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ABSTRACT

Multinomial logistic regression (MLR) is a classic model for multi-class classi-
fication that has been widely used for neural decoding. However, MLR requires
a finite set of discrete output classes, limiting its applicability to settings with
continuous-valued outputs (e.g., time, orientation, velocity, or spatial position). To
address this limitation, we propose Continuous Multinomial Logistic Regression
(CMLR), a generalization of MLR to continuous output spaces. CMLR defines a
novel exponential-family model for conditional density estimation (CDE), mapping
neural population activity to a full probability density over external covariates. It
captures the influence of each neuron’s activity on the decoded variable through
a smooth, interpretable tuning function, regularized by a Gaussian process prior.
The resulting nonparametric decoding model flexibly captures a wide variety of
conditional densities, including multimodal, asymmetric, and circular distribu-
tions. We apply CMLR to large-scale datasets from mouse and monkey primary
visual cortex, mouse hippocampus, and monkey motor cortex, and show that it
consistently outperforms a wide variety of other decoding methods, including deep
neural networks (DNNs), XGBoost, and FlexCode. It also outperforms correlation-
blind models such as Naive Bayes, highlighting the importance of correlations for
accurate neural decoding. The CMLR model provides a scalable, flexible, and
interpretable method for decoding responses from diverse brain regions.

1 INTRODUCTION

Neural decoding refers to the problem of estimating behavioral or sensory variables from neural
activity, a central challenge in neuroscience (Georgopoulos et al.| {1982} [Brown et al., [1998). Logistic
regression is a foundational model for binary classification that has been widely applied to neural
decoding problems with two alternatives [Ryali et al.| (2010); |Glaser et al.|(2020). For tasks with
multiple alternatives, multinomial logistic regression (MLR) provides a natural extension, defining
class probabilities based on the linear projection of neural activity onto weight vectors, one for
each output class (Huttunen et al., 2013} |Song et al., 2014} Greenidge et al.| 2024). However,
many neural decoding tasks involve continuous variables such as time, orientation, head direction,
position, or velocity (Paninski & Cunningham| 2018). In such settings, standard regression models
are frequently inadequate because they yield only point predictions and cannot represent multimodal,
circular, or asymmetric output distributions (Hyndman et al.l [1996). To obtain full predictive
distributions, researchers often adapt MLR-style classifiers by discretizing the continuous output into
bins (Stringer et al., 2021} (Greenidge et al., 2024). However, this discretization reduces effective
resolution, introduces quantization artifacts, and typically necessitates additional regularization to
prevent overfitting (Altman & Royston, 2006; Nojavan A. et al.,2017).

To overcome this limitation, we introduce the Continuous Multinomial Logistic Regression (CMLR)
model, which generalizes MLR to continuous output spaces. Whereas MLR defines a discrete
probability distribution over a finite set of output classes using a log-linear combination of weight
vectors, the CMLR model defines a probability density function (pdf) over a continuous output
variable using a log-linear combination of weight functions. These weight functions are conceptually
analogous to neural tuning curves, as they characterize how each neuron’s activity influences the
predicted density over the variable of interest and often resemble the underlying tuning, although they
originate from a decoding model rather than an encoding model. CMLR thus provides a framework
for conditional density estimation (CDE), a problem setting that involves mapping a feature vector to
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Figure 1: Continuous Multinomial Logistic Regression (CMLR) model schematic. Given an input
feature vector x € R, the model defines a logistic density over y using weight functions w(y) =

{wd(y)}le. The probability density at output value y given x is proportional to exp(w(y) ' x),
normalized over ). For each feature d, the weight function wq(y) has an independent Gaussian
process (GP) prior to induce smoothness.

a probability density (Hyndman et al.| [1996). For neural decoding applications, this density can be
summarized by its mean or mode to obtain point estimates of the external variable of interest.

To enforce smoothness, we place Gaussian process (GP) priors on the weight functions, an approach
closely related to Logistic Gaussian Process density estimation (Tokdar et al., [2004; Rithimaki
& Vehtari, 2014). Given a vector of neural activities, the resulting model can represent complex
conditional densities over the output variable, including multimodal, asymmetric, and circular forms
often observed in neural decoding. To make inference tractable, we develop a Fourier-domain
stochastic variational inference algorithm (Hoffman et al.,[2013), leveraging GP kernel stationarity for
diagonalization and spectral truncation (Hensman et al.,|2018)). The resulting approach handles high-
dimensional inputs, extends naturally to multivariate-output CDE via anisotropic kernels (Rasmussen
& Williams), 2006)), and handles large-scale neural datasets.

We evaluate CMLR on large-scale datasets from mouse and monkey primary visual cortex (V1)
(Stringer et al., [2021; [Graf et al., 2011), mouse hippocampus CA1 (Hazon et al., 2022} Jercog &
Schnitzer, 2022), and monkey motor cortex (Glaser et al., 2018 [2020). Across datasets, CMLR
consistently outperforms strong decoding baselines, including Extreme Gradient Boosting (XGBoost)
(Chen & Guestrin, [2016), deep neural networks (DNNs) (Orbach, [1962), and the leading non-
parametric CDE method FlexCode (Izbicki & Leel 2017), while also producing well-calibrated
posterior densities. These advantages are most pronounced in low-data regimes, where CMLR’s
GP-based functional priors and additive structure provide strong regularization and limit overfitting.
They are also evident in tasks with structured or multimodal outputs, such as circular orientation
decoding, where accurate representation of periodicity and multimodality is essential. In these
settings, access to the full conditional density allows CMLR to capture the underlying structure far
more faithfully than point-estimate models such as XGBoost and DNNs, which cannot naturally
model circular or multimodal output distributions. Furthermore, extending prior comparisons of
correlation-aware and correlation-blind decoders (Nirenberg & Latham, [2003; Graf et al., 2011}
Greenidge et al.| 2024)), we showed that CMLR (correlation-aware), by modeling shared variability,
surpasses Naive Bayes (correlation-blind) in predictive accuracy across V1, CAl, and motor cortex.
These results establish CMLR as a flexible, interpretable, and scalable framework for high-resolution
neural decoding across brain regions.

2 CONTINUOUS MULTINOMIAL LOGISTIC REGRESSION (CMLR) MODEL

The CMLR model (schematized in Fig.|1)) defines a mapping from an input vector x € R” (e.g., a
vector of spike counts) to a probability density over an output variable y € €, defined over some
compact domain 2. The model parameters consist of a set of D weight functions, one for each
element of x, where wy describes the additive influence of input feature x4 on the log-density over y.
The resulting conditional density is given by:

v B exp (w (y)T x)
= e Ty
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where w(y) = [w1(y), ..., wp(y)] " denotes the vector obtained by evaluating all weight functions
at y, and the denominator provides the normalizing constant, ensuring the density integrates to 1
(Tokdar et al., 2004} |Rithimaki & Vehtaril, [ 2014).

Note that this generalizes standard multinomial logistic regression (MLR) with K discrete classes,
where the probability of class k is given by:

exp(w x)

K
2im exp(ijX)
where wj, denotes the weight vector for class k. CMLR can thus be viewed as the continuous limit of

MLR as K — oo, replacing a set of ordered discrete class weights with smooth weight functions
defined over a continuous output space.

p(Y =k|x) =

)

To enforce smoothness in the decoding weights w(y), we place an independent Gaussian Process
(GP) prior on each weight function:

wq(y) ~ GP (0, Kq)

where K, is the covariance function governing the weight function: cov(wg(y’), wa(y”)) =
Kq4(y',y") for any pair of output values ¢, 4" € ). Here we employ the standard radial basis func-

tion (RBF) covariance (Rasmussen & Williams, 2006): K, (y',y") = paexp (—(y’ — y”)z/%?i) )
where pgy and /4 are hyperparameters controlling the marginal variance (i.e., amplitude) and length

scale (i.e., smoothness) of the weight function, respectively. For circular output spaces (e.g., orien-
tations with Q = [0, 27)), we use the periodic version of the RBF kernel defined as (Scholkopf &

Smola, 2001): K4 (v, y") = pa >0 exp <7(y' —y'+ 2wm)2/(2€§))’ ensuring continuity

m=—0o0

around the unit circle.

3 EFFICIENT LEARNING VIA STOCHASTIC VARIATIONAL INFERENCE (SVI)

N
n=1"°

w(y) = {wd(y)}fl):l and the hyperparameters 6 = {pg, Zd}dDzl governing the GP prior over each
weight function. The joint log-probability of the observations and the decoding weights is given by:

Given a dataset of N input-output pairs D = {(x,,, yn)} we aim to jointly fit the weight functions

N D
togpo (D, w(y) = S (w ) 30— Z) — 5 D (1o Kl +w] Ky Hwa)

n=1 d=1
where Z, = log ( e exp (w(y)Txn)dy> is the normalizing constant; wg; =
[wq(y1), wa(ya), ..., wa(yn)] " denotes the weight function of input feature d evaluated at the

observed outputs {y, }2_;; and K4 € RV*¥ is the corresponding GP covariance matrix over these
outputs.

This formulation is intractable due to the need to marginalize over weight functions when computing
each Z,,. To jointly infer the latent functions w(y) and hyper-parameters 6, we thus introduce an
efficient inference scheme based on Variational Inference (VI) (Beal, [2003; Jordan et al., [1999;
Hoffman et al., 2013; Blei et al., 2017). VI approximates the true intractable posterior distribution
p (w|x) with a tractable distribution g (w), by optimizing the Evidence Lower Bound (ELBO):

L(0,v) = By, [logpa ({xa )11 [w) | = Dice, (a0 (w)llpo(w)) (M

where D 1,(q||p) denotes the Kullback—Leibler divergence between the variational distribution and
the prior (Blei et al.,|2017). This ELBO serves as the objective that CMLR maximizes during training.

3.1 RIEMANN INTEGRAL APPROXIMATION OF THE NORMALIZING CONSTANT

To compute the ELBO, we approximate the intractable normalizing integral in Z,, using Riemann
integration. We partition the output range [Ymin, Ymax| into 7" uniform bins of width A = (ymax —
Ymin)/T, and let 77, denote the center of the ¢ bin. The integral is then approximated as:

Yrmax . T .
[ e (wlo) x)dym &Y exp (w3 ).
Y t=1

'min
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3.2 FOURIER-DOMAIN REPRESENTATION OF WEIGHT FUNCTIONS

To improve computational efficiency, we parameterize the decoding weights in the frequency domain,
exploiting the fact that the RBF covariance is diagonalized in a Fourier basis. This allows efficient
inference by eliminating matrix inversions and operating in a reduced-dimensional space (Hensman
et al., 2018; |Gondur et al., 2024} Keeley et al., 2020; |Aoi & Pillow, [2017). Let B ¢ RV XM and
B ¢ RT*M denote discrete orthonormal Fourier basis matrices evaluated at the sample outputs
{y» }_, and the Riemann grid points {7, }7_,, respectively. The decoding weights are then related
to their frequency-domain representations via:

wq (yn) = (Bwg),, , and  wq (7,) = (Bwq), ,
where wg = [w1,4,wa,4, -+, W M,d]T are Fourier coefficients for feature d, drawn independently as:

1
Wm,d ™~ N (Oa k’m,d) s k'rn,d = ﬁd exXp <_2f’rn2€3> form = I Ma 2)

with pg = v/2mpalq, and f,, denoting the m*" Fourier frequency. By truncating to M < T, N basis
functions, we drastically reduce the dimensionality of inference. In this formulation, inference reduces
to estimating low-dimensional Fourier coefficients {w4}2_,, which parameterize the decoding weight
functions via a fixed orthonormal basis. This reparameterization turns the original infinite-dimensional
inference problem into a tractable finite-dimensional one in the frequency domain.

3.3 STOCHASTIC VARIATIONAL OPTIMIZATION IN THE FREQUENCY DOMAIN

We assume the variational distribution over frequency-domain weights is fully factorized across
features and frequencies, withDeacjl\}component following a univariate Gaussian:

= H H q(wm,d)a q(wm,d) ~ N (Mm,daam,d2> .

d=1m=1

Under this assumption, the expected log-likelihood term in the ELBO (Eq. [I)) becomes:

E,, [logpg({x,, e 1\0;] ZZ B pa), tna — Eqg, Zlog <A2exp (; de)t%/:d))} ,

where the second expectation is approximated via Monte Carlo sampling (Robert et al.,[1999). The
KL divergence term in the ELBO (Eq. [I), due to the Gaussian assumptions, admits a closed-form:

DKL (qdl( ||p9 (w Z (Z log m d/am d + Z Gm,d2/k7'm,d + Z (Nm,d)z /km,d> .

We jointly optimize the variational parameters { (i, q, am,d}ﬁf’le and GP hyperparameters 6 =

{pd; éd}le using stochastic variational inference with mini-batches of size N/ < N, thus facilitating
the implementation to scale with N (Hoffman et al.,[2013). We used the Adam optimizer (Kingma
& Bal [2017) for training, with all scale parameters (including #) optimized in log-space to ensure
positivity. Extensive simulations (Appendix [A.T)) show that the proposed inference procedure reliably
recovers both the decoding weights and hyperparameters across diverse settings.

Computational scaling: We evaluated the computational efficiency of CMLR across a range of
settings for the number of neurons/features D, samples [V, and Fourier components M, as shown
in Appendix [A.3] F1g [S3] Training time scales linearly with the number of neurons D: for example,
convergence requires roughly 102 seconds for D ~ 200 and 10 seconds for D ~ 2000 on a
standard laptop (Intel i7 2.4 GHz CPU, 16 GB RAM). Thanks to stochastic variational inference,
training time increases only modestly with the number of samples V. In addition, both runtime and
decoding performance are largely insensitive to the number of Fourier components M, indicating that
relatively small M/ values are sufficient for accurate estimation. Overall, Fig.[S3]|shows that CMLR is
computationally efficient and robust across a broad range of dataset sizes and configurations.

3.4 EXTENSION TO MULTI-DIMENSIONAL OUTPUTS

While previous sections focused on scalar outputs, CMLR naturally extends to multi-dimensional
settings, enabling multivariate conditional density estimation. For example, suppose the output
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variable is two-dimensional, y = [y(l), y(Q)]. We model the GP prior covariance of the decoding
weight functions using an anisotropic RBF kernel (Rasmussen & Williams) [2006)), which assigns
separate length scales to each output dimension:

Ka (Yn',Yn») = paexp (—; <<yfﬁ) - yffw))Q /(fg))Q + (yfﬁ) - yff”))Q /(8512)>2>) '

This results in the following modified frequency-domain representation of the prior variance (Eq.[2):

Km.d = Pa exp (—; ((f},}’)Q (éfl”)Q + (f,(,?))2 (sz))z» form=1,---.M, (3

where pg = 27rpd£fil)€ (2), and f,% ), f,(n2 ) denote the Fourier frequencies in the two output dimensions.
Our stochastic variational inference framework generalizes naturally to this multi-dimensional setting.

We jointly estimate the variational parameters { (i, 4, U,,L7d}%’i1 along with the GP hyperparam-

D

eters 6 = { Dds E((il), E((iz)} . Fig. presents simulation results demonstrating that the proposed
d=1

inference procedure accurately recovers the true underlying parameters in the 2D stimulus setting.

4 OUTPUT PREDICTION USING THE TRAINED CMLR MODEL

Once the CMLR model is trained, the learned parameters can be used to predict outputs for test
data at any desired resolution. For a target resolution J, we uniformly partition the output range
[Ymin, Ymax] into a total of J classes, where J = ceil ((Ymax — Ymin) /). Let §; denote the center of

the 7" bin. Based on this uniform grid, we construct the corresponding decoding Fourier basis matrix
Bdec ¢ R/*M "and compute the decoding weights for features d = 1, - -, D at resolution ¢ as:

wa(g;) = (B* x pa) ;-

Given a test sample x,,, we then compute the posterior over the output grid via the softmax function:
exp (w(g;) " xn)
- ~ .
> i1 exp (W(g;7) Txn)

P(Yn =7j | X, W(y)) =

This yields the full posterior conditional distribution. We then decode the output using either the
posterior mean or the posterior mode, depending on the task objective. The posterior mean yields
smooth, high-resolution predictions:

J
Z/J\mean = Zg] 'p(yn = ij | XmW(y)) s
j=1

while the posterior mode selects the most likely output:

ymode = argjg{l?i{]} p (yn = gj | Xns W(y)) .
The mean decoder is particularly well-suited for regression-style tasks, whereas the mode decoder is
preferable for minimizing classification error. Note that we can set § to be arbitrarily small to achieve
a desired level of resolution in output space.

5 APPLICATIONS TO NEURAL DECODING

We evaluated CMLR on four real-world neural datasets spanning diverse brain regions and species:
mouse V1 (Stringer et al.l 2021, monkey V1 (Graf et al.| 201 1)), mouse hippocampal CA1 (Hazon
et al., 2022} [Jercog & Schnitzer, [2022)), and monkey motor cortex (Glaser et al., [2018;2020). For
each dataset, we performed 5-fold cross-validation. In each fold, the data were split into 80% training
and 20% test sets. For DNN and XGBoost, we further reserved 20% of the training set (i.e., 16% of
the total data) as a validation set for hyperparameter tuning via Bayesian optimization (Gardner et al.,
2014). For CMLR and the other baselines, hyperparameters were fixed per dataset. The selected
CMLR design parameters and their rationale are provided in Appendix[A.5] Final performance was
averaged over the test sets across all folds. We compared CMLR with the following four baselines.
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Naive Bayes (NB): We implemented a continuous-output variant of the Naive Bayes decoder that
shares the same Gaussian process (GP) priors over decoding weight functions wy(y) as CMLR,
using RBF kernels and Fourier-domain inference. However, unlike CMLR, NB assumes conditional
independence of neural responses across features given the output, yielding the following likelihood:

N D
p (xahizy W) = TT TT p@n.alwa(y)):

n=1d=1

We used Gaussian observation models for calcium imaging data and Poisson observation models
for spike count data, following |Greenidge et al. (2024). This formulation preserves the functional
interpretability of weights as tuning curves and supports CDE, but ignores correlations across neurons.

Flexible nonparametric conditional density estimation (FlexCode): FlexCode is a state-of-the-art
nonparametric CDE method that reformulates CDE as a series expansion problem, estimating the
basis coefficients via regression (Izbicki & Lee} 2017). We use the publicly available implementation
from [Izbicki & Lee (2017)) with Random Forest regression to estimate coefficients.

Extreme Gradient Boosting (XGBoost):XGBoost is a widely used implementation of gradient-
boosted decision trees (Chen & Guestrin, [2016). We used the implementation from |Glaser et al.
(2020), which was specifically tuned for neural decoding and used multiple adjacent time bins as input.
Similar to |Glaser et al.| (2020), we optimized hyperparameters using Bayesian optimization (Gardner|
et al., 2014) based on validation-set R?, searching over tree depth, number of trees, and learning rate.

Deep neural network (DNN): DNNs consist of multiple layers of nonlinear transformations that
map inputs to outputs (Orbach, |1962} |Goodfellow et al.,[2016)). We used the architecture and training
procedure from Glaser et al.| (2020), which was specifically designed for neural decoding. Following
this work, we tuned the number of hidden units, dropout rate, and number of epochs using Bayesian
optimization based on validation R?, and we used multiple adjacent time bins as input.

5.1 PRIMARY VISUAL CORTEX (V1): DECODING DRIFTING GRATING ORIENTATION

We first applied our method to three two-photon calcium imaging datasets recorded from mouse
primary visual cortex during drifting grating stimuli (Stringer et al.,|2021). Each dataset included
D=11311-20616 neurons (input features) and N = 4282-4469 trials, with stimulus orientations
(outputs) uniformly sampled from [0, 27). We used the same features x as in[Stringer et al.[(2021).

Fig.[2| summarizes the results. Fig. compares decoding weights from the CMLR and Naive Bayes
models for selected neurons, normalized to [0, 1] in amplitude. CMLR weights appear smoother,
consistent with the larger inferred length scales shown in Fig. 2B. We next assessed mean absolute
circular error across decoding grid resolutions, controlled by the number of decoding classes J
(Fig.2IC). CMLR consistently outperformed FlexCode and Naive Bayes, with performance gains
saturating beyond J =~ 5000. We also compared CMLR to XGBoost and DNN decoders (Fig. 2D-E).
These models are omitted from Fig. [2IC because point-estimate regressors lack a conditional density
and do not naturally admit resolution-dependent analysis. Fig. 2D shows decoded versus true
orientation, with CMLR predictions clustering tightly around the identity line, with most large
errors occurring near 180°, reflecting underlying bimodality. Fig. shows that CMLR achieves
the lowest decoding error (mean = SD: 3.1 4 9.3°, median: 2.1°, Inter-Quatile range (IQR): 2.7°),
followed by FlexCode (3.2 + 5.5°, 2.2°, 2.8°), Naive Bayes (4.9 &+ 10.8°, 3.3°, 4.4°), XGBoost
(13.64+23.4°,6.9°,11.1°), and DNN (18.3+23.6°, 11.9°, 16.5°). Moreover, the scalability analysis
in Appendix [A.6] (Fig. [S3)) shows that CMLR experiences only modest reductions in accuracy as D
and N decrease, with an even larger performance gap over XGBoost and DNN in low-data settings.

Next, we applied our method to five electrophysiological datasets from monkey primary visual
cortex, recorded under drifting grating stimuli (Graf et al.l|2011). Each dataset contained spiking
activity from D = 113-148 neurons across 72 discrete grating orientations (spaced at 5° intervals),
with a total of NV = 3600 trials. Although CMLR is designed for continuous outputs, it naturally
accommodates discrete settings without modification. Using the same inference settings as before,
we found that CMLR and FlexCode consistently outperformed all baseline models (Fig. [S6).

As a correlation-aware decoder, CMLR stands in contrast to the correlation-blind Naive Bayes model
(Greenidge et al.l 2024), reinforcing the importance of modeling noise correlations for accurate
decoding in V1. It is also noteworthy that the discrete MLR model in|Greenidge et al.|(2024) can
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Figure 2: Application of the proposed method to mouse V1 data (data from Stringer et al.| (2021)).
(A) Decoding weights inferred by the CMLR and Naive Bayes (NB) models for selected neurons,
normalized to [0, 1]. (B) Scatter plots comparing inferred length scales by the CMLR model versus
NB model for individual neurons. (C) Mean absolute circular error as a function of the number
of decoding classes J for CMLR, FlexCode, and NB. (D) Scatter plots of decoded versus true
stimulus orientations across four models: CMLR, FlexCode, NB, XGBoost, and DNN. (E) Box plots
comparing the absolute circular decoding error across all methods. Mean errors + standard deviation
are indicated as insets.

be seen as a special case of CMLR in the low-.J regime. As J increases, CMLR enables principled
evaluation of resolution-dependent performance in the high-resolution limit, rather than relying
on arbitrary discretization. This is especially relevant for continuous or circular variables, such
as orientation, where fine-grained distinctions are behaviorally meaningful. The learned decoding
functions wg(y) act like tuning curves, providing smooth and interpretable weights that link individual
neurons to specific stimuli or behavioral outputs. This makes CMLR not only a powerful decoder but
also a useful tool for probing population coding in V1.

5.2 HIirPOCAMPUS CA1l: DECODING POSITION DURING SPATIAL NAVIGATION

We next applied CMLR to eight calcium imaging datasets recorded from pyramidal neurons in the
mouse hippocampus CA1 region, while the animals navigated a 120-cm linear track to collect water
rewards (data from |[Hazon et al.|(2022); Jercog & Schnitzer| (2022)). Each dataset contained D =
151-497 neurons (input features), and we used the same preprocessed neural features x as in|Hazon
et al.[(2022); Jercog & Schnitzer (2022), downsampled by a factor of 10, yielding N = 3600-5524
samples. Position outputs were normalized to [0, 1] for ease of comparison.

Fig. 3] summarizes the results. Panel A shows that CMLR consistently outperformed FlexCode and
Naive Bayes in mean absolute error across decoding grid resolutions. This reinforces the benefit
of modeling population-level structure in hippocampal circuits. Panel B displays scatter plots of
true versus decoded positions for all models, with CMLR predictions aligning most closely with the
identity line. Panel C compares Euclidean decoding errors: CMLR achieved the lowest error (mean +
SD: 0.15 #+ 0.31, median: 0.01, IQR: 0.09), followed by FlexCode (0.16 £ 0.30, 0.01, 0.07), Naive
Bayes (0.16 & 0.31, 0.02, 0.06), XGBoost (0.16 £ 0.13, 0.11, 0.16), and DNN (0.18 4+ 0.16, 0.15,
0.19). Together, these findings demonstrate the flexibility and robustness of CMLR across continuous
decoding tasks in hippocampal circuits.
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Figure 3: Application of the proposed method to mouse hippocampal data (Hazon et al., 2022}
Jercog & Schnitzer, [2022). (A) Mean absolute error for CMLR, FlexCode, and Naive Bayes (NB)
as a function of the number of decoding classes J. (B) Scatter plots comparing true vs. decoded
spatial positions for CMLR, FlexCode, NB, XGBoost, and DNN. (C) Box plots comparing absolute
decoding errors across models (insets: mean =+ standard deviation).

5.3 MOTOR CORTEX: DECODING 2D VELOCITY IN A REACHING TASK

We then applied CMLR to a dataset recorded from the motor cortex of a monkey performing a
target-reaching task (data from [Glaser et al.| (2018}, 2020)). In this task, the monkey controlled a
cursor on a screen using a manipulandum (Glaser et al.l 2018)), and our goal was to decode the
cursor’s two-dimensional (2D) velocity in the = and y directions. We used the same preprocessed
neural features x as in |Glaser et al. (2020). The dataset comprised N = 25,299 samples over a
21-minute session, with spiking activity from D = 164 neurons.

Fig. @] summarizes the results. Panel A shows inferred decoding weights for seven example neurons,
revealing diverse spatial tuning profiles in the 2D velocity space; with all neurons shown in Fig.[S7]
Additional analyses in Fig. [S8]show that the inferred weight functions reflect empirical spike—velocity
structure and remain smooth and coherent even when trained on restricted portions of the velocity
space. Panel B compares true and predicted velocities for all models; CMLR aligns closely with the
identity line. Panel C presents Euclidean decoding errors and reports the coefficient of determination
(R%): CMLR achieves strong performance (0.53), outperforming FlexCode (0.35) and Naive Bayes
(—0.43), and approaching XGBoost (0.55) and DNN (0.58). The higher scores of XGBoost and DNN
are expected, given the large size of this dataset, which favors high-capacity nonlinear models. CMLR
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Figure 4: Decoding 2D cursor velocity from motor cortex data (Glaser et al 2018} [2020). (A)
Decoding weights inferred by CMLR for seven representative neurons (full set shown in Fig. B)
Scatter plots comparing true versus decoded x (left) and y (right) cursor velocities for all methods:
CMLR, FlexCode, Naive Bayes (NB), XGBoost, and deep neural networks (DNN). (C) Box plots of
Euclidean decoding error across all methods (insets report the R? score).
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nevertheless remains competitive while also providing full conditional densities and interpretable
tuning functions, capabilities that are not available in point-estimate regressors. Overall, these findings
demonstrate that CMLR extends naturally to multivariate-output CDE and continuous decoding.

5.4 CALIBRATION OF PREDICTIVE UNCERTAINTY

Finally, we evaluated the calibration of the predictive posteriors from the two CDE methods, CMLR
and FlexCode, using PIT histograms and quantile calibration curves (Fig. see Appendix
for details). Across mouse V1, macaque V1, and mouse hippocampal CA1, CMLR consistently
produces well-calibrated posteriors: PIT histograms are close to uniform, quantile calibration curves
track the identity line, and PIT values vary smoothly with decoding error. FlexCode, in contrast,
shows systematic miscalibration, with peaked or multimodal PIT distributions, under-coverage
in quantile calibration, and irregular PIT-error relationships. These results indicate that CMLR
provides more reliable and interpretable uncertainty estimates, which is important in neural decoding
applications where posterior uncertainty guides scientific interpretation and downstream decisions,
such as identifying ambiguous stimuli or estimating decoding confidence.

5.5 RUN TIME COMPARISONS

Table [T|reports average training times for all methods on a 2.4 GHz Intel i7 CPU with 16 GB RAM
(all without parallelization). CMLR trains within minutes to a few hours, depending on dataset
size, with run times comparable to FlexCode and faster than Naive Bayes. XGBoost and DNN are
generally faster, but they do not provide full conditional densities or calibrated uncertainty. Overall,
CMLR achieves competitive computational efficiency while offering richer probabilistic outputs.

Table 1: Run time comparisons for all methods. Values are averaged over folds.
Dataset D (# neurons) N (# trials) CMLR FlexCode NB XGBoost DNN

Mouse V1 11-21k 4345k 33h 23h 22h 44h 33m
Monkey V1 113-148 3.6k 55m 25s 2.6 m 2m 1.9m
Mouse CA1 151497 3.6-55k 10 m 47 s 4 m 4m 2m
Monkey MC 164 25k 10 m 11 m 30 m 23s 5m

6 CONCLUSION AND DISCUSSION

We introduce the Continuous Multinomial Logistic Regression (CMLR) model, a novel exponential-
family framework for scalable, nonparametric conditional density estimation (CDE). CMLR extends
multinomial logistic regression (MLR) to continuous outputs by replacing discrete class weights with
smooth, output-indexed functions drawn from Gaussian process (GP) priors, yielding normalized
densities while preserving MLR’s additive, interpretable structure. For efficient training, we develop
a memory-efficient stochastic variational inference algorithm in the Fourier domain, leveraging GP
stationarity for kernel diagonalization and basis truncation. Applied to large-scale neural datasets
from mouse and monkey V1, hippocampus CA1, and motor cortex, CMLR outperforms Naive Bayes,
XGBoost, deep neural networks, and the leading CDE method FlexCode, while providing calibrated
posteriors and interpretable structure. Comparisons with Naive Bayes demonstrate that explicitly
modeling correlation structure substantially improves decoding performance across all brain areas.

To our knowledge, CMLR represents the first application of CDE to neural decoding, enabling flexible
estimation of full posterior distributions over behaviorally or perceptually relevant variables. While
modern high-capacity nonlinear models may achieve stronger predictive accuracy in very large-data
regimes, they typically require extensive hyperparameter tuning and offer limited interpretability.
CMLR plays a complementary role: it yields fully probabilistic and well-calibrated conditional
densities, provides access to the full posterior rather than point estimates, is data-efficient with
stable performance across datasets, and remains easy to train because it requires only a few design
parameters and no dataset-specific hyperparameter tuning. In addition, CMLR produces transparent
tuning functions that can be directly visualized and compared across neurons and conditions, in the
same manner as classical systems-neuroscience tuning curves, a property not typically supported by
black-box models. We therefore view CMLR as a practical and interpretable baseline or diagnostic
model that complements more complex nonlinear approaches in modern neural decoding settings.



Under review as a conference paper at ICLR 2026

Connections to Prior Work: CMLR builds on a rich body of research in nonparametric Bayesian
inference using Gaussian processes (Williams & Barber, |1998}; (Girolami & Rogers, [2006; Bishop,
2000), but is conceptually distinct from standard GP regression (Rasmussen & Williams, [2006; (Chan,
2013) and GP classification (Liu et al.| [2022). In GP regression, the output is modeled as a GP
function of the input, yielding Gaussian predictive distributions. In GP classification, a latent GP is
passed through a nonlinear link to produce class probabilities over discrete outputs. Both approaches
lack the flexibility to represent rich or structured conditional densities over continuous outputs, and
related methods that approximate uncertainty for point estimators, such as Laplace approximation
(Daxberger et al.|, 2022)), also do not provide full conditional densities. In contrast, CMLR places
GP priors on weight functions defined over the output space, enabling flexible estimation of full
conditional densities. CMLR is also closely related to logistic Gaussian processes (Tokdar et al.,
2004) and early unconditional density models such as the Gaussian process density sampler (Murray;
et al.| 2008)), but generalizes them into a conditional, feature-decomposed framework that preserves
the additive structure and interpretability of MLR. As a CDE model, CMLR complements several
existing approaches, including kernel-ratio estimators (Bashtannyk & Hyndman, 2001; Holmes
et al.| [2012;|Sugiyama et al.,|2010), mixture density networks (Bishop) |1994])), neural-kernel mixture
models (Ambrogioni et al.,[2017), conditional normalizing flows (Papamakarios et al.,[2017), logistic
Gaussian process partition models (Payne et al., 2019), Lindsey’s Method (Gao & Hastiel 2022)), and
histogram trees (Yang & van Leeuwen, 2024). However, many of these methods face limitations
in scalability, interpretability, or statistical robustness in high-dimensional settings. CMLR offers a
nonparametric and additive alternative that provides interpretable weight functions, supports multiple
output dimensions, and achieves computational scalability through structured inference. CMLR
also has conceptual links to neural operator models, particularly those defined over continuous
input—output mappings (Kovachki et al.| 2023; |Li et al.|[2021). To scale CMLR to large datasets, we
leverage sparse Fourier-domain representations developed for variational GP inference (Hensman
et al., 2018; Keeley et al., [2020; \Gondur et al., 2024), closely related in motivation and formulation to
Fourier Neural Operators (L1 et al.,[2021). Our model also builds directly on the discrete multinomial
logistic regression framework for neural decoding in |Greenidge et al.|(2024)), extending it to handle
continuous outputs in a principled and computationally efficient manner.

Limitations and Future Directions: While CMLR provides a unified and scalable framework
for CDE, several directions remain open for future work. First, unlike XGBoost and DNNs that
can implicitly capture temporal continuity by incorporate activity from multiple adjacent time bins
(Glaser et al., 2020), CMLR does not yet include explicit output-space priors, such as temporal or
spatial smoothness, which could be useful in navigation or motor decoding. Integrating structured
priors into the conditional likelihood, or combining CMLR with latent dynamical models (Park
et al.l 2015} |Damianou et al., |2011), may enhance temporal generalization. Second, the current
CMLR model treats each decoding weight independently; multivariate GP priors (Bonilla et al.,
2007; Keeley et al., 2020) could share structure across neurons or time and potentially improve
generalization. However, such coupling would obscure neuron-specific tuning curves and thus
compromise interpretability. Third, while fixed Fourier-domain bases and RBF kernels enable
scalable inference, more flexible alternatives such as adaptive basis functions (Evans & Nair, 2018)
or spectral mixture kernels (Paciorek & Schervish, |2003)) could further enhance accuracy, though
it remains to be tested whether such extensions retain the same computational scalability. Fourth,
while additivity over inputs ensures scalability, convexity, and interpretability, incorporating low-rank
or kernelized interaction models (Duvenaud et al., 2011) could enhance model expressiveness by
capturing higher-order feature dependencies. Fifth, although we used Riemann integration to support
tractable variational inference, advanced numerical techniques such as general quadrature methods
(Hildebrand, [1987), polynomial approximations (Trefethen, [2019), or adaptive binning (Wand, |1997)
may offer improvements in accuracy or efficiency. Sixth, hybrid approaches that combine inducing-
point methods with Fourier domain representations (Hensman et al., [2018)) could further improve
computational scalability. Finally, although we focused here on sensory and motor decoding, CMLR
is broadly applicable to other neural decoding tasks, including decoding motor intention (Tam et al.,
2019), speech (Chen et al., 2024)), spatial attention (Smith et al., [2013), and decision variables
(Baeg et al.,2003). Beyond neuroscience, CMLR may also benefit other CDE applications such as
head pose estimation (Murphy-Chutorian & Trivedi, [2009), time-to-event modeling (Gensheimer &
Narasimhan, 2019), climate prediction (Rasp et al.,[2018), photometric redshift estimation (Dalmasso
et al., |2020)), and geolocation and trajectory forecasting (Rhinehart et al., 2019). Together, these
directions position CMLR as a versatile CDE framework for neural decoding and beyond.
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A APPENDIX

This appendix provides supplementary material that supports, extends, and validates the core contri-
butions presented in the main text.

Section [A.T| presents the simulation study, demonstrating that the proposed inference proce-
dure robustly recovers the decoding weight functions and hyperparameters.

Section[A.2] (Fig.[S2) presents full decoding weight visualizations from the simulation study
in Section[A]

Section[A 3] (Fig.[S3) reports additional simulation results evaluating inference performance
under varying model dimensions, including the number of features (D), sample size (V),
and Fourier resolution (M), complementing the analysis in Section

Section [A.4] (Fig.[S4) extends the simulation-based validation to two-dimensional output
spaces, demonstrating accurate recovery of decoding weights and GP hyperparameters in a
multidimensional setting.

Section[A.5] describes the CMLR design parameters, provides guidance on how to select
them, and Table 2] summarizes the settings used in each real-data application.

Section[A.6|presents a scalability analysis of CMLR with respect to neuron count and dataset
size on the mouse V1 dataset, and Fig. [S5|compares its performance and training time with
XGBoost and DNN.

Section[A.7] (Fig.[S6) compares CMLR performance with other methods on the monkey V1
dataset recorded under drifting grating stimuli (data from Graf et al.|(2011)), extending the
results in Section

Section [A.§] (Fig. [S7) provides a complete visualization of decoding weight functions
inferred from the monkey motor cortex dataset (extending Fig. ), highlighting a rich
diversity of smooth and interpretable 2D tuning profiles across all recorded neurons.

Section[A.9] (Fig. [S8) examines the interpretability and generalization of the inferred decod-
ing weights by comparing CMLR weight functions to empirical spike—velocity maps and
by analyzing how the inferred functions behave when trained on progressively restricted
subsets of the velocity space for the monkey motor cortex dataset (extending Fig. [).

Section details the procedures used to assess calibration of CMLR and FlexCode
posterior densities, including PIT histograms and quantile calibration curves, with results
evaluated across datasets (Fig. [S9).

Section[A.TT]declares the limited use of large language models (LLMs) for minor editing of
the manuscript.

These results collectively reinforce the accuracy, scalability, and interpretability of the CMLR
framework.
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A.1 SIMULATION STUDY

To assess the accuracy and robustness of our inference framework, we conducted simulations using
synthetic data. We considered a continuous output space of orientation angles € [0, 27) with
N = 4000 samples. The input consisted of D = 200 features, with decoding weights wq(y) drawn
from Gaussian process (GP) priors. Each weight function was sampled on a fine grid of J points,

{yé{izj 7/_,., with GP hyperparameters drawn as £ € [0.1,1.5] (length scales) and pg € [0.5,2.5]

(variances). Feature vectors x,, were sampled independently from a standard Gaussian distribution.
Outputs y,, € {y'?)}7_, were then drawn from the conditional density:

gridJ j=1
) eXp(W(yg‘)d)TX”>
p(y =l | x0 W) = — .,
> i1 exp(w(ygrid) xn)

using a finite grid approximation. Algorithm [I]summarizes the procedure. Note that this procedure
can be made arbitrarily accurate by refining the output grid, and exact sampling is also possible via
inverse CDF sampling due to the smoothness of the GP-drawn weight functions.

Algorithm 1 Simulation procedure for generating synthetic data

éﬂﬁ (ii)d € [0,2m)

1: Define an output grid {y

2: ford=1to D do ,

: Sample weight function wy(y) from a GP prior at {ygl)d }3]:1 with ¢4 € [0.1,1.5], pg €
[0.5,2.5]

}/_, with Ye

4: end for

5: forn =1to N do

6:  Sample feature vector x,, ~ N (0,1p)

7:  Compute posterior p(y | X, w(y)) as above
8:  Sample observed output y,, ~ p(y | Xn, W(y))
9: end for

For inference, we used T' = 100 bins, M = 17 Fourier components, a mini-batch size of N’ = 1500,
learning rate 0.05, and 3 Monte Carlo samples to approximate the ELBO during training.

Fig. [ST] summarizes the results. Panel A shows the ELBO trajectory over 580 iterations (104
seconds on a 2.4GHz Intel 17 CPU with 16GB RAM), exhibiting smooth, monotonic convergence
and confirming stable stochastic optimization. Panel B compares ground truth and inferred GP
hyperparameters across all D = 200 features. Inferred values closely track the identity line, with
normalized absolute errors of 11.35% +12.14% for length scales and 48.56% + 54.81% for variances.
Larger errors arose for flatter functions (longer length scales or larger variances), where identifiability
is inherently limited. Panel C shows true vs. inferred decoding weights for 5 representative features
(full results in Fig. , with mean error across all features of 7.46% =+ 5.11%, confirming recovery
of both coarse- and fine-scale structure.

To further assess robustness, we performed additional simulations under varying conditions. Fig.[S3]
reports results as we varied the number of input features (D), number of samples (/V), and number
of Fourier components (M ). Performance improves systematically with larger N and M, while the
method remains computationally scalable and statistically accurate in high-dimensional regimes.
Notably, strong performance was achieved with as few as M ~ 20 Fourier components, supporting
the use of compact frequency-domain representations to reduce dimensionality and prevent overfitting.
Together, these findings demonstrate that our variational inference framework enables efficient and
reliable recovery of both hyperparameters and decoding weights across diverse settings.
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Figure S1: Simulation study results. (A) ELBO versus training iterations. (B) Scatter plots comparing
ground truth vs. inferred length scales (left) and variances (right) across features; insets report mean
and standard deviation of normalized absolute errors. (C) Decoding weights for 5 representative
features: ground truth (black) vs. inferred weights (red), shaded regions show posterior standard
deviation. True length scales are shown above each subplot; normalized mean absolute errors are

shown below. Full results in Fig.[S2]
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A.2  COMPREHENSIVE VISUALIZATION OF TRUE VS INFERRED DECODING WEIGHTS
(EXTENSION OF FIG.[ST)

To provide a complete view of model performance, we present decoding weight recovery for all 200
simulated features used in the simulation study in Section[AT] This Fig. extends the subset shown in
Fig. |S_T| and illustrates how well the inferred weights (red) match the ground truth (black) across all
features. Features with varying ground truth GP length scales are included, demonstrating that our
inference method successfully recovers both broad and sharply tuned weight functions.
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Figure S2: Full decoding weight recovery for all 200 simulated features, extending the results in
Fig.[ST} Each subplot shows the ground truth decoding weights (black) and the inferred weights (red)
across the continuous output space for one feature, with shaded regions showing posterior standard

deviation. The true GP length scale is indicated in parentheses. The results demonstrate that the
proposed inference procedure accurately captures both smooth and localized tuning profiles.
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A.3 ROBUSTNESS AND SCALABILITY OF CMLR INFERENCE ACROSS SIMULATION SETTINGS
(EXTENSION OF SECTION [AT))

To assess the robustness and computational efficiency of the CMLR model, we systematically
evaluated its performance across a range of controlled simulation scenarios, extending the results in
Section Fig.[S3] summarizes how inference accuracy and training time vary with the number
of input features (D), number of observed samples (/V), and number of Fourier components (M).
These results extend the main text in Section [3]and the simulation results in Fig.[ST|by confirming
that CMLR maintains high accuracy in hyperparameter and weight recovery while scaling gracefully
with data size and model complexity.

Simulation performance comparison under different settings
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Figure S3: Simulation performance comparison under varying conditions. Rows (top to bottom)
show: mean =+ standard deviation of the normalized absolute error in inferred variances (pq), length
scales (¢4), and decoding weights (w4(y)), followed by training time in seconds (Intel i7 2.4GHz CPU,
16GB RAM). (A) Varying the number of input features D shows that inference accuracy remains
stable across all metrics, with only modest increases in training time. (B) Increasing the number
of observed samples N substantially improves inference accuracy for all parameters, reflecting the
benefit of additional data for GP hyperparameter and weight recovery. Notably, training time increases
only marginally due to the use of stochastic variational inference. (C) Varying the number of Fourier
components M reveals that performance improves with increasing M, particularly in recovering fine-
scale structure in decoding weights. However, the computational cost does not increase substantially
due to the efficiency of the frequency-domain formulation. Notably, near-asymptotic performance is
achieved with as few as M =~ 20 components. In practice, keeping M small is advisable to reduce
dimensionality and mitigate the risk of overfitting. These results demonstrate that CMLR offers
reliable and scalable inference across a wide range of practical settings, with strong performance
attainable using moderate data sizes and low-dimensional frequency representations.
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A.4  VALIDATION OF INFERENCE ACCURACY IN THE TWO-DIMENSIONAL SETTING
(EXTENSION OF SECTION [3.4)

To confirm the accuracy and stability of CMLR in two-dimensional decoding tasks described in
Section[3.4] we conducted a simulation study with synthetic neurons tuned to 2D outputs. Fig.[S4]
illustrates key results: convergence behavior of the variational inference algorithm, recovery of GP
hyperparameters, and comparison of inferred vs. true decoding weights. Together, these analyses
validate the model’s ability to recover both the coarse and fine-grained structure of 2D tuning profiles,
demonstrating the reliability of CMLR in multidimensional output spaces.
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Figure S4: Simulation study validating inference accuracy in the 2D setting. (A) Evidence lower
bound (ELBO) over training iterations, showing smooth and stable convergence of the variational
inference algorithm. (completed in 469 seconds on a 2.4GHz Intel i7 CPU with 16GB RAM) (B)
Scatter plots comparing ground truth and inferred GP hyperparameters (length scales and variances)
across both output dimensions. Each point corresponds to one of the D = 100 simulated neurons;
proximity to the identity line indicates accurate recovery. (C) Comparison of inferred and ground
truth decoding weights for a subset of representative neurons. Each subplot shows a scatter plot of
the true versus recovered weights, with the normalized mean absolute error shown as an inset. Points
closely align with the identity line, indicating accurate recovery.
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A.5 DESIGN PARAMETERS AND PRACTICAL SETTINGS

This appendix provides practical guidance for selecting the design parameters of CMLR and outlines
the specific settings used across all real-data experiments. A key advantage of CMLR is that it does
not require extensive dataset-specific hyperparameter tuning. The main design parameters control
numerical precision and computational efficiency rather than model capacity. These include:

. the number of bins 7" used in the Riemann approximation of the normalization constant,
. the number of Fourier basis components M used to represent the GP prior,
. the mini-batch size N’ for stochastic optimization,

A W N =

. the learning rate « of the Adam optimizer, and
5. the decoding grid resolution J.

Table 2] summarizes the design parameter settings used in each real dataset, along with the number
of neurons (D), number of trials (/V), and output range (£2). These settings were fixed per dataset,
but cross-validation can be incorporated into CMLR without modification. In practice, the two most
important design parameters for numerical accuracy are the number of Riemann bins 7" and the
number of Fourier components M.

Choice of 7' (Riemann bins): 7" determines the numerical resolution used to approximate the
normalization constant and should match the desired output-grid resolution. In practice, 7" must be
large enough that the density changes smoothly between adjacent grid points. For bounded or circular
outputs, 7" should scale with the width of the output range to avoid discretization artifacts. As a rule
of thumb, for an output range of [0, 1], choosing T" = 100 provides adequate resolution, with larger
values offering limited additional benefit.

Choice of M (Fourier components): M determines the spectral resolution of the Gaussian process
prior. For smooth kernels such as the RBF, most of the spectral mass lies in low-frequency components,
so only a small number of terms is required. Empirically, M € [15, 50] captures the relevant structure
across all datasets while keeping computational cost low. As shown in Fig.[S3] decoding performance
is largely insensitive to M beyond this range. Choosing a small M is also desirable for reducing
dimensionality and mitigating overfitting.

Choice of N’ (mini-batch size): The mini-batch size affects optimization speed rather than model
capacity. Smaller batches increase the variance of stochastic gradients (which can aid exploration),
whereas larger batches reduce noise but increase memory cost. We selected N’ to balance runtime
and CPU memory constraints, with values between 1000 and 2000 working robustly.

Choice of « (learning rate): The learning rate determines the step size in stochastic variational
optimization. Unlike 7" and M, which control numerical resolution, o governs the stability and
convergence speed of the optimizer. In practice, a moderately small value (e.g., a € [1072,1071])
provides stable convergence across datasets. Larger values can lead to divergence, whereas smaller
values slow training without improving accuracy. We selected « for each dataset using a small
number of preliminary runs and found that its performance was largely insensitive within this range.

Choice of J (decoding grid resolution): Finally, the number of decoding bins J must be specified
when evaluating predictive densities from the CMLR model, as is also the case for FlexCode and
Naive Bayes. Since we observed a consistent trend of improved performance with finer decoding
grids, we report all final results at the highest resolution tested, J = 20, 000.

Table 2: Design parameter settings used in the real-data studies

Dataset D (neurons) N (trials) () (range) T M N’ «
Mouse V1 11311-20616  4282-4469 [0, 27) 100 17 1500 0.005
Monkey V1 113-148 3600 [0, 27) 100 17 1500 0.005
Mouse CA1 151-497 3600-5524 [0, 1] 100 20 1400 0.02

[—

Monkey motor cortex 164 25299 30,30)2 1000 27 2000 0.1
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A.6 SCALABILITY OF CMLR WITH RESPECT TO NEURON COUNT AND DATASET SIZE

Here, we assess the robustness of CMLR on the mouse V1 dataset (data from |Stringer et al.| (2021)))
under systematic variation of the neuron count (D) and dataset size (/N), comparing its scaling
behavior to XGBoost and DNN. Fig. [S3] characterizes how decoding accuracy and training time
scale under these manipulations. As the number of neurons increases (Fig.[S5]A), CMLR maintains
stable absolute circular error and exhibits training times that grow approximately linearly with D,
consistent with our simulation results in Appendix @ Across all values of D, CMLR achieves
lower decoding error than XGBoost and DNN, and the performance gap widens at smaller D,
indicating improved data efficiency. When the number of training samples is reduced (Fig. [S3B),
CMLR’s performance degrades only slightly, whereas the data-driven baselines show more substantial
deterioration. Training time for CMLR increases sublinearly with N due to mini-batch stochastic
variational inference. Overall, CMLR shows favorable computational and statistical scaling, and
critically, it offers clear advantages over data-driven models in low-data regimes where principled
structure and regularization matter most.
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Figure S5: Scalability of decoding performance and training time for CMLR, XGBoost, and DNN
on the mouse V1 dataset. Top: mean = standard deviation of the absolute circular decoding error.
Bottom: training time (seconds) measured on a standard laptop (Intel i7 2.4 GHz CPU, 16 GB RAM).
Both metrics are shown as a function of (A) the number of neurons D and (B) the number of training
samples N.
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A.7 MACAQUE V1 DATA: DECODING DRIFTING GRATING ORIENTATIONS (EXTENSION OF

SECTION[5.T))

Here, we show the results of applying our method to five electrophysiological recording datasets
from the monkey primary visual cortex (data from (Graf et al., 2011)), extending the results in
Section[5.1} These datasets contained spiking activity recorded from between D = 113 and D = 148
neurons (treated as input features), and included 72 discrete stimulus orientations (outputs) spaced at
5-degree intervals, with 50 trials per orientation, resulting in a total of N = 3600 samples per dataset.
Although our method is designed for continuous-valued stimuli, the discrete case is a special instance
of the framework and is fully supported without modification. We applied the CMLR model using
the same inference settings as in the mouse V1 dataset.

Fig. [S6 summarizes the results. In panel A, CMLR and FlexCode consistently outperform Naive
Bayes in mean absolute circular error across decoding resolutions, with all models plateauing beyond
J =~ 500. Fig.[S6B shows true versus decoded orientations for all models; CMLR predictions align
closely with the identity line, and most large errors occur near 180°, reflecting underlying bimodality.
Panel C shows that FlexCode achieves the lowest decoding error (mean = SD: 13 £ 36°, median: 3°,
IQR: 5°), closely followed by CMLR (14 + 42°, 3°, 4°), with Naive Bayes performing moderately
worse (21 +50°, 4°, 6°), and XGBoost (27 +29°, 17°, 28°), and DNN (26 £ 26°, 20°, 26°) showing
higher variability and error.

These results confirm the robustness of CMLR across both continuous and discretized decoding
settings. Consistent with findings in the mouse V1 datasets, CMLR’s correlation-aware formulation
yields improved accuracy over correlation-blind baselines, reinforcing the importance of modeling
shared variability in cortical populations for reliable neural decoding.
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Figure S6: Application of the proposed method to macaque V1 data (data from |Graf et al.|(2011))).
(A) Mean absolute circular error for CMLR, FlexCode, and Naive Bayes models as a function of
the number of decoding classes J. (B) Scatter plots of decoded versus true stimulus orientations for
CMLR, FlexCode, Naive Bayes, XGBoost, and DNN models. (C) Box plots comparing the absolute
circular decoding error across all methods. Mean errors (& standard deviation) are indicated as insets.
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A.8 FULL DECODING WEIGHT MAPS FOR MONKEY MOTOR CORTEX DATA (EXTENSION OF

FI1G.[)

To provide a complete visualization of the model’s output, we show the full set of 2D decoding weight
functions inferred by CMLR for all 164 neurons in the monkey motor cortex dataset illustrated in
Section[5.3] This Figure extends the subset shown in Fig.[d] revealing the rich diversity of 2D velocity
tuning profiles captured by the model. The smooth, continuous weight surfaces illustrate how CMLR
uncovers interpretable tuning structure across the two-dimensional velocity space, consistent with
known motor cortex encoding properties.
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Figure S7: Full set of decoding weights inferred by CMLR for all D = 164 neurons in the monkey
motor cortex dataset (data from |Glaser et al.| (2018}, 2020))), extending the results in Fig. E} Each
subplot shows the neuron’s two-dimensional tuning surface across the x and y velocity space. These
results highlight the diversity and smoothness of velocity tuning captured by the model in real neural

recordings.
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A.9 INTERPRETABILITY AND GENERALIZATION OF CMLR DECODING WEIGHT FUNCTIONS

In this Appendix, we further probe the CMLR decoding weight functions inferred for the motor-cortex
velocity decoding task (data from|Glaser et al.| (2018} [2020)) shown in Fig.[d Our goal is to evaluate
both the interpretability of the inferred weights and their ability to generalize beyond the range of
velocities observed during training. Fig. [S8|presents two complementary analyses that address these
questions by comparing the inferred weight functions to empirical neural tuning structure and by
examining how the inferred functions behave when trained on progressively restricted subsets of the
data.

First, we compared the inferred weight functions wg(y) with empirical spike—velocity associations
derived directly from the training data (Fig. [S8JA). To obtain these empirical maps, we binned all
training samples according to their two-dimensional velocity and, for each neuron d, accumulated that
neuron’s spike counts within each velocity bin. The resulting spike-weighted histograms were then
smoothed and normalized to form empirical firing-rate density maps over the velocity space. These
maps reveal the raw statistical structure of each neuron’s tuning. They are strongly concentrated
within the region of velocities that were actually visited during the experiment, which is typically a
compact region around the origin, and they are often noisy and irregular because of finite sampling. In
contrast, the CMLR inferred decoding weights exhibit smooth and spatially coherent tuning patterns
defined over the entire velocity space. Importantly, in regions where empirical data are dense, the
inferred weights align well with the empirical structure, capturing the dominant preferred directions
and suppressive regions observed in the raw densities. This agreement indicates that the CMLR model
faithfully extracts meaningful tuning characteristics from the data while simultaneously regularizing
them into a smooth functional form that reflects the underlying relationship between velocity and
firing activity.

Second, we studied how the inferred decoding weights behave when the training data are progressively
restricted to smaller velocity ranges (Fig. [S8B). By training the model using only samples within
Iy, ly@|< 25, 20, 15, 10, we artificially reduce the support of the observable data and thus
increase the amount of extrapolation required outside the training domain. As the black boxes in
Fig.[S8B indicate, large portions of the velocity space are never observed when these restrictions
are applied. Despite this, CMLR continues to produce well-structured and neuron-specific weight
patterns that extend smoothly into unobserved regions. The fine details of the tuning curves become
more dependent on the Gaussian process prior as the available data shrink, but the global structure
remains consistent across all levels of data restriction. Preferred directionality, antagonistic regions,
and smooth gradations remain stable as long as the model has at least partial coverage of the tuning
landscape. This behavior reflects the inductive bias imposed by the smooth Gaussian process prior.
When data are sparse or absent, the model defaults to the simplest and smoothest continuation that
remains consistent with the observed samples.

Together, these analyses demonstrate two key properties of the CMLR framework:

1. Interpretability: the inferred decoding weights correspond closely to empirical neural firing
statistics where data are available, offering intuitive and biologically meaningful descriptions
of each neuron’s response characteristics.

2. Generalization: the weight functions extend gracefully beyond the data-supported regions,
providing coherent and stable extrapolations driven by the model’s smoothness prior rather
than fitting noise or artifacts.

These findings show that CMLR provides not only accurate decoding performance but also structured
and interpretable functional maps that remain reliable when parts of the stimulus space are sparsely
sampled. This is important for real-world neural decoding settings, because behavioral or sensory
spaces are rarely sampled uniformly in practice.
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A Comparison of the inferred weights with the empirical densities
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Figure S8: Interpretability and generalization of CMLR decoding weight functions for motor-cortex
velocity decoding (data from |Glaser et al.| (2018;2020)). (A) Inferred decoding weight functions
for example neurons (top) compared with their empirical spike-weighted density maps (bottom).
The empirical densities concentrate within the observed velocity range, while CMLR produces
smooth, interpretable functions over the full space. (B) Generalization of inferred weights when
training data are progressively restricted to smaller velocity bounds. Top to bottom: unconstrained,
ly™M], |y®|< 25, 20, 15, 10. Black boxes indicate the region of observed data. Even with limited
training coverage, CMLR extrapolates smoothly outside the data-supported domain, demonstrating
robustness and interpretability.
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A.10 CALIBRATION OF PREDICTIVE POSTERIORS

Here, we present the results of calibrating the posterior densities predicted by the CMLR model
and FlexCode model on held-out test data. While the CDE methods are trained to optimize the
conditional likelihood, this does not necessarily guarantee that their predicted posteriors are well-
calibrated; that is, that their uncertainty reflects empirical variability in the data. To assess calibration,
we computed Probability Integral Transform (PIT) values (Dawid, [1984) and quantile calibration
curves (Kuleshov et al.l 2018])), which diagnose whether predicted posterior distributions reflect the
empirical distribution of true outputs. We also report the Expected Calibration Error (ECE) as a
summary statistic.

A.10.1 PROBABILITY INTEGRAL TRANSFORM (PIT)

The Probability Integral Transform (PIT) provides a diagnostic tool for assessing the calibration of
continuous predictive distributions. For each test input x,,, let F}, (y) denote the predicted cumulative
distribution function (CDF) for the output y. Given the true output y,,, the PIT value is defined as:

which represents the cumulative probability mass assigned to values less than or equal to y,, under

the predicted posterior. If the model is perfectly calibrated, the PIT values {u,}»_; should be
independently and identically distributed as Uniform(0, 1).

Deviations from uniformity reveal miscalibration: U-shaped PIT histograms indicate overconfident
predictions (posterior too narrow), hump-shaped histograms suggest underconfident predictions
(posterior too wide), and asymmetric shapes reflect bias in the predictive distributions. Visual
inspection of PIT histograms thus provides an interpretable diagnostic of calibration performance.

A.10.2 QUANTILE CALIBRATION CURVES

Quantile calibration curves assess whether predicted quantiles contain the correct proportion of
ground truth outputs. For each test input x,, and each nominal quantile level a € (0, 1), we compute

the a-quantile qﬁn) = F;(«) of the predicted posterior and then determine the empirical frequency

with which the true output y,, falls below this value. The empirical coverage at level « is defined as:

N
1
Coverage(a) = N Z I (yn < @&n)) )

n=1

where N is the number of test samples and I (-) is the indicator function. Plotting empirical cover-
age versus nominal « yields the quantile calibration curve, with the diagonal representing perfect
calibration.

To summarize calibration error across all quantile levels, we compute the expected calibration error
(ECE) as:

1
Al

where A is a finite set of quantile levels (e.g., {0.05,0.10,...,0.95}). A smaller ECE indicates better
calibration.

ECE = Z |Coverage(a) — o ,

acA

A.10.3 CALIBRATION ANALYSIS: CMLR vS FLEXCODE

We compared the uncertainty calibration of CMLR and FlexCode across three datasets (Mouse V1,
Macaque V1, and Mouse CA1) using three diagnostics: PIT histograms, quantile calibration curves,
and the relationship between PIT values and decoding error (Fig. [S9). We restrict our calibration
analysis to CMLR and FlexCode because calibration diagnostics such as PIT histograms and quantile
calibration curves require access to the full conditional density. Regression-based models like
XGBoost and DNN provide only point predictions rather than probability distributions, so PIT values,
quantile calibration, and ECE cannot be computed for them.

PIT histograms (Fig. [S_@]A): PIT histograms for CMLR are close to uniform across datasets, in-
dicating that the model allocates probability mass in a way that matches the empirical distribution
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of the observed outcomes. This reflects well-calibrated posterior predictions with no systematic
concentration of mass in any region of the cumulative distribution. FlexCode, in contrast, shows
clear deviations from uniformity, often exhibiting a central peak or a bimodal shape. These patterns
indicate that FlexCode distributes probability mass unevenly and is therefore miscalibrated, assigning
too much weight to certain regions of the output space relative to the true distribution.

Quantile calibration curves (Fig.[SIB): CMLR’s calibration curves closely follow the identity
line across all datasets, with low ECE values (Mouse V1: 0.02 & 0.02; Macaque V1: 0.03 £ 0.01;
CA1: 0.04 £ 0.01), indicating accurate uncertainty quantification throughout the full quantile range.
FlexCode shows larger deviations from the diagonal, with higher ECE values (0.09+0.01, 0.03+0.01,
0.05 4 0.01), consistent with its PIT histograms. Its empirical coverage typically falls below the ideal
line at small quantiles and rises above it at large quantiles, indicating systematic miscalibration that
produces under-coverage in the lower tail and over-coverage in the upper tail.

PIT versus decoding error (Fig.[S9C): A well-calibrated model should show a clear relationship
between PIT values and decoding error. In an ideal case, errors should be smallest near PIT ~ 0.5,
where the model is most confident, and should increase smoothly as PIT approaches 0 or 1, where
the model expresses greater uncertainty. This pattern indicates that the model’s predictive distribution
correctly reflects which points are easy or difficult to decode. Across all datasets, CMLR closely
matches this ideal behavior: errors are lowest near PIT ~ 0.5 and rise gradually toward the extremes,
demonstrating that the model’s uncertainty estimates align with actual decoding difficulty. FlexCode,
in contrast, shows elevated errors near PIT ~ 0.5, which is also where its PIT values are most
concentrated, along with irregular fluctuations across the quantile range. This pattern indicates
that FlexCode’s predictive uncertainty does not reliably correspond to true error and that its diffuse
predictions do not effectively communicate when mistakes are more likely.

Summary: Across all diagnostics and datasets, CMLR provides substantially better-calibrated and
more informative uncertainty estimates than FlexCode. CMLR’s posterior distributions align closely
with empirical data and express uncertainty coherently, whereas FlexCode tends to produce overly
diffuse densities that obscure predictive reliability. This demonstrates that CMLR not only improves
decoding accuracy but also offers superior uncertainty quantification, which is essential for scientific
and neural decoding applications.
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Figure S9: Calibration analysis for CMLR (top) and FlexCode (bottom) across Mouse V1, Macaque
V1, and Mouse hippocampus CA1 datasets. (A) Probability integral transform (PIT) histograms.
CMLR produces near-uniform histograms, whereas FlexCode exhibits clear non-uniform distributions.
(B) Quantile calibration curves comparing empirical coverage to nominal quantile «; the diagonal
indicates perfect calibration. Insets report the expected calibration error (ECE; mean £ standard
deviation across folds and datasets). (C) PIT value versus decoding error for individual test points,
with median trends shown in red to illustrate how uncertainty relates to prediction error.
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A.11 DECLARATION OF USAGE OF LARGE LANGUAGE MODELS (LLMS)

We used large language models (LLMs) only for minor editing tasks, such as polishing grammar and
improving readability. LLMs were not used to generate content, perform analyses, design methods,
or conduct experiments. All scientific contributions and results in this manuscript are solely the work
of the authors.
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