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Abstract

Robust and accurate solutions for anatomical landmark detection support entire clinical
workflows from diagnosis, therapy planning, intervention and follow-up, image-to-image
registration, structure tracking and simulations. In this paper, we propose a novel ap-
proach that reformulates landmark detection as a classification problem through a virtual
agent placed inside a 3D Cone-Beam Computed Tomography (CBCT) scan. This agent
is trained to navigate in a multi-scale volumetric space to reach the estimated landmark
position. The agent movements decision relies on a combination of Densely Connected
Convolutional Networks (DCCN) and fully connected layers. We evaluated our approach
on 60 CBCT scans from teenagers to senior patients. For each CBCT, 34 ground truth
landmark positions were identified by clinicians. Our method achieved a high accuracy with
an average of 1.21±0.79 mm error on the 6 landmark positions without failures. Moreover,
it takes an average of 25.2s computation time to identify 6 landmarks on one large 3D-
CBCT scans using GPU .

Keywords: Deep learning, Agent based learning, Medical image analysis, Multi-scale
images, Three-dimensional landmark identification, Smart localization.

1. Introduction

The accurate anatomical landmarks localization for medical imaging data is a challeng-
ing problem due to frequent ambiguity of their appearance and the rich variability of the
anatomical structures. Landmark detection represents a prerequisite for medical image
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analysis. It supports entire clinical workflows from diagnosis (Zhang et al., 2017), ther-
apy planning (Yu et al., 2013), intervention, follow-up to structure tracking (Yang et al.,
2011) and simulations (Cebral and Lohner, 2005). Landmark identification may serve as
initialization to other algorithms such as instance segmentation algorithms (Pouch et al.,
2014), or image-to-image registration (Lüthi et al., 2011),(Glocker et al., 2014). Figure
1 shows different landmarks placed on CBCT scans. Most of the available solutions for
landmark detection rely on machine learning (Ghesu et al., 2016), (Donner et al., 2013),
(Cuingnet et al., 2012). Other approaches for landmark identification rely on sub-optimal
search strategies, i.e., exhaustive scanning (Ghesu et al., 2016; Donner et al., 2013), one-
shot displacement estimation (Criminisi et al., 2010), (Štern et al., 2016), or end-to-end
image mapping techniques (Dai et al., 2016; Payer et al., 2016). In many cases these meth-
ods can lead to false-positive detection results and excessively high computation times. In
this work, we present a new method inspired by a deep reinforcement learning technique
(Ghesu et al., 2017). Our approach is robust and finds landmarks in CBCT scans accurately
and automatically, hence assisting clinicians in this crucial but time-consuming task. The
landmark detection task is setup as a behavior classification problem for an artificial agent
which is navigating through the voxel-grid of the image at different spatial resolutions.
The detection starts at a low-resolution image with a global context, and continues at the
higher-resolution image capturing increased levels of detail. The image features are used as
indicators to guide the landmark search. Figure 2 shows a CBCT image at different resolu-
tion levels, these are the agent’s environment. In order to adapt the feature extraction, we
train different neural networks at each resolution. After the feature extraction our search
model takes as input the image features and decides in which direction the agent should
move as shown in Figure 3. The search model is a classification model that uses a features
extraction network and fully connected layers. In the following section we describe the
images used to train our agent, followed by related work on approaches to find landmarks
in medical images.

2. Materials

The Cone-Beam Computed Tomography scans (CBCT) (Shah et al., 2014) were acquired
on teenagers to senior patients for dental clinical purposes. The CBCTs contain a diversity
of bones structures in a total of 60 scans. Forty of the CBCTs were performed at a private
dental radiology clinic using the i-CAT device (Imaging Sciences International, Hatfield,
PA), configured with 120 Kvp, 3–8 mA, a 0.4-mm isometric voxel size, and a field of view
(FOV) of 23 cm × 17 cm. The other 20 CBCTs were acquired in another radiology clinic
with the same device but a 0.3-mm isometric voxel size, and a field of view (FOV) of 17
cm × 17 cm. Two open-source software packages, ITK-SNAP 3.8 (Yushkevich et al., 2006)
and Slicer 4.11 (Fedorov et al., 2012) were used to orient the scans and place the 34 land-
marks. In this paper, we selected a set of 6 different landmarks located in different types
of anatomical structures, including, bone, tooth and non-rigid organ (Figure 1). This set
was selected to test the robustness of the solutions when exposed to a variation of contrast,
shape and position of the anatomical structures in the scan.
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Figure 1: Selection of 6 different landmark, 2 in each bone group (Cranial base, Mandible
and Maxilla)

3. Related work

Scanning-based Systems: A majority of detection solutions are scanning-based systems,
especially when working in 3D data. A patch of local volumetric intensity boxes are ex-
tracted from an image, and a classifier then learn to distinguish the appearance of the target
object from the rest of the sampled anatomy. Machine learning models like probabilistic
boosting trees (Tu, 2005) are usually used for this. Other deep learning approaches use
convolutional neural networks, sparse adaptive deep neural networks (Ghesu et al., 2016)
and/or 3D Unet (Çiçek et al., 2016). However, the major drawback of these approaches is
that at prediction time the model must scan the entire space of a given image set. With
images of up to 600× 600× 600 voxels, the memory usage grows exponentially, and so does
the computation time.
Regression-based Systems: Regression-based systems learn relative displacement vec-
tors pointing at the landmark location. These systems have been observed to use use
random regression forests (Donner et al., 2013), random-ferns (Pauly et al., 2011), and
deep convolutional neural networks (Erhan et al., 2014). These solutions highly improve
the scanning-based systems’ efficiency but still lack robustness.
End-to-End Systems: Also called image-to-image systems, end-to-end system developers
got their inspiration from the fully convolution network (FCN) architecture. They learn
the mapping between original image and segmentation multi-masks (Long et al., 2015).
Atlas-based Systems: The localization tasks can also be solved using atlas-based reg-
istration (Fenchel et al., 2008), as well as multi-atlas-based registration methods (Isgum
et al., 2009). However, once again, applying this to a set of large 3D images is memory and
compute time-consuming.
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Deep Reinforcement Learning (DRL) Systems: Ghesu et al. proposed a method
to solve most of the previously mentioned constraints using the capabilities of deep rein-
forcement learning and multi-scale image analysis (Ghesu et al., 2017). An artificial agent
is trained to distinguish the target anatomical object from the rest of the body while learn-
ing how to navigate to this object in the volumetric space. DRL can be complicated to
implement with the combination of a target network and the use of memory replay. The
next section will describe how we tried to simplify the training task.

4. Methods

Our work relies on two principles: a multi-scale environment, and a search agent inspired
by the behavioral problem solved as described in Deep Reinforcement Learning Systems.
In this paper the behavior classification is solved using imitation learning. This approach
is easier to implement and to train. It allows to use deeper neural networks that encode a
wider range of image features.

4.1. Environment

A prerequisite to the landmark detection is data preprocessing. Twenty of the 60 CBCTs
were acquired at a resolution of a 0.3mm, which was the highest resolution available. All
the volumes were re-sampled to an isotropic resolution of 0.3mm for the finest scale level.
We want the agent to learn different scales of the structures of interest. For our multi
scale-space we used an additional low-resolution level at an isotropic spatial resolution of
1mm. The image histograms were also re-scaled to have a better contrast and the data was
normalized to a [-1.0, 1.0] interval (Figure 2).
For each CBCT, 32 landmark positions were marked by clinicians and stored as a fidcuial
list. For the training, the 6 selected landmark positions are mapped to the discrete image
coordinates and stored in the environment memory.

Figure 2: Visualization of the environment. On the left, the low 1mm resolution was re-
scaled from the high-resolution 0.3mm scan on the right.
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4.2. Agent

The protagonist of this work is the agent. It’s a virtual object whose goal is to reach its
target position (the landmark) by moving inside an environment. With a set of 6 possible
actions, it is able to move move from one voxel to another by going up, down, left, right,
front or back. It has a 3D field of view (FOV) as shown in Figure 3, a Lx× Ly × Lz crop
inside the environment around the agent position. A 0 padding is applied to the part of the
FOV that is outside the scan. The size of the FOV is an important parameter, and we have
to make sure that enough relevant image features can be extracted at the current location
while limiting memory usage. This crop will be the ”state” of the agent.
Our agents are made of deep networks for feature extraction (FeatNet), followed by fully
connected non-linear function approximation layers. With significant improvements in re-
sults for image parsing tasks, deep learning systems are now an important part of the
innovation in the field of machine learning. In this paper we compared the accuracy of two
different 3D FeatNets, a Densely connected convolution network (DenseNet) (Huang et al.,
2017), and a Deep residual network (ResNet) (Boroumand et al., 2018). The FeatNet is
made of convolution layers which are trained to capture discriminative image features. It
takes as input the state, and outputs a vector describing image information. This vector is
then fed into the fully connected dense layers that output a probability vector P ∈ R6 of the
best action to take from the input state. The agent moves following the highest probability.

Figure 3: Visualization of the agent’s Lx × Ly × Lz field of view (blue box), and the 6
possible moves (red arrows) after the network prediction.

4.3. Training the agents

Our data was split by patients, 70% (42) for the training, 10% (6) for the validation and 20%
(12) for the test. An environment was generated for each patient, and the corresponding
landmark position were loaded. One agent was created for each landmark, and their network
weights were initialised using a Xavier uniform function. Each agent was trained using a list
of tuples: [S,A] where S is the state, and A is the best action to take from that state. We
chose A to be the action that minimizes the most the distance to the landmark among the
6 possible movements. The low-resolution and high-resolution scans had an average size of
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180×180×180 and 600×600×600 voxels respectively. It means that for each environment
we had more than 200, 000, 000 states that can be used to train the agent. To limit the
memory usage we used the following strategy to generate the list of tuples for each agent:

• At the low-resolution level, we initialized K random position with a 20% chance to
be within a radius Rlow of a ground truth landmark (region where more precision is
needed). The remaining 80% could be anywhere in the scan. The agent is supposed
to find the landmark from any starting point at this level.

• At the high-resolution level, we initialized K random position within a radius Rhigh

of a ground truth landmark, knowing that the agent should be in this radius after the
search at the low-resolution.

The K positions at each level were generated evenly in the N environments selected for
the training. At every training epoch, we updated r% of the K positions by new randomly
selected ones. It’s one of the most important part of our training strategy that allowed
the agent to be trained in most of the scan region while reducing the memory usage. The
agent had a different network for each scale. These networks were optimized using the
pytorch library using a combination of back-propagation algorithm to compute the network
gradients (in this work, the cross entropy loss) and an ADAM optimizer. All the steps are
summarized in Algorithm 1. The training was done on an NVIDIA Quadro RTX 6000/8000
GPU with a batch size of 100, Lx = Ly = Lz = 64, K = 10, 000, N = 2, r = 50% and
Rlow = Rhigh = 30 voxels and it took about 2h for one agent to be trained and reach a good
accuracy.

4.4. Predict the landmarks position

To predict the landmark positions in a CBCT, we rescale it to the resolutions used during
training (here 1mm and 0.3mm voxel size). For each landmark to predict, an agent is
generated with its corresponding network. The landmark prediction is then made in 3 steps
(Figure 4):

• Step 1: The prediction begins at the low-resolution level. The agent is placed in the
middle of the scan to optimize the search time. Once the agent reaches a confident
zone, it goes to the high-resolution layer.

• Step 2: The agent starts moving in the high-resolution from the confident zone. A
preliminary estimation is set where the agent stops moving,

• Step 3: Now, a verification step is applied. This step consists of searching again in
the high-resolution scan starting from 6 positions (in each direction) in a small radius
from the predicted point in Step 2 . The result is an average of the 6 predicted
positions.

The stopping criteria is active at prediction time and is implemented using a visitation map.
If the agent tries to reach a visited voxel it stops. The third step increased the prediction
accuracy and compensated for a portion of the error caused by the discrete aspect of the
space. All the steps are summarized in Algorithm 2.
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Figure 4: Visualization of the agent (blue) in the multi-scale environment (green) searching
the target (red).

5. Results

Twelve patients were separated from the dataset to test the prediction accuracy. These
images were never seen by the networks during training. We placed an agent for each of
the 6 landmarks at the center of the low-resolution image and let them do the 3 searching
steps. It takes around 4.2s on GPU for each landmark to predict. The prediction on the
12 scans required 8.8GB of cache memory and 2.1GB of GPU memory. Each agent did 90
moves on average to reach the landmark position.
A fiducial list that the clinician can use is generated with the predicted positions of the land-
marks. To compute the prediction accuracy, we find the distance between each landmark in
the ground truth (GT) fiducial list and the predicted one. After the position estimation in
the low resolution, the agent was already found to be very close to the final position. Thus,
it was sufficient to use only 2 resolutions for the prediction, making it faster while reducing
the memory usage and without losing any accuracy. We compared the prediction results
with different feature extraction strategies: DenseNet and a ResNet. The table DenseNet
vs ResNet shows that depending on the landmark to search, one FeatNet was better than
the other. On an average, the DenseNet showed better performance. Figure 5 shows the
distribution of error in prediction (in mm) using DenseNet as the feature extraction for all
landmarks. The more inconsistent accuracy of the UL3tip landmark compared to the Ba
landmark can be explained by a strong variation from one patient to another. The tooth
may be missing, or metal implants may create artifacts within the scan that make detection
more difficult.
With an average error of 1.21mm we are below the clinician requested average error limit
of 2mm. A prediction is considered to have failed when the agent is more than 5mm away
from the ground truth. The 12 ”test” images present different contrast and small variation
in alignment. The detection can be considered to be robust with 0 failures out of the 72
predictions made.
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Figure 5: Violin plot of the distance in mm between the ground truth and the prediction
for the 6 landmarks selected (using DenseNet).

6. Conclusion

This paper presents a novel method for robust and accurate anatomical landmarks local-
ization for 3D medical imaging data. We combined the concept of scanning-based systems
with smart displacement inside the scan using an agent. The training on a multi-resolution
image enabled the artificial agent to systematically learn to find the targeted anatomical
structures. Experiments show that our method is robust with no failed cases in the test
set and accurate with less than 1.3 mm average error in landmark placement. The average
detection speed of 4.2s is acceptable knowing the size of the high-resolution 3D-CBCT vol-
umes used. Having separate models for each agent allows the clinician to make custom list
of landmark to find. It also makes it easy for them to train new agents separately without
compromising the previously trained models. Given the high robustness and good time per-
formance, this method will be implemented in the open-source web based clinical decision
support system (the Data Storage for Computation and Integration, DSCI) (Brosset et al.,
2021), and in a user-friendly 3D Slicer module. For future work we will experiment to train
a unique feature extraction layer common to all agents. The 28 remaining landmark will be
trained and the method will be tested on another CT scan type. Downstream analysis, such
as registration tasks or quantification (measuring distances, angles, etc.) will be performed.
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Darko Štern, Thomas Ebner, and Martin Urschler. From local to global random regres-
sion forests: exploring anatomical landmark localization. In International Conference on
Medical Image Computing and Computer-Assisted Intervention, pages 221–229. Springer,
2016.

Zhuowen Tu. Probabilistic boosting-tree: Learning discriminative models for classification,
recognition, and clustering. In Tenth IEEE International Conference on Computer Vision
(ICCV’05) Volume 1, volume 2, pages 1589–1596. IEEE, 2005.

Lin Yang, Bogdan Georgescu, Yefeng Zheng, YangWang, Peter Meer, and Dorin Comaniciu.
Prediction based collaborative trackers (pct): A robust and accurate approach toward 3d
medical object tracking. IEEE transactions on medical imaging, 30(11):1921–1932, 2011.

JI Yu, JS Kim, HC Park, DH Lim, YY Han, HC Lim, and SW Paik. Evaluation of anatom-
ical landmark position differences between respiration-gated mri and four-dimensional ct
for radiation therapy in patients with hepatocellular carcinoma. The British journal of
radiology, 86(1021):20120221–20120221, 2013.

Paul A Yushkevich, Joseph Piven, Heather Cody Hazlett, Rachel Gimpel Smith, Sean Ho,
James C Gee, and Guido Gerig. User-guided 3d active contour segmentation of anatomical
structures: significantly improved efficiency and reliability. Neuroimage, 31(3):1116–1128,
2006.

Jun Zhang, Mingxia Liu, Le An, Yaozong Gao, and Dinggang Shen. Alzheimer’s disease
diagnosis using landmark-based features from longitudinal structural mr images. IEEE
journal of biomedical and health informatics, 21(6):1607–1616, 2017.

11



Gillot Baquero Ruellas Gurgel Biggs Yatabe Bianchi Cevidanes Prieto

Appendix A. DensNet vs ResNet

Table 1: DensNet vs ResNet error in mm

Bone group landmark FeatNet Fail Max Mean+STD

Maxilla ANS DenseNet 0 2.45 1.21±0.75
ResNet 0 1.88 1.14±0.43

UL3tip DenseNet 0 4.16 1.30±1.06
ResNet 0 4.66 1.21±1.26

Mandible Gn DenseNet 0 3.41 1.20±0.85
ResNet 0 2.43 1.17±0.62

RCo DenseNet 0 2.77 1.12±0.71
ResNet 0 2.85 1.43±0.73

Cranial base Ba DenseNet 0 1.82 1.05±0.37
ResNet 0 1.57 0.96±0.40

S DenseNet 0 3.57 1.29±0.78
ResNet 0 2.45 1.31±0.51

Total All DenseNet 0 4.16 1.21±0.79
ResNet 0 4.66 1.29±0.75

Appendix B. Algorithm

Algorithm 1: Training agents

Given N Environments: E1, E2, . . . , EN with d = 2 resolutions
And 6 Agents: A1, A2, . . . , A6

Initialize number of starting points = K
for all Agents do

for i← 1 to d do
Set FeatureNet
Initialize DensLayerNet randomly using a Xavier uniform function.

end

end
Initialize ratio of starting point to update r = 50%
for epoch← 1 to number of epoch do

for all Agents do
Generate dataset from the K starting points on each resolution
Train network (FeatNet + DensLayerNet)
Replace K × r random starting point for each resolution

end

end
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Algorithm 2: Searching landmarks

Given N high-resolution scans: S1, S2, . . . , SN

Generate N Environments from the scans: E1, E2, . . . , EN with d = 2 resolutions
for all landmark to search do

Create Agent
Load search model for each resolution

end
for all Environments do

for all Agents do
Put the agent in the center of the low-resolution environment
while Agent is moving do

Get agent FOV
Predict action to take and move

end
Change agent environment to the high-resolution
while Agent is moving do

Get agent FOV
Predict action to take and move

end
Apply the verification step around the actual position
Save the predicted landmark position in the environment

end
Export landmarks found as fiducial list

end
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