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Abstract

Commercial Large Language Model (LLM) APIs create a fundamental trust prob-
lem: users pay for specific models but have no guarantee that providers deliver them
faithfully. Providers may covertly substitute cheaper alternatives (e.g., quantized
versions, smaller models) to reduce costs while maintaining advertised pricing.
We formalize this model substitution problem and systematically evaluate de-
tection methods under realistic adversarial conditions. Our empirical analysis
reveals that software-only methods are fundamentally unreliable: statistical tests
on text outputs are query-intensive and fail against subtle substitutions, while
methods using log probabilities are defeated by inherent inference nondetermin-
ism in production environments. We argue that this verification gap can be more
effectively closed with hardware-level security. We propose and evaluate the use of
Trusted Execution Environments (TEEs) as one practical and robust solution. Our
findings demonstrate that TEEs can provide provable cryptographic guarantees
of model integrity with only a modest performance overhead, offering a clear
and actionable path to ensure users get what they pay for. Code is available at
https://github.com/sunblaze-ucb/llm-api-audit

1 Introduction

Large Language Models (LLMs) have demonstrated remarkable capabilities, leading to widespread
adoption through cloud-based APIs [OpenAI, 2022, Anthropic, 2023, Google, 2023, TogetherAI,
2023]. Enterprises and researchers select and pay for specific models (e.g., Llama 405B vs 70B)
based on advertised capabilities, performance on leaderboards, and expected behavior [Touvron
et al., 2023, Bai et al., 2023, Mistral, 2023]. However, this black-box access model operates on
an implicit assumption of trust: that the provider will faithfully serve the requested model. The
immense computational cost of hosting state-of-the-art LLMs creates a powerful economic incentive
for providers to violate this trust through model substitution—covertly replacing the advertised model
with a cheaper, less powerful alternative.

This substitution threat is not hypothetical. A provider might swap a flagship model for a smaller
variant or a heavily quantized version (e.g., INT8/FP8) to reduce GPU costs and increase profit
margins [Gao et al., 2024, Sun et al., 2024b]. Substitutions can also occur for operational reasons,
such as rerouting traffic from an overloaded high-end model to a less-utilized, lower-tier one (e.g., a
version fine-tuned on different data). While the intent may not always be malicious, any undisclosed
substitution breaks the service agreement, compromises the reliability of dependent applications,
hinders reproducible research, and invalidates the benchmark results. Furthermore, subtle changes
from quantization or fine-tuning might inadvertently affect model safety or introduce biases [Hong
et al., 2024]. Imagine a researcher relying on a specific model’s advertised capabilities for scientific
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analysis, only to unknowingly receive results from a substituted, less capable model, potentially
invalidating their findings.

For a user or auditor, verifying the model behind a black-box API is fundamentally challenging.
The interaction is typically limited to sending prompts and receiving text (and optionally, token log
probabilities [Carlini et al., 2024]), with no direct access to the model’s weights or the underlying
infrastructure. This information asymmetry heavily favors the provider. A sophisticated provider can
exploit this by employing active countermeasures, such as detecting and routing benchmark queries
to the genuine model while serving a substitute to regular traffic, or by randomly mixing outputs from
different models to obscure the statistical signal of the substitution.

This paper confronts the critical problem of auditing model substitution in black-box LLM APIs.
We formalize the verification task, analyze the limitations of existing software-based methods under
realistic adversarial conditions, and present a robust solution. Our central thesis is that the inherent
ambiguity and nondeterminism of software-level signals make them insufficient for reliable auditing.
Instead, we argue that hardware-backed attestation via Trusted Execution Environments (TEEs) is the
only currently viable mechanism to achieve strong, efficient, and provable integrity for LLM APIs.
Our contributions are:

• We formalize the problem of LLM model substitution detection from the perspective of a black-box
user/auditor.

• We design and analyze practical adversarial scenarios for model substitution, including quantization,
randomized substitution, and benchmark evasion.

• We empirically evaluate the effectiveness of existing detection techniques, showing that text-based
statistical tests lack power against subtle or randomized substitutions, while metadata-based meth-
ods like log probability comparison are defeated by production-level inference nondeterminism.

• We propose and evaluate TEEs as a practical and deployable solution, demonstrating that they
uniquely provide provable model integrity in black-box APIs. We show that TEEs offer strong
security guarantees with only a modest performance cost, establishing them as the most actionable
path toward substitution-resistant LLM services.

2 Related work

LLM API monitoring and auditing. Several studies have monitored the behavior and performance
of commercial LLM APIs over time. Chen et al. [2023] track changes in ChatGPT’s capabilities,
highlighting behavioral drift, while Eyuboglu et al. [2024] characterizes updates to API-accessed
ML models. Closer to our work, Gao et al. [2024] specifically test API output text distributions
against reference distributions using Maximum Mean Discrepancy (MMD). Other approaches include
direct auditing via identity-style prompting [Huang et al., 2025] and predicting black-box LLM
performance using self-queries [Sam et al., 2025]. When model internals are available, TopLoc
[Ong et al., 2025] uses locality-sensitive hashing over intermediate activations to produce proofs of
correct execution. While these methods provide a foundation for auditing, their robustness against
determined adversaries and in realistic, non-deterministic production environments [He and Lab,
2025] remains an open question, which we address in this work.

Detecting LLM-generated text. Detection of LLM-generated text has been extensively studied,
including post-hoc methods and proactive watermarking techniques [Yang et al., 2023, Ghosal
et al., 2023]. Zero-shot detection approaches use stylistic features or model-specific "fingerprints"
to distinguish AI-generated content without specialized training data [Mitchell et al., 2023, Bao
et al., 2023, Yang et al., 2024]. Trained classifiers [Hu et al., 2023, Sun et al., 2025] utilize datasets
from various sources to differentiate model outputs. Although effective against stylistically distinct
models, these approaches may struggle with subtle substitutions within the same model family. LLM
watermarking techniques embed hidden signals in outputs to trace content ownership [Kirchenbauer
et al., 2023, Zhao et al., 2024a,b], but they are provider-centric and not intended for end-user
verification of model identity, particularly as the same watermark might span different backend
models.

Verifiable computation for ML. Cryptographic and hardware-based techniques can provably verify
ML inference. Zero-Knowledge Proofs (ZKPs) allow proof of correct inference without revealing
inputs or model weights but face substantial computational costs for large LLMs, making them
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impractical for real-time APIs today [Sun et al., 2024a, Xie et al., 2025]. In contrast, Trusted Execution
Environments (TEEs) provide hardware-level guarantees of integrity and confidentiality with much
lower overhead [NVIDIA, 2023]. Our work builds on this insight, arguing that TEEs represent the
most mature and practical path toward verifiable LLM inference in the current ecosystem.

3 Problem formulation and threat models

3.1 Problem formulation

Consider an LLM API service with three entities:

• User/Auditor: Use LLM services for tasks with input prompts x drawn from a distribution π(x).
• Service provider: Offers access to an LLM via a black-box API. The provider claims to serve a

specific target model Mspec but may substitute it with Malt.
• Target model (Mspec): The advertised model with distribution Pspec(y|x).
Model substitution occurs when the provider’s actual backend distribution Pactual(y|x) differs from
the advertised Pspec(y|x) without user disclosure. Substitutions include: (1) smaller models (e.g., 7B
vs 70B), (2) quantized variants (INT8 vs FP16) of Mspec, (3) fine-tuned or updated versions with
altered training data or objectives, or (4) entirely different model families.

Open-source vs. proprietary access. The user’s ability to audit depends on the type of model
and API. For open-source models, an auditor can run Mspec locally to get reference outputs and log
probabilities. For proprietary models (e.g., GPT-4, Claude-4), the auditor only has black-box access,
creating a significant information asymmetry.

Auditing goal. The user/auditor aims to determine whether the provider is faithfully using the
specified model. Formally, given samples (x, y) from the provider’s API (y ∼ Pactual(·|x)) and
potentially reference samples from Pspec(·|x), the auditor wants to test the null hypothesis:

H0 : Pactual(y|x) = Pspec(y|x) ∀x ∼ π(x) (Honest Provider)

against the alternative hypothesis:

H1 : Pactual(y|x) ̸= Pspec(y|x) for some x ∼ π(x) (Substitution Occurred).

An effective verification method should achieve: (1) Reliability - low false positive/negative rates, (2)
Efficiency - reasonable query budgets, (3) Robustness - resistance to adversarial countermeasures, and
(4) Generality - applicability across model types and API configurations.

3.2 Adversarial attack scenarios

Quantization substitution. The provider replaces the full-precision target model Mspec with a
quantized version (e.g., INT8, FP8, NF4). Quantization significantly reduces memory footprint and
often accelerates inference, lowering costs. While preserving much of the model’s capabilities, it
slightly alters the output distribution Palt(y|x). The attack relies on this distributional difference
being too small for naive detection methods to pick up, especially with limited samples.

Randomized model substitution. To make detection harder, the provider can route a query to a
cheaper substitute Malt with probability p and to the specified model Mspec with probability 1− p.
The observed distribution is Pmixed(y | x) = p · Palt(y | x) + (1− p) · Pspec(y | x). As p → 1 (low
substitution rate), Pmixed approaches Pspec, making sampling-based detection increasingly difficult. A
sophisticated provider might adapt p downward only when traffic appears non-audit-like.

Benchmark evasion (cached/routed output). This attack targets verification methods relying on
known, fixed prompts, such as benchmark datasets or identity queries. The provider detects likely
audit queries (e.g., via hashing or embedding similarity) and routes them to a genuine Mspec instance
or returns cached outputs and metadata. Ordinary traffic is served by Malt.

Limiting information disclosure. Providers might proactively limit the information exposed via
APIs (e.g., removing full logits, restricting top-k log probabilities) after demonstrations that such
features can leak sensitive details [Carlini et al., 2024, Finlayson et al., 2024].
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Service Provider Open Source Models Decoding Parameters Logprobs Output

Anyscale Yes Full Control Yes
Together.ai Yes Full Control Yes
Hugging Face Yes Full Control Top 5
AWS Bedrock Yes Full Control Yes
Nebius AI Yes Full Control Yes
Vertex AI Yes Full Control Top 5
Mistral Yes Partial Control No
DeepSeek Yes Full Control Top 20
OpenAI No Partial Control Depends on model
Cohere No Full Control Top 1
Anthropic No Full Control No

Table 1: Transparency and control across LLM API providers (September 2025). “Full Control”
implies typical parameters like temperature, top-p, top-k, etc. Log probability availability and limits
vary by model/version.

4 Model verification techniques and robustness analysis

LLM service providers offer a wide range of interfaces, from basic text-only web chats to advanced
APIs that allow control over decoding parameters and access to token log probabilities (Table 1 and
Table 5). The level of information disclosure significantly constrains which verification techniques
can be applied. In this section, we systematically evaluate various auditing methods across different
access levels: (1) text-only output, (2) output plus metadata (e.g., log probabilities, activations),
and (3) provider-supplied integrity (e.g., TEEs in Section 4.3). For each technique, we detail the
methodology, describe our experimental setup for evaluating its robustness against the adversarial
scenarios outlined in Section 3.2, and analyze its effectiveness.

4.1 Text-output-based verification

4.1.1 Text classifier

Method. Sun et al. [2025] use a trained classifier to predict the source model of generated samples,
exploiting stylistic “fingerprints” unique to each model. Given a dataset of model completion labeled
with model, the classifier is trained to predict the label using cross-entropy loss.

Model BERT Acc T5 Acc GPT2 Acc LLM2Vec Acc
Llama3-70B-Instruct-FP8 50.55 50.10 50.45 49.90
Llama3-70B-Instruct-INT8 51.60 49.90 51.30 50.25
Gemma2-9b-it-FP8 49.95 50.30 51.20 49.80
Gemma2-9b-it-INT8 49.00 49.70 51.65 49.55
Mistral-7b-v3-Instruct-FP8 50.55 49.75 48.70 48.75
Mistral-7b-v3-Instruct-INT8 49.70 50.75 50.50 51.15
Qwen2-72B-Instruct-FP8 50.05 50.25 48.75 49.80
Qwen2-72B-Instruct-INT8 50.75 50.55 49.45 50.20

Table 2: Binary classification accuracy between outputs of quan-
tized and original models on UltraChat [Ding et al., 2023]. Accu-
racies near 50% indicate failure to differentiate.

Attack: Quantization sub-
stitution. We test whether
classifiers could distinguish
full-precision from quantized
variants of Llama-3.1-70B,
Gemma-2-9B, Mistral-7B-v0.3,
and Qwen2-72B. Using Ultra-
Chat prompts (temperature 0.6),
we train on 10k samples per
variant (with 1k validation) and
evaluate classifiers with BERT,
T5, GPT-2, and LLM2Vec
embeddings.

Analysis. Classification accuracies stay near chance across all model pairs and embedding backbones
(Table 2), leaving us unable to reject H0 that Mspec and Malt produce indistinguishable outputs;
deviations from 50% can be attributed to sampling noise. The result is consistent across families,
parameter sizes, and INT8/FP8 variants, and persists under alternative train/validation splits. In
contrast to Sun et al. [2025], who report around 98% cross-model and 80% cross-model size accuracy,
the signal here is too weak to separate quantized from full-precision variants. We therefore find that
text-based classifiers, even with strong encoders (BERT/T5/GPT-2/LLM2Vec), are ineffective for
detecting quantization-based substitution under realistic sampling budgets.
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Figure 1: Statistical power of MMD tests. (Left) Distinguishing quantized from original models when
parameters are small. (Right) Power as a function of substitution probability p for larger models,
showing how mixtures of quantized and full-precision outputs affect detectability.

4.1.2 Identity prompting

Method. Prompt the model to disclose its identity (e.g., “Who are you?”, “Who developed you?”)
and string-match against known identifiers (family, developer), following the simple classifier setup
in Huang et al. [2025].

Attack: Quantization substitution. We test whether quantization changes self-identification: for
Llama3.1-70B-Instruct, Gemma2-9b-it, Mistral-7b-v3-Instruct, and Qwen2-72B-Instruct, we issue
500 identity queries per model/variant at temperature 0.6 and matched family (e.g., “Llama”) and
developer (e.g., “Meta”).

Attack: System prompt override. In this setting, we explicitly set the system prompt to mislabel
the model (e.g., “You are LLaMA, an AI assistant developed by Meta AI”) and then re-ran identity
queries on Gemma2-9b-it, Mistral-7b-v3-Instruct, and Qwen2-72B-Instruct.

Analysis. The results for quantization substitution remain consistent: models typically disclose only
broad identifiers such as the family or developer, and rarely reveal specific details like parameter
count or quantization status. Queries asking for direct specifications are successful in less than 5% of
cases, often resulting in refusals or incorrect responses from the model. When the system prompt
is overridden, most models fail to correctly identify themselves, with accuracy dropping to nearly
0%. Instead, they often adopt the identity given by the system prompt, although some contradictions
occasionally occur (e.g., restating the true developer). Overall, these findings indicate that identity
prompting is ineffective for detecting substitutions within the same family and is highly sensitive to
changes in the prompt, making it an unreliable method for detecting substitutions in practice.

4.1.3 Model equality testing

Method. When only text outputs are available, one can test whether two models induce the same
distribution over completions by applying a Maximum Mean Discrepancy (MMD) test [Gao et al.,
2024]. Let P and Q denote the distributions of two candidate models,

MMD2(P,Q) = Ex,x′∼P [k(x, x
′)] + Ex,x′∼Q[k(x, x

′)] − 2Ex∼P,x′∼Q[k(x, x
′)],

with the Hamming kernel khamming(x, x
′) =

∑L
i=1 1{xi = x′

i}. We estimate significance by
permutation testing: repeatedly shuffle completions between groups, recompute MMD, and reject H0

if the observed statistic exceeds the α-quantile of this null distribution.

Attack: Quantization substitution. We first compare outputs from Mspec (full precision) and Malt
(INT8 quantized) models. Using Llama-3/3.1-70B, with L = 50 and T = 1, and 25 multilingual
Wikipedia prompts, we conduct 100 Monte Carlo simulations with 1000 permutations per test. Power
is computed as the probability of rejecting H0:Pactual=Pspec when the entire output distribution came
from Malt.

Attack: Randomized substitution. To simulate partial replacement, we construct mixtures of
completions from Mspec and Malt with substitution probability p ∈ {0.0, 0.2, . . . , 1.0}. We then
repeat the same MMD test procedure to estimate how power changes as p increases. This setup
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models a provider routing only a fraction of queries to the substituted model while serving the
remainder from the specified one.

Analysis. Figure 1 shows that for smaller models (left panel), even full substitution by Malt remains
statistically undetectable: power never rises beyond the significance level α. For larger models
(right panel), the test is more sensitive—power climbs with p and reliably rejects H0 when p ≥ 0.6.
However, for modest substitution (p ≤ 0.2), rejection probability collapses to α, making randomized
substitution empirically indistinguishable from chance. These results imply that quantization substi-
tution and partial randomized substitution are both viable evasion strategies, with the latter requiring
only limited mixing to defeat auditing. Moreover, inference nondeterminism across providers can
inflate MMD values even for identical models, risking false positives. As also noted by Gao et al.
[2024], MMD-based auditing is only effective under strictly controlled local inference environments,
limiting its practicality.

4.1.4 Benchmark-based detection

Method. An auditor may attempt benchmark-based detection (e.g., Chen et al. [2023]) by querying
standardized benchmarks where baselines are well established. We evaluate four tasks: MMLU
[Hendrycks et al., 2020], GSM8K [Cobbe et al., 2021], MATH [Hendrycks et al., 2021], and GPQA
Diamond [Rein et al., 2024]. At decoding temperature T=0.5, we repeat evaluation 10 times and
report mean accuracy and standard deviation (Table 3). MMLU is scored by restricting completions
to multiple-choice tokens and averaging over 100 runs per query; free-form numeric tasks (GSM8K,
MATH) are scored by regex matching or the math-verify library; GPQA is scored by multiple-
choice accuracy.

Attack 1: Quantization substitution. We compare quantized and full-precision variants across
all four benchmarks. As shown in Table 3, differences are small and typically within one standard
deviation across repeated runs. This suggests that quantized models perform nearly indistinguishably
from their full-precision counterparts, limiting the power of benchmark-only detection.

Model MMLU GSM8K MATH GPQA Diamond
Meta-Llama-3-8B-Instruct 62.69 ± 0.18 61.14 ± 3.47 20.65 ± 3.43 22.62 ± 0.22

Meta-Llama-3-8B-Instruct-FP8 62.43 ± 0.26 60.90 ± 4.10 14.91 ± 2.49 20.14 ± 0.24
Meta-Llama-3-70B-Instruct 78.05 ± 0.08 88.06 ± 1.44 35.69 ± 1.33 29.60 ± 0.51

Meta-Llama-3-70B-Instruct-FP8 77.88 ± 0.13 87.35 ± 1.24 35.75 ± 1.16 33.12 ± 0.30
Gemma-2-9b-it 71.86 ± 0.08 81.80 ± 1.35 33.41 ± 0.28 28.64 ± 2.97

Gemma-2-9b-it-FP8 71.92 ± 0.11 79.41 ± 1.14 32.53 ± 0.34 27.81 ± 3.22
Qwen2-72B-Instruct 82.18 ± 0.08 86.72 ± 1.00 37.39 ± 1.41 29.93 ± 2.71

Qwen2-72B-Instruct-FP8 81.98 ± 0.08 86.82 ± 0.97 37.67 ± 1.39 31.08 ± 1.96
Mistral-7B-Instruct-v0.3 59.15 ± 0.10 35.90 ± 4.54 8.94 ± 1.24 21.60 ± 0.17

Mistral-7B-Instruct-v0.3-FP8 58.77 ± 0.13 32.20 ± 4.02 7.68 ± 1.23 22.72 ± 0.19

Table 3: Mean ± standard deviation of benchmark results on
different models at temperature T = 0.5.

Attack 2: Hiding temperature pa-
rameter. We also evaluate bench-
mark accuracy under varying decod-
ing temperature (Figure 2). For T ≤
1, accuracy variance across runs is
low, and single-run results are sta-
ble. However, if the provider does
not disclose or allow control of tem-
perature, observed accuracy drops
could be misattributed—either to
hidden parameter choices or to sub-
stitution—reducing audit reliability.

Analysis. Figure 2 shows that benchmark accuracy degrades with higher T , and the size of this
drop is comparable to quantization-induced differences. This means auditors testing H0:Pactual=Pspec
cannot distinguish whether deviations from baseline arise from Malt substitution or from hidden
parameter settings. Caching further complicates detection: if providers cache outputs for known
benchmark queries, apparent accuracy may remain aligned with Mspec even under substitution,
suppressing deviations. Overall, benchmark-based detection can expose large-scale substitution, but
smaller changes (e.g., quantization) are hidden by natural variability, and confounds like temperature
or caching make H0 rejection unreliable in practice.

4.1.5 Greedy decoding outputs

Method. We test whether greedy decoding, which removes sampling randomness, yields repro-
ducible completions across settings. Beyond substitution attacks, we also investigate how greedy
decoding behaves in real-world auditing conditions, where inference is accessed only through APIs.
This lets us assess not just sensitivity to quantization or fine-tuning, but also whether greedy decoding
(and text-based verification more broadly) is robust when applied in deployment settings. Using 50
UltraChat queries, we compare local inference runs (Transformers 4.40.0 on H100 GPUs) against
API providers’ outputs on the same Gemma-2-9B model. We also assess self-consistency across
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Gemma-2-9B APIs across providers. Right: Llama-3-8B variants including quantized and fine-tuned
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repeated API calls. Agreement is measured by exact match of the first k tokens, with k = 20 and
k = 100.

Attack: Quantization and fine-tuned substitution. For Llama-3-8B, we compare greedy outputs
from the reference model against its quantized (FP8) and fine-tuned variants (e.g., models trained
for other context length or on domain-specific corpora). While local inference across frameworks is
largely consistent, both quantization and fine-tuning introduce significant token-level discrepancies,
reducing agreement with the baseline sequence. This shows that greedy decoding can, in theory,
detect within-family substitutions when the environment is controlled.

Analysis. Figure 3 shows that greedy decoding does not ensure reproducibility: even with sampling
disabled, agreement across provider APIs for Gemma-2-9B is below 5%, and agreement for fine-
tuned or quantized Llama-3-8B variants drops well below the baseline. Under H0 : Pactual=Pspec,
greedy outputs should match exactly, but observed divergence is often larger than that induced by
quantization or fine-tuning. This reflects inference nondeterminism [He and Lab, 2025], whose
sources (e.g., backend variability in kernels, tokenization, or caching) are discussed in the next
section. The key implication is that while greedy decoding can detect substitution in a controlled local
environment, it fails to do so in realistic auditing settings where backend nondeterminism dominates,
making Mspec and Malt indistinguishable.
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4.1.6 Log probability verification

Method. In theory, logprobs comparison can be used to verify whether the served model matches a
claimed reference: per-token log probabilities should align closely. In practice, the reliability of this
approach depends on the magnitude of nondeterminism affecting the logprobs.

Evaluation. To assess stability, we compare token-level log probabilities from greedy decoding on
UltraChat queries, across multiple inference frameworks (vLLM [Kwon et al., 2023] vs. Hugging
Face Transformers [Wolf et al., 2020]), GPU types (H100, A100), and software versions. Figure 4
shows that even for the same model, logprob traces for the first 20 tokens can diverge across stacks.
On the subset of completions where the generated tokens agreed, we further compare the magnitude
of the assigned log probabilities and find minor variations across environments. Additional examples
are given in Appendix B.
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Figure 4: Log probabilities for the first 20 shared tokens
under greedy decoding for UltraChat queries across
frameworks/hardware.

Analysis and weakness. Logprob traces
often appear nearly identical across token
positions in controlled settings, and the
magnitude differences are still distinguish-
able when compared to quantized or fine-
tuned variants. In production, however,
batching and heterogeneous backends in-
troduce much larger variance. Recent work
[He and Lab, 2025] shows that a key source
of this instability is the lack of batch invari-
ance in kernels such as RMSNorm, matrix
multiplication, and attention: the same re-
quest may yield different results depending
on how many other requests are batched
concurrently or how prefill/chunking is
scheduled. Even at T = 0, greedy decod-
ing can diverge after only tens of tokens,
making logprob distributions very noisy.
Prototype batch-invariant kernels exist but
incur throughput costs, so current APIs typ-
ically remain nondeterministic. For audi-
tors, this means logprob-based detection is
vulnerable to false alarms unless requests
are isolated or providers explicitly expose
batch-invariant execution. In addition, this
method requires a reference instance of
Mspec and API access to log probabilities.
Stronger auditing methods that attempt to
reconstruct embedding subspaces (Appendix B) are generally infeasible under current API non-
disclosure of full logprobs.

4.2 Internal Activations Verification

Method. TopLoc [Ong et al., 2025] introduces a locality-sensitive hashing scheme over intermediate
activations to produce compact proofs of correct execution. Here, locality-sensitive hashing (LSH)
refers to mapping high-dimensional activation tensors into small fingerprints such that similar
activations yield similar hashes, while even small unauthorized changes cause detectable differences.
Instead of storing full tensors, TopLoc extracts the top-k largest activation values and indices and
encodes them as a polynomial congruence, yielding proofs that are robust to GPU nondeterminism
and algebraic reorderings. This allows compact verification (about 100 bytes per tens of tokens)
while maintaining accurate detection under adversarial substitution.

Analysis and weakness. TopLoc can detect most model substitutions (e.g., quantized variants,
fine-tuned models) even under different software and hardware settings, aligning with the behaviors
observed in logprobs testing. However, verification still requires the auditor to recompute the same
hidden activations, i.e., to run Mspec locally or rely on an attested recomputation (e.g., a TEE), so it is
infeasible without attestation for proprietary models. In addition, batching variance and speculative
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decoding could still remain problematic, as both can introduce enough instability in the forward pass
or generated tokens to disrupt verification.

4.3 Hardware-assisted verification: Trusted Execution Environment (TEE)

Method. Trusted Execution Environments (TEEs), such as those provided by NVIDIA’s Confidential
Computing on Hopper and Blackwell GPUs [NVIDIA, 2023], offer a paradigm shift. A TEE creates
a hardware-isolated enclave where both the model weights and the inference code are protected from
the host system. The TEE can produce a cryptographic attestation report that includes measurements
(hashes) of the loaded model and execution code. An end-user can cryptographically verify this
report to gain absolute certainty that the intended model is running unmodified within the specified,
trusted software environment.

Evaluation. The primary concern with TEEs is performance overhead. We benchmark a vLLM
inference endpoint for Llama-3-8B running on a single H100 GPU, both with and without a TEE
enabled. We measure first-token latency and overall throughput under single-request and high-
concurrency (64 requests) workloads.

Metric Concurrent
requests # TEE no TEE Overhead

2*First token latency
(ms) 1 71 65 9.23%

64 79 68 16.18%

2*Overall throughput
(token/s) 1 99 117 15.38%

64 943 971 2.88%

Table 4: Performance comparison for a vLLM endpoint
with/without TEE (Meta-Llama-3-8B-Instruct, single H100, TLS
enabled).

Analysis. Unlike software
methods, TEEs are not vulnera-
ble to computational attacks, as
trust is anchored in hardware.
The security guarantee is cryp-
tographic, not statistical. Our
evaluation in Table 4 shows that
this strong guarantee comes at a
modest and practical cost. The
overhead for first-token latency
was 9-16%, while the drop in
overall throughput under a high-
concurrency load was only 2.88%. This demonstrates that TEEs offer a deployable, high-assurance
solution to the model substitution problem, effectively closing the verification gap left by software-
only techniques.

5 Discussion

Our systematic evaluation reveals a clear hierarchy of verification capabilities:

Text-only methods are insufficient. Methods that only look at output distributions (classifiers,
identity prompts, MMD, benchmarks) either need many queries, get confounded by benign variance,
or can be evaded with some level of quantized model substitution. These approaches can give a rough
signal but do not provide strong integrity guarantees. More generally, limited information access
forces auditors to rely on large sample sizes to identify weak statistical patterns.

Metadata-based methods are fragile. Logprobs offer more sensitivity: in principle, per-token
likelihoods can reveal discrepancies with far fewer samples than text-only outputs. However, in
practice, backend nondeterminism destroys this advantage: variance across frameworks, batching, and
hardware is often larger than the effect of quantization or fine-tuning. TopLoc improves robustness
by producing compact activation-based proofs that are less sensitive to such variability, but it has
no guarantees under significantly different inference settings, and still requires local recomputation
of Mspec, making it infeasible for proprietary deployments. In practice, both logprobs and TopLoc
collapse without access to the reference model.

Hardware-backed attestation is strongest. Trusted Execution Environments (TEEs) avoid these
weaknesses: they guarantee integrity without exposing internals or requiring the auditor to hold
the weights. Overheads are modest (Table 4), and attestation cryptographically binds the stack
and model hash to the outputs. Adoption remains limited by operational complexity and weak
provider incentives, but TEEs are currently the best compromise between verifiability, efficiency, and
protection of proprietary models.
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Actionable recommendations: (1) For users: Request attestation proofs when available; for
critical applications, prefer providers offering TEE-backed services. (2) For API providers: Consider
TEE deployment for premium tiers; increase transparency through model versioning and metadata
disclosure. (3) For policymakers: Develop standards for API transparency and consider requiring
attestation for regulated applications.

6 Conclusion

The model substitution problem represents a fundamental challenge in the current LLM ecosystem,
where economic incentives misalign with user trust. Our work provides both a comprehensive analysis
of why existing approaches fail and a concrete path forward through hardware attestation. As LLM
APIs become increasingly critical infrastructure, ensuring computational integrity through TEEs may
become as essential as HTTPS was for web security.
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Service Provider Reference documentation

Anyscale https://docs.anyscale.com/endpoints/text-generation/logprobs/
Together.ai https://docs.together.ai/docs/logprobs
Hugging Face https://huggingface.co/docs/api-inference/tasks/chat-completion#request
AWS Bedrock https://docs.aws.amazon.com/bedrock/latest/userguide/model-parameters.html
Nebius AI https://docs.nebius.com/studio/inference
Vertex AI https://cloud.google.com/vertex-ai/generative-ai/docs/multimodal/content-generation-parameters#log-probabilities-output-tokens
Mistral https://docs.mistral.ai/api/#operation/createChatCompletion
DeepSeek https://api-docs.deepseek.com/api/create-completion
OpenAI https://platform.openai.com/docs/api-reference/chat/create#chat-create-top_logprobs
Cohere https://docs.cohere.com/v2/reference/chat#request.body.logprobs
Anthropic https://docs.anthropic.com/en/api/messages

Table 5: LLM API service providers documentations.
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Figure 5: Log probability of generating first 20 shared tokens under greedy decoding for UltraChat
Queries under different environment.

A Additional details

B Model stealing and embedding verification

Background. Researchers have explored extracting model information (e.g., weights, architecture
details) from black-box APIs [Carlini et al., 2024, Finlayson et al., 2024]. While successful extrac-
tion could reveal substitutions, these methods often require a vast number of queries, significant
computational resources, and may still yield incomplete information, making them impractical for
routine auditing by typical users. Finlayson et al. [2024] specifically demonstrated how logits analysis
could expose model details, which we consider as a potential verification method for detecting model
substitutions.

Method. The embedding size detection relies on the fact that logits generated by an LLM are
restricted to a d-dimensional subspace of the full v-dimensional output space where d is the hidden
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embedding size. So the auditor can analyze a set of logit outputs from different prompts and
reconstruct this subspace and the hidden embedding size.

Given a set of n output logit vectors {ℓi}ni=1 (or log probabilities, since it preserves linear relationship
up to a constant addition), we construct a logit matrix L with each vectors as its columns. Applying
SVD to L yields L = UΣV T , where U ∈ Rv×v, Σ ∈ Rv×n (with singular values λ1 ≥ λ2 ≥ . . .),
and V ∈ Rn×n. The magnitude of the singular values will drastically decreases after the first
d dimensions. Formally, the embedding size d can be identified by detecting the singular value
index at which the magnitude drops the most: d = argmaxi(log λi − log λi+1), Once identified,
the d-dimensional subspace is constructed using the first d left singular vectors from U : Ud =
[u1, u2, . . . , ud] ∈ Rv×d, forming a unique signature of the model. Empirical evaluations confirm
that this method accurately recovers the embedding dimensions. Furthermore, monitoring this
subspace allows auditors to detect subtle changes, such as hidden system prompts, fine-tuning, or
entire model substitutions from the service provider.

Weakness. This verification method is impractical because no well-known service provider gives
full log probability access.

C Build an LLM inference API endpoint with TEE

In this section, we provide a solution for building an LLM inference API endpoint with TEE.
Considering the main program is still running on the CPU, the GPU TEE technology needs to be
paired with the VM-based CPU TEE (e.g., Intel TDX [Intel, 2021], AMD SEV-SNP [AMD, 2016])
to work properly. The latest CPU TEE can launch a confidential virtual machine inside and ensure
the integrity and confidentiality of the VM’s memory, preventing the host which is controlled by the
API provider from manipulating the data inside the confidential VM. The GPU TEE (e.g., NVIDIA
Confidential Computing [NVIDIA, 2023]) can build a secure communication channel between the
CPU and GPU and ensure the integrity and confidentiality of the data on the GPU memory, thus we
can add the GPU to the trusted computing base (TCB). By combining these two TEEs, we can ensure
the integrity and confidentiality of programs and data processed inside them.

To ensure integrity and confidentiality, the program inside the TEE needs to generate a key pair for
identifying itself and establishing secure communication channels with end users. This key can help
end users verify that they are connecting to the program inside the TEE and ensure the API providers
cannot interfere the communication traffic. Once the data is transferred to TEE, the data processing
inside TEE will be encrypted by hardware to ensure integrity and confidentiality.

One last question is how we can provide proof of the integrity of the inference program and add this
proof to the attestation report. First, the VM-based CPU TEE ensures memory protection and the
measured direct boot [Murik and Franke, 2021] extends the measurement to kernel, initrd, and kernel
command line. At this point, the measurement value in the attestation report can validate the integrity
of the kernel, initrd, and kernel cmdline. However, ensuring the integrity of the operating system and
program on the disk requires additional steps. To achieve this, we include a program into the initrd
that verifies and encrypts disk data. This action incorporates the disk into the trusted computing base
(TCB).

In this setting, the LLM inference program needs to be open-sourced for verification, while the model
can remain private if needed. The inference program inside the TEE can verify the hash of the model
weights and ensure that every time a model with a specific name is used, it has the same hash. For
open-sourced models, it is easy for anyone to calculate the desired hash. For proprietary models, the
name serves as an alias for specific model weights, if we can confirm that it always has the same hash
value, we can consider it to be integrous.

As we can see in Figure 6, the program is transparent and verifiable to the end users. End users can
check the attestation report and verify the signature on it to ensure that the API provider is running
the desired program.
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Figure 6: A screenshot of the API inference endpoint with TEE.
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