

000 001 002 003 004 005 006 007 008 009 010 CONTINUOUS MULTINOMIAL LOGISTIC REGRESSION FOR NEURAL DECODING

005 **Anonymous authors**

006 Paper under double-blind review

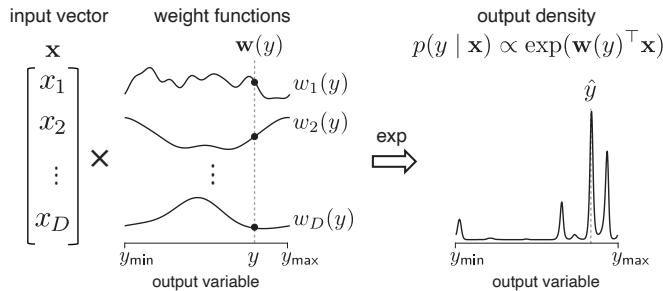
ABSTRACT

011 Multinomial logistic regression (MLR) is a classic model for multi-class classi-
 012 fication that has been widely used for neural decoding. However, MLR requires
 013 a finite set of discrete output classes, limiting its applicability to settings with
 014 continuous-valued outputs (e.g., time, orientation, velocity, or spatial position). To
 015 address this limitation, we propose Continuous Multinomial Logistic Regression
 016 (CMLR), a generalization of MLR to continuous output spaces. CMLR defines a
 017 novel exponential-family model for conditional density estimation (CDE), mapping
 018 neural population activity to a full probability density over external covariates. It
 019 captures the influence of each neuron’s activity on the decoded variable through
 020 a smooth, interpretable tuning function, regularized by a Gaussian process prior.
 021 The resulting nonparametric decoding model flexibly captures a wide variety of
 022 conditional densities, including multimodal, asymmetric, and circular distribu-
 023 tions. We apply CMLR to large-scale datasets from mouse and monkey primary
 024 visual cortex, mouse hippocampus, and monkey motor cortex, and show that it
 025 consistently outperforms a wide variety of other decoding methods, including deep
 026 neural networks (DNNs), XGBoost, and FlexCode. It also outperforms correlation-
 027 blind models such as Naive Bayes, highlighting the importance of correlations for
 028 accurate neural decoding. The CMLR model provides a scalable, flexible, and
 029 interpretable method for decoding responses from diverse brain regions.

030 1 INTRODUCTION

031 Neural decoding refers to the problem of estimating behavioral or sensory variables from neural
 032 activity, a central challenge in neuroscience (Georgopoulos et al., 1982; Brown et al., 1998). Logistic
 033 regression is a foundational model for binary classification that has been widely applied to neural
 034 decoding problems with two alternatives Ryali et al. (2010); Glaser et al. (2020). For tasks with
 035 multiple alternatives, multinomial logistic regression (MLR) provides a natural extension, defining
 036 class probabilities based on the linear projection of neural activity onto weight vectors, one for
 037 each output class (Hutunen et al., 2013; Song et al., 2014; Greenidge et al., 2024). However,
 038 many neural decoding tasks involve continuous variables such as time, orientation, head direction,
 039 position, or velocity (Paninski & Cunningham, 2018). In such settings, standard regression models
 040 are frequently inadequate because they yield only point predictions and cannot represent multimodal,
 041 circular, or asymmetric output distributions (Hyndman et al., 1996). To obtain full predictive
 042 distributions, researchers often adapt MLR-style classifiers by discretizing the continuous output into
 043 bins (Stringer et al., 2021; Greenidge et al., 2024). However, this discretization reduces effective
 044 resolution, introduces quantization artifacts, and typically necessitates additional regularization to
 045 prevent overfitting (Altman & Royston, 2006; Nojavan A. et al., 2017).

046 To overcome this limitation, we introduce the Continuous Multinomial Logistic Regression (CMLR)
 047 model, which generalizes MLR to continuous output spaces. Whereas MLR defines a discrete
 048 probability distribution over a finite set of output classes using a log-linear combination of weight
 049 vectors, the CMLR model defines a probability density function (pdf) over a *continuous* output
 050 variable using a log-linear combination of weight *functions*. These weight functions are conceptually
 051 analogous to neural tuning curves, as they characterize how each neuron’s activity influences the
 052 predicted density over the variable of interest and often resemble the underlying tuning, although they
 053 originate from a decoding model rather than an encoding model. CMLR thus provides a framework
 for conditional density estimation (CDE), a problem setting that involves mapping a feature vector to



064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Figure 1: Continuous Multinomial Logistic Regression (CMLR) model schematic. Given an input feature vector $\mathbf{x} \in \mathbb{R}^D$, the model defines a logistic density over y using weight functions $\mathbf{w}(y) = \{w_d(y)\}_{d=1}^D$. The probability density at output value y given \mathbf{x} is proportional to $\exp(\mathbf{w}(y)^\top \mathbf{x})$, normalized over Ω . For each feature d , the weight function $w_d(y)$ has an independent Gaussian process (GP) prior to induce smoothness.

a probability density (Hyndman et al., 1996). For neural decoding applications, this density can be summarized by its mean or mode to obtain point estimates of the external variable of interest.

To enforce smoothness, we place Gaussian process (GP) priors on the weight functions, an approach closely related to Logistic Gaussian Process density estimation (Tokdar et al., 2004; Riihimäki & Vehtari, 2014). Given a vector of neural activities, the resulting model can represent complex conditional densities over the output variable, including multimodal, asymmetric, and circular forms often observed in neural decoding. To make inference tractable, we develop a Fourier-domain stochastic variational inference algorithm (Hoffman et al., 2013), leveraging GP kernel stationarity for diagonalization and spectral truncation (Hensman et al., 2018). The resulting approach handles high-dimensional inputs, extends naturally to multivariate-output CDE via anisotropic kernels (Rasmussen & Williams, 2006), and handles large-scale neural datasets.

We evaluate CMLR on large-scale datasets from mouse and monkey primary visual cortex (V1) (Stringer et al., 2021; Graf et al., 2011), mouse hippocampus CA1 (Hazon et al., 2022; Jercog & Schnitzer, 2022), and monkey motor cortex (Glaser et al., 2018; 2020). Across datasets, CMLR consistently outperforms strong decoding baselines, including Extreme Gradient Boosting (XGBoost) (Chen & Guestrin, 2016), deep neural networks (DNNs) (Orbach, 1962), and the leading non-parametric CDE method FlexCode (Izbicki & Lee, 2017), while also producing well-calibrated posterior densities. These advantages are most pronounced in low-data regimes, where CMLR's GP-based functional priors and additive structure provide strong regularization and limit overfitting. They are also evident in tasks with structured or multimodal outputs, such as circular orientation decoding, where accurate representation of periodicity and multimodality is essential. In these settings, access to the full conditional density allows CMLR to capture the underlying structure far more faithfully than point-estimate models such as XGBoost and DNNs, which cannot naturally model circular or multimodal output distributions. Furthermore, extending prior comparisons of correlation-aware and correlation-blind decoders (Nirenberg & Latham, 2003; Graf et al., 2011; Greenidge et al., 2024), we showed that CMLR (correlation-aware), by modeling shared variability, surpasses Naive Bayes (correlation-blind) in predictive accuracy across V1, CA1, and motor cortex. These results establish CMLR as a flexible, interpretable, and scalable framework for high-resolution neural decoding across brain regions.

2 CONTINUOUS MULTINOMIAL LOGISTIC REGRESSION (CMLR) MODEL

The CMLR model (schematized in Fig. 1) defines a mapping from an input vector $\mathbf{x} \in \mathbb{R}^D$ (e.g., a vector of spike counts) to a probability density over an output variable $y \in \Omega$, defined over some compact domain Ω . The model parameters consist of a set of D weight functions, one for each element of \mathbf{x} , where w_d describes the additive influence of input feature x_d on the log-density over y . The resulting conditional density is given by:

$$p(Y = y | \mathbf{x}) = \frac{\exp(\mathbf{w}(y)^\top \mathbf{x})}{\int_{\Omega} \exp(\mathbf{w}(y')^\top \mathbf{x}) dy'},$$

108 where $\mathbf{w}(y) = [w_1(y), \dots, w_D(y)]^\top$ denotes the vector obtained by evaluating all weight functions
 109 at y , and the denominator provides the normalizing constant, ensuring the density integrates to 1
 110 (Tokdar et al., 2004; Riihimäki & Vehtari, 2014).

111 Note that this generalizes standard multinomial logistic regression (MLR) with K discrete classes,
 112 where the probability of class k is given by:

$$114 \quad p(Y = k \mid \mathbf{x}) = \frac{\exp(\mathbf{w}_k^\top \mathbf{x})}{\sum_{j=1}^K \exp(\mathbf{w}_j^\top \mathbf{x})},$$

116 where \mathbf{w}_k denotes the weight vector for class k . CMLR can thus be viewed as the continuous limit of
 117 MLR as $K \rightarrow \infty$, replacing a set of ordered discrete class weights with smooth weight functions
 118 defined over a continuous output space.

119 To enforce smoothness in the decoding weights $\mathbf{w}(y)$, we place an independent Gaussian Process
 120 (GP) prior on each weight function:

$$122 \quad w_d(y) \sim \mathcal{GP}(\mathbf{0}, K_d),$$

123 where K_d is the covariance function governing the weight function: $\text{cov}(w_d(y'), w_d(y'')) =$
 124 $K_d(y', y'')$ for any pair of output values $y', y'' \in \Omega$. Here we employ the standard radial basis func-
 125 tion (RBF) covariance (Rasmussen & Williams, 2006): $K_d(y', y'') = \rho_d \exp\left(-(y' - y'')^2 / 2\ell_d^2\right)$,
 126 where ρ_d and ℓ_d are hyperparameters controlling the marginal variance (i.e., amplitude) and length
 127 scale (i.e., smoothness) of the weight function, respectively. For circular output spaces (e.g., orien-
 128 tations with $\Omega = [0, 2\pi)$), we use the periodic version of the RBF kernel defined as (Schölkopf &
 129 Smola, 2001): $K_d(y', y'') = \rho_d \sum_{m=-\infty}^{\infty} \exp\left(-(y' - y'' + 2\pi m)^2 / (2\ell_d^2)\right)$, ensuring continuity
 130 around the unit circle.

132 3 EFFICIENT LEARNING VIA STOCHASTIC VARIATIONAL INFERENCE (SVI)

135 Given a dataset of N input-output pairs $\mathcal{D} = \{(\mathbf{x}_n, y_n)\}_{n=1}^N$, we aim to jointly fit the weight functions
 136 $\mathbf{w}(y) = \{w_d(y)\}_{d=1}^D$ and the hyperparameters $\theta = \{\rho_d, \ell_d\}_{d=1}^D$ governing the GP prior over each
 137 weight function. The joint log-probability of the observations and the decoding weights is given by:

$$139 \quad \log p_\theta(\mathcal{D}, \mathbf{w}(y)) = \sum_{n=1}^N \left(\mathbf{w}(y_n)^\top \mathbf{x}_n - Z_n \right) - \frac{1}{2} \sum_{d=1}^D (\log |K_d| + \mathbf{w}_d^\top K_d^{-1} \mathbf{w}_d)$$

141 where $Z_n = \log \left(\int_{y_{\min}}^{y_{\max}} \exp(\mathbf{w}(y)^\top \mathbf{x}_n) dy \right)$ is the normalizing constant; $\mathbf{w}_d =$
 142 $[w_d(y_1), w_d(y_2), \dots, w_d(y_N)]^\top$ denotes the weight function of input feature d evaluated at the
 143 observed outputs $\{y_n\}_{n=1}^N$; and $K_d \in \mathbb{R}^{N \times N}$ is the corresponding GP covariance matrix over these
 144 outputs.

146 This formulation is intractable due to the need to marginalize over weight functions when computing
 147 each Z_n . To jointly infer the latent functions $\mathbf{w}(y)$ and hyper-parameters θ , we thus introduce an
 148 efficient inference scheme based on Variational Inference (VI) (Beal, 2003; Jordan et al., 1999;
 149 Hoffman et al., 2013; Blei et al., 2017). VI approximates the true intractable posterior distribution
 150 $p(\mathbf{w}|\mathbf{x})$ with a tractable distribution $q(\mathbf{w})$, by optimizing the Evidence Lower Bound (ELBO):

$$151 \quad \mathcal{L}(\theta, \psi) = \mathbb{E}_{q_\psi} \left[\log p_\theta \left(\{\mathbf{x}_n\}_{n=1}^N \mid \mathbf{w} \right) \right] - D_{KL}(q_\psi(\mathbf{w}) \mid\mid p_\theta(\mathbf{w})), \quad (1)$$

153 where $D_{KL}(q \mid\mid p)$ denotes the Kullback–Leibler divergence between the variational distribution and
 154 the prior (Blei et al., 2017). This ELBO serves as the objective that CMLR maximizes during training.

155 3.1 RIEMANN INTEGRAL APPROXIMATION OF THE NORMALIZING CONSTANT

157 To compute the ELBO, we approximate the intractable normalizing integral in Z_n using Riemann
 158 integration. We partition the output range $[y_{\min}, y_{\max}]$ into T uniform bins of width $\Delta = (y_{\max} -$
 159 $y_{\min})/T$, and let \bar{y}_t denote the center of the t^{th} bin. The integral is then approximated as:

$$161 \quad \int_{y_{\min}}^{y_{\max}} \exp(\mathbf{w}(y)^\top \mathbf{x}_n) dy \approx \Delta \sum_{t=1}^T \exp(\mathbf{w}(\bar{y}_t)^\top \mathbf{x}_n).$$

162 3.2 FOURIER-DOMAIN REPRESENTATION OF WEIGHT FUNCTIONS
163

164 To improve computational efficiency, we parameterize the decoding weights in the frequency domain,
165 exploiting the fact that the RBF covariance is diagonalized in a Fourier basis. This allows efficient
166 inference by eliminating matrix inversions and operating in a reduced-dimensional space (Hensman
167 et al., 2018; Gondur et al., 2024; Keeley et al., 2020; Aoi & Pillow, 2017). Let $\mathbf{B} \in \mathbb{R}^{N \times M}$ and
168 $\bar{\mathbf{B}} \in \mathbb{R}^{T \times M}$ denote discrete orthonormal Fourier basis matrices evaluated at the sample outputs
169 $\{y_n\}_{n=1}^N$ and the Riemann grid points $\{\bar{y}_t\}_{t=1}^T$, respectively. The decoding weights are then related
170 to their frequency-domain representations via:

$$171 \quad w_d(y_n) = (\mathbf{B} \boldsymbol{\omega}_d)_n, \text{ and } w_d(\bar{y}_t) = (\bar{\mathbf{B}} \boldsymbol{\omega}_d)_t,$$

172 where $\boldsymbol{\omega}_d = [\omega_{1,d}, \omega_{2,d}, \dots, \omega_{M,d}]^\top$ are Fourier coefficients for feature d , drawn independently as:

$$174 \quad \omega_{m,d} \sim \mathcal{N}(0, k_{m,d}), \quad k_{m,d} = \tilde{\rho}_d \exp\left(-\frac{1}{2} f_m^2 \ell_d^2\right) \text{ for } m = 1, \dots, M, \quad (2)$$

176 with $\tilde{\rho}_d = \sqrt{2\pi} \rho_d \ell_d$, and f_m denoting the m^{th} Fourier frequency. By truncating to $M \ll T, N$ basis
177 functions, we drastically reduce the dimensionality of inference. In this formulation, inference reduces
178 to estimating low-dimensional Fourier coefficients $\{\omega_d\}_{d=1}^D$, which parameterize the decoding weight
179 functions via a fixed orthonormal basis. This reparameterization turns the original infinite-dimensional
180 inference problem into a tractable finite-dimensional one in the frequency domain.

182 3.3 STOCHASTIC VARIATIONAL OPTIMIZATION IN THE FREQUENCY DOMAIN
183

184 We assume the variational distribution over frequency-domain weights is fully factorized across
185 features and frequencies, with each component following a univariate Gaussian:

$$186 \quad q(\boldsymbol{\omega}) = \prod_{d=1}^D \prod_{m=1}^M q(\omega_{m,d}), \quad q(\omega_{m,d}) \sim \mathcal{N}(\mu_{m,d}, \sigma_{m,d}^2).$$

188 Under this assumption, the expected log-likelihood term in the ELBO (Eq. 1) becomes:

$$189 \quad \mathbb{E}_{q_\psi} \left[\log p_\theta(\{\mathbf{x}_n\}_{n=1}^N | \boldsymbol{\omega}) \right] = \sum_{n=1}^N \sum_{d=1}^D (\mathbf{B} \boldsymbol{\mu}_d)_n x_{n,d} - \mathbb{E}_{q_\psi} \left[\sum_{n=1}^N \log \left(\Delta \sum_{t=1}^T \exp \left(\sum_{d=1}^D (\bar{\mathbf{B}} \boldsymbol{\omega}_d)_t x_{n,d} \right) \right) \right],$$

192 where the second expectation is approximated via Monte Carlo sampling (Robert et al., 1999). The
193 KL divergence term in the ELBO (Eq. 1), due to the Gaussian assumptions, admits a closed-form:

$$194 \quad D_{KL}(q_\psi(\boldsymbol{\omega}) || p_\theta(\boldsymbol{\omega})) = \frac{1}{2} \sum_d \left(\sum_m (\log(k_{m,d}/\sigma_{m,d}^2)) + \sum_m \sigma_{m,d}^2/k_{m,d} + \sum_m (\mu_{m,d})^2/k_{m,d} \right).$$

197 We jointly optimize the variational parameters $\{\mu_{m,d}, \sigma_{m,d}\}_{m,d=1}^{M,D}$ and GP hyperparameters $\theta =$
198 $\{\rho_d, \ell_d\}_{d=1}^D$ using stochastic variational inference with mini-batches of size $N' \ll N$, thus facilitating
199 the implementation to scale with N (Hoffman et al., 2013). We used the Adam optimizer (Kingma
200 & Ba, 2017) for training, with all scale parameters (including θ) optimized in log-space to ensure
201 positivity. Extensive simulations (Appendix A.1) show that the proposed inference procedure reliably
202 recovers both the decoding weights and hyperparameters across diverse settings.

204 **Computational scaling:** We evaluated the computational efficiency of CMLR across a range of
205 settings for the number of neurons/features D , samples N , and Fourier components M , as shown
206 in Appendix A.3, Fig. S3. Training time scales linearly with the number of neurons D : for example,
207 convergence requires roughly 10^2 seconds for $D \approx 200$ and 10^3 seconds for $D \approx 2000$ on a
208 standard laptop (Intel i7 2.4 GHz CPU, 16 GB RAM). Thanks to stochastic variational inference,
209 training time increases only modestly with the number of samples N . In addition, both runtime and
210 decoding performance are largely insensitive to the number of Fourier components M , indicating that
211 relatively small M values are sufficient for accurate estimation. Overall, Fig. S3 shows that CMLR is
212 computationally efficient and robust across a broad range of dataset sizes and configurations.

213 3.4 EXTENSION TO MULTI-DIMENSIONAL OUTPUTS
214

215 While previous sections focused on scalar outputs, CMLR naturally extends to multi-dimensional
216 settings, enabling multivariate conditional density estimation. For example, suppose the output

variable is two-dimensional, $\mathbf{y} = [y^{(1)}, y^{(2)}]$. We model the GP prior covariance of the decoding weight functions using an anisotropic RBF kernel (Rasmussen & Williams, 2006), which assigns separate length scales to each output dimension:

$$K_d(\mathbf{y}_{n'}, \mathbf{y}_{n''}) = \rho_d \exp\left(-\frac{1}{2} \left(\left(y_{n'}^{(1)} - y_{n''}^{(1)}\right)^2 / \left(\ell_d^{(1)}\right)^2 + \left(y_{n'}^{(2)} - y_{n''}^{(2)}\right)^2 / \left(\ell_d^{(2)}\right)^2 \right)\right).$$

This results in the following modified frequency-domain representation of the prior variance (Eq. 2):

$$k_{m,d} = \tilde{\rho}_d \exp\left(-\frac{1}{2} \left(\left(f_m^{(1)}\right)^2 \left(\ell_d^{(1)}\right)^2 + \left(f_m^{(2)}\right)^2 \left(\ell_d^{(2)}\right)^2 \right)\right) \text{ for } m = 1, \dots, M, \quad (3)$$

where $\tilde{\rho}_d = 2\pi\rho_d\ell_d^{(1)}\ell_d^{(2)}$, and $f_m^{(1)}, f_m^{(2)}$ denote the Fourier frequencies in the two output dimensions. Our stochastic variational inference framework generalizes naturally to this multi-dimensional setting. We jointly estimate the variational parameters $\{\mu_{m,d}, \sigma_{m,d}\}_{m,d=1}^{M,D}$ along with the GP hyperparameters $\theta = \left\{\rho_d, \ell_d^{(1)}, \ell_d^{(2)}\right\}_{d=1}^D$. Fig. S4 presents simulation results demonstrating that the proposed inference procedure accurately recovers the true underlying parameters in the 2D stimulus setting.

4 OUTPUT PREDICTION USING THE TRAINED CMLR MODEL

Once the CMLR model is trained, the learned parameters can be used to predict outputs for test data at any desired resolution. For a target resolution δ , we uniformly partition the output range $[y_{\min}, y_{\max}]$ into a total of J classes, where $J = \text{ceil}((y_{\max} - y_{\min}) / \delta)$. Let \tilde{y}_j denote the center of the j^{th} bin. Based on this uniform grid, we construct the corresponding decoding Fourier basis matrix $\mathbf{B}^{\text{dec}} \in \mathbb{R}^{J \times M}$, and compute the decoding weights for features $d = 1, \dots, D$ at resolution δ as:

$$w_d(\tilde{y}_j) = (\mathbf{B}^{\text{dec}} \times \boldsymbol{\mu}_d)_j.$$

Given a test sample \mathbf{x}_n , we then compute the posterior over the output grid via the softmax function:

$$p(y_n = \tilde{y}_j \mid \mathbf{x}_n, \mathbf{w}(y)) = \frac{\exp(\mathbf{w}(\tilde{y}_j)^\top \mathbf{x}_n)}{\sum_{j'=1}^J \exp(\mathbf{w}(\tilde{y}_{j'})^\top \mathbf{x}_n)}.$$

This yields the full posterior conditional distribution. We then decode the output using either the posterior mean or the posterior mode, depending on the task objective. The posterior mean yields smooth, high-resolution predictions:

$$\hat{y}_{\text{mean}} = \sum_{j=1}^J \tilde{y}_j \cdot p(y_n = \tilde{y}_j \mid \mathbf{x}_n, \mathbf{w}(y)),$$

while the posterior mode selects the most likely output:

$$\hat{y}_{\text{mode}} = \arg \max_{j \in \{1:J\}} p(y_n = \tilde{y}_j \mid \mathbf{x}_n, \mathbf{w}(y)).$$

The mean decoder is particularly well-suited for regression-style tasks, whereas the mode decoder is preferable for minimizing classification error. Note that we can set δ to be arbitrarily small to achieve a desired level of resolution in output space.

5 APPLICATIONS TO NEURAL DECODING

We evaluated CMLR on four real-world neural datasets spanning diverse brain regions and species: mouse V1 (Stringer et al., 2021), monkey V1 (Graf et al., 2011), mouse hippocampal CA1 (Hazon et al., 2022; Jercog & Schnitzer, 2022), and monkey motor cortex (Glaser et al., 2018; 2020). For each dataset, we performed 5-fold cross-validation. In each fold, the data were split into 80% training and 20% test sets. For DNN and XGBoost, we further reserved 20% of the training set (i.e., 16% of the total data) as a validation set for hyperparameter tuning via Bayesian optimization (Gardner et al., 2014). For CMLR and the other baselines, hyperparameters were fixed per dataset. The selected CMLR design parameters and their rationale are provided in Appendix A.5. Final performance was averaged over the test sets across all folds. We compared CMLR with the following four baselines.

270 **Naive Bayes (NB):** We implemented a continuous-output variant of the Naive Bayes decoder that
 271 shares the same Gaussian process (GP) priors over decoding weight functions $w_d(y)$ as CMLR,
 272 using RBF kernels and Fourier-domain inference. However, unlike CMLR, NB assumes conditional
 273 independence of neural responses across features given the output, yielding the following likelihood:

$$274 \quad p\left(\{\mathbf{x}_n\}_{n=1}^N | \mathbf{w}(y)\right) = \prod_{n=1}^N \prod_{d=1}^D p(x_{n,d} | w_d(y)).$$

$$275$$

$$276$$

277 We used Gaussian observation models for calcium imaging data and Poisson observation models
 278 for spike count data, following Greenidge et al. (2024). This formulation preserves the functional
 279 interpretability of weights as tuning curves and supports CDE, but ignores correlations across neurons.
 280

281 **Flexible nonparametric conditional density estimation (FlexCode):** FlexCode is a state-of-the-art
 282 nonparametric CDE method that reformulates CDE as a series expansion problem, estimating the
 283 basis coefficients via regression (Izbicki & Lee, 2017). We use the publicly available implementation
 284 from Izbicki & Lee (2017) with Random Forest regression to estimate coefficients.

285 **Extreme Gradient Boosting (XGBoost):** XGBoost is a widely used implementation of gradient-
 286 boosted decision trees (Chen & Guestrin, 2016). We used the implementation from Glaser et al.
 287 (2020), which was specifically tuned for neural decoding and used multiple adjacent time bins as input.
 288 Similar to Glaser et al. (2020), we optimized hyperparameters using Bayesian optimization (Gardner
 289 et al., 2014) based on validation-set R^2 , searching over tree depth, number of trees, and learning rate.

290 **Deep neural network (DNN):** DNNs consist of multiple layers of nonlinear transformations that
 291 map inputs to outputs (Orbach, 1962; Goodfellow et al., 2016). We used the architecture and training
 292 procedure from Glaser et al. (2020), which was specifically designed for neural decoding. Following
 293 this work, we tuned the number of hidden units, dropout rate, and number of epochs using Bayesian
 294 optimization based on validation R^2 , and we used multiple adjacent time bins as input.

295 296 5.1 PRIMARY VISUAL CORTEX (V1): DECODING DRIFTING GRATING ORIENTATION

297 We first applied our method to three two-photon calcium imaging datasets recorded from mouse
 298 primary visual cortex during drifting grating stimuli (Stringer et al., 2021). Each dataset included
 299 $D=11311-20616$ neurons (input features) and $N = 4282-4469$ trials, with stimulus orientations
 300 (outputs) uniformly sampled from $[0, 2\pi]$. We used the same features \mathbf{x} as in Stringer et al. (2021).

301 Fig. 2 summarizes the results. Fig. 2A compares decoding weights from the CMLR and Naive Bayes
 302 models for selected neurons, normalized to $[0, 1]$ in amplitude. CMLR weights appear smoother,
 303 consistent with the larger inferred length scales shown in Fig. 2B. We next assessed mean absolute
 304 circular error across decoding grid resolutions, controlled by the number of decoding classes J
 305 (Fig. 2C). CMLR consistently outperformed FlexCode and Naive Bayes, with performance gains
 306 saturating beyond $J \approx 5000$. We also compared CMLR to XGBoost and DNN decoders (Fig. 2D-E).
 307 These models are omitted from Fig. 2C because point-estimate regressors lack a conditional density
 308 and do not naturally admit resolution-dependent analysis. Fig. 2D shows decoded versus true
 309 orientation, with CMLR predictions clustering tightly around the identity line, with most large
 310 errors occurring near 180° , reflecting underlying bimodality. Fig. 2E shows that CMLR achieves
 311 the lowest decoding error (mean \pm SD: $3.1 \pm 9.3^\circ$, median: 2.1° , Inter-Quatile range (IQR): 2.7°),
 312 followed by FlexCode ($3.2 \pm 5.5^\circ$, 2.2° , 2.8°), Naive Bayes ($4.9 \pm 10.8^\circ$, 3.3° , 4.4°), XGBoost
 313 ($13.6 \pm 23.4^\circ$, 6.9° , 11.1°), and DNN ($18.3 \pm 23.6^\circ$, 11.9° , 16.5°). Moreover, the scalability analysis
 314 in Appendix A.6 (Fig. S5) shows that CMLR experiences only modest reductions in accuracy as D
 315 and N decrease, with an even larger performance gap over XGBoost and DNN in low-data settings.

316 Next, we applied our method to five electrophysiological datasets from monkey primary visual
 317 cortex, recorded under drifting grating stimuli (Graf et al., 2011). Each dataset contained spiking
 318 activity from $D = 113-148$ neurons across 72 discrete grating orientations (spaced at 5° intervals),
 319 with a total of $N = 3600$ trials. Although CMLR is designed for continuous outputs, it naturally
 320 accommodates discrete settings without modification. Using the same inference settings as before,
 321 we found that CMLR and FlexCode consistently outperformed all baseline models (Fig. S6).

322 As a correlation-aware decoder, CMLR stands in contrast to the correlation-blind Naive Bayes model
 323 (Greenidge et al., 2024), reinforcing the importance of modeling noise correlations for accurate
 324 decoding in V1. It is also noteworthy that the discrete MLR model in Greenidge et al. (2024) can

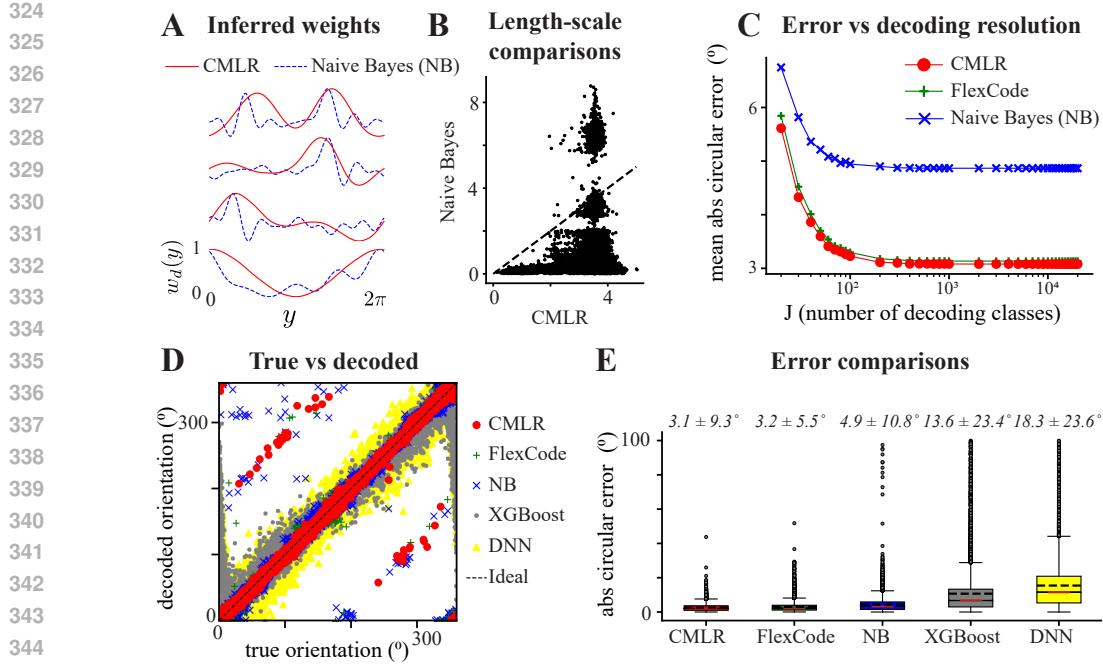


Figure 2: Application of the proposed method to mouse V1 data (data from Stringer et al. (2021)). (A) Decoding weights inferred by the CMLR and Naive Bayes (NB) models for selected neurons, normalized to $[0, 1]$. (B) Scatter plots comparing inferred length scales by the CMLR model versus NB model for individual neurons. (C) Mean absolute circular error as a function of the number of decoding classes J for CMLR, FlexCode, and NB. (D) Scatter plots of decoded versus true stimulus orientations across four models: CMLR, FlexCode, NB, XGBoost, and DNN. (E) Box plots comparing the absolute circular decoding error across all methods. Mean errors \pm standard deviation are indicated as insets.

be seen as a special case of CMLR in the low- J regime. As J increases, CMLR enables principled evaluation of resolution-dependent performance in the high-resolution limit, rather than relying on arbitrary discretization. This is especially relevant for continuous or circular variables, such as orientation, where fine-grained distinctions are behaviorally meaningful. The learned decoding functions $w_d(y)$ act like tuning curves, providing smooth and interpretable weights that link individual neurons to specific stimuli or behavioral outputs. This makes CMLR not only a powerful decoder but also a useful tool for probing population coding in V1.

5.2 HIPPOCAMPUS CA1: DECODING POSITION DURING SPATIAL NAVIGATION

We next applied CMLR to eight calcium imaging datasets recorded from pyramidal neurons in the mouse hippocampus CA1 region, while the animals navigated a 120-cm linear track to collect water rewards (data from Hazon et al. (2022); Jercog & Schnitzer (2022)). Each dataset contained $D = 151\text{--}497$ neurons (input features), and we used the same preprocessed neural features \mathbf{x} as in Hazon et al. (2022); Jercog & Schnitzer (2022), downsampled by a factor of 10, yielding $N = 3600\text{--}5524$ samples. Position outputs were normalized to $[0, 1]$ for ease of comparison.

Fig. 3 summarizes the results. Panel A shows that CMLR consistently outperformed FlexCode and Naive Bayes in mean absolute error across decoding grid resolutions. This reinforces the benefit of modeling population-level structure in hippocampal circuits. Panel B displays scatter plots of true versus decoded positions for all models, with CMLR predictions aligning most closely with the identity line. Panel C compares Euclidean decoding errors: CMLR achieved the lowest error (mean \pm SD: 0.15 ± 0.31 , median: 0.01, IQR: 0.09), followed by FlexCode (0.16 ± 0.30 , 0.01, 0.07), Naive Bayes (0.16 ± 0.31 , 0.02, 0.06), XGBoost (0.16 ± 0.13 , 0.11, 0.16), and DNN (0.18 ± 0.16 , 0.15, 0.19). Together, these findings demonstrate the flexibility and robustness of CMLR across continuous decoding tasks in hippocampal circuits.

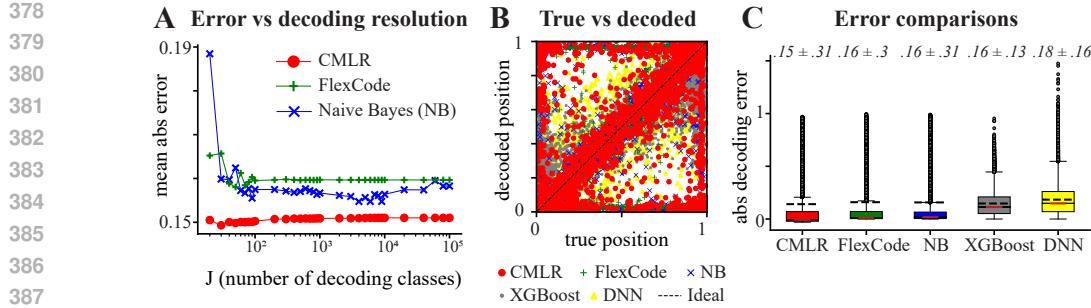


Figure 3: Application of the proposed method to mouse hippocampal data (Hazon et al., 2022; Jercog & Schnitzer, 2022). (A) Mean absolute error for CMLR, FlexCode, and Naive Bayes (NB) as a function of the number of decoding classes J . (B) Scatter plots comparing true vs. decoded spatial positions for CMLR, FlexCode, NB, XGBoost, and DNN. (C) Box plots comparing absolute decoding errors across models (insets: mean \pm standard deviation).

5.3 MOTOR CORTEX: DECODING 2D VELOCITY IN A REACHING TASK

We then applied CMLR to a dataset recorded from the motor cortex of a monkey performing a target-reaching task (data from Glaser et al. (2018; 2020)). In this task, the monkey controlled a cursor on a screen using a manipulandum (Glaser et al., 2018), and our goal was to decode the cursor’s two-dimensional (2D) velocity in the x and y directions. We used the same preprocessed neural features \mathbf{x} as in Glaser et al. (2020). The dataset comprised $N = 25,299$ samples over a 21-minute session, with spiking activity from $D = 164$ neurons.

Fig. 4 summarizes the results. Panel A shows inferred decoding weights for seven example neurons, revealing diverse spatial tuning profiles in the 2D velocity space; with all neurons shown in Fig. S7. Additional analyses in Fig. S8 show that the inferred weight functions reflect empirical spike–velocity structure and remain smooth and coherent even when trained on restricted portions of the velocity space. Panel B compares true and predicted velocities for all models; CMLR aligns closely with the identity line. Panel C presents Euclidean decoding errors and reports the coefficient of determination (R^2): CMLR achieves strong performance (0.53), outperforming FlexCode (0.35) and Naive Bayes (−0.43), and approaching XGBoost (0.55) and DNN (0.58). The higher scores of XGBoost and DNN are expected, given the large size of this dataset, which favors high-capacity nonlinear models. CMLR

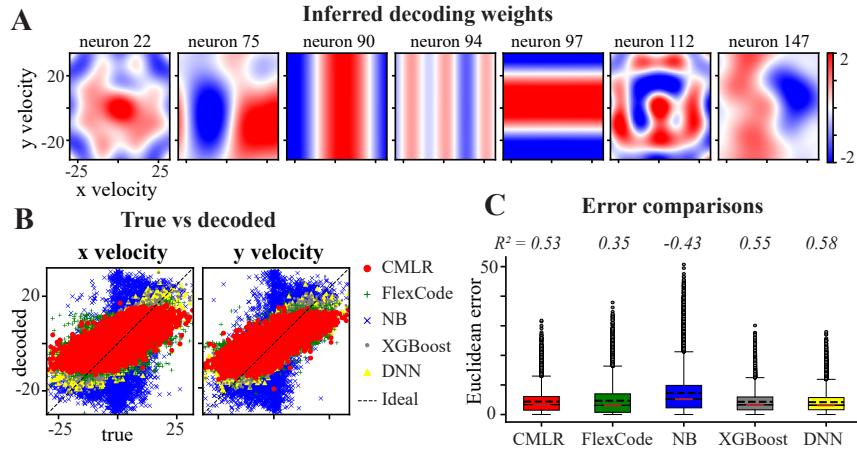


Figure 4: Decoding 2D cursor velocity from motor cortex data (Glaser et al., 2018; 2020). (A) Decoding weights inferred by CMLR for seven representative neurons (full set shown in Fig. S7) (B) Scatter plots comparing true versus decoded x (left) and y (right) cursor velocities for all methods: CMLR, FlexCode, Naive Bayes (NB), XGBoost, and deep neural networks (DNN). (C) Box plots of Euclidean decoding error across all methods (insets report the R^2 score).

432 nevertheless remains competitive while also providing full conditional densities and interpretable
 433 tuning functions, capabilities that are not available in point-estimate regressors. Overall, these findings
 434 demonstrate that CMLR extends naturally to multivariate-output CDE and continuous decoding.
 435

436 5.4 CALIBRATION OF PREDICTIVE UNCERTAINTY

438 Finally, we evaluated the calibration of the predictive posteriors from the two CDE methods, CMLR
 439 and FlexCode, using PIT histograms and quantile calibration curves (Fig. S9; see Appendix A.10
 440 for details). Across mouse V1, macaque V1, and mouse hippocampal CA1, CMLR consistently
 441 produces well-calibrated posteriors: PIT histograms are close to uniform, quantile calibration curves
 442 track the identity line, and PIT values vary smoothly with decoding error. FlexCode, in contrast,
 443 shows systematic miscalibration, with peaked or multimodal PIT distributions, under-coverage
 444 in quantile calibration, and irregular PIT-error relationships. These results indicate that CMLR
 445 provides more reliable and interpretable uncertainty estimates, which is important in neural decoding
 446 applications where posterior uncertainty guides scientific interpretation and downstream decisions,
 447 such as identifying ambiguous stimuli or estimating decoding confidence.
 448

449 5.5 RUN TIME COMPARISONS

450 Table 1 reports average training times for all methods on a 2.4 GHz Intel i7 CPU with 16 GB RAM
 451 (all without parallelization). CMLR trains within minutes to a few hours, depending on dataset
 452 size, with run times comparable to FlexCode and faster than Naive Bayes. XGBoost and DNN are
 453 generally faster, but they do not provide full conditional densities or calibrated uncertainty. Overall,
 454 CMLR achieves competitive computational efficiency while offering richer probabilistic outputs.
 455

Table 1: Run time comparisons for all methods. Values are averaged over folds.

456 Dataset	<i>D</i> (# neurons)	<i>N</i> (# trials)	CMLR	FlexCode	NB	XGBoost	DNN
457 Mouse V1	11–21 k	4.3–4.5 k	3.3 h	2.3 h	22 h	4.4 h	33 m
459 Monkey V1	113–148	3.6 k	5.5 m	25 s	2.6 m	2 m	1.9 m
460 Mouse CA1	151–497	3.6–5.5 k	10 m	47 s	4 m	4 m	2 m
461 Monkey MC	164	25 k	10 m	11 m	30 m	23 s	5 m

462 6 CONCLUSION AND DISCUSSION

465 We introduce the Continuous Multinomial Logistic Regression (CMLR) model, a novel exponential-
 466 family framework for scalable, nonparametric conditional density estimation (CDE). CMLR extends
 467 multinomial logistic regression (MLR) to continuous outputs by replacing discrete class weights with
 468 smooth, output-indexed functions drawn from Gaussian process (GP) priors, yielding normalized
 469 densities while preserving MLR’s additive, interpretable structure. For efficient training, we develop
 470 a memory-efficient stochastic variational inference algorithm in the Fourier domain, leveraging GP
 471 stationarity for kernel diagonalization and basis truncation. Applied to large-scale neural datasets
 472 from mouse and monkey V1, hippocampus CA1, and motor cortex, CMLR outperforms Naive Bayes,
 473 XGBoost, deep neural networks, and the leading CDE method FlexCode, while providing calibrated
 474 posteriors and interpretable structure. Comparisons with Naive Bayes demonstrate that explicitly
 475 modeling correlation structure substantially improves decoding performance across all brain areas.
 476

477 To our knowledge, CMLR represents the first application of CDE to neural decoding, enabling flexible
 478 estimation of full posterior distributions over behaviorally or perceptually relevant variables. While
 479 modern high-capacity nonlinear models may achieve stronger predictive accuracy in very large-data
 480 regimes, they typically require extensive hyperparameter tuning and offer limited interpretability.
 481 CMLR plays a complementary role: it yields fully probabilistic and well-calibrated conditional
 482 densities, provides access to the full posterior rather than point estimates, is data-efficient with
 483 stable performance across datasets, and remains easy to train because it requires only a few design
 484 parameters and no dataset-specific hyperparameter tuning. In addition, CMLR produces transparent
 485 tuning functions that can be directly visualized and compared across neurons and conditions, in the
 same manner as classical systems-neuroscience tuning curves, a property not typically supported by
 black-box models. We therefore view CMLR as a practical and interpretable baseline or diagnostic
 model that complements more complex nonlinear approaches in modern neural decoding settings.

486 **Connections to Prior Work:** CMLR builds on a rich body of research in nonparametric Bayesian
 487 inference using Gaussian processes (Williams & Barber, 1998; Girolami & Rogers, 2006; Bishop,
 488 2006), but is conceptually distinct from standard GP regression (Rasmussen & Williams, 2006; Chan,
 489 2013) and GP classification (Liu et al., 2022). In GP regression, the output is modeled as a GP
 490 function of the input, yielding Gaussian predictive distributions. In GP classification, a latent GP is
 491 passed through a nonlinear link to produce class probabilities over discrete outputs. Both approaches
 492 lack the flexibility to represent rich or structured conditional densities over continuous outputs, and
 493 related methods that approximate uncertainty for point estimators, such as Laplace approximation
 494 (Daxberger et al., 2022), also do not provide full conditional densities. In contrast, CMLR places
 495 GP priors on weight functions defined over the output space, enabling flexible estimation of full
 496 conditional densities. CMLR is also closely related to logistic Gaussian processes (Tokdar et al.,
 497 2004) and early unconditional density models such as the Gaussian process density sampler (Murray
 498 et al., 2008), but generalizes them into a conditional, feature-decomposed framework that preserves
 499 the additive structure and interpretability of MLR. As a CDE model, CMLR complements several
 500 existing approaches, including kernel-ratio estimators (Bashtannyk & Hyndman, 2001; Holmes
 501 et al., 2012; Sugiyama et al., 2010), mixture density networks (Bishop, 1994), neural-kernel mixture
 502 models (Ambrogioni et al., 2017), conditional normalizing flows (Papamakarios et al., 2017), logistic
 503 Gaussian process partition models (Payne et al., 2019), Lindsey’s Method (Gao & Hastie, 2022), and
 504 histogram trees (Yang & van Leeuwen, 2024). However, many of these methods face limitations
 505 in scalability, interpretability, or statistical robustness in high-dimensional settings. CMLR offers a
 506 nonparametric and additive alternative that provides interpretable weight functions, supports multiple
 507 output dimensions, and achieves computational scalability through structured inference. CMLR
 508 also has conceptual links to neural operator models, particularly those defined over continuous
 509 input–output mappings (Kovachki et al., 2023; Li et al., 2021). To scale CMLR to large datasets, we
 510 leverage sparse Fourier-domain representations developed for variational GP inference (Hensman
 511 et al., 2018; Keeley et al., 2020; Gondur et al., 2024), closely related in motivation and formulation to
 512 Fourier Neural Operators (Li et al., 2021). Our model also builds directly on the discrete multinomial
 513 logistic regression framework for neural decoding in Greenidge et al. (2024), extending it to handle
 514 continuous outputs in a principled and computationally efficient manner.

515 **Limitations and Future Directions:** While CMLR provides a unified and scalable framework
 516 for CDE, several directions remain open for future work. First, unlike XGBoost and DNNs that
 517 can implicitly capture temporal continuity by incorporate activity from multiple adjacent time bins
 518 (Glaser et al., 2020), CMLR does not yet include explicit output-space priors, such as temporal or
 519 spatial smoothness, which could be useful in navigation or motor decoding. Integrating structured
 520 priors into the conditional likelihood, or combining CMLR with latent dynamical models (Park
 521 et al., 2015; Damianou et al., 2011), may enhance temporal generalization. Second, the current
 522 CMLR model treats each decoding weight independently; multivariate GP priors (Bonilla et al.,
 523 2007; Keeley et al., 2020) could share structure across neurons or time and potentially improve
 524 generalization. However, such coupling would obscure neuron-specific tuning curves and thus
 525 compromise interpretability. Third, while fixed Fourier-domain bases and RBF kernels enable
 526 scalable inference, more flexible alternatives such as adaptive basis functions (Evans & Nair, 2018)
 527 or spectral mixture kernels (Paciorek & Schervish, 2003) could further enhance accuracy, though
 528 it remains to be tested whether such extensions retain the same computational scalability. Fourth,
 529 while additivity over inputs ensures scalability, convexity, and interpretability, incorporating low-rank
 530 or kernelized interaction models (Duvenaud et al., 2011) could enhance model expressiveness by
 531 capturing higher-order feature dependencies. Fifth, although we used Riemann integration to support
 532 tractable variational inference, advanced numerical techniques such as general quadrature methods
 533 (Hildebrand, 1987), polynomial approximations (Trefethen, 2019), or adaptive binning (Wand, 1997)
 534 may offer improvements in accuracy or efficiency. Sixth, hybrid approaches that combine inducing-
 535 point methods with Fourier domain representations (Hensman et al., 2018) could further improve
 536 computational scalability. Finally, although we focused here on sensory and motor decoding, CMLR
 537 is broadly applicable to other neural decoding tasks, including decoding motor intention (Tam et al.,
 538 2019), speech (Chen et al., 2024), spatial attention (Smith et al., 2013), and decision variables
 539 (Baeg et al., 2003). Beyond neuroscience, CMLR may also benefit other CDE applications such as
 head pose estimation (Murphy-Chutorian & Trivedi, 2009), time-to-event modeling (Gensheimer &
 Narasimhan, 2019), climate prediction (Rasp et al., 2018), photometric redshift estimation (Dalmasso
 et al., 2020), and geolocation and trajectory forecasting (Rhinehart et al., 2019). Together, these
 directions position CMLR as a versatile CDE framework for neural decoding and beyond.

540 REFERENCES

541

542 Douglas G Altman and Patrick Royston. The cost of dichotomising continuous variables. *BMJ*, 332
543 (7549):1080, May 2006.

544 Luca Ambrogioni, Umut Güçlü, Marcel A. J. van Gerven, and Eric Maris. The kernel mixture network:
545 A nonparametric method for conditional density estimation of continuous random variables, 2017.
546 URL <https://arxiv.org/abs/1705.07111>.

547

548 Mikio C. Aoi and Jonathan W. Pillow. Scalable bayesian inference for high-dimensional neural
549 receptive fields. *bioRxiv*, 2017. doi: 10.1101/212217.

550 E H Baeg, Y B Kim, K Huh, I Mook-Jung, H T Kim, and M W Jung. Dynamics of population code
551 for working memory in the prefrontal cortex. *Neuron*, 40(1):177–188, September 2003.

552

553 David M. Bashtannyk and Rob J. Hyndman. Bandwidth selection for kernel conditional density
554 estimation. *Computational Statistics & Data Analysis*, 36(3):279–298, 2001. ISSN 0167-9473.
555 doi: [https://doi.org/10.1016/S0167-9473\(00\)00046-3](https://doi.org/10.1016/S0167-9473(00)00046-3). URL <https://www.sciencedirect.com/science/article/pii/S0167947300000463>.

556

557 M. J. Beal. *Variational algorithms for approximate Bayesian inference*. PhD thesis, University of
558 London, University College London (United Kingdom), 2003. URL <https://discovery.ucl.ac.uk/id/eprint/10101435>.

559

560

561 Christopher M. Bishop. Mixture density networks. Workingpaper, Aston University, 1994.

562

563 Christopher M Bishop. *Pattern Recognition and Machine Learning*. Springer, 2006.

564

565 David M Blei, Alp Kucukelbir, and Jon D McAuliffe. Variational inference: A review for statisticians.
566 *Journal of the American Statistical Association*, 112(518):859–877, 2017. doi: <https://doi.org/10.1080/01621459.2017.1285773>.

567

568 Edwin V Bonilla, Kian Chai, and Christopher Williams. Multi-task gaussian pro-
569 cess prediction. In J. Platt, D. Koller, Y. Singer, and S. Roweis (eds.), *Ad-
570 vances in Neural Information Processing Systems*, volume 20. Curran Associates, Inc.,
571 2007. URL https://proceedings.neurips.cc/paper_files/paper/2007/file/66368270ffd51418ec58bd793f2d9b1b-Paper.pdf.

572

573 E. Brown, L. Frank, D. Tang, M. Quirk, and M. Wilson. A statistical paradigm for neural spike train
574 decoding applied to position prediction from ensemble firing patterns of rat hippocampal place
575 cells. *Journal of Neuroscience*, 18:7411–7425, 1998.

576

577 Antoni B. Chan. Multivariate generalized gaussian process models, 2013. URL <https://arxiv.org/abs/1311.0360>.

578

579 Tianqi Chen and Carlos Guestrin. Xgboost: A scalable tree boosting system. In *Proceedings of
580 the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining*,
581 KDD '16, pp. 785–794, New York, NY, USA, 2016. Association for Computing Machinery.
582 ISBN 9781450342322. doi: 10.1145/2939672.2939785. URL <https://doi.org/10.1145/2939672.2939785>.

583

584 Xupeng Chen, Ran Wang, Amirhossein Khalilian-Gourtani, Leyao Yu, Patricia Dugan, Daniel
585 Friedman, Werner Doyle, Orrin Devinsky, Yao Wang, and Adeen Flinker. A neural speech
586 decoding framework leveraging deep learning and speech synthesis. *Nature Machine Intelligence*,
587 6(4):467–480, Apr 2024. ISSN 2522-5839. doi: 10.1038/s42256-024-00824-8. URL <https://doi.org/10.1038/s42256-024-00824-8>.

588

589

590 N. Dalmasso, T. Pospisil, A.B. Lee, R. Izbicki, P.E. Freeman, and A.I. Malz. Conditional density
591 estimation tools in python and r with applications to photometric redshifts and likelihood-free
592 cosmological inference. *Astronomy and Computing*, 30:100362, 2020. ISSN 2213-1337. doi:
593 <https://doi.org/10.1016/j.ascom.2019.100362>. URL <https://www.sciencedirect.com/science/article/pii/S2213133719301313>.

594 Andreas Damianou, Michalis Titsias, and Neil Lawrence. Variational gaussian process dy-
 595 namical systems. In J. Shawe-Taylor, R. Zemel, P. Bartlett, F. Pereira, and K.Q. Wein-
 596 berger (eds.), *Advances in Neural Information Processing Systems*, volume 24. Curran Asso-
 597 ciates, Inc., 2011. URL https://proceedings.neurips.cc/paper_files/paper/2011/file/af4732711661056eadbf798ba191272a-Paper.pdf.

598

599 A. P. Dawid. Present position and potential developments: Some personal views: Statistical theory:
 600 The prequential approach. *Journal of the Royal Statistical Society. Series A (General)*, 147(2):
 601 278–292, 2025/09/10/ 1984. doi: 10.2307/2981683. URL <https://doi.org/10.2307/2981683>. Full publication date: 1984.

602

603

604 Erik Daxberger, Agustinus Kristiadi, Alexander Immer, Runa Eschenhagen, Matthias Bauer, and
 605 Philipp Hennig. Laplace redux – effortless bayesian deep learning, 2022. URL <https://arxiv.org/abs/2106.14806>.

606

607 David Duvenaud, Hannes Nickisch, and Carl Edward Rasmussen. Additive gaussian processes, 2011.
 608 URL <https://arxiv.org/abs/1112.4394>.

609

610 Trefor Evans and Prasanth Nair. Scalable Gaussian processes with grid-structured eigenfunctions
 611 (GP-GRIEF). In Jennifer Dy and Andreas Krause (eds.), *Proceedings of the 35th International
 612 Conference on Machine Learning*, volume 80 of *Proceedings of Machine Learning Research*,
 613 pp. 1417–1426. PMLR, 10–15 Jul 2018. URL <https://proceedings.mlr.press/v80/evans18a.html>.

614

615 Zijun Gao and Trevor Hastie. Lincde: conditional density estimation via lindsey’s method. *Journal
 616 of machine learning research*, 23(52):1–55, 2022.

617

618 Jacob R Gardner, Matt J Kusner, Zhixiang Eddie Xu, Kilian Q Weinberger, and John P Cunningham.
 619 Bayesian optimization with inequality constraints. In *ICML*, volume 2014, pp. 937–945, 2014.

620

621 Michael F Gensheimer and Balasubramanian Narasimhan. A scalable discrete-time survival model
 622 for neural networks. *PeerJ*, 7:e6257, January 2019.

623

624 A. Georgopoulos, J. Kalaska, R. Caminiti, and J. Massey. On the relations between the direction
 625 of two-dimensional arm movements and cell discharge in primate motor cortex. *Journal of
 626 Neuroscience*, 2:1527–37, 1982.

627

628 Mark Girolami and Simon Rogers. Variational bayesian multinomial probit regression with gaussian
 629 process priors. *Neural Computation*, 18(8):1790–1817, 2006. doi: 10.1162/neco.2006.18.8.1790.

630

631 Joshua I. Glaser, Matthew G. Perich, Pavan Ramkumar, Lee E. Miller, and Konrad P. Kording.
 632 Population coding of conditional probability distributions in dorsal premotor cortex. *Nature
 633 Communications*, 9(1):1788, May 2018. ISSN 2041-1723. doi: 10.1038/s41467-018-04062-6.
 634 URL <https://doi.org/10.1038/s41467-018-04062-6>.

635

636 Joshua I. Glaser, Ari S. Benjamin, Raeed H. Chowdhury, Matthew G. Perich, Lee E. Miller, and Kon-
 637 rad P. Kording. Machine learning for neural decoding. *eNeuro*, 7(4), 2020. doi: 10.1523/ENEURO.
 638 0506-19.2020. URL <https://www.eneuro.org/content/7/4/ENEURO.0506-19>.
 639

640

641 Rabia Gondur, Usama Bin Sikandar, Evan Schaffer, Mikio Christian Aoi, and Stephen L. Keeley.
 642 Multi-modal gaussian process variational autoencoders for neural and behavioral data. In *The
 643 Twelfth International Conference on Learning Representations, ICLR 2024, Vienna, Austria,
 644 May 7-11, 2024*. OpenReview.net, 2024. URL <https://openreview.net/forum?id=aGH43rjoe4>.

645

646 Ian Goodfellow, Yoshua Bengio, and Aaron Courville. *Deep Learning*. MIT Press, 2016. http:
 647 //www.deeplearningbook.org.

648

649 Arnulf B. A. Graf, Adam Kohn, Mehrdad Jazayeri, and J. Anthony Movshon. Decoding the activity
 650 of neuronal populations in macaque primary visual cortex. *Nature Neuroscience*, 14(2):239–245,
 651 Feb 2011. ISSN 1546-1726. doi: 10.1038/nn.2733. URL <https://doi.org/10.1038/nn.2733>.

648 C. Daniel Greenidge, Benjamin Scholl, Jacob L. Yates, and Jonathan W. Pillow. Efficient decoding
 649 of large-scale neural population responses with gaussian-process multiclass regression. *Neural*
 650 *Computation*, 36(2):175–226, 01 2024. ISSN 0899-7667. doi: 10.1162/neco_a_01630. URL
 651 https://doi.org/10.1162/neco_a_01630.

652 Omer Hazon, Victor H. Mince, David P. Tomàs, Surya Ganguli, Mark J. Schnitzer, and Pablo E.
 653 Jercog. Noise correlations in neural ensemble activity limit the accuracy of hippocampal spatial
 654 representations. *Nature Communications*, 13(1):4276, Jul 2022. ISSN 2041-1723. doi: 10.1038/
 655 s41467-022-31254-y. URL <https://doi.org/10.1038/s41467-022-31254-y>.

656 James Hensman, Nicolas Durrande, and Arno Solin. Variational fourier features for gaussian
 657 processes. *Journal of Machine Learning Research*, 18(151):1–52, 2018.

658 Francis B. Hildebrand. *Introduction to Numerical Analysis*. Dover Publications, New York, 2nd
 659 edition, 1987.

660 Matt Hoffman, David M. Blei, Chong Wang, and John Paisley. Stochastic variational inference, 2013.
 661 URL <https://arxiv.org/abs/1206.7051>.

662 Michael P Holmes, Alexander G Gray, and Charles Lee Isbell. Fast nonparametric conditional density
 663 estimation. *arXiv preprint arXiv:1206.5278*, 2012.

664 Heikki Huttunen, Tapio Manninen, Jukka-Pekka Kauppi, and Jussi Tohka. Mind reading with
 665 regularized multinomial logistic regression. *Machine vision and applications*, 24(6):1311–1325,
 666 2013.

667 Rob J. Hyndman, David M. Bashtannyk, and Gary K. Grunwald. Estimating and visualizing
 668 conditional densities. *Journal of Computational and Graphical Statistics*, 5(4):315–336, 1996.
 669 ISSN 10618600. URL <http://www.jstor.org/stable/1390887>.

670 Rafael Izbicki and Ann B. Lee. Converting high-dimensional regression to high-dimensional con-
 671 ditional density estimation. *Electronic Journal of Statistics*, 11(2):2800 – 2831, 2017. doi:
 672 10.1214/17-EJS1302. URL <https://doi.org/10.1214/17-EJS1302>.

673 Pablo Jercog and Mark Schnitzer. Functional calcium imaging recordings of hippocampal area
 674 ca1 from mice performing a linear track task. <http://dx.doi.org/10.6080/K0GH9G5X>,
 675 2022. Available at CRCNS.org.

676 Michael I Jordan, Zoubin Ghahramani, Tommi S Jaakkola, and Lawrence K Saul. An introduction
 677 to variational methods for graphical models. *Machine Learning*, 37(2):183–233, 1999. doi:
 678 <https://doi.org/10.1023/A:1007665907178>.

679 Stephen Keeley, Mikio Aoi, Yiyi Yu, Spencer Smith, and Jonathan W Pillow. Identifying
 680 signal and noise structure in neural population activity with gaussian process factor mod-
 681 els. In H. Larochelle, M. Ranzato, R. Hadsell, M.F. Balcan, and H. Lin (eds.), *Advances*
 682 in *Neural Information Processing Systems*, volume 33, pp. 13795–13805. Curran Asso-
 683 ciates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/file/9eed867b73ab1eab60583c9d4a789b1b-Paper.pdf.

684 Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization, 2017. URL
 685 <https://arxiv.org/abs/1412.6980>.

686 Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, Andrew
 687 Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces with
 688 applications to pdes. *Journal of Machine Learning Research*, 24(89):1–97, 2023.

689 Volodymyr Kuleshov, Nathan Fenner, and Stefano Ermon. Accurate uncertainties for deep learning
 690 using calibrated regression. In *International conference on machine learning*, pp. 2796–2804.
 691 PMLR, 2018.

692 Zongyi Li, Nikola Kovachki, Kamyar Azizzadenesheli, Burigede Liu, Kaushik Bhattacharya, Andrew
 693 Stuart, and Anima Anandkumar. Fourier neural operator for parametric partial differential equations,
 694 2021. URL <https://arxiv.org/abs/2010.08895>.

702 Haitao Liu, Yew-Soon Ong, Ziwei Yu, Jianfei Cai, and Xiaobo Shen. Scalable gaussian process
 703 classification with additive noise for non-gaussian likelihoods. *IEEE Transactions on Cybernetics*,
 704 52(7):5842–5854, 2022. doi: 10.1109/TCYB.2020.3043355.

705 Erik Murphy-Chutorian and Mohan Manubhai Trivedi. Head pose estimation in computer vision: A
 706 survey. *IEEE Transactions on Pattern Analysis and Machine Intelligence*, 31(4):607–626, 2009.
 708 doi: 10.1109/TPAMI.2008.106.

709 Iain Murray, David MacKay, and Ryan P Adams. The gaussian process density
 710 sampler. In D. Koller, D. Schuurmans, Y. Bengio, and L. Bottou (eds.), *Ad-*
 711 *vances in Neural Information Processing Systems*, volume 21. Curran Associates, Inc.,
 712 2008. URL https://proceedings.neurips.cc/paper_files/paper/2008/file/335f5352088d7d9bf74191e006d8e24c-Paper.pdf.

713 S. Nirenberg and P. E. Latham. Decoding neuronal spike trains: how important are correlations?
 714 *PNAS*, 100:7348–7353, 2003.

715 Farnaz Nojavan A., Song S. Qian, and Craig A. Stow. Comparative analysis of discretization methods
 716 in bayesian networks. *Environmental Modelling & Software*, 87:64–71, 2017. ISSN 1364-8152.
 717 doi: <https://doi.org/10.1016/j.envsoft.2016.10.007>. URL <https://www.sciencedirect.com/science/article/pii/S1364815216308672>.

718 J. Orbach. Principles of neurodynamics. perceptrons and the theory of brain mechanisms.
 719 *Archives of General Psychiatry*, 7(3):218–219, 09 1962. ISSN 0003-990X. doi: 10.1001/archpsyc.1962.01720030064010. URL <https://doi.org/10.1001/archpsyc.1962.01720030064010>.

720 Christopher Paciorek and Mark Schervish. Nonstationary covariance functions for gaussian
 721 process regression. In S. Thrun, L. Saul, and B. Schölkopf (eds.), *Advances in Neural Information Processing Systems*, volume 16. MIT Press, 2003. URL
 722 https://proceedings.neurips.cc/paper_files/paper/2003/file/326a8c055c0d04f5b06544665d8bb3ea-Paper.pdf.

723 L Paninski and JP Cunningham. Neural data science: accelerating the experiment-analysis-
 724 theory cycle in large-scale neuroscience. *Current Opinion in Neurobiology*, 50:232–241, 2018.
 725 ISSN 0959-4388. doi: <https://doi.org/10.1016/j.conb.2018.04.007>. URL <https://www.sciencedirect.com/science/article/pii/S0959438817302428>. Neurotechnologies.

726 George Papamakarios, Theo Pavlakou, and Iain Murray. Masked autoregressive flow for density
 727 estimation. In I. Guyon, U. Von Luxburg, S. Bengio, H. Wallach, R. Fergus, S. Vishwanathan, and
 728 R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 30. Curran Associates, Inc., 2017. URL https://proceedings.neurips.cc/paper_files/paper/2017/file/6c1da886822c67822bcf3679d04369fa-Paper.pdf.

729 Mijung Park, Gergo Bohner, and Jakob H Macke. Unlocking neural population non-stationarities
 730 using hierarchical dynamics models. In C. Cortes, N. Lawrence, D. Lee, M. Sugiyama, and
 731 R. Garnett (eds.), *Advances in Neural Information Processing Systems*, volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.cc/paper_files/paper/2015/file/28dd2c7955ce926456240b2ff0100bde-Paper.pdf.

732 R D Payne, N Guha, Y Ding, and B K Mallick. A conditional density estimation partition model
 733 using logistic gaussian processes. *Biometrika*, 107(1):173–190, December 2019.

734 Carl Edward Rasmussen and Christopher K. I. Williams. *Gaussian processes for machine learning*.
 735 Adaptive computation and machine learning. MIT Press, 2006. ISBN 026218253X.

736 Stephan Rasp, Michael S. Pritchard, and Pierre Gentine. Deep learning to represent subgrid pro-
 737 cesses in climate models. *Proceedings of the National Academy of Sciences*, 115(39):9684–
 738 9689, 2018. doi: 10.1073/pnas.1810286115. URL <https://www.pnas.org/doi/abs/10.1073/pnas.1810286115>.

756 Nicholas Rhinehart, Rowan McAllister, and Sergey Levine. Deep imitative models for flexible
 757 inference, planning, and control, 2019. URL <https://arxiv.org/abs/1810.06544>.

758

759 Jaakko Riihimäki and Aki Vehtari. Laplace Approximation for Logistic Gaussian Process Density
 760 Estimation and Regression. *Bayesian Analysis*, 9(2):425 – 448, 2014. doi: 10.1214/14-BA872.
 761 URL <https://doi.org/10.1214/14-BA872>.

762 Christian P Robert, George Casella, and George Casella. *Monte Carlo statistical methods*, volume 2.
 763 Springer, 1999.

764

765 Srikanth Ryali, Kaustubh Supekar, Daniel A Abrams, and Vinod Menon. Sparse logistic regression
 766 for whole-brain classification of fmri data. *NeuroImage*, 51(2):752–764, 2010.

767 Bernhard Schölkopf and Alexander J. Smola. *Learning with Kernels: Support Vector Machines,
 768 Regularization, Optimization, and Beyond*. The MIT Press, 12 2001. ISBN 9780262256933. doi:
 769 10.7551/mitpress/4175.001.0001. URL [https://doi.org/10.7551/mitpress/4175.
 770 001.0001](https://doi.org/10.7551/mitpress/4175.001.0001).

771

772 David V. Smith, John A. Clithero, Christopher Rorden, and Hans-Otto Karnath. Decoding the
 773 anatomical network of spatial attention. *Proceedings of the National Academy of Sciences*, 110
 774 (4):1518–1523, 2013. doi: 10.1073/pnas.1210126110. URL <https://www.pnas.org/doi/abs/10.1073/pnas.1210126110>.

775

776 Sutao Song, Gongxiang Chen, Yu Zhan, Jiacai Zhang, and Li Yao. Comparative study of two sparse
 777 multinomial logistic regression models in decoding visual stimuli from brain activity of fmri. In
 778 *Medical Imaging 2014: Image Processing*, volume 9034, pp. 447–452. SPIE, 2014.

779

780 Carsen Stringer, Michalis Michaelos, Dmitri Tsyboulski, Sarah E. Lindo, and Marius Pachitariu. High-
 781 precision coding in visual cortex. *Cell*, 184(10):2767–2778.e15, May 2021. ISSN 0092-8674. doi:
 782 10.1016/j.cell.2021.03.042. URL <https://doi.org/10.1016/j.cell.2021.03.042>.

783

784 Masashi Sugiyama, Ichiro Takeuchi, Taiji Suzuki, Takafumi Kanamori, Hirotaka Hachiya, and
 785 Daisuke Okanohara. Conditional density estimation via least-squares density ratio estimation.
 786 In Yee Whye Teh and Mike Titterington (eds.), *Proceedings of the Thirteenth International
 787 Conference on Artificial Intelligence and Statistics*, volume 9 of *Proceedings of Machine Learning
 788 Research*, pp. 781–788, Chia Laguna Resort, Sardinia, Italy, 13–15 May 2010. PMLR. URL
 789 <https://proceedings.mlr.press/v9/sugiyama10a.html>.

790

791 Wing-kin Tam, Tong Wu, Qi Zhao, Edward Keefer, and Zhi Yang. Human motor decoding from neural
 792 signals: a review. *BMC Biomedical Engineering*, 1(1):22, Sep 2019. ISSN 2524-4426. doi: 10.
 793 1186/s42490-019-0022-z. URL <https://doi.org/10.1186/s42490-019-0022-z>.

794

795 Surya T Tokdar, Yu M Zhu, and Jayanta K Ghosh. Bayesian density regression with logistic gaussian
 796 process and subspace projection. *Bayesian Analysis*, 1(1), 2004.

797

798 Lloyd N. Trefethen. *Approximation Theory and Approximation Practice, Extended Edition*. Society
 799 for Industrial and Applied Mathematics, Philadelphia, PA, 2019. doi: 10.1137/1.9781611975949.
 800 URL <https://epubs.siam.org/doi/abs/10.1137/1.9781611975949>.

801

802 M. P. Wand. Data-based choice of histogram bin width. *The American Statistician*, 51(1):59–64,
 803 1997. doi: 10.1080/00031305.1997.10473591. URL <https://www.tandfonline.com/doi/abs/10.1080/00031305.1997.10473591>.

804

805 C.K.I. Williams and D. Barber. Bayesian classification with gaussian processes. *IEEE Transactions
 806 on Pattern Analysis and Machine Intelligence*, 20(12):1342–1351, 1998. doi: 10.1109/34.735807.

807

808 Lincen Yang and Matthijs van Leeuwen. Conditional density estimation with histogram trees.
 809 *Advances in Neural Information Processing Systems*, 37:117315–117339, 2024.

810 A APPENDIX

812 This appendix provides supplementary material that supports, extends, and validates the core contributions
 813 presented in the main text.

- 815 • Section A.1 presents the simulation study, demonstrating that the proposed inference procedure
 816 robustly recovers the decoding weight functions and hyperparameters.
- 817 • Section A.2 (Fig. S2) presents full decoding weight visualizations from the simulation study
 818 in Section A.1.
- 819 • Section A.3 (Fig. S3) reports additional simulation results evaluating inference performance
 820 under varying model dimensions, including the number of features (D), sample size (N),
 821 and Fourier resolution (M), complementing the analysis in Section A.1.
- 822 • Section A.4 (Fig. S4) extends the simulation-based validation to two-dimensional output
 823 spaces, demonstrating accurate recovery of decoding weights and GP hyperparameters in a
 824 multidimensional setting.
- 825 • Section A.5 describes the CMLR design parameters, provides guidance on how to select
 826 them, and Table 2 summarizes the settings used in each real-data application.
- 827 • Section A.6 presents a scalability analysis of CMLR with respect to neuron count and dataset
 828 size on the mouse V1 dataset, and Fig. S5 compares its performance and training time with
 829 XGBoost and DNN.
- 830 • Section A.7 (Fig. S6) compares CMLR performance with other methods on the monkey V1
 831 dataset recorded under drifting grating stimuli (data from Graf et al. (2011)), extending the
 832 results in Section 5.1.
- 833 • Section A.8 (Fig. S7) provides a complete visualization of decoding weight functions
 834 inferred from the monkey motor cortex dataset (extending Fig. 4), highlighting a rich
 835 diversity of smooth and interpretable 2D tuning profiles across all recorded neurons.
- 836 • Section A.9 (Fig. S8) examines the interpretability and generalization of the inferred decod-
 837 ing weights by comparing CMLR weight functions to empirical spike–velocity maps and
 838 by analyzing how the inferred functions behave when trained on progressively restricted
 839 subsets of the velocity space for the monkey motor cortex dataset (extending Fig. 4).
- 840 • Section A.10 details the procedures used to assess calibration of CMLR and FlexCode
 841 posterior densities, including PIT histograms and quantile calibration curves, with results
 842 evaluated across datasets (Fig. S9).
- 843 • Section A.11 declares the limited use of large language models (LLMs) for minor editing of
 844 the manuscript.

845 These results collectively reinforce the accuracy, scalability, and interpretability of the CMLR
 846 framework.

864 A.1 SIMULATION STUDY
865

866 To assess the accuracy and robustness of our inference framework, we conducted simulations using
867 synthetic data. We considered a continuous output space of orientation angles $\theta \in [0, 2\pi)$ with
868 $N = 4000$ samples. The input consisted of $D = 200$ features, with decoding weights $w_d(y)$ drawn
869 from Gaussian process (GP) priors. Each weight function was sampled on a fine grid of J points,
870 $\{y_{\text{grid}}^{(j)}\}_{j=1}^J$, with GP hyperparameters drawn as $\ell_d \in [0.1, 1.5]$ (length scales) and $\rho_d \in [0.5, 2.5]$
871 (variances). Feature vectors \mathbf{x}_n were sampled independently from a standard Gaussian distribution.
872 Outputs $y_n \in \{y_{\text{grid}}^{(j)}\}_{j=1}^J$ were then drawn from the conditional density:
873

$$874 p(y = y_{\text{grid}}^{(j)} \mid \mathbf{x}_n, \mathbf{w}(y)) = \frac{\exp\left(\mathbf{w}(y_{\text{grid}}^{(j)})^\top \mathbf{x}_n\right)}{\sum_{j'=1}^J \exp\left(\mathbf{w}(y_{\text{grid}}^{(j')})^\top \mathbf{x}_n\right)},$$

877 using a finite grid approximation. Algorithm 1 summarizes the procedure. Note that this procedure
878 can be made arbitrarily accurate by refining the output grid, and exact sampling is also possible via
879 inverse CDF sampling due to the smoothness of the GP-drawn weight functions.
880

881 **Algorithm 1** Simulation procedure for generating synthetic data
882

883 1: Define an output grid $\{y_{\text{grid}}^{(j)}\}_{j=1}^J$ with $y_{\text{grid}}^{(j)} \in [0, 2\pi)$
884 2: **for** $d = 1$ to D **do**
885 3: Sample weight function $w_d(y)$ from a GP prior at $\{y_{\text{grid}}^{(j)}\}_{j=1}^J$ with $\ell_d \in [0.1, 1.5]$, $\rho_d \in$
886 $[0.5, 2.5]$
887 4: **end for**
888 5: **for** $n = 1$ to N **do**
889 6: Sample feature vector $\mathbf{x}_n \sim \mathcal{N}(0, \mathbf{I}_D)$
890 7: Compute posterior $p(y \mid \mathbf{x}_n, \mathbf{w}(y))$ as above
891 8: Sample observed output $y_n \sim p(y \mid \mathbf{x}_n, \mathbf{w}(y))$
892 9: **end for**

893 For inference, we used $T = 100$ bins, $M = 17$ Fourier components, a mini-batch size of $N' = 1500$,
894 learning rate 0.05, and 3 Monte Carlo samples to approximate the ELBO during training.
895

896 Fig. S1 summarizes the results. Panel A shows the ELBO trajectory over 580 iterations (104
897 seconds on a 2.4GHz Intel i7 CPU with 16GB RAM), exhibiting smooth, monotonic convergence
898 and confirming stable stochastic optimization. Panel B compares ground truth and inferred GP
899 hyperparameters across all $D = 200$ features. Inferred values closely track the identity line, with
900 normalized absolute errors of $11.35\% \pm 12.14\%$ for length scales and $48.56\% \pm 54.81\%$ for variances.
901 Larger errors arose for flatter functions (longer length scales or larger variances), where identifiability
902 is inherently limited. Panel C shows true vs. inferred decoding weights for 5 representative features
903 (full results in Fig. S2), with mean error across all features of $7.46\% \pm 5.11\%$, confirming recovery
904 of both coarse- and fine-scale structure.

905 To further assess robustness, we performed additional simulations under varying conditions. Fig. S3
906 reports results as we varied the number of input features (D), number of samples (N), and number
907 of Fourier components (M). Performance improves systematically with larger N and M , while the
908 method remains computationally scalable and statistically accurate in high-dimensional regimes.
909 Notably, strong performance was achieved with as few as $M \approx 20$ Fourier components, supporting
910 the use of compact frequency-domain representations to reduce dimensionality and prevent overfitting.
911 Together, these findings demonstrate that our variational inference framework enables efficient and
912 reliable recovery of both hyperparameters and decoding weights across diverse settings.

913
914
915
916
917

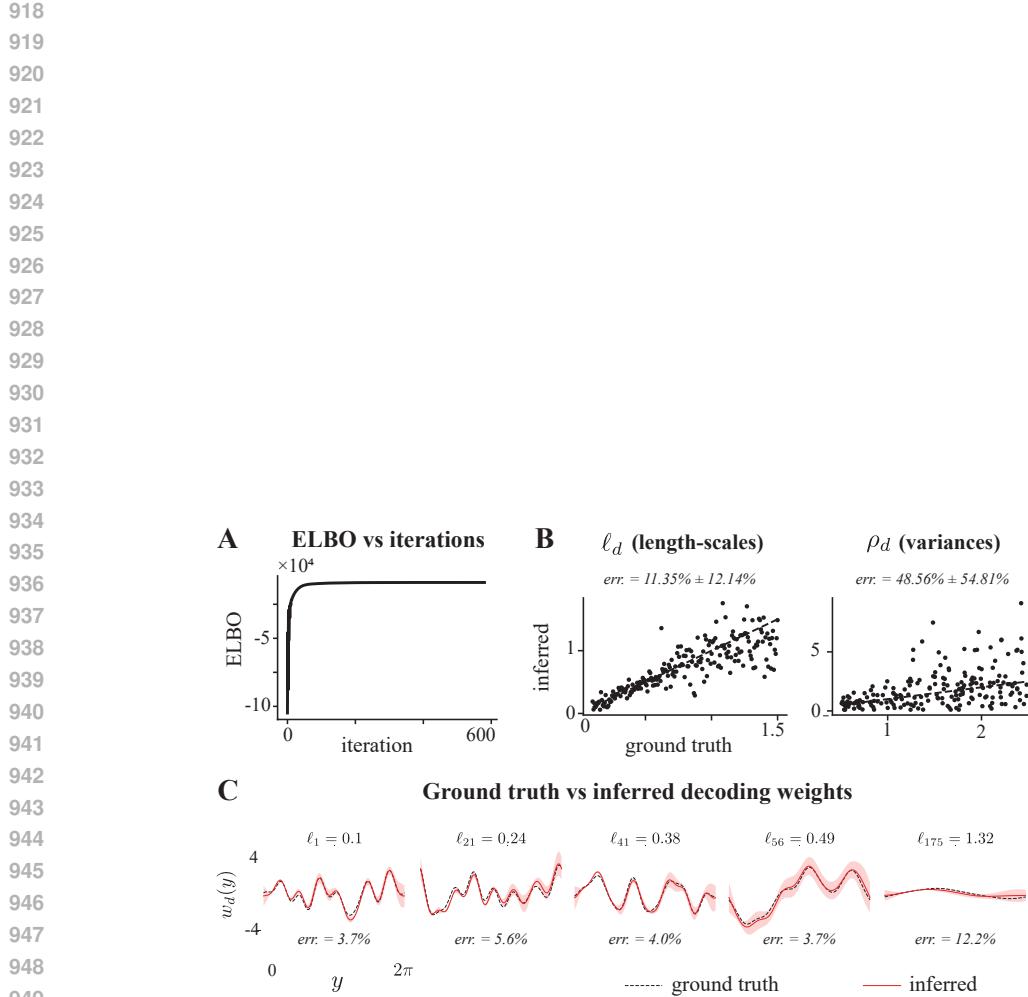
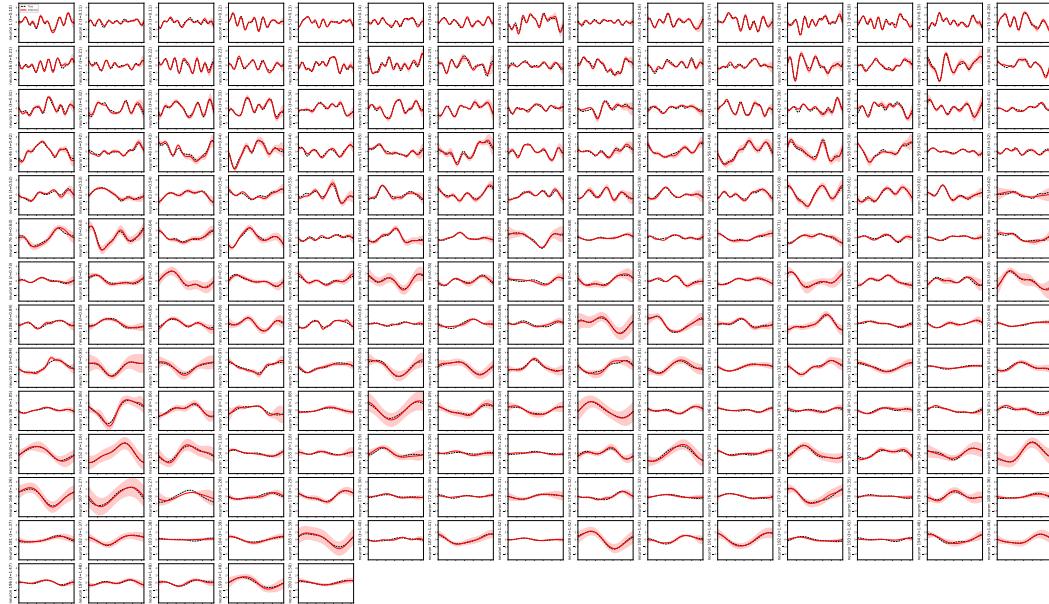


Figure S1: Simulation study results. (A) ELBO versus training iterations. (B) Scatter plots comparing ground truth vs. inferred length scales (left) and variances (right) across features; insets report mean and standard deviation of normalized absolute errors. (C) Decoding weights for 5 representative features: ground truth (black) vs. inferred weights (red), shaded regions show posterior standard deviation. True length scales are shown above each subplot; normalized mean absolute errors are shown below. Full results in Fig. S2.

972 **A.2 COMPREHENSIVE VISUALIZATION OF TRUE VS INFERRRED DECODING WEIGHTS**
 973 **(EXTENSION OF FIG. S1)**
 974

975 To provide a complete view of model performance, we present decoding weight recovery for all 200
 976 simulated features used in the simulation study in Section A.1. This Fig. extends the subset shown in
 977 Fig. S1 and illustrates how well the inferred weights (red) match the ground truth (black) across all
 978 features. Features with varying ground truth GP length scales are included, demonstrating that our
 979 inference method successfully recovers both broad and sharply tuned weight functions.



1000 Figure S2: Full decoding weight recovery for all 200 simulated features, extending the results in
 1001 Fig. S1. Each subplot shows the ground truth decoding weights (black) and the inferred weights (red)
 1002 across the continuous output space for one feature, with shaded regions showing posterior standard
 1003 deviation. The true GP length scale is indicated in parentheses. The results demonstrate that the
 1004 proposed inference procedure accurately captures both smooth and localized tuning profiles.
 1005
 1006
 1007
 1008
 1009
 1010
 1011
 1012
 1013
 1014
 1015
 1016
 1017
 1018
 1019
 1020
 1021
 1022
 1023
 1024
 1025

1026
1027
1028A.3 ROBUSTNESS AND SCALABILITY OF CMLR INFERENCE ACROSS SIMULATION SETTINGS
(EXTENSION OF SECTION A.1)1029
1030
1031
1032
1033
1034
1035

To assess the robustness and computational efficiency of the CMLR model, we systematically evaluated its performance across a range of controlled simulation scenarios, extending the results in Section A.1. Fig. S3 summarizes how inference accuracy and training time vary with the number of input features (D), number of observed samples (N), and number of Fourier components (M). These results extend the main text in Section 3 and the simulation results in Fig. S1 by confirming that CMLR maintains high accuracy in hyperparameter and weight recovery while scaling gracefully with data size and model complexity.

1036
1037

Simulation performance comparison under different settings

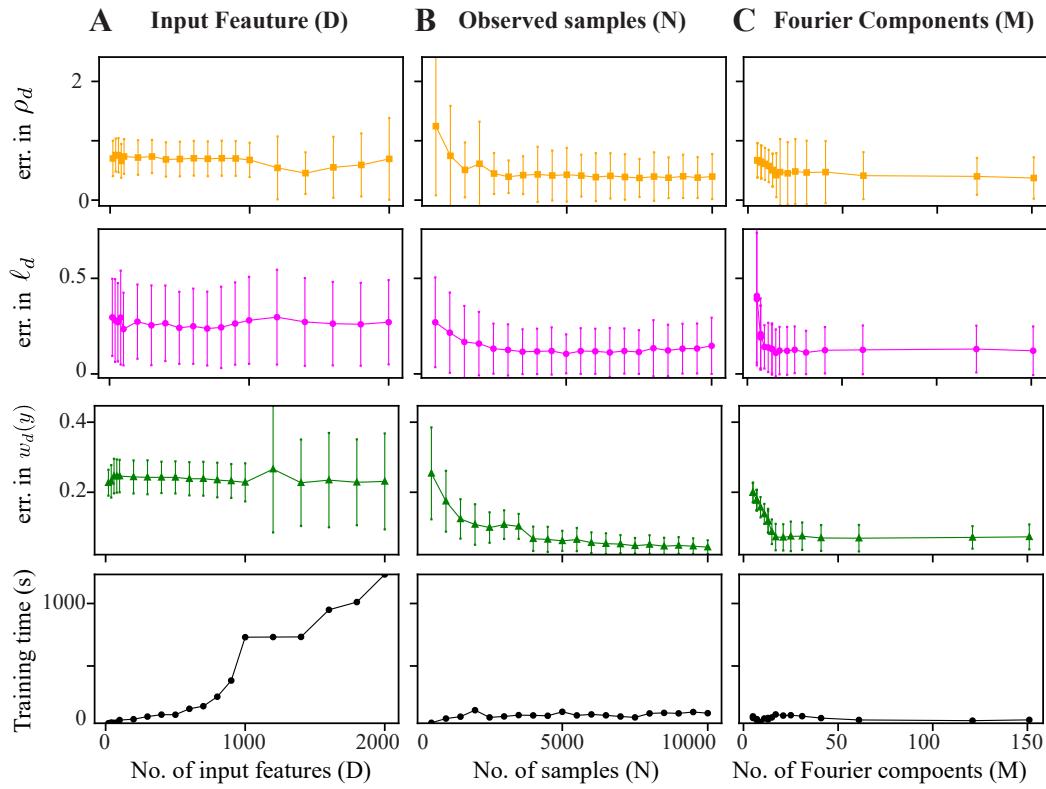
1038
10391040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063

Figure S3: Simulation performance comparison under varying conditions. Rows (top to bottom) show: mean \pm standard deviation of the normalized absolute error in inferred variances (ρ_d), length scales (ℓ_d), and decoding weights ($w_d(y)$), followed by training time in seconds (Intel i7 2.4GHz CPU, 16GB RAM). (A) Varying the number of input features D shows that inference accuracy remains stable across all metrics, with only modest increases in training time. (B) Increasing the number of observed samples N substantially improves inference accuracy for all parameters, reflecting the benefit of additional data for GP hyperparameter and weight recovery. Notably, training time increases only marginally due to the use of stochastic variational inference. (C) Varying the number of Fourier components M reveals that performance improves with increasing M , particularly in recovering fine-scale structure in decoding weights. However, the computational cost does not increase substantially due to the efficiency of the frequency-domain formulation. Notably, near-asymptotic performance is achieved with as few as $M \approx 20$ components. In practice, keeping M small is advisable to reduce dimensionality and mitigate the risk of overfitting. These results demonstrate that CMLR offers reliable and scalable inference across a wide range of practical settings, with strong performance attainable using moderate data sizes and low-dimensional frequency representations.

1078
1079

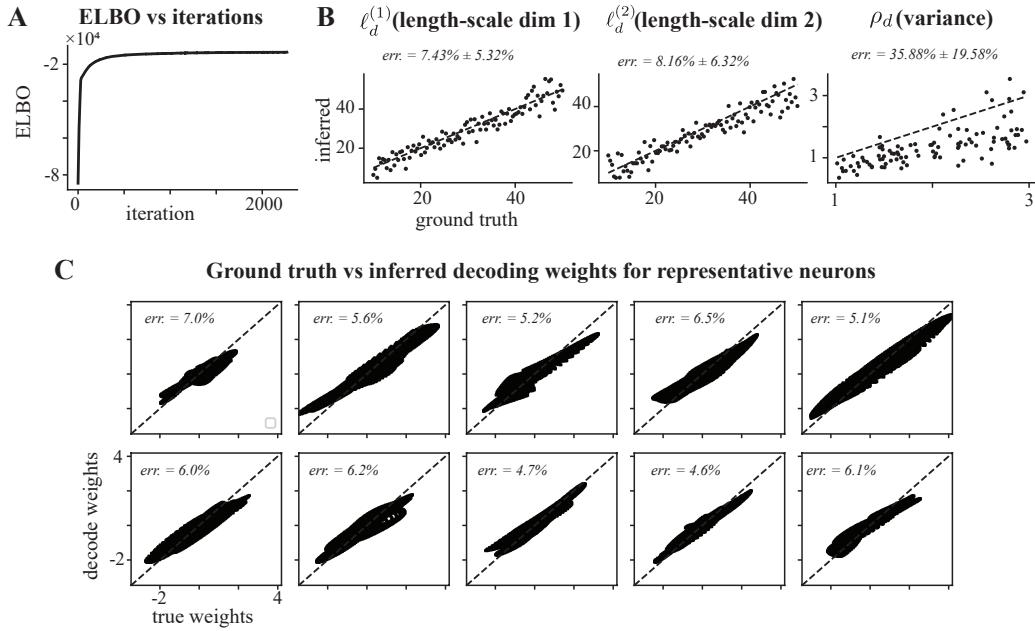
1080

A.4 VALIDATION OF INFERENCE ACCURACY IN THE TWO-DIMENSIONAL SETTING
(EXTENSION OF SECTION 3.4)

1082

1083 To confirm the accuracy and stability of CMLR in two-dimensional decoding tasks described in
 1084 Section 3.4, we conducted a simulation study with synthetic neurons tuned to 2D outputs. Fig. S4
 1085 illustrates key results: convergence behavior of the variational inference algorithm, recovery of GP
 1086 hyperparameters, and comparison of inferred vs. true decoding weights. Together, these analyses
 1087 validate the model’s ability to recover both the coarse and fine-grained structure of 2D tuning profiles,
 1088 demonstrating the reliability of CMLR in multidimensional output spaces.

1089



1090

1091

1092

1093

1094

1095

1096

1097

1098

1099

1100

1101

1102

1103

1104

1105

1106

1107

1108

1109

1110

1111

1112

1113

1114

1115

1116

1117

1118

Figure S4: Simulation study validating inference accuracy in the 2D setting. (A) Evidence lower bound (ELBO) over training iterations, showing smooth and stable convergence of the variational inference algorithm. (B) Scatter plots comparing ground truth and inferred GP hyperparameters (length scales and variances) across both output dimensions. Each point corresponds to one of the $D = 100$ simulated neurons; proximity to the identity line indicates accurate recovery. (C) Comparison of inferred and ground truth decoding weights for a subset of representative neurons. Each subplot shows a scatter plot of the true versus recovered weights, with the normalized mean absolute error shown as an inset. Points closely align with the identity line, indicating accurate recovery.

1119

1120

1121

1122

1123

1124

1125

1126

1127

1128

1129

1130

1131

1132

1133

1134 A.5 DESIGN PARAMETERS AND PRACTICAL SETTINGS
1135

1136 This appendix provides practical guidance for selecting the design parameters of CMLR and outlines
1137 the specific settings used across all real-data experiments. A key advantage of CMLR is that it does
1138 not require extensive dataset-specific hyperparameter tuning. The main design parameters control
1139 numerical precision and computational efficiency rather than model capacity. These include:

- 1140 1. the number of bins T used in the Riemann approximation of the normalization constant,
- 1141 2. the number of Fourier basis components M used to represent the GP prior,
- 1142 3. the mini-batch size N' for stochastic optimization,
- 1143 4. the learning rate α of the Adam optimizer, and
- 1144 5. the decoding grid resolution J .

1145 Table 2 summarizes the design parameter settings used in each real dataset, along with the number
1146 of neurons (D), number of trials (N), and output range (Ω). These settings were fixed per dataset,
1147 but cross-validation can be incorporated into CMLR without modification. In practice, the two most
1148 important design parameters for numerical accuracy are the number of Riemann bins T and the
1149 number of Fourier components M .

1150 **Choice of T (Riemann bins):** T determines the numerical resolution used to approximate the
1151 normalization constant and should match the desired output-grid resolution. In practice, T must be
1152 large enough that the density changes smoothly between adjacent grid points. For bounded or circular
1153 outputs, T should scale with the width of the output range to avoid discretization artifacts. As a rule
1154 of thumb, for an output range of $[0, 1]$, choosing $T \approx 100$ provides adequate resolution, with larger
1155 values offering limited additional benefit.

1156 **Choice of M (Fourier components):** M determines the spectral resolution of the Gaussian process
1157 prior. For smooth kernels such as the RBF, most of the spectral mass lies in low-frequency components,
1158 so only a small number of terms is required. Empirically, $M \in [15, 50]$ captures the relevant structure
1159 across all datasets while keeping computational cost low. As shown in Fig. S3, decoding performance
1160 is largely insensitive to M beyond this range. Choosing a small M is also desirable for reducing
1161 dimensionality and mitigating overfitting.

1162 **Choice of N' (mini-batch size):** The mini-batch size affects optimization speed rather than model
1163 capacity. Smaller batches increase the variance of stochastic gradients (which can aid exploration),
1164 whereas larger batches reduce noise but increase memory cost. We selected N' to balance runtime
1165 and CPU memory constraints, with values between 1000 and 2000 working robustly.

1166 **Choice of α (learning rate):** The learning rate determines the step size in stochastic variational
1167 optimization. Unlike T and M , which control numerical resolution, α governs the stability and
1168 convergence speed of the optimizer. In practice, a moderately small value (e.g., $\alpha \in [10^{-3}, 10^{-1}]$)
1169 provides stable convergence across datasets. Larger values can lead to divergence, whereas smaller
1170 values slow training without improving accuracy. We selected α for each dataset using a small
1171 number of preliminary runs and found that its performance was largely insensitive within this range.

1172 **Choice of J (decoding grid resolution):** Finally, the number of decoding bins J must be specified
1173 when evaluating predictive densities from the CMLR model, as is also the case for FlexCode and
1174 Naive Bayes. Since we observed a consistent trend of improved performance with finer decoding
1175 grids, we report all final results at the highest resolution tested, $J = 20,000$.

1176 Table 2: Design parameter settings used in the real-data studies

1181 Dataset	D (neurons)	N (trials)	Ω (range)	T	M	N'	α
1182 Mouse V1	11311–20616	4282–4469	$[0, 2\pi)$	100	17	1500	0.005
1183 Monkey V1	113–148	3600	$[0, 2\pi)$	100	17	1500	0.005
1184 Mouse CA1	151–497	3600–5524	$[0, 1]$	100	20	1400	0.02
1185 Monkey motor cortex	164	25299	$[-30, 30]^2$	1000	27	2000	0.1

1188
1189

A.6 SCALABILITY OF CMLR WITH RESPECT TO NEURON COUNT AND DATASET SIZE

1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201

Here, we assess the robustness of CMLR on the mouse V1 dataset (data from Stringer et al. (2021)) under systematic variation of the neuron count (D) and dataset size (N), comparing its scaling behavior to XGBoost and DNN. Fig. S5 characterizes how decoding accuracy and training time scale under these manipulations. As the number of neurons increases (Fig. S5A), CMLR maintains stable absolute circular error and exhibits training times that grow approximately linearly with D , consistent with our simulation results in Appendix A.3. Across all values of D , CMLR achieves lower decoding error than XGBoost and DNN, and the performance gap widens at smaller D , indicating improved data efficiency. When the number of training samples is reduced (Fig. S5B), CMLR’s performance degrades only slightly, whereas the data-driven baselines show more substantial deterioration. Training time for CMLR increases sublinearly with N due to mini-batch stochastic variational inference. Overall, CMLR shows favorable computational and statistical scaling, and critically, it offers clear advantages over data-driven models in low-data regimes where principled structure and regularization matter most.

1202

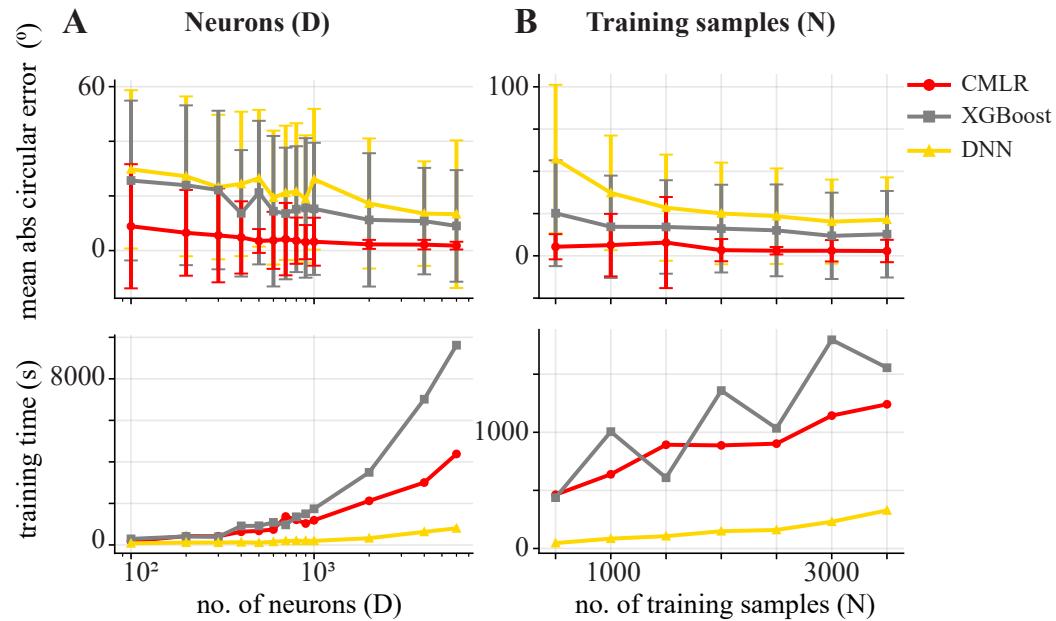
1203
12041205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

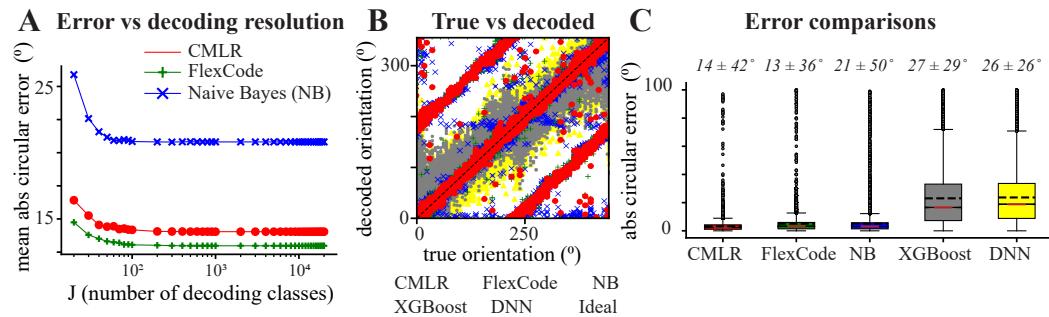
Figure S5: Scalability of decoding performance and training time for CMLR, XGBoost, and DNN on the mouse V1 dataset. Top: mean \pm standard deviation of the absolute circular decoding error. Bottom: training time (seconds) measured on a standard laptop (Intel i7 2.4 GHz CPU, 16 GB RAM). Both metrics are shown as a function of (A) the number of neurons D and (B) the number of training samples N .

1242 **A.7 MACAQUE V1 DATA: DECODING DRIFTING GRATING ORIENTATIONS (EXTENSION OF**
 1243 **SECTION 5.1)**

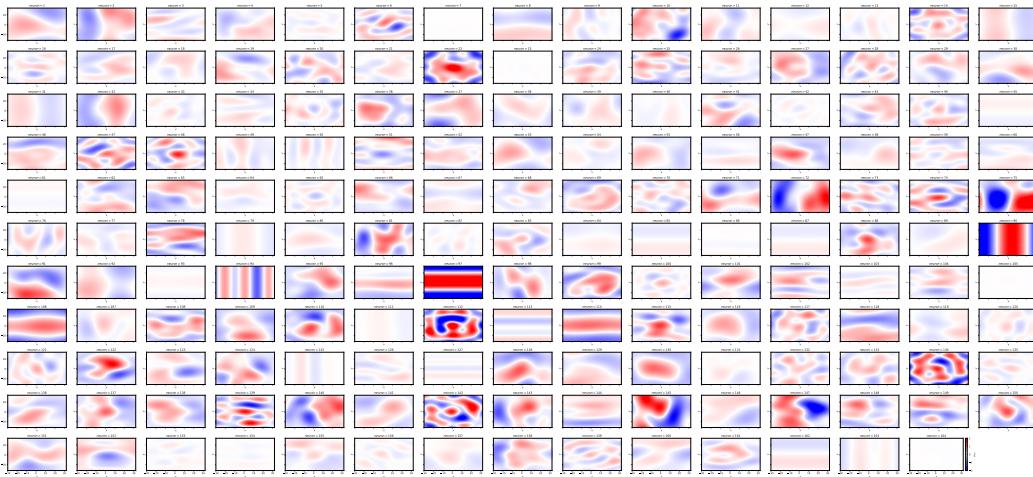
1245 Here, we show the results of applying our method to five electrophysiological recording datasets
 1246 from the monkey primary visual cortex (data from (Graf et al., 2011)), extending the results in
 1247 Section 5.1. These datasets contained spiking activity recorded from between $D = 113$ and $D = 148$
 1248 neurons (treated as input features), and included 72 discrete stimulus orientations (outputs) spaced at
 1249 5-degree intervals, with 50 trials per orientation, resulting in a total of $N = 3600$ samples per dataset.
 1250 Although our method is designed for continuous-valued stimuli, the discrete case is a special instance
 1251 of the framework and is fully supported without modification. We applied the CMLR model using
 1252 the same inference settings as in the mouse V1 dataset.

1253 Fig. S6 summarizes the results. In panel A, CMLR and FlexCode consistently outperform Naive
 1254 Bayes in mean absolute circular error across decoding resolutions, with all models plateauing beyond
 1255 $J \approx 500$. Fig. S6B shows true versus decoded orientations for all models; CMLR predictions align
 1256 closely with the identity line, and most large errors occur near 180° , reflecting underlying bimodality.
 1257 Panel C shows that FlexCode achieves the lowest decoding error (mean \pm SD: $13 \pm 36^\circ$, median: 3° ,
 1258 IQR: 5°), closely followed by CMLR ($14 \pm 42^\circ$, 3° , 4°), with Naive Bayes performing moderately
 1259 worse ($21 \pm 50^\circ$, 4° , 6°), and XGBoost ($27 \pm 29^\circ$, 17° , 28°), and DNN ($26 \pm 26^\circ$, 20° , 26°) showing
 1260 higher variability and error.

1261 These results confirm the robustness of CMLR across both continuous and discretized decoding
 1262 settings. Consistent with findings in the mouse V1 datasets, CMLR’s correlation-aware formulation
 1263 yields improved accuracy over correlation-blind baselines, reinforcing the importance of modeling
 1264 shared variability in cortical populations for reliable neural decoding.



1276 Figure S6: Application of the proposed method to macaque V1 data (data from Graf et al. (2011)).
 1277 (A) Mean absolute circular error for CMLR, FlexCode, and Naive Bayes models as a function of
 1278 the number of decoding classes J . (B) Scatter plots of decoded versus true stimulus orientations for
 1279 CMLR, FlexCode, Naive Bayes, XGBoost, and DNN models. (C) Box plots comparing the absolute
 1280 circular decoding error across all methods. Mean errors (\pm standard deviation) are indicated as insets.

1296 A.8 FULL DECODING WEIGHT MAPS FOR MONKEY MOTOR CORTEX DATA (EXTENSION OF
1297 FIG. 4)1299 To provide a complete visualization of the model’s output, we show the full set of 2D decoding weight
1300 functions inferred by CMLR for all 164 neurons in the monkey motor cortex dataset illustrated in
1301 Section 5.3. This Figure extends the subset shown in Fig. 4, revealing the rich diversity of 2D velocity
1302 tuning profiles captured by the model. The smooth, continuous weight surfaces illustrate how CMLR
1303 uncovers interpretable tuning structure across the two-dimensional velocity space, consistent with
1304 known motor cortex encoding properties.1321 Figure S7: Full set of decoding weights inferred by CMLR for all $D = 164$ neurons in the monkey
1322 motor cortex dataset (data from Glaser et al. (2018; 2020)), extending the results in Fig. 4. Each
1323 subplot shows the neuron’s two-dimensional tuning surface across the x and y velocity space. These
1324 results highlight the diversity and smoothness of velocity tuning captured by the model in real neural
1325 recordings.1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

1350 A.9 INTERPRETABILITY AND GENERALIZATION OF CMLR DECODING WEIGHT FUNCTIONS
1351

1352 In this Appendix, we further probe the CMLR decoding weight functions inferred for the motor-cortex
1353 velocity decoding task (data from Glaser et al. (2018; 2020)) shown in Fig. 4. Our goal is to evaluate
1354 both the interpretability of the inferred weights and their ability to generalize beyond the range of
1355 velocities observed during training. Fig. S8 presents two complementary analyses that address these
1356 questions by comparing the inferred weight functions to empirical neural tuning structure and by
1357 examining how the inferred functions behave when trained on progressively restricted subsets of the
1358 data.

1359 First, we compared the inferred weight functions $w_d(y)$ with empirical spike–velocity associations
1360 derived directly from the training data (Fig. S8A). To obtain these empirical maps, we binned all
1361 training samples according to their two-dimensional velocity and, for each neuron d , accumulated that
1362 neuron’s spike counts within each velocity bin. The resulting spike-weighted histograms were then
1363 smoothed and normalized to form empirical firing-rate density maps over the velocity space. These
1364 maps reveal the raw statistical structure of each neuron’s tuning. They are strongly concentrated
1365 within the region of velocities that were actually visited during the experiment, which is typically a
1366 compact region around the origin, and they are often noisy and irregular because of finite sampling. In
1367 contrast, the CMLR inferred decoding weights exhibit smooth and spatially coherent tuning patterns
1368 defined over the entire velocity space. Importantly, in regions where empirical data are dense, the
1369 inferred weights align well with the empirical structure, capturing the dominant preferred directions
1370 and suppressive regions observed in the raw densities. This agreement indicates that the CMLR model
1371 faithfully extracts meaningful tuning characteristics from the data while simultaneously regularizing
1372 them into a smooth functional form that reflects the underlying relationship between velocity and
1373 firing activity.

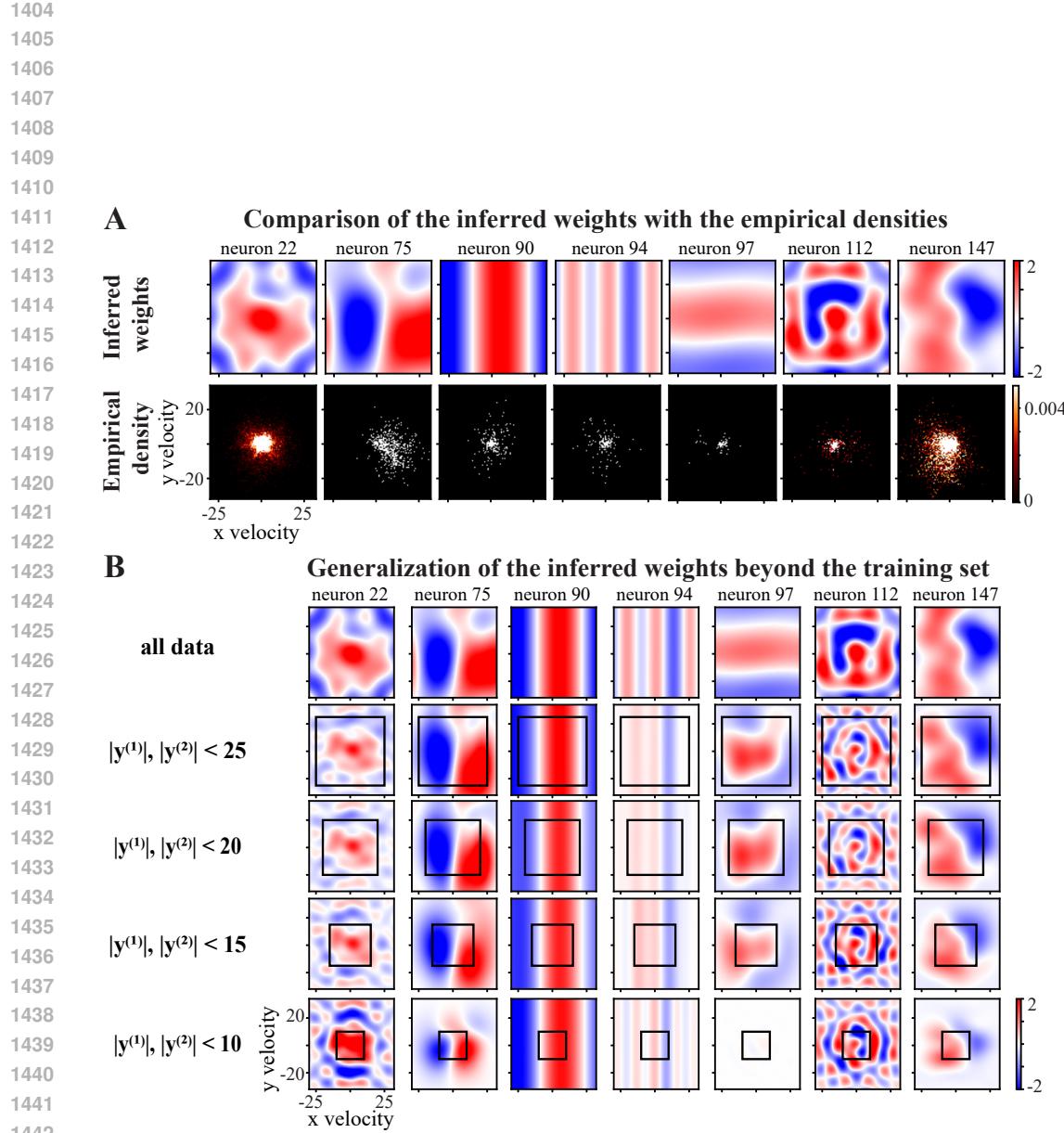
1374 Second, we studied how the inferred decoding weights behave when the training data are progressively
1375 restricted to smaller velocity ranges (Fig. S8B). By training the model using only samples within
1376 $|y^{(1)}|, |y^{(2)}| < 25, 20, 15, 10$, we artificially reduce the support of the observable data and thus
1377 increase the amount of extrapolation required outside the training domain. As the black boxes in
1378 Fig. S8B indicate, large portions of the velocity space are never observed when these restrictions
1379 are applied. Despite this, CMLR continues to produce well-structured and neuron-specific weight
1380 patterns that extend smoothly into unobserved regions. The fine details of the tuning curves become
1381 more dependent on the Gaussian process prior as the available data shrink, but the global structure
1382 remains consistent across all levels of data restriction. Preferred directionality, antagonistic regions,
1383 and smooth gradations remain stable as long as the model has at least partial coverage of the tuning
1384 landscape. This behavior reflects the inductive bias imposed by the smooth Gaussian process prior.
1385 When data are sparse or absent, the model defaults to the simplest and smoothest continuation that
1386 remains consistent with the observed samples.

1387 Together, these analyses demonstrate two key properties of the CMLR framework:

- 1388 1. **Interpretability:** the inferred decoding weights correspond closely to empirical neural firing
1389 statistics where data are available, offering intuitive and biologically meaningful descriptions
1390 of each neuron’s response characteristics.
- 1391 2. **Generalization:** the weight functions extend gracefully beyond the data-supported regions,
1392 providing coherent and stable extrapolations driven by the model’s smoothness prior rather
1393 than fitting noise or artifacts.

1394 These findings show that CMLR provides not only accurate decoding performance but also structured
1395 and interpretable functional maps that remain reliable when parts of the stimulus space are sparsely
1396 sampled. This is important for real-world neural decoding settings, because behavioral or sensory
1397 spaces are rarely sampled uniformly in practice.

1398
1399
1400
1401
1402
1403



1443 Figure S8: Interpretability and generalization of CMLR decoding weight functions for motor-cortex
1444 velocity decoding (data from Glaser et al. (2018; 2020)). (A) Inferred decoding weight functions
1445 for example neurons (top) compared with their empirical spike-weighted density maps (bottom).
1446 The empirical densities concentrate within the observed velocity range, while CMLR produces
1447 smooth, interpretable functions over the full space. (B) Generalization of inferred weights when
1448 training data are progressively restricted to smaller velocity bounds. Top to bottom: unconstrained,
1449 $|y^{(1)}|, |y^{(2)}| < 25, 20, 15, 10$. Black boxes indicate the region of observed data. Even with limited
1450 training coverage, CMLR extrapolates smoothly outside the data-supported domain, demonstrating
1451 robustness and interpretability.

1452
1453
1454
1455
1456
1457

1458
1459

A.10 CALIBRATION OF PREDICTIVE POSTERIORS

1460
1461
1462
1463
1464
1465
1466
1467

Here, we present the results of calibrating the posterior densities predicted by the CMLR model and FlexCode model on held-out test data. While the CDE methods are trained to optimize the conditional likelihood, this does not necessarily guarantee that their predicted posteriors are well-calibrated; that is, that their uncertainty reflects empirical variability in the data. To assess calibration, we computed Probability Integral Transform (PIT) values (Dawid, 1984) and quantile calibration curves (Kuleshov et al., 2018), which diagnose whether predicted posterior distributions reflect the empirical distribution of true outputs. We also report the Expected Calibration Error (ECE) as a summary statistic.

1468
1469

A.10.1 PROBABILITY INTEGRAL TRANSFORM (PIT)

1470
1471
1472

The Probability Integral Transform (PIT) provides a diagnostic tool for assessing the calibration of continuous predictive distributions. For each test input \mathbf{x}_n , let $F_n(y)$ denote the predicted cumulative distribution function (CDF) for the output y . Given the true output y_n , the PIT value is defined as:

1473
1474
1475
1476
1477

$$u_n = F_n(y_n)$$

which represents the cumulative probability mass assigned to values less than or equal to y_n under the predicted posterior. If the model is perfectly calibrated, the PIT values $\{u_n\}_{n=1}^N$ should be independently and identically distributed as $\text{Uniform}(0, 1)$.

1478
1479
1480
1481

Deviations from uniformity reveal miscalibration: U-shaped PIT histograms indicate overconfident predictions (posterior too narrow), hump-shaped histograms suggest underconfident predictions (posterior too wide), and asymmetric shapes reflect bias in the predictive distributions. Visual inspection of PIT histograms thus provides an interpretable diagnostic of calibration performance.

1482
1483

A.10.2 QUANTILE CALIBRATION CURVES

1484
1485
1486
1487

Quantile calibration curves assess whether predicted quantiles contain the correct proportion of ground truth outputs. For each test input \mathbf{x}_n and each nominal quantile level $\alpha \in (0, 1)$, we compute the α -quantile $\hat{q}_\alpha^{(n)} = F_n^{-1}(\alpha)$ of the predicted posterior and then determine the empirical frequency with which the true output y_n falls below this value. The empirical coverage at level α is defined as:

1488
1489
1490

$$\text{Coverage}(\alpha) = \frac{1}{N} \sum_{n=1}^N \mathbb{I}(y_n \leq \hat{q}_\alpha^{(n)}),$$

1491
1492
1493

where N is the number of test samples and $\mathbb{I}(\cdot)$ is the indicator function. Plotting empirical coverage versus nominal α yields the quantile calibration curve, with the diagonal representing perfect calibration.

1494
1495
1496

To summarize calibration error across all quantile levels, we compute the expected calibration error (ECE) as:

1497
1498

$$\text{ECE} = \frac{1}{|\mathcal{A}|} \sum_{\alpha \in \mathcal{A}} |\text{Coverage}(\alpha) - \alpha|,$$

1499
1500
1501

where \mathcal{A} is a finite set of quantile levels (e.g., $\{0.05, 0.10, \dots, 0.95\}$). A smaller ECE indicates better calibration.

1502
1503

A.10.3 CALIBRATION ANALYSIS: CMLR VS FLEXCODE

1504
1505
1506
1507
1508
1509
1510
1511

We compared the uncertainty calibration of CMLR and FlexCode across three datasets (Mouse V1, Macaque V1, and Mouse CA1) using three diagnostics: PIT histograms, quantile calibration curves, and the relationship between PIT values and decoding error (Fig. S9). We restrict our calibration analysis to CMLR and FlexCode because calibration diagnostics such as PIT histograms and quantile calibration curves require access to the full conditional density. Regression-based models like XGBoost and DNN provide only point predictions rather than probability distributions, so PIT values, quantile calibration, and ECE cannot be computed for them.

PIT histograms (Fig. S9A): PIT histograms for CMLR are close to uniform across datasets, indicating that the model allocates probability mass in a way that matches the empirical distribution

1512 of the observed outcomes. This reflects well-calibrated posterior predictions with no systematic
 1513 concentration of mass in any region of the cumulative distribution. FlexCode, in contrast, shows
 1514 clear deviations from uniformity, often exhibiting a central peak or a bimodal shape. These patterns
 1515 indicate that FlexCode distributes probability mass unevenly and is therefore miscalibrated, assigning
 1516 too much weight to certain regions of the output space relative to the true distribution.

1517 **Quantile calibration curves (Fig. S9B):** CMLR’s calibration curves closely follow the identity
 1518 line across all datasets, with low ECE values (Mouse V1: 0.02 ± 0.02 ; Macaque V1: 0.03 ± 0.01 ;
 1519 CA1: 0.04 ± 0.01), indicating accurate uncertainty quantification throughout the full quantile range.
 1520 FlexCode shows larger deviations from the diagonal, with higher ECE values (0.09 ± 0.01 , 0.03 ± 0.01 ,
 1521 0.05 ± 0.01), consistent with its PIT histograms. Its empirical coverage typically falls below the ideal
 1522 line at small quantiles and rises above it at large quantiles, indicating systematic miscalibration that
 1523 produces under-coverage in the lower tail and over-coverage in the upper tail.

1524 **PIT versus decoding error (Fig. S9C):** A well-calibrated model should show a clear relationship
 1525 between PIT values and decoding error. In an ideal case, errors should be smallest near $\text{PIT} \approx 0.5$,
 1526 where the model is most confident, and should increase smoothly as PIT approaches 0 or 1, where
 1527 the model expresses greater uncertainty. This pattern indicates that the model’s predictive distribution
 1528 correctly reflects which points are easy or difficult to decode. Across all datasets, CMLR closely
 1529 matches this ideal behavior: errors are lowest near $\text{PIT} \approx 0.5$ and rise gradually toward the extremes,
 1530 demonstrating that the model’s uncertainty estimates align with actual decoding difficulty. FlexCode,
 1531 in contrast, shows elevated errors near $\text{PIT} \approx 0.5$, which is also where its PIT values are most
 1532 concentrated, along with irregular fluctuations across the quantile range. This pattern indicates
 1533 that FlexCode’s predictive uncertainty does not reliably correspond to true error and that its diffuse
 1534 predictions do not effectively communicate when mistakes are more likely.

1535 **Summary:** Across all diagnostics and datasets, CMLR provides substantially better-calibrated and
 1536 more informative uncertainty estimates than FlexCode. CMLR’s posterior distributions align closely
 1537 with empirical data and express uncertainty coherently, whereas FlexCode tends to produce overly
 1538 diffuse densities that obscure predictive reliability. This demonstrates that CMLR not only improves
 1539 decoding accuracy but also offers superior uncertainty quantification, which is essential for scientific
 1540 and neural decoding applications.

1541
 1542
 1543
 1544
 1545
 1546
 1547
 1548
 1549
 1550
 1551
 1552
 1553
 1554
 1555
 1556
 1557
 1558
 1559
 1560
 1561
 1562
 1563
 1564
 1565

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

1605

1606

1607

1608

1609

1610

1611

1612

1613

1614

1615

1616

1617

1618

1619

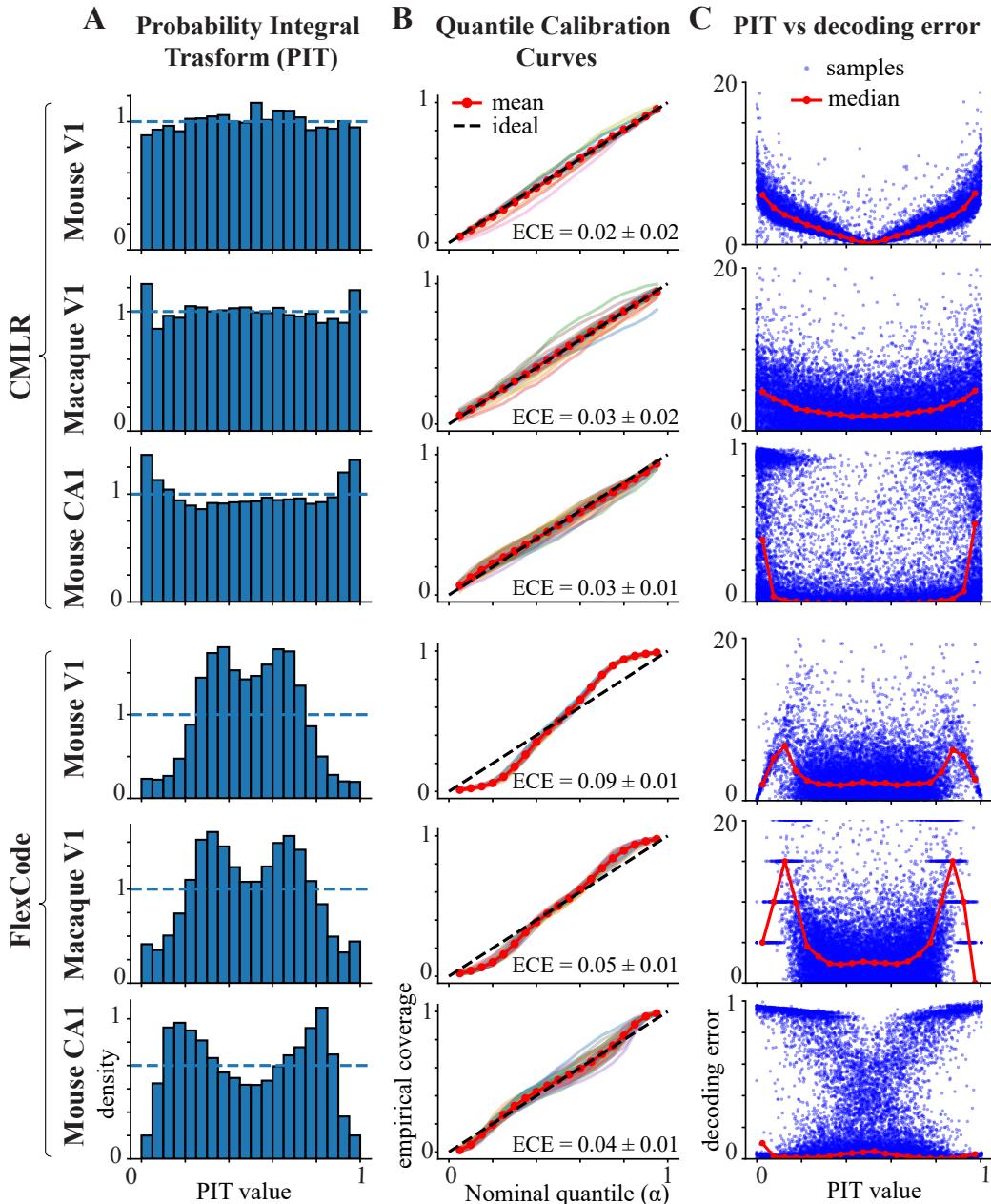


Figure S9: Calibration analysis for CMLR (top) and FlexCode (bottom) across Mouse V1, Macaque V1, and Mouse hippocampus CA1 datasets. (A) Probability integral transform (PIT) histograms. CMLR produces near-uniform histograms, whereas FlexCode exhibits clear non-uniform distributions. (B) Quantile calibration curves comparing empirical coverage to nominal quantile α ; the diagonal indicates perfect calibration. Insets report the expected calibration error (ECE; mean \pm standard deviation across folds and datasets). (C) PIT value versus decoding error for individual test points, with median trends shown in red to illustrate how uncertainty relates to prediction error.

1620 A.11 DECLARATION OF USAGE OF LARGE LANGUAGE MODELS (LLMs)
16211622 We used large language models (LLMs) only for minor editing tasks, such as polishing grammar and
1623 improving readability. LLMs were not used to generate content, perform analyses, design methods,
1624 or conduct experiments. All scientific contributions and results in this manuscript are solely the work
1625 of the authors.

1626

1627

1628

1629

1630

1631

1632

1633

1634

1635

1636

1637

1638

1639

1640

1641

1642

1643

1644

1645

1646

1647

1648

1649

1650

1651

1652

1653

1654

1655

1656

1657

1658

1659

1660

1661

1662

1663

1664

1665

1666

1667

1668

1669

1670

1671

1672

1673