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Abstract

Inspired by how humans perceive and interpret the world
using multiple senses, multi-modal learning involves inte-
grating information from multiple modalities to improve
understanding and performance in various tasks. Align-
ing with that notion, our key intuition is to utilize multi-
model learning to solve the domain shift problem in night-
time pedestrian detection.

In this paper, we show that pairing RGB and infrared
(IR) image features increases the robustness of pedestrian
detection at night. Indeed, this solution is unbiased towards
a specific time of the day as the IR domain reduces the re-
liance on lighting and serves as complementary information
to the RGB domain. Our work aims at exploiting the power
of attention mechanisms to guide a multi-modal framework
in feature fusing from RGB and IR modalities. Our novel fu-
sion approach, named dual attentive feature fusion (DaFF),
leverages the duality of the transformer and channel-wise
global attentions. To demonstrate the effectiveness of DaFF,
we conducted experiments on two real-world multispectral
pedestrian datasets. Extensive experimental results reveal
the superiority of DaFF. We believe that combining the com-
plementary properties of RGB and IR modalities is an effec-
tive remedy to mitigate the domain shift problem in pedes-
trian detection.

1. Introduction
Developing a robust pedestrian detection system at night-
time has become an important problem in computer vision
in recent years due to applications of Advanced Driver As-
sistance Systems (ADAS) and Video Surveillance [1, 12].
Many pedestrian detection studies have shown that based
on RGB images, deep learning-based pedestrian detectors
enhance detection performance on daytime images but en-
counter degraded detection performance on nighttime im-
ages. Since these images have limited illumination, the de-
tectors struggle to accurately detect pedestrians in the night-
time images. The degraded detection performance can raise
safety issues in the ADAS and video surveillance applica-
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Figure 1. Pipeline of the multi-modal framework guided by DaFF,
dual attentive feature fusion, for multispectral pedestrian detec-
tion. The framework takes the same scene from two sensors (RGB
and IR) as inputs. Green and blue represent two separated back-
bones with the same network architecture for the RGB and IR im-
ages, respectively. DaFF fuses features during the feature extrac-
tion. Fused features from RGB and IR branches are passed to the
neck module then head module for final detection. Green boxes in
the right-hand side are detected bounding boxes of pedestrians.

tions. Unlike conventional pedestrian detection techniques
that only consider mono-modalities as inputs to the pedes-
trian detectors, multi-modal frameworks integrate data from
different sources to enhance the performance in various ap-
plications [6, 11, 18, 26, 30, 39]. Multi-modal learning is
motivated by how humans use multiple senses to perceive
and interpret the world. Accordingly, we tackle the domain
shift problem in nighttime pedestrian detection by applying
multi-model learning.

In this paper, we introduce a novel multi-modality fea-
ture fusion method, namely dual attentive feature fusion
(DaFF), to improve the detection performance of nighttime
images for multispectral pedestrian detection. Our proposed
DaFF method fuses visual textures and object contours in
the RGB and IR images at the feature extraction stage. The
proposed DaFF method combines two forms of global at-
tention. In particular, DaFF includes spatial and channel-
wise attention mechanisms to guide the multi-modal frame-
work. Exploiting attention mechanisms provides a bet-
ter feature representation and improves the fusion quality.
Thus, the DaFF method can enhance detection performance
by exploiting the dual attention mechanisms.
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To effectively fuse the complementary information in the
RGB and IR images, we propose a duality of spatial and
channel-wise attention mechanisms. For the spatial atten-
tion, we leverage transformers to attain informative features
across different locations [4, 22, 34]. Additionally, we ob-
tain important features across different channels utilizing a
channel-wise attention module with learnable parameters.
Therefore, the duality in DaFF enhances features by learn-
ing the global context at different locations and channels.

Figure 1 shows the whole pipeline of our proposed ap-
proach for multispectral pedestrian detection. We first uti-
lize two backbones to extract various levels of features from
the RGB and IR images. Then, we feed two mono-modality
features into the DaFF module to generate multi-modality
fused features. Fused features by DaFF are passed through
a neck module for aggregation. Finally, a head module out-
puts the final detection bounding boxes.

The main contribution of this paper can be summarized
in threefold:
• We present a novel DaFF method for multispectral pedes-

trian detection, which fuses the complementary informa-
tion from RGB and IR images at the feature level utilizing
global attention that operates on both spatial locations and
feature channels.

• We show the effectiveness of each module in our frame-
work through several qualitative and quantitative ablation
studies.

• We compare our proposed feature fusion method, DaFF,
to state-of-the-art fusion approaches on two real-world
multispectral pedestrian datasets.

2. Related Work
Combining information from different sources to obtain a
unified picture is advantageous in various disciplines [14].
In particular, for autonomous driving and video surveil-
lance, exploiting RGB and IR sensors accommodates dif-
ferent weather conditions and time of the day. RGB sensors
provide color and texture information under good illumina-
tion while IR sensors are resilient to illumination variation.
Pedestrian detection as a central part of many applications
can benefit from the concept of multi-sensor data, especially
for nighttime robustness. Adapting such a concept is usu-
ally known as multi-modal learning, where features are ex-
tracted from each mono-modality and then it gets fused to-
gether for better feature representation. For multispectral
pedestrian detection, feature fusion methods are concerned
with two aspects: when to fuse? and how to fuse?

Corresponding to when to fuse, Wagner et al. [31] per-
formed the first study to exploit RGB and IR images using
a deep object detector, RCNN. The study evaluates two fu-
sion stages: fusion at the pixel-level and fusion at the fea-
ture level and reveals the superiority of the latter. To further
explore the potential of multispectral pedestrian detection,

Liu et al. [20] analyze the performance of Faster R-CNN
considering four fusion stages: early stage (after the first
convolutional layers), halfway fusion (after the fourth con-
volutional layers), late fusion (at the last fully connected
layers), and score fusion (detection scores are combined).
Halfway fusion achieves the best detection performance and
the author claims this is because the low-level features at the
early stage are irrelevant and the high-level features at the
late stage are semantic. Therefore, halfway fusion produces
the best balance between the fine visual details and the se-
mantic meanings.

Corresponding to how to fuse, Zhang et al. [37] suggest
a cyclic fuse-and-refine approach to progressively improve
the complementary and the alignment of multispectral fea-
tures. Seeking illumination aware fusion mechanisms, Li et
al. [17] present an illumination-aware network consisting
of a day illumination sub-network and a night illumination
sub-network. Specifically, the illumination value is used
to adaptively weigh feature fusion. MBNet [42] was sug-
gested to address the modality imbalance problem for mul-
tispectral pedestrian detection. MBNet uses two modules
to first differentiate between RGB and thermal features and
then adaptively align both features utilizing the illumination
conditions. Probabilistic ensembling (ProbEn) [5] is a late
fusion approach based on Bayes’ theorem. ProbEn assumes
conditional independence across modalities and finds the fi-
nal detection results by fusing the score from each modality.
PIAFusion [28] is a progressive image fusion framework
with the guidance of illumination-aware loss. As a task-
driven fusion approach, Sun et al. propose DetFusion [27],
an object-aware image fusion network that exploits a priori
information of object locations to guide the fusion process.
Considering attention-based fusion, [38] proposes Guided
Attentive Feature Fusion (GAFF) that utilizes an attention
mask highlighting pedestrian objects to weigh features’ im-
portance before fusion. Qingyun et al. [21] propose a cross-
modality fusion transformer (CFT) that leverages the self-
attention mechanism of the transformer to adaptively learn
the correlation between RGB and IR modalities. Shen et
al. [25] introduce the Iterative Cross-Attention Guided Fea-
ture Fusion (ICAFusion) framework for multispectral object
detection tasks. ICAFusion is based on a cross-attention
fusion transformer and uses a new iterative learning strat-
egy to share parameters between transformer blocks for ef-
ficiency purposes.

While prior feature fusion strategies are constrained by
hand-crafted weighing schemes, limited local-range feature
interactions, or one-dimensional attention modules, DaFF
provides a comprehensive attention-based feature fusion
method benefiting from both channel and spatial axes to en-
rich the quality of the feature fusion for multispectral pedes-
trian detection. In the following sections, we will describe
DaFF, motivate the integration of channel and spatial atten-
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tions, and show its advantages over other fusion methods in
the context of multispectral pedestrian detection.

3. Proposed Approach
Why attention? The concept of attention draws inspira-
tion from human perception. Initially introduced in the con-
text of neural networks, attention has evolved from simple
mechanisms to complex, adaptive architectures. The foun-
dation of modern attention mechanisms, self-attention en-
ables a model to weigh the importance of different positions
in a sequence, facilitating contextual understanding and in-
formation aggregation from a global perspective.

The intuition behind DaFF’s design choice is to use the
full potential of global attention in guiding the process of
combining RGB and IR features. In other words, we lever-
age the power of attention mechanisms on channel and spa-
tial axes to learn the global context of RGB and IR modal-
ities for an effective feature fusion process. Our key idea
is to incorporate two attention modules in a multi-modal
framework to obtain a learned feature representation for
multispectral pedestrian detection tasks.

We argue that straightforward fusion mechanisms such
as element-wise addition and concatenation that rely on the
local spatial correlation between features are vulnerable to
multispectal image misalignment. Additionally, straightfor-
ward fusion mechanisms fuse redundant and irrelevant in-
formation. Furthermore, we contend that one-dimensional
attentive fusion mechanisms constrain the power of learning
global feature interactions. To efficiently borrow comple-
mentary information from other modalities and thoroughly
learn the importance weights of RGB-IR features, we pro-
pose a dual attentive feature fusion, DaFF, that combines
two global attentions.

3.1. Overall Framework

Figure 2 shows the overall multi-modal framework guided
by the proposed fusion approach DaFF. The fusion takes
place after the third convolution (halfway fusion) as it is
proven to achieve the best results [20]. In addition, we
choose YOLOv5 as a base model for our proposed DaFF
approach due to its competitive performance according to
[12, 21, 25].

As illustrated in Figure 2, the multi-modal framework
takes a pair of RGB and IR aligned images that passes
through a separate mono-modality to extract RGB and IR
features. In the halfway of the feature extraction stage,
we start fusing RGB and IR features to gain the comple-
mentary properties of both modalities. To address the lim-
itation of the local receptive field in convolutional neural
networks (CNNs), we guide the multi-modality by adding
two attention modules. The main objective of these add-
on modules is to emphasize informative features and sup-
press the less useful ones, leading to improved multispectral

pedestrian detection performance. Specifically, to fuse the
features from each mono-modality, we apply transformer
and channel-wise attention (CWA) modules, dually learn-
ing meaningful features.

3.2. Transformer Attention Module

Why transformer attention? Vaswani et al. [29] first in-
troduced the transformer architecture and it has become a
cornerstone in natural language processing (NLP) due to its
efficiency and scalability [7, 15, 23, 35]. The basic notion of
transformers is to transform input sequences into output se-
quences by integrating self-attention and feedforward neu-
ral networks. Inspired by the massive successes of trans-
formers in NLP, the vision transformer (ViT) [8] was pro-
posed as the first transformer-based model for computer vi-
sion that treats the sequence of image patches the same way
as the sequence of words in NLP. With the advent of trans-
former architectures, researchers have extended it to multi-
modal learning where attention weights can be learned to
emphasize relevant information across modalities, facilitat-
ing more effective fusion. Many studies have applied trans-
formers to different multi-modal applications, including ob-
ject detection [21, 25], image segmentation [36, 41], image
and text matching [33], video object segmentation [2]. Be-
cause the efficiency of transformers in multi-modal learn-
ing, we choose it as our spatial attention and explore its
effectiveness for multispectral pedestrian detection tasks.

Figure 3 illustrates the building blocks of the transformer
attention module. Similar to [21], we insert transformer
modules to the multi-modal framework. First, given two
feature maps denoted as FRGB and FI from RGB and IR
branches respectively, we flatten each feature map and then
concatenate them together. Next, we add a learnable posi-
tional embedding, which is a trainable parameter to encode
spatial information between different tokens. Let I be the
input sequence to the transformer module. I is projected
onto three separate matrices to compute a set of queries,
keys, and values (Q, K, V) as follows:

Q = IWQ,K = IWK ,V = IWV (1)

where WQ, WK , and WV represent the weight matrices.
Second, the attention weights are computed using the

dot-product operation between queries and keys, and then
multiplied by the values to obtain output Z as follows:

Z = softmax

(
QKT
√
Dk

)
V (2)

where 1√
Dk

is a scaling factor to prevent the gradient
vanishing problem when the softmax function returns ex-
tremely small gradients.

The multi-head attention is employed with 8 parallel
heads.
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Figure 2. Proposed DaFF method based on YOLOv5. The multi-modal framework takes a pair of RGB and IR images and each image
progresses through a separate mono-modality to extract features. The transformer and channel-wise attention modules take place after the
third convolution modules, producing P3, P4, and P5.
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Figure 3. The structure of the transformer attention module in
Figure 2.

Third, the output sequence O is obtained using two fully-
connected layers as follows:

O = MLP(Z) + I (3)

Finally, the resulting output sequence O is converted by
inversing the first step, producing F'RGB and F'I , which is
added to the corresponding modality branch.

3.3. Channel-wise Attention Module

Why channel-wise attention? Unlike traditional attention
mechanisms that focus on specific spatial or temporal el-
ements within data sequences, channel-wise attention op-
erates at the channel level in feature maps. It allows neu-
ral networks to selectively emphasize or suppress certain

Concat 1x1	Conv Avg	Pooling fc softmax 𝑾!

Attention	
weights

⊗

𝑭"#$	

𝑭&	

𝑭"#$'&

⊗ Element-wise	multiplication

Channel-wise Attention Module

Figure 4. The structure of the channel-wise attention (CWA) mod-
ule in Figure 2.

channels, enabling the model to adaptively learn and uti-
lize information across different channels in a feature map.
One of the pioneering works in the channel-wise attention
domain is Squeeze-and-Excitation Networks (SENet) [9].
SENet proposes an add-on module to increase representa-
tion power by using global information between channels
and reweighing features. Influenced by SENet, many re-
searchers have investigated channel-wise attention capabil-
ities and applications [3, 19, 32].

Motivated by [9], we propose to adopt channel-wise at-
tention and expand it to a multi-modal framework for mul-
tispectral pedestrian detection. Figure 4 demonstrates the
building blocks of the CWA module. Given two feature
maps denoted as FRGB and FI from the RGB and IR
branches respectively, we concatenate both features and em-
ploy a 1×1 convolutional layer to reduce the number of
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channels. Second, we perform an average pooling operation
for channel-wise global coherence. Then, the channel-wise
statistics get aggregated through two fully connected layers
followed by the softmax function. The output is channel-
wise attention weights denoted as Wc. The final step in-
cludes multiplying those weights by the output of the con-
volution operation. In this manner, the features from both
mono-modalities get fused considering the non-mutually-
exclusive relationship. In other words, fusing RGB and IR
feature maps utilizing CWA captures the channel-wise de-
pendencies rather than relying only on spatial ones.

4. Experimental Setup
In this section, we describe implementation details, includ-
ing datasets, base model, and evaluation protocol.

4.1. Dataset Preparation

To validate our feature fusion method, we use two paired
RGB-IR datasets, namely KAIST [10] and LLVIP [12].

KAIST. In 2015, Hwang et al. introduced KAIST, a
popular multi-modal benchmark for pedestrian detection.
KAIST has RGB-IR aligned image pairs captured during
daytime and nighttime. The KAIST dataset approximately
contains 95k image pairs: 50k for training and 45k for test-
ing. Since the original annotations were problematic, we
leverage the sanitized version of the training set [16], and
the test set [40]. Following the common procedure with
KAIST, we use a sampling skip of every 2nd frame for the
training set as in [13, 17, 20], and every 20th frame for the
test set analogous to [16, 40]. Table 1 details the split of the
resulting training/test sets.

LLVIP. In 2021, LLVIP was released as an RGB-IR
paired pedestrian dataset for low-light vision. Image pairs
are strictly aligned in time and space. Moreover, the LLVIP
dataset was collected from different locations on the street
between 6 and 10 o’clock in the evening. Table 1 details the
split of the training and test sets.

Dataset Split Images Persons Resolution

KAIST

Train 25,086 26,642

640 × 512Test-All 2,252 2,757
Test-Day 1,455 2,003

Test-Night 797 754

LLVIP Train 12,025 34,135 1280 × 1024Test 3,463 8,302

Table 1. KAIST and LLVIP multispectral pedestrian datasets.

4.2. Implementation Notes

YOLOv5 is our base model with the CSPDarkNet53 back-
bone. The training phase takes 200 epochs using two Nvidia
A40 GPUs. We adopt the stochastic gradient descent (SGD)

optimizer with an initial learning rate of 1e-2, a momentum
of 0.937, and a weight decay of 0.0005. We use a batch size
of 8 and an input image size of 640× 640. We utilize a pre-
trained YOLOv5 on COCO dataset for weight initialization,
and both mosaic and random flipping for data augmentation.

We use the standard object detection evaluation metric:
Average precision (AP) introduced by MS-COCO evalua-
tion protocol1. We report AP at all default Intersection over
Union (IoU) thresholds on the LLVIP dataset. However, due
to the noisy annotations of KAIST, we report AP results us-
ing the least strict default threshold (IoU=.50).

For comparison, we carefully follow the instructions to
train other fusion approaches on the same data. Please note
that training MBNet [42] on LLVIP dataset was not feasible
as the training set does not include daytime images. Also,
since we train all models on the same data, we choose to
unify the evaluation metric across both used datasets.

5. Experimental Results and Discussion

We have conducted several experiments to verify the effec-
tiveness of our proposed fusion mechanism. In this section,
we first examine our design choices and the contribution of
each module through multiple ablation studies both quan-
titatively and qualitatively. Second, we compare our DaFF
with the other state-of-the-art fusion mechanisms.

5.1. Ablation Studies

To study the impact of each attention module in DaFF,
we conducted ablation experiments in this part. Quanti-
tatively, we evaluate the detection performance by adding
transformer-only, CWA-only, and then both to obtain the
impact of their integration. Qualitatively, we demonstrate
the interpretability of each module both separately and
jointly by generating the visual explanations using Grad-
CAM [24] and visualize the attention maps associated with
the detection results.

Dataset Transformer CWA AP IoU=.50

KAIST
✓ 59.2

✓ 59.1
✓ ✓ 61.9 (↑ 2.7)

LLVIP
✓ 97.2

✓ 97.1
✓ ✓ 97.8 (↑ 0.6)

Table 2. The table presents ablation experiments of each attention
module in DaFF on KAIST (All test set) and LLVIP datasets. Used
performance metrics is average precision (AP %) at IoU =.50.
The bold black denotes the best performance. The results ensure
that the integration of both transformer and channel-wise attention
modules achieves the highest detection performance.

1https://cocodataset.org/#detection-eval
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Figure 5. Visual explanations by Grad-CAM of attention modules in our proposed DaFF on KAIST and LLVIP datasets. Each example
includes the attention map (left) and the detection result (right). Results reveal that the combination of transformer and CWA highlights
the important regions of the image, where the pedestrian is located, more precisely compared to solo modules. Zoom in for more details.

As presented in Table 2, the results when both forms
of attention are present, transformer and CWA, maxi-
mize the detection performance among all metrics on both
KAIST and LLVIP. Alternatively stated, the duality of self-
attentions at spatial and channel levels brings the best gain
for multispectral pedestrian detection. Specifically, the AR
is elevated by 1% and 0.2% compared to using a solo mod-
ule on KAIST and LLVIP, respectively. More notably, the
performance gain in terms of AP is 2.7% and 0.6% on
KAIST and LLVIP, respectively.

Figure 5 depicts the visual interpretation by Grad-CAM
to compare the effect of DaFF’s attention modules in isola-
tion and combination. The impact of the combination has
led the multi-modal to focus on the target region of interest,
pedestrians, with fewer distractions. As a result, the perfor-
mance of DaFF brings the improvement of transformer and
CWA in one framework and boosts the detection robustness.

5.2. Comparison with Other Approaches

We compare DaFF to other baselines: mono-modalities
(RGB-only and IR-only) to emphasize the benefit of multi-
modality, a basic multi-modality (addition) to justify incor-
porating attention modules, and other state-of-the-art fusion
approaches to show the promise of our fusion method.

Method AP IoU=.50

All Day Night
mono-modality networks

IR 50.8 47 60.4
RGB 51.4 54 44.1

multi-modality networks
Addition 59.8 58.4 63.5

MBNet [42] 58.3 58.3 59.8
DetFusion [27] 28.9 30.9 23.8
PIAFusion [28] 45 46.2 43.8

CFT [21] 59.2 56.7 66
ICAFusion [25] 60.3 59 64.3

DaFF (ours) 61.9 (↑ 1.6) 60.2 (↑ 1.2) 66.8 (↑ 0.8)

Table 3. The table presents a detection performance comparison
of mono-modalities, state-of-the-art multi-modalities, and DaFF
on KAIST dataset. Used performance metrics is average precision
(AP %) at IoU = 50%. The bold blue denotes best performance
and bold black denotes second best. Results indicate the superior-
ity of DaFF over other approaches on KAIST dataset (considering
all, night, and day test sets)

On KAIST. Quantitatively, Table 3 reports the detection
performance of DaFF and other methods on three test sets
(all, night, and day) of the KAIST dataset. It is observed
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Figure 6. Qualitative comparison of detection performance, including the mono-modalities, and our multi-modality, DaFF, on KAIST
and LLVIP datasets. The green boxes denote detected pedestrians, and the red triangles indicate failure cases, false positives, or false
negatives. Results show that the performance of multi-modality is more powerful than the mono-modality in terms of multispectral
pedestrian detection. Zoom in for more details.

that the IR-only results surpass the RGB-only ones on the
night test set. Also, most multi-modalities substantially
outperform mono-modalities, confirming that fusing fea-
tures from RGB and IR images is beneficial for the pedes-
trian detection problem. However, it is notable that Det-
Fusion, an object-aware fusion approach, and PIAFusion,
an illumination-aware approach, give the lowest detection
performance even compared to mono-modalities which af-
firms the importance of deciding how to fuse. Moreover,
DaFF improves the AP by 1.6%, 1.2%, and 0.8% on all,
day, and night test sets, respectively. Qualitatively, Figure
6 and 7 show a total of six successful examples of KAIST
validating the effectiveness of DaFF in detecting pedestri-
ans against mono-modalities and other multi-modalities.

On LLVIP. Quantitatively, Table 4 presents the detec-
tion performance of DaFF and other methods on the LLVIP
dataset. Notably, the IR-only results are higher than the
RGB-only ones by at least 6%. Also, performance of the
addition multi-modality is less than IR mono-modality; we
attribute that to the limited capacity of addition fusion in
adaptively learning informative features. Also, DetFusion
and PIAFusion degrade the performance compared to most
cases in mono-modalities and all cases in multi-modalities.
Moreover, DaFF achieves a gain of 0.6%, 1% and 0.8% at
all default IoU, respectively. DaFF achieves the new state-
of-the-art performance on LLVIP dataset2. Qualitatively,

2https://paperswithcode.com/sota/pedestrian-
detection-on-llvip

Method AP IoU=.50 AP IoU=.75 AP IoU=.50:.05:.95

mono-modality networks
IR 96.6 73.8 64.6

RGB 90.7 51.7 50.7
multi-modality networks

Addition 96.3 72 62.5
DetFusion [27] 89.2 56.3 52.7
PIAFusion [28] 88.6 54.5 51.9

CFT [21] 97.2 74.7 64.8
ICAFusion [25] 96.3 71.7 62.3

DaFF (ours) 97.8 (↑ 0.6) 75.7 (↑ 1.0) 65.6 (↑ 0.8)

Table 4. The table presents a detection performance comparison
of mono-modalities, state-of-the-art multi-modalities, and DaFF
on LLVIP dataset. Used performance metrics is average precision
(AP %) at different IoU. The bold blue denotes best performance
and bold black denotes second best. Results indicate the superi-
ority of DaFF on LLVIP dataset.

Figure 6 and 7 illustrate successful examples of LLVIP val-
idating the effectiveness of DaFF in detecting pedestrians
against mono-modalities and other multi-modalities.

Overall, the detection performance on the LLVIP dataset
is higher than the KAIST dataset. Indeed, many factors
can contribute to this performance difference, including dif-
ferent image resolution, multispectral image misalignment
problems, and the problematic annotation. Furthermore,
the transformer-based fusion mechanisms, namely CFT and
ICAFusion, are always the second best compared to the best
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Figure 7. Qualitative comparison of detection performance between the DaFF and the other state-of-the-art fusion approaches on KAIST
and LLVIP datasets. The green boxes denote detected pedestrians, and the red triangles indicate failure cases, false positives, or false
negatives. Results show that DaFF outperforms other approaches. Zoom in for more details.

DaFF. This observation provides an empirical evidence of
the power of the transformer in multi-modal learning.

6. Conclusion

In this paper, we introduce DaFF, a new feature fusion
framework for multispectral pedestrian detection. The pro-
posed DaFF leverages the integration of transformer, spatial
attention, and channel-wise attention to improve the feature
representation and fusion quality. DaFF provides a com-
prehensive attention-based framework that assists in com-
bining RGB and IR features and enhances the performance
degradation of nighttime pedestrian detection. The evalu-

ation results reveal that the proposed method outperforms
mono-modalities and state-of-the-art multi-modalities on
KAIST and LLVIP datasets. We believe that fusing the
complementary properties of RGB and IR modalities is a
practical solution to close the gap between daytime and
nighttime pedestrian detection performance.
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