are usually complex and may include several detailed requirements. In some steps, the
action decided by the mobile agent may be wrong.
Now, you are a critic model used to evaluate the agent’s decision. I will provide you with the following
information:
1. User instruction.
2. History: The action history of the agent in the previous steps.
3. Decision: The decision of the agent for this step.
4. Image: The screenshot before executing this action. If the action contains positional parameters (such as
click and swipe), the interaction area is marked with a translucent red circle or red arrow.
Firstly, you need to understand the purpose of the decision. Pay attention to analyzing the interface elements
in the screenshot (such as button position, text content, etc.). If there are red marks, focus on the action
position. You can take appropriate account of the history information.
Then, based on the given information, carefully analyze the decision given by the agent for the current step:
1. Decision Analysis
(1). Observation: Observe the screenshot and analyze the state without considering the user’s instruction.
- Focus on the operable or informative elements related to the operational decision.
(2). Possible Result: Speculate the most possible result of executing this decision.
- Predicts the screenshot change after the operation.
- Whether to promote the progress of core tasks.
(3). Critique: Determine whether the decision is correct and explain why.
- Focus on historical operations.
- Based on the previous analysis and the history, determine if this decision supports the completion of the
instruction.
- Only perform actions specified in the instructions.
- Home button is the correct choice for switching apps.
- Both clicking a suggestion and Enter are correct when searching.
2. Based on the above analysis, determine whether this decision is "Correct" or "Incorrect".
3. Reflection: If correct, retell the action; if incorrect, suggest a better action. Propose a one-step action for
the current observation, like click, swipe (with direction), type (with information), Home, Back, or Terminate
(in 20 words).

Assess the current decision’s correctness in the following format:
<thinking>
Observation: Describe the screenshot.
Possible Result: Analysis from the possible result perspective.
Critique: Criticize why the decision is correct or incorrect.
</thinking>
<score>
Correct or Incorrect
</score>
<suggestion>
If correct, provide a brief summary; if incorrect, suggest a better decision briefly.
</suggestion>
User
Below is the information for the current step:
1. User instruction: {User’s instruction}
2. History: {Operation History}
3. Decision: {Action}
4. Image is the screenshot of this step. <image>

Table 6: The prompt for the pre-operative critic.

20

System
There is a multimodal agent that can perform a series of actions on a smart device (phone or PC) to automate
the completion of user instructions.
Possible actions include "click" / "left_click" at (x,y) position, "long press" at (x,y) position, "swipe" from
(x1,y1) to (x2,y2), "scroll" down or up, "drag" from (x1,y1) to (x2,y2), "type" (text content), "back", "home",
"enter" and so on.
User instructions are usually complex and may include several detailed requirements. In some steps, the
action decided by the mobile agent may be wrong.
Now, you are a critic model used to evaluate the agent’s decision. I will provide you with the following
information:
1. User instruction.
2. History: The action history of the agent in the previous steps.
3. Decision: The decision of the agent for this step.
4. Images: The screenshots before and after executing this action.
Firstly, you need to understand the purpose of the decision. Pay attention to analyzing the interface elements
in the screenshot (such as button position, text content, etc.). If there are red marks, focus on the action
position. You can take appropriate account of the history information.
Then, based on the given information, carefully analyze the decision given by the agent for the current step:
1. Decision Analysis
(1). Observation: Observe the screenshots and analyze the state without considering the user’s instruction.
- Focus on the operable or informative elements related to the operational decision.
(2). Critique: Determine whether the decision is correct and explain why.
- Focus on historical operations.
- Ensure compliance with each specific requirement in the instructions.
- Only perform actions specified in the instructions.
- Home button is the correct choice for switching apps.
- Both clicking a suggestion and Enter are correct when searching.
2. Based on the above analysis, determine whether this decision is "Correct" or "Incorrect".
3. Reflection: If correct, retell the action; if incorrect, suggest a remedial action on the screen after executing
this action. Propose a one-step action for the current observation, like click, swipe (with direction), type
(with information), Home, Back, or Terminate (in 20 words).

Assess the current decision’s correctness in the following format:
<thinking>
Observation: Describe the screenshots.
Critique: Criticize why the decision is correct or incorrect.
</thinking>
<score>
Correct or Incorrect
</score>
<suggestion>
If correct, provide a brief summary; if incorrect, suggest a remedial decision briefly.
</suggestion>
User
Below is the information for the current step:
1. User instruction: {User’s instruction}
2. History: {Operation History}
3. Decision: {Action}
4. Images are screenshots before and after executing this action.

Table 7: The prompt for the post-operative critic.

The following two sentences describe the operation that a mobile agent needs to perform on mobile in order
to complete a certain user instruction:
1. {Annotated Suggestion}
2. {Generated Suggestion}
Determine whether these two sentences describe a similar action? If yes, answer 1, if not 0, no explanation
required.

Table 8: The prompt for evaluating the similarity between two action-descriptive sentences.

Note that your last decision may be incorrect! Please make a remedial decision based on the following
Critiques, and consider adhering to the Suggestion provided: {Critique}

Table 9: The prompt for integrating critique into the GUI decision-making process.

21

	Introduction
	Related Work
	Method
	Problem Definition of Pre-Operative Critic
	Data Collection Pipeline with Reasoning Bootstrapping
	GUI Operations Collection
	GUI Critiques Generation

	GUI-Critic-R1
	RFT Cold-Start
	Suggestion-aware Group Relative Policy Optimization

	Experiment
	Experiment Settings
	Comparision Results
	Static Evaluation
	Dynamic Evaluation

	Ablation Study
	Case Study

	Conclusion
	Limitations and Future Works
	More Dynamic Evaluation
	blackSupplementary Implementation Detials
	Supplementary Experiments
	Additional Case Study

	GUI-Critic Dataset
	Public Datasets
	GUI-Critic Dataset Components
	GUI-Critic-Train
	GUI-Critic-Test

	Agent Prompt

