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Visual prompting (VP) has emerged as a popular method to repurpose pretrained
vision models for adaptation to downstream tasks. Unlike conventional model fine-
tuning techniques, VP introduces a universal perturbation directly into the input
data to facilitate task-specific fine-tuning rather than modifying model parameters.
However, there exists a noticeable performance gap between VP and conventional
fine-tuning methods, highlighting an unexplored realm in theory and practice to
understand and advance (input-level) VP to reduce its current performance gap. To-
wards this end, we introduce a generalized concept, termed activation prompt (AP),
which extends the scope of (input-level) VP by enabling universal perturbations to
be applied to activation maps within the intermediate layers of the model. By using
AP to revisit the problem of VP and employing it as an analytical tool, we demon-
strate the intrinsic limitations of VP in both performance and efficiency, revealing
why input-level prompting may lack effectiveness compared to AP, which exhibits a
model-dependent layer preference. We show that AP is closely related to normal-
ization tuning in convolutional neural networks (CNNs) and vision transformers
(ViTs), although each model type has distinct layer preferences for prompting. We
also theoretically elucidate the rationale behind such preference by analyzing global
features across layers. Through extensive experiments across 29 datasets and vari-
ous model architectures, we provide a comprehensive performance analysis of AP,
comparing it with VP and parameter-efficient fine-tuning (PEFT) baselines. Our
results demonstrate AP’s superiority in both accuracy and efficiency, considering
factors such as time, parameters, memory usage, and throughput.

1. Introduction
Large pretrained models have emerged as fundamental components in deep learning (DL) [1–5]
in recent years. Despite their exceptional performance, the substantial increase in computational
demands, as highlighted in recent studies [6], has underlined the need for more economical and
lightweight fine-tuning approaches. Thus, the pretraining-finetuning paradigm rises, allowing for
quickly adapting a pretrained model to a plethora of downstream tasks [7–13]. Among the various
parameter-efficient finetuning (PEFT) methods [8, 9, 12, 14, 15], prompting technique has been gaining
popularity in the vision domain [16, 17].
Different from the model-centric PEFT techniques in computer vision (CV), the conventional visual
prompting (VP) crafts specific input perturbations (known as ‘prompts’) to reprogram the pretrained
model for a targeted task, without altering the model parameters. This offers a new data-centric
viewpoint to analyze, understand, and harness the pretrained model [13]. However, despite the
recent advancement, the performance of state-of-the-art (SOTA) VP methods still lags behind model-
based fine-tuning methods [13, 18]. It appears that the potential of VP has not been fully realized
for vision models, particularly when considering its relative progress compared to its counterpart
in natural language processing (NLP) [16, 17]. In this work, we aim to provide a rigorous and
comprehensive examination of VP and explore its enhancement tailored for vision models, including
convolutional neural networks (CNNs) and vision Transformers (ViTs). In particular, we ask:
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(Q) Is VP (visual prompting) truly beneficial for improving vision models and tasks, and under what
conditions does it prove effective or ineffective?

To tackle question (Q), we present a generalized variant of VP termed activation prompt (AP), which
involves the incorporation of learnable perturbations into the activation maps of intermediate layers,
rather than focusing solely on the input layer. See Fig. 1 for an illustration. The introduction of AP
allows us to study the (in)effectiveness of (input-level) VP, asVP can be treated as a specific realization
of AP. By employing AP as both a bridge and an analytical tool, we show that the conventional
input-based VPmight not be the most effective or efficient design. In fact, appropriately implemented
AP can outperform traditional VP significantly. To shed light on the underlying mechanism of AP,
we present both empirical evidence and theoretical insights. It is also worth noting that, unlike VP,
which can be applied in a black-box model setting [19, 20], AP requires modifying the parameters of
intermediate activation maps and is only applicable in a white-box setting.
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Figure 1: An illustration of the proposed activation
prompt vs. the conventional input-based prompt.

The work most relevant to ours is [7], which
also integrates prompts with intermediate lay-
ers of ViTs, resulting in the method known as
visual prompt tuning (VPT). However, ourwork
has the following distinctions from VPT. First,
AP and VPT diverge in their designs. AP con-
centrates on the targeted application of prompts
to a single model layer. In contrast, VPT and its
deep variant (termed VPT-deep) apply prompts
across multiple layers. Specifically, VPT-deep
initiates prompts at one layer and extends them
across all subsequent layers. The distinctive
layer-prompting approach makes VPT not cov-
ering VP as a special case. In contrast, AP serves
as a generalized framework for VP, making it easier to analyze its effectiveness. Second, this work
identifies the layer preference of vision models regarding prompts. Through AP, we can gain insights
into these layer preferences on both CNNs and ViTs. In contrast, VPT does not conduct a systematic
analysis of layer and architectural type effects. Third, another notable difference between our work
and the VPT study is our theoretical analysis. We establish a connection between AP and normaliza-
tion tuning and theoretically validate the concept of layer preference and its influence on various
architectural designs. Our theoretical analysis also shows that the traditional implementation of
input-level VP could be suboptimal. In summary, our contributions include:
• We propose AP (activation prompt) as a valuable tool for gaining insights into VP (visual prompt-
ing). And AP establishes itself as a versatile and effective prompting technique in its own right,
revealing a provable relationship with normalization tuning (Sec. 3).
•We offer an in-depth analysis of AP’s layer preference and its architecture effects. Through empirical
studies, we unveil the connection between the layer preference and the capacity for capturing global
features (Sec. 4). In addition, we theoretically validate those findings (Sec. 5).
• Through extensive experimentation involving 29 datasets across various benchmarks, we affirm
that AP enhances the input-level VP in diverse learning scenarios. Furthermore, AP narrows the
performance gap even when compared to 6 other stateful PEFT methods.

2. Related Work

Visual prompting. VP was first proposed in [7, 21] to extend the prompting technique in NLP.
A similar idea with a different name, known as adversarial reprogramming, was also proposed
earlier in CV [22–28]. It aims at re-purposing a fixed pretrained model to adapt to a new task.
Recent advancement focuses on improved label mapping [26, 29] and normalization strategy [18] to
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enhance VP. Other works further extend VP to areas like adversarial defense [30, 31] and distribution
shift [32, 33], and vision-language models [34].
Theoretical study on prompt engineering. Existing theoretical works on prompt engineering include
the expressive power of the introduced parameter [35–37], the optimization process [38, 39], and the
generalization analysis [40–46]. Most studies concentrate on in-context learning, a tuning-free hard
prompt method. In contrast, for soft prompt tuning, Wei et al. [35] show that prompting is powerful
enough to remove nonessential information for the downstream task. Ding et al. [38] interpret
prompt tuning as a subspace optimization method for the solution or functional space. Notably,
there is solely one study [41] on the generalization dynamics of gradient-based prompt tuning but
relying on a single-layer Transformer architecture without the MLP layer, making it incapable of
examining the impact of multiple layers.
Parameter-efficient fine-tuning (PEFT). PEFT demonstrates that only finetuning a small part of
a large pretrained model can achieve outstanding performance. In the domain of CV, besides
prompting-based methods, PEFT methods can be roughly classified into two categories. The for-
mer [15, 47] focuses on identifying a small ratio of parameters to update from the pretrained model,
such as normalization tuning [47]. The latter designs additional modules to the original network
backbone to adapt to downstream tasks [8, 9, 12, 15, 48–51]. Examples include LoRA[8], adapter-
based methods [9, 12, 48, 51], and FACT [52] that tensorizes the ViT weights to a 3D tensor and
reduces the tunable parameter ratio to less than 0.01%. We note that AP differentiates itself from
the methods above by avoiding additional inference overheads or any requirements on the model
architectures.

3. Activation Prompt: Design and Rationale

Preliminaries on classical VP. VP harnesses universal pixel-level perturbations applied to in-
put images as a means of model adaptation [53]. For example, VP enables the transfer learn-
ing of an ImageNet-trained source model to various downstream tasks without the need for
fine-tuning the model weights. It has sparked significant interest in the recent research [13, 18,
19, 27, 53]. Concretely, let fθ denote the pre-trained source model parameterized by θ, and
D = {(x1, y1), (x2, y2), . . . , (xN , yN )} denote the fine-tuning dataset for a downstream task, with
x and y being the data feature and label, respectively. The objective of VP is to obtain a pertur-
bation vector, denoted as δVP, which is tailored to a specific task but remains agnostic to the input
data. This vector is then used to transform the input data x through the function g(x, δVP). Here
g symbolizes the transformation template function that molds the input image to fit the desired
prompt pattern. Two prevalent templates include the addition g(x, δVP) = x+ δVP [27, 53], and the
resize-and-concatenation g(x, δVP) = [δVP,M(x)] [13, 27], where M is the resizing function. Unless
specified otherwise, we consider the additive VP formulation.
Activation prompt (AP): GeneralizingVP in feature space. The conventional VP approach primarily
focuses on making direct modifications to the input data. However, this direct manipulation may
have two limitations. First, raw input data typically contains an abundance of details, which can
introduce complications for tasks like prompt generation due to issues such as background clutter
and semantic ambiguity [54]. In contrast, intermediate features tend to encompass a broader range
of local and global attributes, preserving more class-discriminative information for decision-making
[55]. Second, parameter updates in VP demand gradient propagation throughout the entire network.
Consequently, even with a lower number of tunable parameters, the training cost may increase.
Motivated by the above, we broaden the scope of VP into the feature domain and introduce the
concept of activation prompting (AP), see Fig. 1 for an illustration. Given a neural network model
with L layers, represented as θ = [θ(1),θ(2), . . . ,θ(L)], the output from the l-th layer is denoted
as z(l) = fθ(l)(z(l−1)), where z(0) = x (i.e., the input date). Similar to VP, AP at the l-th layer is
defined by a perturbation vector δ(l) to the intermediate feature z(l), leading to the ‘prompted’ feature
map g(z(l), δ(l)) = z(l) + δ(l). We denote the output with the l-th-layer AP given θ as fθ(x, δ(l)).
The objective of AP is then to optimize δ(l) so as to facilitate the adaptation of the fixed source
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model fθ for performing the downstream task on D. It is evident that AP can be conceptualized
as an extension of VP when we set the layer number l to 0. Moreover, the optimization process for
both VP and AP can be carried out similarly through empirical risk minimization (ERM) on D, i.e.,
minδ(l)

1
|D|

∑
(x,y)∈D ℓ(fθ(x, δ

(l)); y), where ℓ is the sample-wise cross-entropy loss.
AP also exhibits several notable attributes different from VP. First, the number of parameters in AP
directly relates to the size of the feature map z(l). Hence, a properly designed AP can substantially
reduce the parameter count. Second, while the optimization of AP mirrors that of VP, its param-
eter update does not necessitate back-propagation throughout the entire network. For example,
embedding AP deeper within the architecture reduces computational demands during training.
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Figure 2: Performance and effi-
ciency comparison of VP,Norm-
Tune and AP over different layers
of ResNet-101 on OxfordPets.

AP could be a better design thanVP.Next, we present a preliminary
experiment that serves as awarm-up, demonstrating howAP exhibits
the potential to improve accuracy performance, as well as enhance
computation and parameter efficiency when compared to VP. We
examine the commonly used transfer learning scenario for applying
VP, in which the source model ResNet-101 [56] is initially trained
on ImageNet [57] and is subsequently transferred to the CIFAR-10
dataset [58]. Fig. 2 presents a performance comparison between
AP and VP against the layer index on ResNet-101, at which AP is
introduced. The preliminary results provide several key insights,
which will be substantiated in more detail later. First, AP holds the
potential to substantially enhance the accuracy of transfer learning
when compared to VP. For instance, when AP is applied at layer 31,
it achieves the highest accuracy in transfer learning, surpassing VP by approximately 5%. In fact,
more comprehensive experiments presented in Sec. 6 demonstrate that applying AP to a deeper layer
consistently produces the most significant accuracy improvements across a wide range of CNNs.
Second, due to the preference for deeper layers when utilizing AP in CNNs, there exists a computa-
tional advantage since back-propagation from the output to the input layer is not required. Third,
AP maintains the parameter efficiency merit compared to VP. For instance, at the layer that exhibits
the best performance, AP utilizes only 100k parameters, whereas VP employs 150k parameters. The
results from the warm-up experiment above indicate that AP has the potential to outperform VP, offering
not only improved accuracy but also greater efficiency.
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Figure 3: Tunable parameter shape com-
parison between Norm-Tune and AP (ours).
The same color indicates shared parameters
across different dimensions.

Understanding AP through its connection to normaliza-
tion tuning. Normalization tuning (Norm-Tune), as a
PEFT technique, finetunes parameters within model’s nor-
malization layers, i.e., BatchNorm for CNNs [59] and Lay-
erNorm for ViTs [60]. For clarity, we denote the tunable
parameters of a normalization layer by γ = (γ1, · · · , γD′)⊤

for linear coefficients and β = (β1, · · · , βD′)⊤ for biases,
with D′ representing the number of channels or the to-
ken dimension. Further, define µ and σ as the channel-
wise mean and standard deviation constants of z(l) for
BatchNorm over the entire batch. For LayerNorm, they
represent the data-wise mean and standard deviation of
z(l) across the embedding dimension. Given that both
AP and Norm-Tune utilize a linear model for feature rep-
resentations, i.e., g(z(l), δ(l)) = z(l) + δ(l) for AP and
g(z(l),γ,β) = γ · (z(l) − µ)/

√
σ + β for Norm-Tune, AP

can be interpreted as a variant of Norm-Tune. Fig. 3 illustrates the connection; see elaboration below.
• CNNs: When AP’s perturbations are consistent across all feature map units, the unit-scaling
BatchNorm-based Norm-Tune closely mirrors the formulation of AP, differentiated merely by a
linearmapping plus a bias. This equivalence becomes apparentwhen relatingW (l)δ(l) toβ−γ·µ/

√
σ,

especially when γ/
√
σ = 1, supposingW (l) as the weight for the l-th layer.
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• ViTs: Assuming uniform perturbations across tokens and consistent mean value across data
dimensions within a batch, AP reduces to the unit-scaling LayerNorm-basedNorm-Tune. This can
be represented as δ(l) = β − µ, given γ/

√
σ = 1.

Due to more flexible perturbations of AP, such a connection exhibits increased power of AP
than Norm-Tune. We formally prove and summarize the proposed connection in Proposition 1
in Appx.C.2. Meanwhile, we remark that another key difference of AP compared to Norm-Tune is
that no parameters of the model backbone need to be altered during training. This differentiates
“prompting” from other PEFT methods, where the former keeps the pretrained model backbone
intact. In the realm of PEFT, recent research has also shown that LayerNorm-based Norm-Tune
serves as a robust baseline of model adaptation for ViTs [47]. Beyond that, we will show that AP can
surpass Norm-Tune and remain effective for CNNs.
4. A Deep Dive into AP: Layer and Architecture Effects
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Figure 4: Layer preference of APwith different model architectures on OxfordPets [61]. CNNs and ViTs exhibit
opposite layer preferences. Results on more datasets are provided in Fig.A1.
Our preliminary findings in Fig. 2 suggest that the effectiveness of AP may be contingent on the
specific layer where it is installed. To acquire a deeper understanding of this characteristic and its
association with model architecture, we examine both ResNet and ViT model types.
Fig. 4 follows and expands Fig. 2 by covering the additional models, i.e., ResNet-50, ViT-Base/12, and
ViT-Large/16, and showcasing the transfer learning accuracy enabled by AP on the downstream
dataset OxfordPets as a function of the layer index to which AP is applied. As we can see, a key
observation is that ResNets and ViTs exhibit contrasting layer preferences for AP, where ★ indicates the
best performance of AP in Fig. 4 under each architecture. Specifically, CNNs exhibit a preference for
AP in their deeper layers, while ViTs tend to favor AP in their shallower layers. Moreover, within the
comfort layer zone, the performance of AP consistently outperforms Norm-Tune.
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Figure 5: Features dissection to understand the layer effect of AP on Ox-
fordPets dataset. (A) CKA-based feature similarity comparison between
ViT-Large/16 and ResNet-101. (B) The average attention distance across
all the heads of different layers of ViT-Large/16. A larger distance signifies
a more globally-focused attention, indicative of global features.

Dissecting CNNs and ViTs:
AP prioritizes ‘global’ features
over ‘local’ features. To unpack
the intriguing AP’s layer pref-
erence behavior above, we next
examine the features captured
by different layers of CNNs and
ViTs. To this end, we first em-
ploy the Centered Kernel Align-
ment (CKA)-based feature sim-
ilarity analysis [62] to measure
the layer-wise representation
similarity between CNNs and
ViTs, e.g., ResNet-101 and ViT-
Large/16 in Fig. 5. As we can
see, the deep features of ResNet-
101 predominantly align with the middle layers of ViT-Large/16. This concurs with the observations
made in [63], which suggest that ViTs have the capability to capture features reminiscent of the
deeper layers of CNNs even within their relatively early layers. In addition, as indicated by network
dissection analysis for CNNs [55], it is known that CNNs tend to prioritize low-level visual concepts,
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i.e., local features like color and texture, in their shallower layers. In contrast, they transition to high-
level, class-discriminative concepts, encompassing global features like scenes and objects in deeper
layers.
Drawing upon the analyses presented above and insights in Fig. 4, we hypothesize that AP exhibits a
preference for deep layers in CNNs and shallow layers in ViTs, which can be attributed to the models’
inclinations toward global features over local features. To bolster our hypothesis, we investigate how
global information is distributed across the layers of ViTs. We employ a methodology used in [63]
and [64] to compute the average attention distance between the position of query tokens and the
locations they attend to with the query within each self-attention head in ViTs. This analysis unveils
how each self-attention layer contributes to the balance between local and global information in the
overall representation. In Fig. 5 (B), we present the average attention distance across 16 attention
heads for with different layer indices of a pretrained ViT-Large/16. A general trend can be observed:
the distribution of the sorted attention distance moves firstly downwards (layer index from 1 to
layer 12). This implies that the ratio of the global features captured by attention in general decreases.
When the layer index is larger than 15, the global feature ratio slightly increases. This trend roughly
aligns well with the patterns observed in Fig. 4. These observations underscore our claim that AP’s
layer preference is influenced by the presence of global features. We provide theoretical support in
the following section to support the layer and architecture effect. In particular, we focus on the more
challenging part of ViTs, since the study on CNNs is abundant. Furthermore, we provide theoretical
support in the following section to support the layer and architecture effect.
Remark on the comparison of AP vs. VPT. While VPT [7] also suggests adding extra tokens
(prompts) to all intermediate layers of a ViT, our approach differs fundamentally. AP was motivated
to introduce a broader framework for VP, where prompts are applied to intermediate activations
at any single layer, rather than across multiple or all layers as in VPT. This allows us to rigorously
explore optimal layer selection for effective prompting, where (input-level) VP is covered as a special
case. Unlike VPT, AP uncovers new insights into layer-specific effects, architectural dependencies,
and their explanations, supported by both empirical and theoretical analyses (as will be evident
later). Furthermore, our findings show that strategic layer selection in AP can match or surpass the
effectiveness of VPT’s multi-layer prompting (See Tab. 4 in Sec. 6).

5. Theoretical Analyses for Layer and Architecture Effects

From a perspective of generalization, we focus on studying the layer and architecture effect for ViTs:
To achieve the desired generalization performance (or test accuracy), will shallow-layer AP tuning require less
sample complexity than deep-layer ones for ViTs? If so, with the same sample complexity, shallow-layer
AP could achieve better performance than deep-layer ones. To show this, we present the theoretical
setups that satisfy the conditions of global features for ViTs, followed by the generalization analysis
with sample complexity bound in Theorem 1.
Problem setup. Building on the theoretical frameworks for analyzing the training and generalization
of Transformers [41, 65, 66], we derive theoretical insights by considering a binary classification
problem. We use a single-head, two-layer ViT [65, 67–69] as the pretrained model, applied to the
dataset {xn, yn}Nn=1. Here yn ∈ {+1,−1}, and each dataxn ∈ Rd×P consists ofP tokens. The training
is implemented by a mini-batch stochastic gradient descent (SGD) with the loss ℓ(fθ(xn, δ); yn),
where fθ and δ are the pretrained model and the trainable AP, respectively. The generalization
performance is evaluated by the population risk E[ℓ(fθ(x, δ); y)].
Data assumption. Each token of xn is formulated as a pattern added with a Gaussian noise following
N (0, σ2), σ ≤ O(1/P ). We consider four patterns {v1,v2,v3,v4} in total. In each xn, only one token
corresponds to either v1 or v2, named discriminative patterns that decide the label. Other P − 1
tokens correspond to either v3 or v4, named non-discriminative patterns that are irrelevant ones for
the downstream task. For instance, if one token within xn is the noisy version of v1 (v2), then its
corresponding downstream task label yn = 1 (yn = −1).
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Pretrained model assumption. We have mild assumptions on the MLP neuron weights and self-
attention matrices of the pretrained model, which have been used in existing works or verified in
numerical experiments. Specifically, recent SOTA theoretical findings [65, 70, 71] reveal, during
the pretraining stage, the weights of each neuron in the MLP tend to converge towards one of the
patterns present in the raw data, e.g, v1,v3. Following the observation above, we assume neuron
weights in the ℓ-th MLP after pretraining to be one of the patterns in {v1,v2,v3,v4}. Typically, v1

and v2 are patterns observed in the downstream task that have relevance to the labels, while v3

and v4 are patterns also present in the downstream task but do not bear a relation to the labels. In
addition, as suggested by the global features introduced in Section 4 that make tokens attend to other
tokens, we assume the key and value matrices to be scalings of permutation matrices. The details
about the data and model assumptions can be found in Appx.C.3.
Given a set of queries q1, · · · , qP and keys k1, · · · ,kP for an attention head, we formally define the
average attention distance mentioned in Fig. 5 as ∑P

i=1 |i− argmaxj∈[P ] ⟨kj , qi⟩ |/P , i.e., the average
distance between the query qi and the key kj that has the largest inner product with qi, i, j ∈ [P ].
Assuming the discriminative key and value are away from the discriminative query with a distance
of dA ≥ 1, we have the following Lemma on decreasing the average attention distance.
Lemma 1 The average attention distance defined above decreases from (1 + dA)/P to 1/P after the 1st layer
of the simplified two-layer ViT.

Lemma 1 supports our empirical observation in Fig. 5 (B) of decreasing attention distance values
within deep layers in ViT. In addition, the reduction in the attention distance leads to an increased
sample complexity, as summarized in the following theorem.
Theorem 1 Training a two-layer ViT with SGD returns a model with zero generalization error, as long as the
batch size B ≥ Ω(1), and the required number of samples N satisfy either (i) N ≥ N1 = Θ(P ) if adding AP
to the 1st layer; (ii) N ≥ N2 = Θ(P 2 logP ) if adding AP to the 2nd layer. N2 is order-wise larger than N1.
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Figure 6: Sample complexity
study of AP in different layers on
OxfordPets with ViT-Large/16.

Theorem 1 shows deep-layer AP requires more training samples
than the shallow one to achieve the same generalization, as shown
by the dashed line in Fig. 6. Accordingly, with the same number of
training samples and setup, shallow-layerAP generalizes better. The
proof of Theorem 1 can be found in Sec. C.4. The basic proof idea
is that for AP in the shallow layer, a trained prompt with a norm of
Θ(P ) that removes non-discriminative patterns is enough tomake all
tokens attend to discriminative tokens. Thus, the amount of global
features does not decrease. This can ensure zero generalization by
abundant global features. For AP in deep layers, however, given
Lemma. 1, a lack of global features leads to an evident mismatch
between discriminative tokens in the 2nd-layer self-attention. Hence,
a trained prompt with a norm of Θ(P 2 logP ) is necessary to direct
the attention to focus on discriminative tokens. The proof concludes with the demonstration that the
sample complexity bound is proportional to the the trained prompts magnitude.

6. Experiments

6.1. Experiment Setup

Datasets and models. We utilize two commonly used architectures for the source datasets: ResNet-
101 from the ResNet family [56] and ViT-Large/16 from the ViT family [72]. Both are pretrained
on ImageNet-1K [73]. In the target domain, we consider over 20 datasets from transfer learning
benchmarks FGVC [74] and VTAB [75]. In VTAB, we consider both full-data and few-shot (VTAB-1k)
regimes. In addition, we also consider other commonly used datasets [13] for transfer learning like
CIFAR-10 [58], UCF101 [76], GTSRB [77], Food101 [78], and Waterbirds [79]. More details on the
datasets and the benchmarks can be found in Appx.A.
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Table 1: Performance comparison of various methods on 19 datasets from different benchmarks. Three
parameter-efficient baselines (denoted by ◦ ) are compared to AP due to their high relevance, where the best
performance is highlighted in bold. The most computationally intensive Full-Finetune (denoted by • ) serves
as the performance reference. Each accuracy value is averaged over 5 independent trials, with the variance
omitted due to its negligible values (≤ 0.3%). The “Average” column represents the averaged accuracy of each
method over all the datasets in each row.
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◦ Linear-Probe 63.76 86.63 49.62 52.09 82.01 73.87 90.58 61.35 93.14 91.17 66.30 54.51 83.36 95.84 92.25 79.64 71.03 64.31 88.11 75.76
◦ Norm-Tune 66.39 87.59 67.64 56.72 66.50 82.58 91.32 63.53 92.85 89.81 95.26 54.56 84.42 96.14 93.90 96.43 69.44 72.54 88.95 79.81
◦ VP 65.72 86.91 51.04 54.23 78.50 72.01 93.51 63.12 90.17 87.93 80.68 54.97 83.71 95.44 92.55 83.18 66.30 57.89 86.71 76.03
◦ AP (ours) 69.42 87.79 59.06 58.31 85.14 76.94 94.85 69.80 95.13 91.31 87.30 56.83 84.91 97.21 94.08 90.43 73.96 68.12 88.13 80.45

V
iT
-L
ar
ge

/1
6 • Full-Finetune 89.79 93.31 89.42 84.75 99.91 93.19 99.25 75.30 99.39 93.35 98.13 79.31 91.93 97.92 98.30 97.90 89.25 86.16 97.93 92.34

◦ Linear-Probe 84.69 86.11 65.24 75.71 99.40 88.55 97.01 73.31 99.24 91.15 65.79 72.37 84.05 97.26 98.13 80.72 83.02 83.02 94.16 85.20
◦ Norm-Tune 85.90 89.76 75.61 78.78 99.35 90.69 98.01 78.90 99.76 92.88 88.30 73.57 79.82 97.17 98.44 90.86 85.15 83.21 94.36 88.45
◦ VP 85.24 87.02 67.64 76.20 99.32 89.44 97.81 77.72 99.72 91.31 85.70 74.33 84.27 97.85 98.80 89.09 84.67 82.23 95.03 87.54
◦ AP (ours) 86.74 90.83 69.41 79.83 99.70 90.96 98.99 78.96 99.84 93.89 88.87 75.44 86.99 98.33 98.54 91.49 86.80 84.04 94.60 89.17

We cover three types of baselines in transfer learning. First, we primarily compare AP to finetuning
methods designed for both CNNs and ViTs in transfer learning. These include Linear-Probe that
only finetunes the classification head with a fixed feature extractor, the conventional (input-level)
VP [53] and Norm-Tune [47] that tunes all the normalization layers in a model. Second, we select
Full-Finetune as our reference method due to its superior accuracy, which fine-tunes the entire
pretrained model, albeit being the most computationally expensive option. Third, we consider other
9 SOTA PEFT baselines used in ViTs: VPT [7], GateVPT [80], E2VPT [81], LoRA [8], Adapter [9],
Bias [82], Norm-Tune [47], AttnScale [47], AdapterFormer [9], and SSF [49].
Implementation, training, and evaluations. We implement AP at the input of the third-to-last
ResNet block in ResNet-101 and the third Transformer block in ViT-Large/16, based on the layer
effect in Fig. 4. During training, all the methods are trained for 100 epochs using the Cross-Entropy
loss with an Adam optimizer [83]. Hyperparameters, including learning rates, are determined
through a search process for each method; see implementation details in Appx.A. During evaluation,
we compare different methods in terms of their performance (testing accuracy) and efficiency. In
particular, we depict the efficiency portrait of a method from the following 4 different perspectives:
(1) tunable parameter number, (2) memory cost, (3) train time per epoch, and (4) throughput for
inference efficiency, as will be shown in Tab. 3.

6.2. Experiment Results

AP is not only effective but also efficient. We examine the performance of the proposed AP in
the full-data regime below. Two key observations can be drawn from experiment results: (1) AP
consistently outperforms baselines across the majority of datasets, in particular with a significant
improvement over VP (Tab. 1); (2) AP demonstrates remarkable efficiency across various efficiency
metrics, establishing itself as a cost-effective method (Tab. 3).
Tab. 1 shows the performance of AP vs. the baselines: VP, Norm-Tune, Linear-Probe, and Full-
Finetune. As we can see, AP consistently outperforms VP in all the 19 datasets. Notably, AP yields
an increase in the average accuracy of over 4% and 1.5% compared to VP for both ResNet-101 and
ViT-Large/16. In some datasets, such as StanfordCars, SVHN and GTSRB using ResNet-101, this
advantage can increase to 7%∼9%. AP also remains effective compared toNorm-Tune, which has
proven to be a strong PEFT method for ViT families in Basu et al. [47]. AP performs the best in 13
and 15 out of 19 datasets for ResNet-101 and ViT-Large/16, respectively. Although Full-Finetune
remains the best-performing in most datasets, AP still manages to approach and surpass it; see
OxfordPets for ResNet-101 and DTD for ViT-Large/16. Importantly, AP is much more efficient than
Full-Finetune, as illustrated below.
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Table 2: Performance comparison of various methods in the few-shot setting on the VTAB-1K benchmark.
Other settings follow Tab. 1.
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• Full-Finetune 89.99 45.17 63.78 84.29 89.82 41.09 67.79 84.92 74.57 91.37 74.14 58.11 60.99 43.61 67.05 40.45 78.34 33.64 36.38 64.50

◦ Linear-Probe 83.87 39.13 53.09 70.89 85.15 28.14 43.44 78.65 69.43 90.78 69.31 35.91 36.48 35.75 34.76 19.51 65.68 16.91 23.39 51.12
◦ Norm-Tune 85.61 35.78 47.71 56.64 78.10 10.10 68.67 83.16 61.10 90.50 72.44 37.54 55.24 40.04 60.89 20.33 65.54 24.86 25.96 53.70
◦ VP 84.73 43.01 57.55 76.91 87.03 28.75 55.47 75.15 70.27 89.26 69.08 36.70 54.24 34.48 42.41 20.32 63.71 17.93 26.93 54.42
◦ AP 87.49 39.80 63.62 81.44 88.74 34.83 65.92 78.91 74.19 91.44 71.18 40.20 55.26 38.95 54.68 21.98 72.86 26.24 28.77 58.76

V
iT
-L
ar
ge

/1
6 • Full-Finetune 93.34 76.03 75.74 99.88 93.72 59.06 68.70 86.70 82.84 93.54 82.22 55.42 60.33 48.23 83.62 52.77 78.06 30.40 29.95 71.08

◦ Linear-Probe 89.37 62.98 70.02 93.42 91.22 53.68 45.28 80.52 80.34 91.64 70.43 38.15 35.26 40.74 21.84 29.42 62.54 14.59 23.09 57.60
◦ Norm-Tune 91.10 65.20 72.36 98.64 91.38 55.14 47.21 82.50 82.34 93.94 71.74 42.83 44.59 41.21 35.64 32.08 63.43 16.52 24.12 60.68
◦ VP 90.06 63.16 71.59 95.35 91.20 54.45 46.26 81.82 81.45 92.25 71.03 41.03 45.49 39.94 32.52 30.29 62.68 15.59 23.13 59.96
◦ AP 91.40 64.40 72.61 99.50 91.46 56.67 49.43 81.41 82.76 93.14 71.99 43.26 38.09 40.57 42.44 31.83 65.40 18.29 25.96 61.06

Table 3: An overview of the methods considered in this
work. The efficiency analysis is based on the model-data
setting (ViT-Large, CIFAR-10) with a batch size of 128,
and time consumption is evaluated using a single RTX-
A6000 GPU. For each metric, we use ↑ or ↓ to indicate
whether a larger smaller value is favored for each metric.

Method
Param. Efficiency Train-Time Efficiency

Parameter
# (M) ↓

Memory Cost
(G) ↓

Time Cost
(s/epoch) ↓

Troughput
(image/s) ↑

ResNet-101
Full-Finetune 44.5 10.32 118 41.47
Linear-Probe 0.02 6.2 39 41.33
Norm-Tune 0.13 11.7 83 41.45

VP 0.12 12.2 72 40.59
AP 0.12 6.3 41 41.36

ViT-Large/16
Full-Finetune 304.33 41.5 520 79.58
Linear-Probe 0.01 9.7 121 79.64
Norm-Tune 0.06 29.5 285 79.51

VP 0.11 35.9 280 77.14
AP 0.16 31.6 262 79.48

Tab. 3 demonstrates the efficiency profile of dif-
ferent methods under different metrics. Two key
insights can be drawn from the results. First, in
comparison to VP, AP demonstrates superior ef-
ficiency in terms of memory (reduced memory
overhead), time (decreased training duration),
and inference (increased throughput) for both
ResNet-101 and ViT-Large/16. This superiority
is maintained while operating at a comparable
parameter efficiency, marked by a negligible tun-
able ratio difference of less than 0.05%. This
trend is amplified for ResNet-101, as evidenced
by the significant reductions in memory usage
(6.3 G for AP vs. 12.2 G for VP) and training
duration (41 s/epoch for AP vs. 72 s/epoch for
VP). This efficiency arises from the AP’s prefer-
ence towards deeper layers over shallower ones in ResNet-101, resulting in reduced back-propagation
overhead for most of the network. Second, when compared toNorm-Tune, although AP consumes
slightly highermemory cost for ViT-Large/16, it achieves higher training efficiency for ResNet-101 and
ViT-Large/16. This is due to that, while Norm-Tune possesses a small tunable parameter ratio, these
parameters are dispersed throughout the network, leading to a more expensive back-propagation
process. Although no significant difference is observed in throughput, we will show later in Tab. 4
that AP enjoys high throughput efficiency compared to other PEFT methods.

Table 4: Performance ofAP andmore SOTAPEFTmeth-
ods on ViT-Large/16. Settings follow Tab. 1.

Accuracy Efficiency
Full-Data Train-Time Efficiency

FGVC VTAB Others Param. # Memory Time Throughput
Number of tasks 5 9 5 - - - -
Full-Finetune 91.43 91.97 93.91 304.33 41.5 520 79.58
Linear-Probe 82.23 78.90 87.81 0.01 9.7 121 79.64
Bias 85.32 89.84 90.41 0.29 32.9 297 79.43
LoRA 86.87 89.81 91.45 1.00 33.1 363 79.43
VPT 86.34 89.24 90.14 0.25 33.7 334 76.35
GateVPT 86.31 89.14 91.11 3.14 34.9 395 61.34
E2VPT 89.93 90.12 91.45 1.21 33.4 369 52.32
Adapter 87.06 89.44 91.21 2.17 32.4 357 63.39
AdapterFormer 89.18 90.69 92.08 0.65 32.3 289 23.69
SSF 87.32 89.43 92.21 0.48 34.7 299 79.49
AP(Ours) 85.30 90.25 91.09 0.16 31.6 262 79.43

How does the downstream dataset scale af-
fect AP? To study the effect brought by the
downstream data scales, we follow the setting
of Jia et al. [7] and examine the performance
of different methods under the few-shot setting
on VTAB-1K. In particular, for each of the 19
datasets in the VTAB benchmark, only 1000 data
samples are available for training. Tab. 2 shows
that APmakes a distinguishable improvement
over the baselines VP and Norm-Tune in the
few-shot setting. As we can see, AP achieves
a performance boost of over 1% than VP using
ViT-Large/16 and this advantage increases to 4.3% in the case of ResNet-101. This demonstrates that
directly steering the intermediate features can be more effective when facing data scarcity.
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Comparing AP with VPT and more PEFT baselines. As VP is introduced as a generalization of the
conventional (input-level) AP, we do not anticipate it to outperform all model-based PEFT methods.
Yet, to demonstrate its potential, Tab. 4 compares the performance of AP with that of PEFT baselines,
in particular with VPT [7]. As we can see, even when compared to the stateful PEFT methods, AP
still yields competitive performance in terms of both accuracy and efficiency. For example, AP ranks
roughly 2∼4 in terms of accuracy among the 8 PEFT methods considered in this work. In addition,
AP ranks the first from the efficiency perspective. In contrast, the best accuracy performance of
AdapterFormer comes at a cost of three times lower throughput efficiency. This is due to that extra
modules introduce significantly more computations during the inference.

Table 5: Performance comparison of VP and the proposed AP on
CLIP and Swin-Transformer model with different datasets. CLIP
with ViT-B/32 and Swin-B with 12 Swin-Transformer blocks pre-
trained on ImageNet are tested. Other settings follows Tab. 1.
Dataset OxfordPets DTD EuroSAT Flowers102 UCF101 Food101 Waterbirds

CLIP
VP 81.97 64.43 95.54 83.74 70.42 79.61 72.42

AP (Ours) 83.82 69.42 96.43 85.52 76.42 82.43 79.32
Swin-Transformer

VP 80.42 65.39 97.23 84.48 74.41 75.72 75.22
AP (Ours) 82.29 69.13 96.45 84.98 75.92 81.38 78.99

Applying AP to various model ar-
chitectures. To ensure that our con-
clusions generalize well, we shift our
focus from the vision source model
to the vision-language model, spe-
cific to CLIP [84], and the multi-
scale transformer structure, i.e., Swin-
Transformer [85], which have both re-
ceived increasing attention in the area
of VP [21]. Our experiments demon-
strate that the proposed idea of AP
works well even on steering a pretrained CLIP model and Swin-Transformer without changing its
parameters. In Fig. 7 and Tab. 5, we demonstrate that our main conclusions about AP still holds for
these two architectures well on various datasets. Specifically, in Fig. 7, we show that the layer effect
of AP still exists. As both CLIP and Swin-Transformer uses a ViT as its backbone, the observed layer
effect mimics that of a ViT-Large/16 as observed before. Specifically, AP prefers to be installed on
shallow layers to deep ones in order to obtain the best performance. In Tab. 5, we demonstrate that in
various datasets, AP can significantly outperform VP by 1% ∼ 6%. These experiments demonstrate
the applicability of AP on various model types.

VP1 2 3 4 5 6 7 8 9 101112
Layer Index

82

83

84

Te
st

 A
cc

ur
ac

y 
(%

) VP
AP
Best AP

VP1 2 3 4 5 6 7 8 9 101112
Layer Index

81

82

Te
st

 A
cc

ur
ac

y 
(%

)

(a) CLIP (b) Swin-Transformer
Figure 7: The layer effect of AP applied to a (a) CLIP model and
(b) Swin-Transformer on the OxfordPets dataset.

Ablation studies and additional ex-
periments. We provide abundant ad-
ditional experiment results in Appx. B
in order to provide discussions on the
design of AP and also a comprehen-
sive performance comparison with
other methods. In particular, we jus-
tified the layer effects more (dataset,
model architecture) combinations in
Fig.A1 similar to Fig. 4. Besides, we
also studied various variants of AP,
including AP with different prompt
types in Tab.A3, and AP installed in
multiple layers in Tab.A4. A detailed comparison between AP and other PEFT methods in various
experimental settings is also provided, including VPT [7] (Tab.A2, Tab.A6, and Fig.A2), LoRA [8]
(Tab.A8), and SST [49] (Tab.A7).
Limitations and discussions. We acknowledge a potential limitation of AP lies in its implicit reliance
on the size of the pretrained model as a factor for achieving superior accuracy. For compact models
like ResNet-18 and ViT-Tiny, whileAP enhances the performance of VP, it does not outperformNorm-
Tune. This observation suggests that AP may primarily utilize downstream data to guide or “direct”
the existing learned knowledge obtained during pretraining, rather than actively acquiring new
knowledge. However, we believe that this limitation does not prevent AP from future applications to
larger foundational vision models. We also note that, unlike VP, AP cannot be applied in black-box
settings where parameters are inaccessible. However, the primary motivation of this work is to
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explore the conditions under which VP is effective or ineffective, using AP as an analytical tool to
study layer selection preferences for prompting. By doing so, AP broadens the scope of VP, providing
deeper insights into its underlying mechanisms under different model settings.

7. Conclusion
In this paper, we delve into AP (activation prompt) as a means to enhance the conventional input-
level VP. We unveil that extending VP to AP yields improved empirical performance and establishes
a connection with normalization tuning. Additionally, we investigate the layer preference of AP on
CNNs and ViTs both empirically and theoretically. Our experiments demonstrate the superiority of
AP over VP, highlighting its efficiency advantages, and showcasing comparable performance to the
staet-of-the-art PEFT methods.
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Appendix

A. Experiment Setting Details
Datasets. We consider 29 downstream image classification tasks in the target domain across various
domains. We show each dataset’s attributes in Tab.A1.

Dataset Train Size Test Size Class Number Batch Size Reference
Full-Data Setting

Flowers102 4093 2463 102 128 [86]
DTD 2820 1692 47 128 [87]
UCF101 7639 3783 101 128 [76]
Food101 50500 30300 101 128 [78]
SVHN 73257 26032 10 128 [88]
GTSRB 39209 12630 43 128 [77]
EuroSAT 13500 8100 10 128 [89]
OxfordPets 2944 3669 37 128 [61]
StanfordCars 6509 8041 196 128 [90]
SUN397 15888 19850 397 128 [91]
CIFAR10 50000 10000 10 128 [58]
CIFAR100 50000 10000 100 128 [58]
CUB-200-2011 5394 5794 200 128 [92]
NA-Birds 21536 24633 55 128 [93]
StanfordDog 10800 8580 120 128 [94]
OxfordFlowers 1020 6149 102 128 [86]
Waterbirds 4795 5794 2 128 [79]
Caltech101 4128 2465 102 128 [95]
Camelyon 262144 32768 2 128 [96]

Few-Shot Setting (VTab-1k)
CIFAR-100 1000 10000 100 128 [58]
Caltech101 1000 6084 102 128 [95]
DTD 1000 47 1880 128 [87]
Flowers102 1000 6149 102 128 [86]
OxfordPets 1000 3669 37 128 [61]
SVHN 1000 26032 10 128 [88]
Sun397 1000 21750 397 128 [91]
Patch Camelyon 1000 32768 2 128 [96]
EuroSAT 1000 5400 10 128 [89]
Resisc45 1000 6300 45 128 [97]
Retinopathy 1000 42670 5 128 [98]
Clevr/count 1000 15000 8 128 [99]
Clevr/distance 1000 15000 6 128 [99]
DMLab 1000 22735 6 128 [100]
KITTI/distance 1000 711 4 128 [101]
dSprites/location 1000 73728 16 128 [102]
dSprites/orientation 1000 73728 16 128 [102]
SmallNORB/azimuth 1000 12150 18 128 [103]
SmallNORB/elevation 1000 12150 9 128 [103]

Table A1: Dataset attributes and training configs through 29 target image-classification datasets.

Implementation details. As we stated in the main manuscript, we, by default, installAP to the input
of the thrid-to-last ResNet block and the third Transformer block in ViT-Large/16. For LoRA[8],
we use the rank r = 10 by default. For VPT [7], we use a prompt length of 10. We train all the
methods for 1000 epochs using an Adam optimizer. For AP, we adopt a learning rate of 0.001 for
ResNet family and 0.01 for ViT family without weight decay. For baselines, we adopt the learning
rate suggested in the papers or official code repositories. In order to align with the settings of the
most parameter efficient fine-tuning methods, for all the prompting-based methods we also tune the
classification head as Linear-Probe throughout this work.
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B. Additional Experiment Results
Layer effect study on more datasets. In Fig.A1, we demonstrate that the layer effects of AP demon-
strated in Sec. 4 is general and apply to multiple datasets.
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Figure A1: Layer preference of AP with different model architectures on different datasets. CNNs and ViTs
exhibit opposite layer preferences.

Performance of AP in the original experiment setting of VPT. We conduct an ablation study
to strictly follow the experiment settings of VPT, with these results included in Tab. A2. The
performance of VPT is directly sourced from Tab. 1 of [7]. As we can see, the performance as well
as efficiency of AP positions itself between VPT-Shallow and VPT-Deep, with an average of 3%
performance gain over VPT-Shallow and an average of 3.5% drop compared to VPT-Deep. Regarding
these results, we would like to mention that the results of VPT reported in Table 1 of [7] are selected
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based on its best prompt length per dataset, while AP sticks to the same hyper-parameters across all
the datasets.
Table A2: Performance comparison of AP with other methods in the setting of VPT [7]. Specifically,
ViT-B/16 pretrained on supervised ImageNet-21k is adopted as the pretrained model. The numbers
except AP are directly sourced from VPT [7].

ViT-B/16
(85.8M)

Total
Params FGCV VTAB-1k

Natural Specialized Structured
Full-Finetune 24.02× 88.54 75.88 83.36 47.64
Linear-Probe 1.02× 79.32 68.93 77.16 26.84
VPT-Shallow 1.04× 84.62 76.81 74.66 46.98
VPT-Deep 1.18× 89.11 78.48 82.43 54.98
AP (Ours) 1.11× 87.33 76.59 79.32 49.98

Ablation study on additional prompt types in AP. We conduct additional experiments, with the
findings presented in Tab. A3. We observed that the originally proposed AP outperforms its new
prompt variants studied in Tab. A3 (AP-Product and AP-Concate). We speculate that the advantage
of the originally proposed AP may stem from its intrinsic connection to Norm-Tune, as discussed in
the concluding part of Sec. 3.

Table A3: Ablation study on AP with more prompt types. Specifically, instead of using additive prompt in the
intermediate layer, AP-Product uses feature-wise product and AP-Concate adopts concatenating prompt.

Accuracy Efficiency
Full-Data Train-Time Efficiency

FGVC VTAB Others Param. # Memory Time Throughput
Number of tasks 5 9 5 - - - -
Full-Finetune 91.43 91.97 93.91 304.33 41.5 520 79.58
Linear-Probe 82.23 78.90 87.81 0.01 9.7 121 79.64
Bias 85.32 89.84 90.41 0.29 32.9 297 79.48
LoRA 86.87 89.81 91.45 1.00 33.1 363 79.43
VPT 86.05 89.97 90.64 1.24 38.6 397 72.84
Adapter 87.06 89.44 91.21 2.07 32.4 357 63.39
AdapterFormer 89.18 90.69 92.08 0.65 32.3 289 23.69
AP-Product 84.20 85.36 90.15 0.16 31.6 262 79.43
AP-Concate 83.29 82.42 89.13 0.12 31.4 261 79.47
AP 85.30 90.25 91.09 0.16 31.6 262 79.43

Application of AP to multiple layers. We implement APwith multiple layers, and we show the
results in Tab. A4. Our findings indicate that the layer addition of AP does not yield significant
improvements in performance. This observation is significant as it suggests that applying AP to a
single, carefully selected layer can achieve comparable performance to more extensive applications.
This underscores the efficiency of AP, affirming its value in settings where computational resources
are a concern.
Performance comparison with re-initialized classification head. We carried out an ablation experi-
ment using re-initialized classification head. This will influence the tunable parameter counts of
Linear-Probe and other methods involved. As we can see, the results in Tab. A5 are nearly identical
to our previous findings in Tab. 4 that AP shows a competitive performance and efficiency compared
with other strong PEFT baselines.
Comparison to VPT with other prompt lengths. We conducted an experiment to implement VPT-
Deep using a smaller prompt token length 10 (VPT-10). The results, presented in Tab. A6, indicate
that VPT-10’s performance is comparable to VPT-50 in Tab. 4, albeit with enhanced efficiency.
Layerwise comparison between AP and VPT-Deep. We conduct an experiment for a more detailed
layer-wise evaluation in Fig. A2. These additional results highlight a consistent layer-architecture
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Table A4: Ablation study on the number of layers installed with AP. In particular, for AP-3 and AP-5,
AP are installed on the input of the first 3 and 5 blocks of the pretrained ViT-L. Other experiment
settings follow Tab. 1, and Tab. 3.

Accuracy Efficiency
Full-Data Train-Time Efficiency

FGVC VTAB Others Param. # Memory Time Throughput
Number of tasks 5 9 5 - - - -
Full-Finetune 91.43 91.97 93.91 304.33 41.5 520 79.58
Linear-Probe 82.23 78.90 87.81 0.01 9.7 121 79.64
Bias 85.32 89.84 90.41 0.29 32.9 297 79.48
LoRA 86.87 89.81 91.45 1.00 33.1 363 79.43
VPT 86.05 89.97 90.64 1.24 38.6 397 72.84
Adapter 87.06 89.44 91.21 2.17 32.4 357 63.39
AdapterFormer 89.18 90.69 92.08 0.65 32.3 289 23.69
AP-3 85.41 90.38 91.21 0.46 47.8 297 79.43
AP-5 85.49 90.49 91.31 0.76 69.7 348 79.43
AP 85.30 90.25 91.09 0.16 31.6 262 79.43

Table A5: Performance comparison between AP and SOTA PEFT methods on ViT-Large/16 with re-initialized
classification head. Experiment settings follow Tab. 1, and Tab. 3.

Accuracy Efficiency
Full-Data Train-Time Efficiency

FGVC VTAB Others Param. # Memory Time Throughput
Number of tasks 5 9 5 - - - -
Full-Finetune 91.43 91.97 93.91 304.33 41.5 520 79.58
Linear-Probe 82.31 78.43 87.71 0.01 8.1 121 79.69
Bias 85.49 89.47 90.85 0.29 27.4 297 79.51
LoRA 86.49 89.74 91.49 1.00 32.5 363 71.47
VPT 86.15 90.13 90.88 1.24 37.2 397 72.91
Adapter 87.14 89.12 91.01 2.07 31.1 357 63.78
AdapterFormer 89.24 90.49 92.21 0.65 31.1 289 23.82
AP 85.32 90.12 91.11 0.16 30.2 262 79.54

influence on VPT-Deep, akin to what we initially observed in our original AP design. This outcome
is not unexpected, considering that the implementation of VPT-Deep essentially converges with that
of AP when a specific network layer is selected for prompting. The key divergence lies in the prompt
design approach: VPT-Deep favors concatenation, whereas AP opts for addition in prompt design. It
is worth noting that, in the context of single-layer prompting, the efficacy of concatenation in prompt
design is comparatively lower than that of addition.
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Figure A2: Layer-wise performance comparison between AP and VPT on OxfordPets.

Comparison with additional PEFT methods. We conduct an experiment and report the results of
SSF in Tab. A7. In particular, we can see SSF is also a competitive method among all the baselines
but is still under AdapterFormer. Compared to AP, SSF yields better performance for the FGVC
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Table A6: Performance comparison between AP and VPT with different prompt lengths on ViT-Large/16.
Experiment settings follow Tab. 1, and Tab. 4.

Accuracy Efficiency
Full-Data Train-Time Efficiency

FGVC VTAB Others Param. # Memory Time Throughput
Number of tasks 5 9 5 - - - -
Full-Finetune 91.43 91.97 93.91 304.33 41.5 520 79.58
Linear-Probe 82.23 78.90 87.81 0.01 9.7 121 79.64
VPT-10 86.34 89.24 90.14 0.25 33.7 334 76.35
VPT-50 86.05 89.97 90.64 1.24 38.6 397 72.84
AP 85.30 90.25 91.09 0.16 31.6 262 79.43

benchmark but leads to slightly worse accuracy for the VTAB benchmark. In general, SSF ranks
approximately the second or the third place among all the PEFT methods.

Table A7: Performance comparison of AP with more PEFT methods (SSF [49]). Experiment settings follow
Tab. 1 and Tab. 4.

Accuracy Efficiency
Full-Data Train-Time Efficiency

FGVC VTAB Others Param. # Memory Time Throughput
Number of tasks 5 9 5 - - - -
Full-Finetune 91.43 91.97 93.91 304.33 41.5 520 79.58
Linear-Probe 82.23 78.90 87.81 0.01 9.7 121 79.64
Bias 85.32 89.84 90.41 0.29 32.9 297 79.48
LoRA 86.87 89.81 91.45 1.00 33.1 363 79.43
VPT 86.05 89.97 90.64 1.24 38.6 397 72.84
Adapter 87.06 89.44 91.21 2.17 32.4 357 63.39
AdapterFormer 89.18 90.69 92.08 0.65 32.3 289 23.69
SSF 87.32 89.43 92.21 0.48 34.7 299 79.49
AP 85.30 90.25 91.09 0.16 31.6 262 79.43

Comparison with LoRA of different rank values. We conduct additional experiments on the hyper-
parameters of LoRA, namely the rank r. In Tab. 4, the rank r is adopted to 10 by default. In Tab.
A8, we explore more rank values varying from 1 to 50. We can see that the performance of LoRA
increases with the larger rank values, but the difference between r = 10 and r = 50 is insignificant.
In contrast, the efficiency of LoRA will drop significantly with a rank larger than 10. In order to
strike a balance between performance and efficiency, we adopt the rank value of 10 as the default
value in this work.
Table A8: Ablation study on performance of LoRA with different rank values. Experiment settings follow
Tab. 1 and Tab. 4.

Accuracy Efficiency
Full-Data Train-Time Efficiency

FGVC VTAB Others Param. # Memory Time Throughput
Number of tasks 5 9 5 - - - -
Full-Finetune 91.43 91.97 93.91 304.33 41.5 520 79.58
Linear-Probe 82.23 78.90 87.81 0.01 9.7 121 79.64
LoRA-1 84.43 88.21 90.07 0.04 10.43 139 79.43
LoRA-10 86.87 89.81 91.45 1.00 33.1 363 79.43
LoRA-20 86.93 90.23 91.35 4.38 33.1 443 79.43
LoRA-50 87.23 90.41 91.97 12.22 57.2 589 79.43
AP 85.30 90.25 91.09 0.16 31.6 262 79.43

Ablation study on the influence of different data sizes. We recognize that data size significantly
influences performance. To ensure that our conclusions generalize well, we conducted an ablation
study on Full-Finetune, VP, and AP, varying the training data ratio from 10% to 100% on datasets
with large training sizes (Camelyon, FOOD101, CIFAR10). The results are shown in Figure A3.
Results show that Full-Finetune benefits the most from larger datasets. However, AP consistently
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outperforms VP, regardless of data size, reinforcing that AP is a better design than VP for both few-
and many-shot settings.
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(c) Camelyon
Figure A3: Performance of ResNet101 trained with varying sizes of available training data on (a)
CIFAR10, (b) Food101, and (c) Camelyon. All other experimental settings strictly follow those in
Tab. 1.
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C. Theoretical details

C.1. Model architecture

We define the general definition of the model architecture CNN, ViT in this section.
CNN: We follow the architecture of ResNet [], which stacks multiple residual blocks plus an input
and an output layer. Each residual block includes several convolutional layers and a skip connection.
For the input z(l)

in to the l-th convolutional layer, where l ∈ [L], the output z(l)
out can be computed as

z(l) = Conv(z(l)
in ;W

(l)
1 ), z

(l)
out = relu(BN(z(l))) (A1)

where z(0)
in = x. Conv(·) and BN denote the Convolution operation and the Batch Normalization,

respectively. The output ŷ = FC(Pooling(z(L)
out )), where FC(·) denotes fully-connected layer.

ViT: The architecture of Vision Transformer is defined in []. For the input z(l)
in to the l-th Transformer

layer, we first let z(l) = z
(l)
in . Then, the output z(l)

out can be computed as
z(l) = MSA(LN(z(l))) + z(l), z

(l)
out = MLP(LN(z(l))) + z(l), (A2)

where z(0)
in = x. MSA(·) and LN(·) denote the Multi-Head Self-attention and Layer Normalization,

respectively. For an L-layer ViT, the output ŷ = Out(H(L)
out ), where Out(·) denotes the output layer.

C.2. Proposition 1 and its proof

We first provide a full definition of Norm-Tune.
Norm-Tune is a method where only the Batch Normalization layers for CNNs or Layer Normalization
for ViTs are trainable. Consider a batch of the l-th-layer features z(l)

1 , z
(l)
2 , · · · , z(l)

B defined in (A1)
and (A2), where z(l)

b = [z
(l)
b,·,1, z

(l)
b,·,2, · · · , z

(l)
b,·,P ′ ] =∈ RD′×P ′ , z(l)

b,·,p ∈ RD′ for b ∈ [B] and p ∈ [P ′]. B
is the batch size, D′ denotes the number of channels or token dimension, and P ′ denotes the size of
the feature map or token length. We can formulate the Normalization on h

(l)
b,d,p, the d-th dimension

of h(l)
b,·,p, as follows.

BN : µd =

B∑
b=1

P ′∑
p=1

z
(l)
b,d,p

BP ′ , σ
2
d =

B∑
b=1

P ′∑
p=1

(z
(l)
b,d,p − µd)

2

BP ′ , BN(z
(l)
b,d,p) = γd

z
(l)
b,d,p − µd

σd
+ βd,

LN : µb,p =

D′∑
d=1

z
(l)
b,d,p

D′ , σ2
b,p =

D′∑
d=1

(z
(l)
b,d,p − µb,p)

2

D′ , LN(z
(l)
b,d,p) = γd

z
(l)
b,d,p − µb,p

σb,p
+ βd,

(A3)

where γd, βd are trainable parameters for d ∈ [D′]. Then, we present a full statement of Proposition 1.

Proposition 1 Without the assumption that the input to the batch (or layer) normalization layer has zero
mean and unit variance for each dimension (or token), we have the following conclusion:

AP on the l-th layer is the same as Norm-Tune on the l-th layer, if

• for CNNs, γd/σd = 1, and all δp’s added to z(l)
b are the same as δ, βd = w

(l)
d δ∗+µd for all d ∈ [D′],

where δ∗ = δ
(l)
i for i ∈ [P ′];

• for ViTs, γd/σb,p = 1, and µb,p’s are the same as µp, p ∈ [P ′] among all b ∈ [B] for ViTs,
βd = δ

(l)
p,d + µp for all d ∈ [D′], p ∈ [P ′].

Proof:

For BN, note that

BN(z
(l)
b,d,p) = γd

z
(l)
b,d,p − µd

σd
+ βd =

γd
σd

z
(l)
b,d,p + βd −

µdγd
σd

(A4)
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where
z
(l)
b,d,p = w

(l)
d z

(l−1)
b,·,p , z

(l−1)
b,·,p = xb,·,p (A5)

When adding the prompt δ(l)p , we have the output

w
(l)
d (z

(l−1)
b,·,p + δ(l)p ) (A6)

We then need the equation
γd
σd

z
(l)
b,d,p + βd −

µdγd
σd

= w
(l)
d (z

(l−1)
b,·,p + δ(l)p ) (A7)

Given γd/σd = 1, we have
βd = w

(l)
d δ(l)p + µd (A8)

Suppose that µd = 0 for d ∈ [D′] and δ
(l)
p = δ∗ for p ∈ [P ′], we can obtain

βd = w
(l)
d δ∗ (A9)

For LN, we need

LN(z
(l)
b,d,p) = γd

z
(l)
b,d,p − µb,p

σb,p
+ βd =

γd
σb,p

z
(l)
b,d,p + βd −

γdµb,p

σb,p
= z

(l)
b,d,p + δ

(l)
p,d (A10)

Given γd/σb,p = 1 and µb,p = µp for b ∈ [B], we have

βd = δ
(l)
p,d + µp (A11)

Suppose that µp = 0, p ∈ [P ′] and let δ(l)p = δ∗, p ∈ [P ′], we can obtain
β = δ∗ (A12)

C.3. Proof of Lemma 1

Before we provide the proof, we state the formulation of a single-head and two-layer ViT, the full
assumption on the data model, and the pretrained model in detail.
Let xn(·,j) be the j-th patch/token of xn, j ∈ [P ]. The corresponding 1-st-layer output is zn(·,j).
Denote the j-th patch/token of xn or zn after introducing the AP, δ(h), as xn[δ

(h)
j ] and zn[δ

(h)
j ] =

(zn[δ
(h)
1 ], · · · , zn[δ(h)P ]), respectively.

Following [72], we consider a single-head self-attention parameterized by W
(l)
Q , W (l)

K , and W
(l)
V in

the l-th layer. The shapes of these matrices arem by d if l = 1 andm bym if l = 2. DenoteW (l) =

W
(l)
K

⊤
W

(l)
Q , l = 1, 2. The MLP layer is a two-layer perceptron with m×m-dimensional parameters

W
(l)
O ,W (l)

U , and Relu activation. The output layer is a fully-connected layer with a1, · · · ,aP where
al ∈ Rm. Then, a two-layer ViT can be written as

fθ(xn, δ
(h)) =

P∑
k=1

a⊤
k W

(2)
U Relu(W (2)

O W
(2)
V zn[δ

(h)]softmax(zn[δ(h)]⊤W (2)zn[δ
(h)
k ])),

zn[δ
(h)
k ] = W

(1)
U Relu(

P∑
s=1

W
(1)
O W

(1)
V xn[δ

(h)
s ]softmax(xn[δ

(h)
s ]⊤W (1)xn[δ

(h)
k ])),

(A13)

The AP is restated as{
xn[δ

(h)
j ] = xn(·,j) + δ

(h)
j , zn[δ

(h)
j ] as defined in (A13), if h = 1,

xn[δ
(h)
j ] = xn(·,j), zn[δ

(h)
j ] = zn(·,j) + δ

(h)
j , if h = 2,

(A14)

We use Hinge loss ℓ(xn.yn) = max{0, 1/P − ynfθ(xn, δ
(h))} as the loss function.
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Data model The patch/token xn(·,j) is a noisy version of patterns, i.e., xn(·,j) = vl + ϵnj , where
vl, l = 1, 2, 3, 4 is a pattern and ϵnj ∼ N (0, σ2) is a Gaussian noise, σ ≤ O(1/P ). v1, v2, v3, v4

are all unit norm and orthogonal to each other except the pairs of v3 and v4. v⊤
3 v4 = ζ ∈ (−1, 0).

In each sample xn, only one patch/token xn(·,j) corresponds to either v1 or v2, while other P − 1
patches/tokens correspond to either v3 or v4. v1,v2 are called discriminative patterns that decide
the label. v3,v4 are non-discriminative patterns that work as the image background. For instance, if
one patch is the noisy version of v1 (v2), then yn = 1 (yn = −1).
Pretrained model The pretraining stage is assumed to learn a task where all patterns {v1,v2,v3,v4}
are key features, where each data contains two types of patterns. The label is determined by the
number of v1 or v3 compared with the number of v2 or v4. Inspired by the finding that some trained
“lucky” hidden neurons represent discriminative features from existing theoretical works [65] on
VITs, we accordingly set the neurons of feed-forward-networks W (i)

O in (A13), i = 1, 2 as pattern
representations of that layer and ignore “unlucky” neurons, which has a trivial effect on the output.
To be more specific, for the 1st layer, we set a 1/4 fraction of neurons to be vi, i = 1, 2, 3, 4, and
for the 2nd layer, we set a 1/4 fraction of neurons to be ei, i = 1, 2, 3, 4, i.e., the 2nd-layer pattern
representations. W (1)

U = W
(2)
U = I . al(i) equal 1/(mP ) for neurons of e1 and e3, and they equal

−1/(mP ) for neurons of e2 and e4. For ViTs, we follow the orthogonal embedding assumption
in [41, 44–46, 65, 104–108] and set W (1)

Q = β1I , W (1)
K = β1P

(1)
x , W (2)

Q = β2I , W (2)
K = β2P

(2)
x ,

W
(1)
V = P

(1)
x , W (2)

V = P
(2)
x for simplicity, where β1 = Θ(1), β2 = Θ(1), I is the identity matrix, and

P
(1)
x and P

(2)
x are permutation matrices.

Then, we present the proof of Lemma 1.
Proof:

Without loss of generality, we focus on studying the data where v1 is the discriminative pattern, and
v4 is the non-discriminative pattern.
For ViTs, note that the permutation matrix P

(1)
x changes the location of the pattern v1 to another

place with a distance of at least dA. By computing the feature correlation for the pattern v1, we have
β2
1 > 0, (A15)

which means the the pattern v1 has the largest correlation with v1. Hence, the pattern of v1 is a
global feature. For the feature correlation of the pattern v4, we have

β2
1 > 0, (A16)

which means the the pattern v4 has the largest correlation with v4. Hence, the pattern of v4 is a
global feature because the distance between two v4 patterns is at most 1. Since that there will be one
v4 token corresponding to a v1 token after the permutation, there will be a contribution of distance 1
to the average distance. The average attention distance of the first layer is

1

P

P∑
i=1

|i− arg max
j∈[P ]

⟨kj , qi⟩ | =
1 + dA

P
(A17)

After the first layer, the feature of the v1 token becomes
eβ

2
1

eβ
2
1 + P − 1

v1 +
P − 1

eβ
2
1 + P − 1

v4 := λ1v1 + (1− λ1)v4, (A18)

while the feature of the v4 token becomes
1

(P − 1)eβ
2
1 + 1

v1 +
(P − 1)eβ

2
1

(P − 1)eβ
2
1 + 1

v4 := λ2v1 + (1− λ2)v4, (A19)

Here 1/2 > λ1 > λ2 > 0. Therefore, we have
(λ1v1 + (1− λ1)v4)

⊤(λ1v1 + (1− λ1)v4 − λ2v1 − (1− λ2)v4)

=(2λ1 − 1)(λ1 − λ2) < 0
(A20)
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(λ2v1 + (1− λ2)v4)
⊤(λ2v1 + (1− λ2)v4 − λ1v1 − (1− λ1)v4)

=(2λ2 − 1)(λ2 − λ1) > 0
(A21)

Therefore, the feature from the token of v4 has the largest correlation with the token of both v1 and
v4. Since there exists a v4 token close to v1 token with a distance of at most 1, we have that both v1

and v4 tokens become local features. Then, the average attention distance of the second layer is

1

P

P∑
i=1

|i− arg max
j∈[P ]

⟨kj , qi⟩ | =
1

P
(A22)

C.4. Proof of Theorem 1

We first present two lemmas. One can observe that Theorem 1 is a combination of these two lemmas.
Therefore, the proof of Theorem 1 is exactly the same as the proof of these two lemmas.

Lemma 2 For a two-layer single-head Transformer

fθ(xn, δ) =

P∑
l=1

m∑
i=1

a⊤l(i)Relu(
P∑

j=1

WO2(i,·)WV2(zn(·,j) + δ
(h)
j )

· softmax((zn(·,j) + δ
(h)
j )⊤W⊤

K2
WQ2

(zn(·,l) + δ
(h)
l )))

(A23)

where

zn(·,j) = Relu(
P∑

s=1

WO1WV1xn(·,s)softmax(xn(·,s)
⊤W⊤

K1
WQ1xn(·,j))) (A24)

as long as the batch size and the required number of iterations satisfy

B ≥ Ω(1), T =
η−1P 2 logP

(1− σ)−1
, (A25)

where σ ≤ Θ(P−1), training δ(h), h = 2 with SGD returns a model with zero generalization error.

Lemma 3 For a two-layer single-head Transformer

fθ(xn, δ) =

P∑
l=1

m∑
i=1

a⊤l(i)Relu(
P∑

j=1

WO2(i,·)WV2
zn(·,j)softmax(zn(·,j)⊤W⊤

K2
WQ2

zn(·,l))) (A26)

where

zn(·,j) = Relu(
P∑

s=1

WO1WV1(xn(·,s)+δ(h)s )softmax((xn(·,s)+δ(h)s )⊤W⊤
K1

WQ1(xn(·,j)+δ
(h)
j ))) (A27)

as long as the batch size and the required number of iterations satisfy

B ≥ Ω(1), T =
η−1P

(1− Pσ)−1(1 + γ)
, (A28)

where σ ≤ O(P−1), training δ(h), h = 1 with SGD returns a model with zero generalization error, where
γ := v⊤

3 v4 ∈ (−1, 0).

C.4.1. Proof of Lemma 2

Proof:

For h = 2,

fθ(xn, δ
(h)) =

P∑
l=1

m∑
i=1

a⊤l(i)Relu(
P∑

s=1

WO(i,·)WV (zn(·,s) + δ(h)s )

· softmax((zn(·,s) + δ(h)s )
⊤
W⊤

KWQ(zn(·,s) + δ
(h)
l ))),

(A29)
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we haveWK = β2 ·Px,WQ = β2 ·I , andWV = Px where β2 = Θ(1). To avoid multiple superscripts,
we use δ to denote δ(h) since that h is fixed in this proof. We use δ(t) to denote the update of δ at t-th
iteration. Then,

∂fθ(xn, δ)

∂δj

=

P∑
l=1

m∑
i=1

al(i)1[

P∑
s=1

WO(i,·)(zn(·,Ps,2) + δPs,2
)softmax((zn(·,Ps,2) + δPs,2

)
⊤
(zn(·,s)

+ δl)) ≥ 0] ·
(
softmax((zn(·,Ps,2) + δPs,2

)
⊤
(zn(·,s) + δl))WO(i,·)

+ 1[j ̸= l]WO(i,·)(zn(·,j) + δj) · (zn(·,j) + δl) · (−softmax(β2
2(zn(·,j) + δj)

⊤

· (zn(·,l) + δl)))softmax(β2
2(zn(·,l) + δl)

⊤
(zn(·,l) + δl))

+ 1[j = l]WO(i,·)(zn(·,l) + δl)softmax(β2
2(zn(·,l) + δl)

⊤
(zn(·,l) + δl))

· (1− softmax(β2
2(zn(·,l) + δl)

⊤
(zn(·,j) + δl)))(zn(·,l) + δl)

(A30)

Let t = 0. For yn = +1, Note that if zn = [e3, e3, · · · , e3, e1, e3, · · · , e3] without noise, the loss is 0.
Hence, we compute the loss from zn = [e4, e4, · · · , e4, e1, e4, · · · , e4].

E[1[
P∑

s=1

WO(i,·)(xn(·,s) + δ(t)s )softmax(β2
2(zn(·,Ps,2) + δ

(t)
Ps,2

)
⊤
(zn(·,l) + δ

(t)
l )) ≥ 0]

=Pr(

L∑
s=1

WO(i,·)(zn(·,Ps,2) + δ
(t)
Ps,2

)softmax(β2
2(zn(·,Ps,2) + δ

(t)
Ps,2

)
⊤
(zn(·,l) + δ

(t)
l )) ≥ 0)

(A31)

forWO(i,·) = e1 or e4. We can finally show that with a high probability, the above indicator is close
to 1. Meanwhile, for WO(i,·) = e2 or e3, the indicator equals 0 or 1 with half probability when t = 0.
Consider that zn(·,j) comes from v4, which means zn(·,j) is close to v4 by a noisy term. In this case, if
zn(·,l) comes from v1,

softmax(β2
2(zn(·,l) + δ

(t)
l )

⊤
(zn(·,l) + δ

(t)
l )) ≥ 1

P
(A32)

softmax(β2
2(zn(·,j) + δj)

⊤
(zn(·,l) + δ

(t)
l )) = Θ(

1

P
) (A33)

If zn(·,l) comes from v4, then

softmax(β2
2(zn(·,l) + δ

(t)
l )

⊤
(zn(·,l) + δ

(t)
l )) ≥ 1

P
(A34)

softmax(β2
2(zn(·,j) + δ

(t)
j )

⊤
(zn(·,l) + δ

(t)
l )) = Θ(

1

P
) (A35)

Then we consider that zn(·,j) comes from e1. In this case, if zn(·,l) comes from v1, then

softmax(β2
2(zn(·,j) + δ

(t)
j )

⊤
(zn(·,l) + δ

(t)
l )) ≥ 1

P
(A36)

If zn(·,l) comes from v4,

softmax(β2
2(zn(·,j) + δ

(t)
j )

⊤
(zn(·,l) + δ

(t)
l )) ≤ 1

P
(A37)

Therefore, if zn(·,j) comes from v1,

∂fθ(xn, δ
(t))

∂δ
(t)
j

=
1

4P
λe1 +Θ(

1

P
)(−e2 + e3 − e4), (A38)
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and if zn(·,j) comes from v4,
∂fθ(xn, δ

(t))

∂δ
(t)
j

= − 1

4P
λe4 +Θ(

1

P
)(−e2 + e3 + e1), (A39)

where λ = µ = Θ(1). The last terms in (A38) and (A39) come from the indicators from otherWO

neurons, which may become 1 because of feature noises. Note that when t ≥ 2, since the data which
contains e2 and e3 would similarly contribute to the overall gradient, there will be a close amount of
e1 and e2 in δ

(t)
j and a close amount of e3 and e4 in δ

(t)
j . Hence, when kµ < Θ(1),

E[δ(t)j ] = E[δ(0)j ]− E[η
t∑

b=1

1

B

∑
n∈Bb

∂

∂δj
ℓ(fθ(xn, δ

(b)), yn)]

= ηt
1

4P
(λe1 + λe2 − µe3 − µe4)

= k(λe1 + λe2 − µe3 − µe4),

(A40)

δ
(t)
j = E[δ(t)j ] +

ηt

L

√
logBt

Bt
(±e1 ± e2 ± e3 ± e4) (A41)

where λ ≥ Θ(1) · (1 − σP ), µ ≥ Θ(1) · (1 − σP ) for t ≥ 2. The term (1 − σP ) comes from that for
WO(i,·) = e1 or e4,

E[1[
P∑

s=1

WO(i,·)(zn(·,Ps,2) + δ
(t)
Ps,2

)softmax(β2
2(zn(·,Ps,2) + δ

(t)
Ps,2

)
⊤
(zn(·,l) + δ

(t)
l )) ≥ 0]

≥1− e
(Bt)2

σ2P2 ≥ 1− σP

(A42)

given B ≥ Θ(1) by Hoeffding inequality. When kµ ≥ Θ(1), for zn = [e4, e4, · · · , e4, e1, e4, · · · , e4],
zn(·,j) + δ

(t)
j = kλ(e1 + e2)− kµe3 + (1− kµ)e4 (A43)

for zn(·,j) from v4. Then,

E[1[
P∑

s=1

e1(zn(·,Ps,2) + δ
(t)
Ps,2

)softmax(β2
2(zn(·,Ps,2) + δ

(t)
Ps,2

)
⊤
(zn(·,l) + δ

(t)
l ))]] ≥ 1− e

(Bt)2

σ2 ≥ 1− σ

(A44)

Pr(

P∑
s=1

e4(zn(·,Ps,2) + δ
(t)
Ps,2

)softmax(β2
2(zn(·,Ps,2) + δ

(t)
Ps,2

)
⊤
(zn(·,l) + δ

(t)
l ))) ≤ e−

1
σ2 ≤ e−P 2 (A45)

Hence, with a probability at least 1 − e−P 2 , no patches is activated by e4. For zn(·,k) from v1 and
zn(·,j) from v4, we have

softmax((zn(·,k) + δ
(t)
k )⊤(zn(·,k) + δ

(t)
k )) ≥ 1

P
(A46)

softmax((zn(·,j) + δ
(t)
j )⊤(zn(·,k) + δ

(t)
k )) = Θ(

1

P
) (A47)

softmax((zn(·,j) + δ
(t)
j )⊤(zn(·,j) + δ

(t)
j )) ≥ 1

P
(A48)

softmax((zn(·,k) + δ
(t)
k )⊤(zn(·,j) + δ

(t)
j )) = Θ(

1

P
) (A49)

Therefore, when kµ > Θ(1), i.e., t ≥ t0 = 4Pη−1(1− σP )−1 we have

δ
(t)
j =E[δ(t)j ] +

ηt

P

√
logB(t− t0)

B(t− t0)
(±(e1 + e2)±

1

P
e−P 4

(e3 + e4))

=E[δ(t0)j ]− E[η
t∑

b=t0

1

B

∑
n∈Bb

∂

∂δj
ℓ(fθ(xn, δ

(b)), yn)]±
ηt

P

√
logB(t− t0)

B(t− t0)
(e1 + e2)

=E[δ(t0)j ] +
η(t− t0)

4P
(λe1 + λe2 + µe3 + µe4)±

ηt

P

√
logB(t− t0)

B(t− t0)
(e1 + e2),

(A50)
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where λ ≳ (1− σ)−1. Then,∣∣∣e⊤3 E[η t∑
b=t0

1

B

∑
n∈Bb

∂

∂δ
ℓ(fθ(xn, δ

(b)), yn)]
∣∣∣ ≲ η(t− t0)

1

P
·

√
logB(t− t0)

B(t− t0)
(A51)

∣∣∣e⊤4 E[η t∑
b=t0

1

B

∑
n∈Bb

∂

∂δ
ℓ(fθ(xn, δ

(b)), yn)]
∣∣∣ ≲ η(t− t0)

1

P
·

√
logB(t− t0)

B(t− t0)
(A52)

and thus |µ| ≤ Θ(1/
√
B(t− t0)). Hence, for zn(·,k) from v1 and zn(·,j) from v4,

(zn(·,k) + δ
(t)
k )⊤(zn(·,k) + δ

(t)
k )− (zn(·,k) + δ

(t)
k )⊤(zn(·,j) + δ

(t)
j )

=Θ(1) · eβ
2
2

eβ
2
2 + P − 1

(
eβ

2
2

eβ
2
2 + P − 1

+ e⊤1 δ
(t))

(A53)

(zn(·,j) + δ
(t)
j )⊤(zn(·,k) + δ

(t)
k )− (zn(·,j) + δ

(t)
j )⊤(zn(·,j) + δ

(t)
j )

=Θ(1) · eβ
2
2

eβ
2
2 + P − 1

· e⊤1 δ(t)
(A54)

Since that β2 = Θ(1), we have

softmax((zn(·,k) + δ
(t)
k )⊤(zn(·,k) + δ

(t)
k )) =

eΘ(1)· e
⊤
1 δ(t)

P

P − 1 + eΘ(1)· e
⊤
1 δ(t)

P

(A55)

softmax((zn(·,k) + δ
(t)
k )⊤(zn(·,j) + δ

(t)
j )) =

eΘ(1)· e
⊤
1 δ(t)

P

P − 1 + eΘ(1)· e
⊤
1 δ(t)

P

(A56)

To make
fθ(xn, δ

(t)) ≥ 1/P, (A57)
we require that

eΘ(1)· e
⊤
1 δ(t)

P

P − 1 + eΘ(1)· e
⊤
1 δ(t)

P

· eβ
2
2

eβ
2
2 + P − 1

+
P − 1

P − 1 + eΘ(1)· e
⊤
1 δ(t)

P

· 1

eβ
2
2 (P − 1) + 1

≥ 1

P
(A58)

As a result, we finally need
eΘ(1)· e

⊤
1 δ(t)

P ≳ P (A59)
which holds as long as t− t0 ≳ P 2η−1(1− σ)−1 logP . Therefore, we have

fθ(xn, δ) ≥ 1/P (A60)
for xn that contains a patch from v1. We similarly have

fθ(xn, δ) ≤ −1/P (A61)
for xn that contains a patch from v2. To sum up, we need t ≥ Θ(η−1P 2(1− σ)−1 logP ) iterations.

C.4.2. Proof of Lemma 3

Proof:
To avoid multiple superscripts, we use δ to denote δ(h) since that h is fixed in this proof. We use δ(t)
to denote the update of δ at t-th iteration. For the network

fθ(xn, δ) =

P∑
l=1

m∑
i=1

a⊤l(i)Relu(
P∑

j=1

WO2(i,·)WV2
zn(·,j)softmax(zn(·,j)⊤W⊤

K2
WQ2

zn(·,l))) (A62)
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where

zn(·,j) = Relu(
P∑

s=1

WO1
WV1

(xn(·,Ps,1) + δs)softmax((xn(·,Ps,1) + δs)
⊤W⊤

K1
WQ1

(xn
j + δj))), (A63)

we have
∂fθ(xn, δ)

∂δs
=

P∑
j=1

∂fθ(xn, δ)

∂zn(·,j)

∂zn(·,j)

∂δs
(A64)

Note that WQ2 = β2I , WQ1 = β1I , WK2 = β2Px, WK1 = β1Px„ WV2 = Px, WV1 = Px, where
β1 = Θ(1) and β2 = Θ(1). Therefore,

∂fθ(xn, δ)

∂zn(·,j)

=

P∑
l=1

m∑
i=1

a⊤
(l)i

1[

P∑
s=1

WO2(i,·)zn(·,Ps,2)softmax(β2
2zn(·,Ps,2)

⊤zn(·,l))]
(
softmax(β2

2zn(·,j)
⊤zn(·,l))

·WO2(i,·) + 1[j ̸= l]WO2(i,·)zn(·,j) · zn(·,l) · (−softmax(β2
2zn(·,j)

⊤zn(·,l)))

· softmax(β2
2zn(·,l)

⊤zn(·,l)) + 1[j = l]WO2(i,·)zn(·,l)softmax(β2
2zn(·,l)

⊤zn(·,l))

· (1− softmax(β2
2zn(·,l)

⊤zn(·,l)))zn(·,l)

)
(A65)

∂zn(·,j)

∂δk

=1[

P∑
s=1

WO1
(xn(·,Ps,1) + δs)softmax((xn(·,Ps,1) + δs)

⊤(xn
j + δj))]

(
softmax((xn

j + δj)
⊤

· (xn(·,l) + δl))WO1 + 1[k ̸= l]WO1(xn(·,k) + δk) · (xn(·,l) + δl)
⊤

· (−softmax(β2
1(x

n
j + δj)

⊤
(xn(·,l) + δl)))softmax(β2

1(xn(·,l) + δl)
⊤
(xn(·,l) + δl))

+ 1[k = l]WO1
(xn(·,l) + δl)(xn(·,l) + δl)

⊤

· softmax(β2
1(xn(·,l) + δl)

⊤
(xn(·,l) + δl))

· (1− softmax(β2
1(xn(·,l) + δl)

⊤
(xn(·,l) + δl)))

)

(A66)

Let t = 0. For yn = +1, Note that if xn = [e3, e3, · · · , e3, e1, e3, · · · , e3] without noise, the loss is 0.
Hence, we compute the loss from xn = [e4, e4, · · · , e4, e1, e4, · · · , e4].

E[1[
P∑

s=1

WO(i,·)(xn(·,Ps,1) + δ
(t)
Ps,1

)softmax(β2
1(xn(·,Ps,1) + δ

(t)
Ps,1

)
⊤
(xn(·,l) + δl)) ≥ 0]

=Pr(

P∑
s=1

WO(i,·)(xn(·,Ps,1) + δ
(t)
Ps,1

)softmax(β2
1(xn(·,Ps,1) + δ

(t)
Ps,1

)
⊤
(xn(·,l) + δl)) ≥ 0)

(A67)

forWO(i,·) = e1 or e4. We can finally show that with a high probability, the above indicator is close
to 1. Meanwhile, for WO(i,·) = e2 or e3, the indicator equals 0 or 1 with half probability when t = 0.
Consider that xn(·,j) comes from v4. In this case, if xn(·,l) comes from v1,

softmax(β2
1(xn(·,l) + δl)

⊤
(xn(·,l) + δl)) ≥

1

P
(A68)

softmax(β2
1(x

n
j + δ

(t)
j )

⊤
(xn(·,l) + δl)) = Θ(

1

P
) (A69)

softmax(β2
2zn(·,l)

⊤zn(·,l)) ≥
1

P
(A70)

softmax(β2
2zn(·,j)

⊤zn(·,l)) = Θ(
1

P
) (A71)
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If xn(·,l) comes from v4, then

softmax(β2
1(xn(·,l) + δ

(t)
l )

⊤
(xn(·,l) + δ

(t)
l )) ≥ 1

P
(A72)

softmax(β2
1(x

n
j + δ

(t)
j )

⊤
(xn(·,l) + δ

(t)
l )) = Θ(

1

P
) (A73)

softmax(β2
2zn(·,l)

⊤zn(·,l)) ≥
1

P
(A74)

softmax(β2
2zn(·,j)

⊤zn(·,l)) = Θ(
1

P
) (A75)

Then we consider that xn(·,j) comes from v1. In this case, if zn(·,l) comes from v1, then

softmax(β2
1(xn(·,j) + δ

(t)
j )

⊤
(xn(·,l) + δ

(t)
l )) ≥ Θ(

1

P
) (A76)

softmax(β2
2zn(·,j)

⊤zn(·,l)) ≥ Θ(
1

P
) (A77)

If xn(·,l) comes from v4,

softmax(β2
1(xn(·,j) + δ

(t)
j )

⊤
(xn(·,l) + δ

(t)
l )) = Θ(

1

P
) (A78)

softmax(β2
2zn(·,j)

⊤zn(·,l)) = Θ(
1

P
) (A79)

Therefore, if xn(·,j) comes from v1,
∂fθ(xn, δ)

∂δ
(t)
j

= P · 1

4P
λ(e⊤1 · 1

P
WO1

)⊤ =
1

4P
v1 +Θ(

1

P
)(−v2 + v3 − v4), (A80)

and if xn(·,j) comes from v4,
∂fθ(xn, δ)

∂δ
(t)
j

= − 1

4P
µv4 +Θ(

1

P
)(−v2 + v3 + v1), (A81)

where λ = µ = Θ(1). Note that when t ≥ 2, since the data which contains v2 and v3 would similarly
contribute to the overall gradient, there will be a close amount of v1 and v2 in δ

(t)
s and a close amount

of v3 and v4 in δ
(t)
s . Hence, when kµ < Θ(1),

E[δ(t)s ] = E[δ(0)s ]− E[η
t∑

b=1

1

B

∑
n∈Bb

∂

∂δs
ℓ(fθ(xn, δ

(b)
s ), yn)]

= ηt
1

4P
(λv1 + λv2 − µv3 − µv4)

= k(λv1 + λv2 − µv3 − µv4),

(A82)

δ(t)s = E[δ(t)s ] +
ηt

P

√
logBt

Bt
(±v1 ± v2 ± v3 ± v4) (A83)

where λ ≥ Θ(1) · (1 − σP ), µ ≥ Θ(1) · (1 − σP ) for t ≥ 2. The term (1 − σP ) comes from that for
WO2(i,·) = v1 or v4,

E[1[
P∑

s=1

WO1(i,·)(xn(·,Ps,1) + δ
(t)
Ps,1

)softmax(β2
1(xn(·,Ps,1) + δ

(t)
Ps,1

)
⊤
(xn(·,l) + δ

(t)
l )) ≥ 0]

≥1− e
(Bt)2

σ2P2 ≥ 1− σP

(A84)
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given B ≥ Θ(1) by Hoeffding inequality. When kµ ≥ Θ(1)
1+γ , we have that for xn(·,j) from v4,

1[

P∑
s=1

WO1
(xn(·,Ps,1) + δs)softmax(β2

1(xn(·,Ps,1) + δs)
⊤(xn(·,j) + δ

(t)
j )) ≥ 0]

≥[1, 1,−kµ+ (1− kµ)γ + v⊤
3 a,−kµγ + 1− kµ+ v⊤

4 a]
⊤

≥[1, 1, 0, 0]⊤

(A85)

where a ∼ N (0, σ2I) in the first step, and the last step holds with probability at least

Pr(v⊤
4 a− kµγ + 1− kµ ≤ 0) ≤ 1− Pr(v⊤

4 a ≥ Θ(1)) ≤ 1− e
1
σ2 ≤ 1− e−P 2 (A86)

Pr(v⊤
3 a− kµ+ (1− kµ)γ ≤ 0) ≤ 1− Pr(v⊤

3 a ≥ Θ(1)) ≤ 1− e
1
σ2 ≤ 1− e−P 2 (A87)

Hence, for xn(·,k) from v1 and xn(·,j) from v4,

(xn(·,k) + δ
(t)
k )⊤(xn(·,k) + δ

(t)
k )− (xn(·,k) + δ

(t)
k )⊤(xn(·,j) + δ

(t)
j ) = Θ(1) · (1 + 2(kµ)2) (A88)

(xn(·,j) + δ
(t)
j )⊤(xn(·,k) + δ

(t)
k )− (xn(·,j) + δ

(t)
j )⊤(xn(·,j) + δ

(t)
j ) = Θ(1) · (2kµ− 1) (A89)

Since that β1 = Θ(1), we have

softmax(β2
1(xn(·,k) + δ

(t)
k )⊤(xn(·,k) + δ

(t)
k )) =

eΘ(1)·(kµ)2)

P − 1 + eΘ(1)·(kµ)2) (A90)

softmax(β2
1(xn(·,k) + δ

(t)
k )⊤(xn(·,j) + δ

(t)
j )) =

eΘ(1)·kµ

P − 1 + eΘ(1)·kµ (A91)
To make

fθ(xn, δ
(t)) ≥ 1/P, (A92)

we require that
eΘ(1)·(kµ)2)

P − 1 + eΘ(1)·(kµ)2) · 1 ≥ 1

P
(A93)

or
eΘ(1)·kµ

P − 1 + eΘ(1)·kµ · 1 ≥ 1

P
(A94)

As a result, we finally need
eΘ(1)·kµ ≳ 1 (A95)

which holds as long as t ≳ Pη−1(1− Pσ)−1(1 + γ)−1). With the same condition, we also have that
for all yn = −1,

fθ(xn, δ) ≤ −1/P (A96)
To sum up, we need t ≥ Θ(Pη−1(1− Pσ)−1(1 + γ)−1)).
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