
CodeArena: Evaluating and Aligning CodeLLMs on Human Preference

Anonymous ACL submission

Abstract
Code large language models (codeLLMs) have001
made significant strides in code generation.002
Most previous code-related benchmarks, which003
consist of various programming exercises along004
with the corresponding test cases, are used005
as a common measure to evaluate the perfor-006
mance and capabilities of code LLMs. How-007
ever, the current code LLMs focus on synthe-008
sizing the correct code snippet, ignoring the009
alignment with human preferences, where the010
query should be sampled from the practical ap-011
plication scenarios and the model-generated012
responses should satisfy the human prefer-013
ence. To bridge the gap between the model-014
generated response and human preference, we015
present a rigorous human-curated benchmark016
CodeArena to emulate the complexity and di-017
versity of real-world coding tasks, where 397018
high-quality samples spanning 40 categories019
and 44 programming languages, carefully cu-020
rated from user queries. Further, we propose a021
diverse synthetic instruction corpus SynCode-022
Instruct (nearly 20B tokens) by scaling in-023
structions from the website to verify the ef-024
fectiveness of the large-scale synthetic instruc-025
tion fine-tuning, where Qwen2.5-SynCoder to-026
tally trained on synthetic instruction data can027
achieve top-tier performance of open-source028
code LLMs. The results find performance dif-029
ferences between execution-based benchmarks030
and CodeArena. Our systematic experiments of031
CodeArena on 40+ LLMs reveal a notable per-032
formance gap between open SOTA code LLMs033
(e.g. Qwen2.5-Coder) and proprietary LLMs034
(e.g., OpenAI o1), underscoring the importance035
of the human preference alignment.1036

1 Introduction037

Advanced large language models (LLMs)(OpenAI,038

2023; Anthropic, 2023) have demonstrated impres-039

sive performance across a wide range of tasks, par-040

ticularly excelling in code completion and genera-041

tion. Code capabilities have established LLMs as042

1The evaluation code and leaderboard will be released.

Problem Description: Please write a quick sort algorithm.

UnitTest

Evaluation Environment

def quick_sort(x):
lambda lst: quicksort ... # one line

def quick_sort(arr):
“”“ Algorithm Explanation”“”
if len(arr) <= 1:

return arr # directly return
else:

... (Omitted fragment) # detailed comment

First, we consider...
``` html
<!DOCTYPE html>
<html lang="en">
<head>
<title>Copy Text Selection</title>
<style> ... </style>
</head>
... (Omitted fragment)
</html>
```
Breakdown of the code: (1) ... 
How to try it: (1) ... (3) ...
Note: (1) ... (4) ...

Problem Description: show me a JS code for modern browsers to copy a selection of text 
with predefined start and ending words.

Code

Code LLM

Certainly! Below is an example:
```html
<!DOCTYPE html>
<html lang="en">
<head>

<meta charset="UTF-8">
<title>Copy Example</title>

</head>
... (Omitted fragment)
</html>
```
Explanation:
(1) ... 
(2) ... 

Claude3.5 Qwen2.5-Coder-7B

CoT

Explain
Step
Note

Code

Very Short Explain

A detailed and 
beautiful reply !

A short without 
further explanation 

(a) Code-execution-based Benchmark

(b) Evaluation for Human Preference

Figure 1: A comparison between the Claude3.5 with bet-
ter human preference and Qwen2.5-Coder-7B-Instruct.
Qwen2.5-Coder-7B-Instruct solves the user question by
simply replying with the code snippet without details.

essential productivity tools in software engineering. 043

Recently, open code-specific LLMs, such as Star- 044

Coder(Li et al., 2023), DeepSeekCoder (Guo et al., 045

2024a), and QwenCoder (Hui et al., 2024), have 046

made significant progress, achieving performance 047

on fundamental code generation tasks (Austin et al., 048

2021; Cassano et al., 2023) that approaches the 049

level of top-tier proprietary models. Moreover, 050

their open and transparent model weights address 051

the concerns of developers about privacy, enabling 052

the deployment of localized code assistants. 053

With the advancing code capabilities of LLMs, 054

effectively evaluating performance on code-related 055

tasks has emerged as a challenge. Popu- 056

lar code-related benchmarks typically focus on 057

self-contained function snippets, relying on a 058

limited number of test cases to verify code 059

correctness, such as HumanEval (Chen et al., 060

2021a), MBPP (Austin et al., 2021) and Big- 061

CodeBench (Zhuo et al., 2024). While recent ef- 062

forts have expanded the scope of test cases (Liu 063

et al., 2023), tasks (Lai et al., 2022) and program- 064

1



ming languages (Chai et al., 2024; Kwiatkowski065

et al., 2019), these benchmarks remain constrained066

to validating the correctness of generated code snip-067

pets. However, ChatBot Arena (Chiang et al., 2024)068

has demonstrated that alignment between model-069

generated responses and user preferences is also070

a critical evaluation criterion. As shown in Fig-071

ure 1, Qwen2.5-Coder primarily generates alone072

code snippets, while Claude3.5 produces responses073

that include detailed explanations, well-structured074

formatting, and code comments, making it more075

favorable in terms of human preference. Therefore,076

there is an urgent need to establish a human prefer-077

ence benchmark specifically for code-related tasks,078

enabling the community to evaluate and track the079

alignment between human preferences and model-080

generated responses in real-world scenarios. Fur-081

thermore, effective data for improving the human082

preference alignment of codeLLMs remains scarce.083

Achieving robust alignment across diverse coding084

tasks poses significant challenges, particularly in085

terms of the quantity and quality of data required086

during the supervised fine-tuning (SFT) stage.087

To this end, we first introduce a comprehensive088

human-curated benchmark, CodeArena, compris-089

ing 397 high-quality samples across 40 categories090

derived from real-world user queries. Additionally,091

we develop a diverse synthetic instruction corpus,092

SynCode-Instruct, containing nearly 20 billion093

tokens, by scaling instructions from web sources.094

Our extensive evaluation of over nearly 40 large095

language models (LLMs) using CodeArena re-096

veals significant performance differences between097

code-execution-based benchmarks and our human-098

curated benchmark. Notably, we observe a substan-099

tial performance gap between open-source code100

LLMs (such as Qwen-Coder) and closed-source101

LLMs (like the o1 and Claude series), emphasizing102

the critical role of aligning AI models with human103

preferences in coding tasks.104

The contributions are summarized as follows:105

(1) We propose CodeArena comprised of 397 man-106

ually annotated samples, a comprehensive code107

evaluation benchmark for evaluating the alignment108

between the model-generated response and hu-109

man preference, encompassing 7 major categories110

and 40 subcategories. (2) We introduce SynCode-111

Instruct, the large-scale synthetic code instruction112

corpora from the website. Based on SynCode-113

Instruct, an effective coder Qwen2.5-SynCoder is114

used as a strong baseline for CodeArena. (3) We115

systematically evaluate 40+ LLMs on CodeArena 116

and create a leaderboard to dynamically update the 117

results. Notably, extensive experiments suggest 118

that CodeArena can effectively measure the align- 119

ment between the model-generated response and 120

human preference. 121

2 CodeArena 122

Dataset Statistics As shown in Figure 2 and Ta- 123

ble 1, CodeArena consists of nearly 400 problems. 124

All samples can be classified into 7 main classes 125

and 40 subclasses. Each sample in CodeArena in- 126

cludes (question, gpt-4o-2024-05-13 response, gpt- 127

4o-2024-08-06 response, gpt-4-turbo-2024-04-09 128

response) and we adopt the gpt-4-turbo-2024-04- 129

09 as the baseline in this paper. We tokenized the 130

question prompts using the Qwen2.5-Coder tok- 131

enizer, resulting in question lengths ranging from 132

5 to 6736 tokens, with an average length of 291 133

tokens, as detailed in Table 1. 134

Statistics Number

Problems 397
User Interface&Experience 45
Development&Programming 131
Specialized Computing 91
Tools, Environments, and Application 39
Miscellaneous and General Inquiry 62
Databases&Data Handling 22
Miscellaneous and General Inquiry 7

#Difficulty Level
- Easy/Medium/Hard 97/173/132

Length
Question

- maximum length 6736 tokens
- minimum length 5 tokens
- avg length 291 tokens

Baseline Answer
- maximum length 5913 tokens
- minimum length 7 tokens
- avg length 4517 tokens

Table 1: CodeArena dataset statistics.

Multiple Programming Languages Figure 3 135

plots the distribution of programming languages, 136

where we strive to cover common programming 137

languages in CodeArena. Unlike previous stud- 138

ies (Cassano et al., 2023), our benchmarks empha- 139

size a diverse range of programming languages that 140

are commonly used in everyday programming tasks. 141

For instance, we have incorporated languages like 142

“Google Apps Script (GAS)” and “PowerShell” in 143

CodeArena to better address the needs of practical 144

Q&A scenarios. 145

2



Dev&Programming

Tools, Environs&
Practices

Sp
ec

ia
liz

ed
 C

om
pu

tin
g Em

erging Technologies

Data Handling

General Inquiry

UI/UX

Algorithm (programming)
Application DevAuto&Scrip

Best P
ractice&Pattern

Code D
ebugging

Cod
e M

an
ag

em
en

t

Data
 M

an
ag

em
en

t

D
at

a S
tru

ct
ur

es

D
at

a&
N

um
er

ic
al

D
ep

lo
y&

C
on

fig

D
ev Practices

Function M
anagem

ent

Logic Im
plem

entation

Optim
 Techniques

Programming

Specialized Algorithms

Test&DebugDev Tools&EnvironsDevOps Domain
Edu&Instruct

Feature Dev&Manage

Integra
tion&M

igration

Perfo
rman

ce&O
ptim

Softw
are Deploy

Softw
are

 Desi
gn

Cryp
tog

rap
hy

Data
 A

na
ly

tic
s

Se
cu

rit
y 

D
om

ai
n

So
ftw

ar
e 

Li
fe

cy
cl

e
Sy
st
em
s&
N
et
w
or
ks

W
eb, M

obile &
 D

ev
A

rtificial Intelligence
G

am
e&

G
raphics

M
achine Learning

Database M
anagement

File&Data Operations

Non-Coding

Unspecified topics

Frontend Technologies

UI/UX Design

CodeArena Categories

Loading [MathJax]/extensions/MathMenu.js

Figure 2: Task types of CodeArena.

Difficulty levels of CodeArena Figure 4 shows146

the difficulty levels of CodeArena, where all sam-147

ples are classified into easy, medium, and hard. The148

majority of the samples are recognized as medium149

or hard, presenting a significant challenge to LLMs.150

Human Annotation & Quality Control To151

make CodeArena a comprehensive evaluation152

benchmark, we implement a rigorous human an-153

notation process involving 4 full-time employees154

proficient in various programming languages for155

human annotation and 4 other senior program-156

ming developers for quality check. All annota-157

tors participate in a annotation tutorial and learn158

the annotation guidelines. The annotation pro-159

cess involved creating a new question based on160

the given question, checking the difficulty level161

(easy/medium/hard) based on the complexity of the162

prompt, and annotating the corresponding program-163

ming languages. Following the classification in164

Figure 2, we uniformly sample 2K samples and as-165

sign them to annotators. The annotators select 822166

suitable original samples to create queries. The pro-167

cess includes regular quality checks and feedback168

sessions to maintain high standards throughout the169

annotation phase, which results in a diverse and170

well-curated dataset spanning multiple program-171

ming languages and tasks, suitable for evaluating172

and improving alignment between the human pref-173

erence and model-generated response. The other174

four senior programming developers vote on the175

same issue to determine whether it is valid and can176

be resolved. Finally, 397 samples are kept (at least177

3 checkers reach a consensus) to from CodeArena,178

considering the cost of the LLM-as-a-judge.179

Evaluation Inspired by the previous work (Chi- 180

ang et al., 2024), we apply GPT-4o-2024-08-06 181

as the judger to evaluate the model performance. 182

Specifically, we use two games “compare A and B ” 183

and “compare B and A” (avoid the relative position 184

of A and B affecting the results) to calculate the 185

win rate of A compared to the baseline B. 186

Decontainmation. To avoid data leakage, we 187

apply decontamination to ensure the uniqueness 188

of prompts in CodeArena, by removing exact 189

matches (10-gram word overlap) from MultiPL- 190

E (Cassano et al., 2023), MBPP (Austin et al., 191

2021), McEval (Chen et al., 2021a), and Natural- 192

CodeBench (Zhang et al., 2024). 193

Comparison with other benchmarks We com- 194

pare CodeArena with other code benchmarks. Our 195

benchmark provides a valuable comprehensive 196

benchmark for 40 subtasks and 44 programming 197

languages, which satisfies the evaluation in realistic 198

scenarios. CodeArena provides many problems for 199

evaluation under realistic scenarios, which are not 200

suitable for verification through unit testing. 201

3 SynCode-Instruct 202

Recall from Common Crawl. A trained fast- 203

text is used to distinguish the code-related text and 204

other common raw text, which is used to recall 205

and clean potential code data and filter out low- 206

quality content using weak model-based classifiers 207

and scorers. 208

Code Classification for Code Snippet. We ex- 209

tract the first layer of CodeBERT (Feng et al., 2020) 210

and fine-tune the tiny classifier on nearly 100 pro- 211

gramming languages to build a language identifi- 212

cation model. We keep the main language data 213

(e.g. C, Python, and Java) and downsample high- 214

resource language data (e.g. HTML and Java) to 215

keep the balance. Besides, we also remove the 216

samples with no code snippets. 217

Scaling Code Instruction Initially, we adopt 218

rule-based filtering to clean pre-extracted content 219

from recalled documents by removing site infor- 220

mation, advertisements, and HTML tags, thereby 221

significantly reducing document length for further 222

processing. Different from the previous work (Yue 223

et al., 2024), we utilize Qwen2.5-72B to create new 224

questions instead of extracting question and answer 225

pairs. As shown in Figure 6. We use the Qwen2.5- 226

Coder to generate multiple responses by sampling 227

3



cs
s

c+
+

py
th

on ts
ge

ne
ra

l
ht

m
l

ba
sh

G
A

S
c/

c+
+

vh
dl

sw
ift c

au
to

lis
p

ve
ril

og
m

at
la

b
ah

k js r go ja
va c# ph
p

c5
1

ko
tli

n
bo

ot
str

ap
no

de
.js

ht
m

l/c
ss sq
l

pi
ne

sc
rip

t
lu

a
po

w
er

sh
el

l
m

ql
4

as
se

m
bl

y
ru

st
PA

D
da

rt
lu

au
au

to
ho

tk
ey

au
to

it
vb

a
la

te
x

ha
sk

el
l

pl
/sq

l
m

q4

0

20

40

60
prompt_len (50 tokens)
response_len (50 tokens)
number

Figure 3: Statistics of programming languages in CodeArena.

U
I/U

X
 D

es
ig

n
Co

de
 M

an
ag

em
en

t
W

eb
, M

ob
ile

 &
 D

ev
M

ac
hi

ne
 L

ea
rn

in
g

D
at

a&
N

um
er

ic
al

Ed
u&

In
str

uc
t

D
eb

ug
A

lg
or

ith
m

D
at

a S
tru

ct
ur

es
D

at
ab

as
e M

an
ag

em
en

t
U

ns
pe

ci
fie

d 
to

pi
cs

D
ev

O
ps

Sy
ste

m
s&

N
et

w
or

ks
Pe

rfo
rm

an
ce

&
O

pt
im

D
at

a A
na

ly
tic

s
O

pt
im

 T
ec

hn
iq

ue
s

Fu
nc

tio
n 

M
an

ag
em

en
t

Fr
on

te
nd

 T
ec

hn
ol

og
ie

s
Pr

og
ra

m
m

in
g

N
on

-C
od

in
g

Se
cu

rit
y

So
ftw

ar
e D

ep
lo

y
D

ep
lo

y&
Co

nf
ig

G
am

e&
G

ra
ph

ic
s

A
ut

o&
Sc

rip
So

ftw
ar

e D
es

ig
n

D
ev

 T
oo

ls&
En

vi
ro

ns
D

ev
 P

ra
ct

ic
es

Fi
le

&
D

at
a O

pe
ra

tio
ns

D
at

a M
an

ag
em

en
t

A
rti

fic
ia

l I
nt

el
lig

en
ce

Sp
ec

ia
liz

ed
 A

lg
or

ith
m

s
So

ftw
ar

e L
ife

cy
cl

e
Cr

yp
to

gr
ap

hy
Fe

at
ur

e D
ev

&
M

an
ag

e
Lo

gi
c I

m
pl

em
en

ta
tio

n
Be

st 
Pr

ac
tic

e&
Pa

tte
rn

Te
st&

D
eb

ug
A

pp
lic

at
io

n 
D

ev
In

te
gr

at
io

n&
M

ig
ra

tio
n

0

10

20

30

40

50

N
um
be
r

Easy
Middle
Hard

Figure 4: Number of samples of different difficulties (Easy/Medium/Hard) across categories in CodeArena.

Benchmark #Programming
Languages #Task Source #Languages Evaluation Human

Annotation

HumanEval (Chen et al., 2021a) 1 1 Human Creation 1 Execution ✓

MBPP (Austin et al., 2021) 1 1 Human Creation 1 Execution ✓

LiveCodeBench (Jain et al., 2024) 1 4 Scraped from Code Contest Website 1 Execution ✓

MultiPl-E (Cassano et al., 2023) 24 1 Translated from HumanEval & MBPP 1 Execution ✗

McEval (Chai et al., 2024) 40 3 Human Creation 1 Execution ✓

MdEval (Liu et al., 2024b) 18 3 Human Creation 1 Execution ✓

CruxEval (Gu et al., 2024) 1 2 LLM Generation 1 Execution ✗

NaturalCodeBench (Zhang et al., 2024) 2 6 Scrape & LLM Generation & Human Filtered 1 Execution ✗

DebugBench (Tian et al., 2024) 3 18 Scrape & LLM Generation & Human Filtered 1 Execution ✗

CodeEditorBench (Guo et al., 2024b) 3 4 Scrape & LLM Generation & Human Filtered 1 Execution ✗

CodeArena (Ours) 44 40 Online Q&A 2 Human Preference ✓

Table 2: Comparison between CodeArena and other benchmarks. CodeArena provides a comprehensive view by
creating diverse user prompts to evaluation alignment between the model-generated response and human preference.

Code Q&A Website

How do I convert hexidecimal to 
decimal using C# & BigInt?

If value is a hexadecimal string, 
the Parse(String,NumberStyles) 
method  interprets value as a negative 
number …

<!DOCTYPE html> 
<html lang="zh-CN"> 
<head> 
<title>Python Tutorial</title> 
</head> 
<body> 

   <h1>Python 基础教程</h1> 

   <p>实现堆排序：</p> 
    ... 
</body> 
</html>

Code-related Website

Clustering

Classification

CodeLLM

+
Multiple Domains

UI / UX 
• UI / UX Design 
• Frontend Technologies 
Dev & Programming 
• Test & Debug 
• … 
Data Handling 
…

Multiple Languages
⃞ The question is clear. 
⃞ The question doesn’t contain ethical issues. 
⃞ The question is solvable.

1. Select the original text or query. 
2. Summarize knowledge from text. 
3. Manually create the user prompt. 
4. Check the difficulty level of the prompt.

Problem Construction

Synthesizing

CodeLLM

Question Ans1 Ans2 AnsN⋯

Verification

Scorer Executor

Quality Control

Large-Scale 
SFT Dataset

Figure 5: Overview of the CodeArena creation benchmark. We first collect the online code Q&A and code-related
raw text from the website. We cluster the code-related data and classify them into different categories using LLM.
We uniformly sample the samples from different subtasks as the seed data for manual annotation.

for the same document. For the algorithmic gen-228

erated question and answer, we first adopt a fine-229

tuned generator to generate the test cases and adopt230

the multilingual sandbox to verify the correctness231

of the generated code snippet. As shown in Figure232

5, for the non-algorithmic query, we first randomly233

generate four candidates and use the LLM to score 234

the candidates (LLM scorer), where the candidates 235

are fed into the LLM to select the best response 236

with the reason. For the algorithmic queries, the 237

generated test cases by LLM are used to verify the 238

correctness of the responses (Executor). Finally, 239

4



You are an expert programmer and educational 
content creator specializing in crafting high-
quality programming questions.
Task: Create an engaging, self-contained 
programming question inspired by the given text.
Guidelines:
1. Human Language: The question should be in 
either Chinese or English.
2. Programming Language: The programming 
language of the created problem must be 
consistent with the programming language of the 
given text.
3. Inspiration: Draw inspiration from the 
concepts, techniques, or themes present in the 
given text.
4. Independence: Ensure the question is 
completely self-contained and does not require 
knowledge of the original text to understand or 
solve.
5. Clarity: Provide clear instructions and 
requirements for the task.
6. Difficulty: Adjust the complexity to be 
challenging yet solvable for an intermediate 
programmer.
7. Relevance: Focus on practical, real-world 
applications of programming concepts.
8. Originality: Avoid directly copying examples 
from the text; instead, create a new scenario or 
problem.
Given Text:
{given text}
Created Question:
{Your carefully crafted programming question 
goes here}

Figure 6: Prompt of generating large-scale self-
contained synthetic instruction data.

we select the response with the best score as the240

response to create SynCode-Instruct. The synthetic241

instruction corpora generated by Qwen2.5 is used242

for the first stage and the high-quality data from243

GPT-4o is used for the second stage.244

4 Experimental Setup245

4.1 Instruction Dataset246

CodeLLMs We evaluate 40+ models with sizes247

ranging from 0.5B to 200B parameters, including248

general/code LLMs and open/closed-source mod-249

els. For general models, we evaluate GPTs (Brown250

et al., 2020; OpenAI, 2023) (GPT-3.5-Turbo,251

GPT4-o), Qwen series (Qwen2.5 and Qwen-252

Max) (Bai et al., 2023), Claude series (Anthropic,253

2023), Llama3/3.1 (Dubey et al., 2024), Yi (Young254

et al., 2024), and o1 series. For code models,255

we test CodeLlama (Rozière et al., 2023), Open-256

Coder (Huang et al., 2024), Qwen-Coder (Hui et al.,257

2024), DeepSeekCoder (Guo et al., 2024a), and258

CodeStral (MistralAI, 2024).259

4.2 Evaluation Benchmark260

The EvalPlus (Liu et al., 2023) is an upgraded ver-261

sion of the HumanEval (Chen et al., 2021a) and262

MBPP (Austin et al., 2021) to test the code gen-263

eration capabilities. The benchmark reports the264

scores of HumanEval (HE)/MBPP with base test265

cases and HumanEval+ (HE+)/MBPP+ with plus266

test cases. The MultiPL-E test set (Cassano et al.,267

2023) contains the HumanEval (Python) and trans-268

lated test set of other programming languages, i.e.,269

Java, C++, Javascript, and Typescript. Different270

from the EvalPlus and MultiPL-E, CodeArena 271

consists of many non-algorihtmic, which is not 272

suitable for code-execution-based evaluation. Each 273

question is scored twice to calculate the win rate 274

and tie rate by GPT-4o using a different input or- 275

der “A, B” and “B, A”, where “A” is the baseline 276

from gpt-4-turbo-2024-04-09 and “B” is 277

the model-generated response. 278

4.3 Evaluation Metrics 279

For the code execution benchmarks EvalPlus and 280

MultiPL-E, we extract the expected function and 281

feed the test cases into the extracted function to 282

verify the correctness of the generation and report 283

greedy Pass@1 (Chen et al., 2021a). Due to the 284

high cost of collecting human preferences (Zheng 285

et al., 2023a), we use pairwise comparison for judg- 286

ment (LLM-as-a-Judge), where an LLM judger is 287

fed with a question and two answers and deter- 288

mines which one is better or declares a tie2. We 289

report win rate/tie rate for CodeArena. 290

4.4 Impletmentation Details 291

We fine-tune Qwen2.5-Coder-32B on nearly 20B 292

synthetic tokens generated from website data, 293

where GPT-4o generates 1B tokens and Qwen2.5- 294

Coder-Instruct generates the left tokens. Qwen2.5- 295

SynCoder is fine-tuned on the synthetic instruction 296

corpus SynCode-Instruct with 256 NVIDIA A100- 297

80GB GPUs. The learning rate first increases into 298

3× 10−4 with 100 warmup steps and then adopts 299

a cosine decay scheduler. We adopt the Adam opti- 300

mizer (Kingma and Ba, 2015) with a global batch 301

size of 2048 samples and a tensor parallel size of 302

8, truncating sentences to 32K tokens. 303

5 Results and Discussion 304

5.1 Main Results 305

CodeArena. Table 3 shows that the win rate/tie 306

rate of different instruction LLM on CodeArena. 307

The closed-source LLMs such as Claude and o1 308

series still get a dominant advantage compared to 309

Qwen2.5-Coder and DeepseekCoder. There still 310

exists a notable performance gap between open 311

codeLLMs (e.g. Qwen-Coder) and closed-source 312

LLMs (e.g., o1 and Claude series), emphasizing the 313

importance of alignment between model-generated 314

response human preference. Qwen2.5-SynCoder 315

2https://github.com/lmarena/
arena-hard-auto

5

https://github.com/lmarena/arena-hard-auto
https://github.com/lmarena/arena-hard-auto


Model Size UI&UX
Development&
Programming

Specialized
Computing

Tools, Environs,
& Practices

Emerging Techs
&Apps

Miscellaneous &
General Inquiry

Databases&
Data Handling

Avg.

Proprietary LLMs and 200B+ LLMs

Claude-3.5-Sonnet-20240620 µ 88.9/2.2 77.3/13.6 74.2/18.0 81.4/11.9 78.9/10.5 71.4/28.6 63.6/4.5 77.8/12.5
Claude-3.5-Sonnet-20241022 µ 82.2/6.7 75.8/12.9 76.4/16.9 84.7/10.2 84.2/13.2 57.1/28.6 68.2/22.7 78.1/13.5
GPT-3.5-turbo-0125 µ 17.8/24.4 11.4/20.5 4.5/19.1 11.9/18.6 10.5/21.1 13.6/9.1 0.0/14.3 10.5/19.6
GPT-4o-mini-2024-07-18 µ 71.1/13.3 62.1/17.4 50.0/13.6 65.2/14.6 72.9/13.6 71.1/18.4 71.4/14.3 65.8/15.6
GPT-4o-2024-08-06 µ 66.7/17.8 72.7/19.7 62.9/19.1 69.5/15.3 76.3/13.2 85.7/14.3 59.1/22.7 69.1/18.1
o1-mini µ 93.3/4.4 94.7/2.6 84.1/7.6 91.0/5.6 88.1/3.4 95.5/0.0 100.0/0.0 89.3/5.1
o1-preview µ 93.3/2.2 81.8/7.6 85.4/7.9 78.0/6.8 92.1/2.6 77.3/4.5 71.4/28.6 83.9/6.6
Yi-lightning µ 62.2/15.6 60.0/11.5 57.9/5.3 49.4/16.9 71.2/11.9 54.5/13.6 85.7/0.0 59.5/12.6
Doubao-Pro µ 51.1/20.0 40.8/18.5 55.3/26.3 38.2/19.1 47.5/22.0 36.4/31.8 42.9/57.1 43.6/21.5
Qwen-Max µ 75.6/17.8 74.2/13.6 59.6/24.7 78.0/6.8 68.4/23.7 100.0/0.0 81.8/4.5 71.9/15.8

0.5B+ Open-source LLMs

Qwen2.5-0.5B-Instruct 0.5B 2.2/4.4 4.6/4.6 5.3/10.5 2.2/4.5 3.4/5.1 4.5/9.1 0.0/14.3 3.6/5.6
Qwen2.5-Coder-0.5B-Instruct 0.5B 2.2/2.2 4.6/6.9 2.6/5.3 4.5/2.2 3.4/5.1 4.5/0.0 28.6/14.3 4.4/4.6

1B+ Open-source LLMs

DS-Coder-1.3B-Instruct 1.3B 66.7/2.2 2.3/5.4 2.6/10.5 1.7/6.8 0.0/9.1 2.2/3.4 0.0/14.3 2.6/5.6
Yi-Coder-1.5B-Chat 1.5B 11.1/2.2 5.1/3.4 5.4/4.6 2.6/5.3 2.2/5.6 4.5/4.5 14.3/14.3 7.4/5.1
Qwen2.5-Coder-1.5B-Instruct 1.5B 11.1/4.4 15.9/9.1 9.0/16.9 13.6/11.9 13.2/5.3 14.3/42.9 18.2/4.5 13.2/10.7
OpenCoder-1.5B-Instruct 1.5B 11.1/4.4 3.8/5.4 0.0/5.3 2.2/4.5 3.4/8.5 4.5/9.1 0.0/0.0 6.7/3.8

3B+ Open-source LLMs

Qwen2.5-Coder-3B-Instruct 3B 35.6/11.1 29.5/10.6 27.0/15.7 20.3/18.6 28.9/10.5 42.9/14.3 27.3/13.6 28.3/13.3

6B+ Open-source Models

CodeLlama-7B-Instruct 7B 33.3/8.9 28.8/18.6 23.8/13.8 18.2/9.1 31.6/5.3 29.2/14.6 71.4/0.0 28.2/12.8
Llama3-8B-Instruct 7B 20.0/17.8 14.6/11.5 15.8/2.6 13.5/9.0 16.9/11.9 22.7/0.0 57.1/14.3 16.7/10.3
Llama3.1-8B-Instruct 7B 2.2/8.9 4.5/10.1 3.8/6.2 3.4/6.8 5.3/2.6 9.1/9.1 14.3/0.0 7.9/4.4
DS-Coder-6.7B-Instruct 6.7B 11.1/17.8 13.1/13.8 13.6/8.5 13.2/7.9 9.0/7.9 13.6/4.5 28.6/0.0 12.3/10.8
CodeQwen1.5-7B-Chat 7B 17.8/15.6 13.8/12.3 15.8/0.0 15.7/9.0 15.3/15.3 18.2/13.6 14.3/42.9 15.4/11.8
Yi-Coder-9B-Chat 9B 15.6/17.8 15.4/9.2 15.8/7.9 13.5/13.5 10.2/20.3 18.2/13.6 28.6/28.6 14.6/13.3
DS-Coder-V2-Lite-Instruct 2.4/16B 42.2/20.0 33.3/17.4 31.5/16.9 35.6/20.3 39.5/21.1 71.4/14.3 31.8/22.7 35.5/18.6
Qwen2.5-Coder-7B-Instruct 7B 40.0/22.2 46.2/19.7 43.8/15.7 40.7/20.3 34.2/15.8 71.4/0.0 40.9/22.7 43.1/18.6
OpenCoder-8B-Instruct 8B 24.4/8.9 14.6/8.5 10.5/7.9 9.0/4.5 13.6/6.8 18.2/9.1 14.3/0.0 14.1/7.1

13B+ Models

CodeLlama-13B-Instruct 13B 13.3/4.4 7.9/6.7 6.8/8.5 7.7/6.2 4.5/4.5 5.3/5.3 14.3/14.3 11.2/7.9
Starcoder2-15B-Instruct-v0.1 15B 6.7/6.7 6.8/12.9 4.5/15.7 6.8/6.8 5.3/13.2 13.6/13.6 0.0/14.3 6.4/12.0
Qwen2.5-Coder-14B-Instruct 14B 51.1/24.4 53.0/17.4 52.8/16.9 50.8/18.6 57.9/7.9 28.6/28.6 36.4/27.3 60.6/51.5

20B+ Models

CodeLlama-34B-Instruct 34B 11.1/6.7 2.6/2.6 6.9/2.3 8.5/6.8 7.9/10.1 9.1/9.1 14.3/0.0 7.7/5.6
CodeStral-22B-v0.1 22B 17.8/22.2 27.3/13.6 14.6/14.6 25.4/10.2 18.4/10.5 14.3/42.9 22.7/22.7 21.7/15.8
DS-Coder-33B-Instruct 33B 13.3/11.1 22.0/9.8 12.4/12.4 13.6/6.8 13.2/18.4 28.6/42.9 22.7/18.2 16.8/12.0
CodeLlama-70B-Instruct 70B 11.1/22.2 9.2/10.0 10.5/5.3 9.0/6.7 16.9/8.5 9.1/13.6 0.0/0.0 15.5/10.5
DS-Coder-V2-Instruct 21/236B 55.6/11.1 62.1/18.2 60.7/14.6 50.8/18.6 52.6/21.1 71.4/14.3 40.9/31.8 57.4/17.6
DS-V2.5 21/236B 77.8/11.1 72.0/12.9 71.9/13.5 71.2/8.5 73.7/10.5 100.0/0.0 68.2/13.6 73.0/11.7
Llama3-70B-Instruct 7B 35.6/20.0 26.2/26.2 25.4/22.0 34.2/15.8 23.6/14.6 36.4/4.5 14.3/57.1 27.7/20.5
Llama3.1-70B-Instruct 7B 48.9/24.4 43.8/20.0 34.2/26.3 40.4/22.5 54.2/20.3 45.5/9.1 71.4/14.3 44.9/21.0
Qwen2.5-Coder-32B-Instruct 32B 71.1/13.3 66.7/15.9 67.4/16.9 74.6/13.6 65.8/18.4 100.0/0.0 63.6/18.2 68.9/15.6
Qwen2.5-32B-Instruct 32B 62.2/15.6 52.3/15.4 57.9/18.4 50.6/23.6 54.2/13.6 50.0/13.6 71.4/14.3 54.1/17.1
QwQ-32B-Preview 32B 53.3/15.6 56.8/16.7 50.6/16.9 64.4/5.1 52.6/21.1 85.7/0.0 63.6/9.1 56.6/14.5
Qwen2.5-72B-Instruct 72B 82.2/6.7 71.5/14.6 76.3/13.2 75.3/15.7 71.2/18.6 63.6/13.6 85.7/14.3 73.8/14.4
Qwen2.5-SynCoder 32B 55.6/26.7 49.2/20.8 36.8/36.8 50.6/20.2 52.5/20.3 40.9/18.2 57.1/0.0 49.2/22.3

Table 3: The win/tie rate of different instruction LLMs on CodeArena. The underlined numbers represent the best
scores within the same model size range.

totally trained on the large-scale synthetic instruc-316

tion corpus SynCode-Instruct can still get a strong317

performance on CodeArena, which verifies the cor-318

rectness of the route of taking large-scale synthetic319

data to improve model performance.320

EvalPlus and MultiPL-E. Table 4 shows that321

Qwen2.5-SynCoder significantly beats previous322

strong open-source baselines using large-scale syn-323

thetic instruction, closing the gap with GPT-4o and324

Claude, which verifies that the large-scale synthetic325

data can bring more significant improvement for326

the base model in the code-execution-based bench-327

mark (code generation) compared to CodeArena.328

5.2 Discussion329

Examples of CodeArena. Figure 7 lists 6 ex-330

amples from different subtasks, covering Python,331

HTML, CSS, and Java. Different from the previ-332

ous benchmarks (Cassano et al., 2023; Jain et al.,333

2024) comprised of algorithmic questions in a fixed 334

format, the queries of CodeArena are more con- 335

sistent with the distribution of user questions in 336

real Q&A scenarios. For example, the query “hug- 337

gingface dataset move all the columns to metadata, 338

except two, problem and solution” is closer to the 339

question style of real users. GPT4o thinks model- 340

generated response B beats the baseline A based 341

on the judgment “B provides a correct and rele- 342

vant solution using the appropriate library for Hug- 343

ging Face datasets”, which select responses that are 344

more aligned with human preferences. 345

Difference between CodeArena and Execution- 346

based Benchmark. Compared to MultiPL-E 347

evaluated by code execution, CodeArena is cre- 348

ated from real-world Q&A and evaluated by LLM- 349

as-a-judge to evaluate the alignment between the 350

model-generated response and human preference. 351

For example, the LLMs tend to only generate the 352

6



Model Size HE HE+ MBPP MBPP+ Python Java C++ C# TS JS PHP Bash Avg.

Closed-APIs

Claude-3.5-Sonnet-20240620 µ 89.0 81.1 87.6 72.0 89.6 86.1 82.6 85.4 84.3 84.5 80.7 48.1 80.2
Claude-3.5-Sonnet-20241022 µ 92.1 86.0 91.0 74.6 93.9 86.7 88.2 87.3 88.1 91.3 82.6 52.5 83.8
GPT-4o-mini-2024-07-18 µ 87.8 84.8 86.0 72.2 87.2 75.9 77.6 79.7 79.2 81.4 75.2 43.7 75.0
GPT-4o-2024-08-06 µ 92.1 86.0 86.8 72.5 90.9 83.5 76.4 81.0 83.6 90.1 78.9 48.1 79.1
o1-mini µ 97.6 90.2 93.9 78.3 95.7 90.5 93.8 77.2 91.2 92.5 84.5 55.1 85.1
o1-preview µ 95.1 88.4 93.4 77.8 96.3 88.0 91.9 84.2 90.6 93.8 90.1 47.5 85.3

0.5B+ Models

Qwen2.5-Coder-0.5B-Instruct 0.5B 61.6 57.3 52.4 43.7 61.6 57.3 52.4 43.7 50.3 50.3 52.8 27.8 49.6

1B+ Models

DS-Coder-1.3B-Instruct 1.3B 65.9 60.4 65.3 54.8 65.2 51.9 45.3 55.1 59.7 52.2 45.3 12.7 48.4
Yi-Coder-1.5B-Chat 1.5B 69.5 64.0 65.9 57.7 67.7 51.9 49.1 57.6 57.9 59.6 52.2 19.0 51.9
Qwen2.5-Coder-1.5B-Instruct 1.5B 70.7 66.5 69.2 59.4 71.2 55.7 50.9 64.6 61.0 62.1 59.0 29.1 56.7

3B+ Models

Qwen2.5-Coder-3B-Instruct 3B 84.1 80.5 73.6 62.4 83.5 74.7 68.3 78.5 79.9 75.2 73.3 43.0 72.1

6B+ Models

CodeLlama-7B-Instruct 7B 40.9 33.5 54.0 44.4 34.8 30.4 31.1 21.6 32.7 - 28.6 10.1 -
DS-Coder-6.7B-Instruct 6.7B 74.4 71.3 74.9 65.6 78.6 68.4 63.4 72.8 67.2 72.7 68.9 36.7 66.1
CodeQwen1.5-7B-Chat 7B 83.5 78.7 77.7 67.2 84.1 73.4 74.5 77.8 71.7 75.2 70.8 39.2 70.8
Yi-Coder-9B-Chat 9B 82.3 74.4 82.0 69.0 85.4 76.0 67.7 76.6 72.3 78.9 72.1 45.6 71.8
DS-Coder-V2-Lite-Instruct 2.4/16B 81.1 75.6 82.8 70.4 81.1 76.6 75.8 76.6 80.5 77.6 74.5 43.0 73.2
Qwen2.5-Coder-7B-Instruct 7B 88.4 84.1 83.5 71.7 87.8 76.5 75.6 80.3 81.8 83.2 78.3 48.7 76.5
OpenCoder-8B-Instruct 8B 83.5 78.7 79.1 69.0 83.5 72.2 61.5 75.9 78.0 79.5 73.3 44.3 71.0

13B+ Models

CodeLlama-13B-Instruct 13B 40.2 32.3 60.3 51.1 42.7 40.5 42.2 24.0 39.0 - 32.3 13.9 -
Starcoder2-15B-Instruct-v0.1 15B 67.7 60.4 78.0 65.1 68.9 53.8 50.9 62.7 57.9 59.6 53.4 24.7 54.0
Qwen2.5-Coder-14B-Instruct 14B 89.6 87.2 86.2 72.8 89.0 79.7 85.1 84.2 86.8 84.5 80.1 47.5 79.6

20B+ Models

CodeLlama-34B-Instruct 34B 48.2 40.2 61.1 50.5 41.5 43.7 45.3 31.0 40.3 - 36.6 19.6 -
CodeStral-22B-v0.1 22B 81.1 73.2 78.2 62.2 81.1 63.3 65.2 43.7 68.6 - 68.9 42.4 -
DS-Coder-33B-Instruct 33B 81.1 75.0 80.4 70.1 79.3 73.4 68.9 74.1 67.9 73.9 72.7 43.0 69.2
CodeLlama-70B-Instruct 70B 72.0 65.9 77.8 64.6 67.8 58.2 53.4 36.7 39.0 - 58.4 29.7 -
DS-Coder-V2-Instruct 21/236B 85.4 82.3 89.4 75.1 90.2 82.3 84.8 82.3 83.0 84.5 79.5 52.5 79.9
Qwen2.5-Coder-32B-Instruct 32B 92.7 87.2 90.2 75.1 92.7 80.4 79.5 82.9 86.8 85.7 78.9 48.1 79.4
Qwen2.5-32B-Instruct 32B 87.8 82.9 86.8 70.9 88.4 80.4 81.0 74.5 83.5 82.4 78.3 46.8 76.9
Qwen2.5-72B-Instruct 32B 85.4 79.3 90.5 77.0 82.9 81.0 80.7 81.6 81.1 82.0 77.0 48.7 75.1
Qwen2.5-SynCoder 32B 92.7 87.8 86.2 74.7 92.1 80.4 80.7 81.6 83.0 85.7 77.6 49.4 78.8

Table 4: The performance of different instruction LLMs on EvalPlus and MultiPL-E. “HE” denotes the HumanEval,
“HE+” denotes the plus version with more test cases, and “MBPP+” denotes the plus version with more test cases.

I have example.xlsx in C:\Users\admin\Desktop. Under 
'Sheet1', There are 3 header 'Catergory', 'Task', 'Time 
Taken (seconds)'. These are sample data, each column 
seperated by |:
Room AIO      | Don personal protective equipment |  16
Room AIO      | Obtain kidney dish                |  40
Room AIO      | Perform hand hygiene              |  48
write python to generate workflow chart with arrow, small 
font size as there are 62 rows in total, based on 
'Catergory'. There are only 3 catergory, 'Room AIO', 
'Normal Medcart Single Room' and 'Single Room Med Admin 
AIO'., with each catergory, there are respective Task.

Numerical Methods (Python)
请帮我⽤c语⾔解决这道题：【题⽬描述】
设某银⾏存款利率如下：1年期定期年利率1.5%； 2年期定期年利率2.1%；
3年期定期年利率2.75%； 5年期定期年利率3.0%；活期年利率0.35%。
编写程序，输⼊本⾦，计算存款5年下列存款⽅式到期各获得本息和是多少。
（1）定期5年
（2）先存两年，到期后本息再存3年；
（3）先存3年，到期后本息再存2年；
（4）存1年，到期本息再存1年，连续存5年；
（5）活期，每季度结算⼀次，结算利息算⼊下期本⾦。
数据类型使⽤double，输⼊格式为"%lf",输出格式为"%f"，输出数据间⼀
个空格。
【输⼊输出样例】
输⼊： 1000
输出: 1150.000000 1127.965000 1127.965000 1077.284004 
1017.646235

Algorithm Design and Implementation (C)

Assistant B's response is more accurate, complete, and
helpful in generating the workflow chart as requested. 
Therefore, my final verdict is: [[B>>A]]

Judgement: Baseline A and Response B 

Assistant B's response is more accurate and practical, provid
ing a solution that aligns with common web development practi
ces. Therefore, the final verdict is: [[B>A]] Based on the evaluation, Assistant B provides a correct and

 concise solution to the problem, while Assistant A's respo
nse contains significant errors and irrelevant information. 
My final verdict is: [[B>>A]]

Judgement: Baseline A and Response B 

can you help with MUI, Is there way to limit number of 
visible bars and add scroll     <BarChart
 series={[
{ data: [3, 4, 1, 6, 5, 3, 3, 3, 3], stack: "A", label: 
"Series A1" },
{ data: [4, 3, 1, 5, 8, 3, 3, 3, 3], stack: "A", label: 
"Series A2" },
{ data: [4, 2, 5, 4, 1, 3, 3, 3, 3], stack: "A", label: 
"Series A3" },
{ data: [2, 8, 1, 3, 1, 3, 3, 3, 3], stack: "A", label: 
"Series A4" },
{ data: [10, 6, 5, 8, , 3, 3, 3, 3], label: "Series C1" },
 ]} width={600} height={350} slots={2}/>

UI/UX Design (HTML,CSS)

Judgement: Baseline A and Response B 

compute the frequency domain of the following data using fft:
y = mat['eeg'][0][0][0][0][0]
x = range(len(y))
plt.plot(x, y)
# Adding title and labels
plt.title('Sample Line Graph with Indices on X-axis')

Data Science and Analytics (Python)

Both assistants provide correct implementations of FFT, but 
Assistant B offers a more comprehensive visualization by 
plotting both the original data and its frequency domain 
representation. My final verdict is that Assistant B's 
answer is slightly better due to its more comprehensive 
visualization: [[B>A]].

Judgement: Baseline A and Response B 

huggingface dataset move all the columns to metadata, 
except two, 'problem' and 'solution'```

File and Data Operations (Python)

Assistant B provides a correct and relevant solution using
the appropriate library for Hugging Face datasets, whereas 
Assistant A's response is not applicable to the task. 
Therefore, Assistant B is significantly better.

My final verdict is: [[B>>A]]

Judgement: Baseline A and Response B 
我要开发⼀个剪贴板软件，开发环境为JAVA21，软件是ecplise，功能和
样式仿制window10剪贴板

Development Processes and Practices (Java) 

Assistant B provides a more comprehensive and practical resp
onse by including additional features, a code example, and c
onsiderations for data storage and testing. This makes Assis
tant B's response more helpful and relevant to the user's re
quest. My final verdict is: [[B>A]]

Judgement: Baseline A and Response B 

Figure 7: Examples of CodeArena. The LLM judger decides which response is better.

code without any natural description (even the code353

is correct) will bring an unsatisfactory experience354

to users, which will also lead to poor performance355

in CodeArena. In Figure 8, we can observe that the356

state-of-the-art closed-source LLMs (e.g. o1 and357

Claude series) get a balanced performance between358

the code execution benchmark and CodeArena.359

The open-source models (e.g. DeepseekCoder and360

Qwen-Coder) are likely to bring a bad experience361

to users, where the generated response lacks a more362

detailed explanation or more complete details com-363

pared to closed-source LLMs. 364

Scaling Synthetic Instruction Corpora. We 365

would like to further analyze the performance of 366

Qwen2.5-SynCoder in MultiPl-E and CodeArena 367

given different sizes of instruction corpora. There- 368

fore, we select the full instruction (19B synthetic 369

data is at the front of the data and 1B high-quality 370

data is at the end) set SynCode-Instruct and extract 371

the first K billion tokens as the fine-tuned data. We 372

set K = {2, 4, . . . , 20}. We randomly extract spe- 373

7



0

M
ul

tiP
L-

E
(P

as
s@

1)

CodeArena (win rate)

DS-Coder-6.7B

o1-mini

Yi-Coder-9B

Qwen2.5-Coder-7B

20 40 60 80 100

25

50

75

100

DS-Coder-33B

DS-Coder-V2
Qwen2.5-Coder-32BQwen2.5-Coder-14B

Claude-3.5-Sonnect-20240620

Claude-3.5-Sonnect-20241022

o1-preview

Qwen2.5-Coder-3B

OpenCoder-8B

Figure 8: Comparison between MultiPL-E and
CodeArena. LLMs in the blue circle present relatively
mismatched performances on two benchmarks.

2B 4B 6B 8B 10B 12B 14B 16B 18B ALL
Size of Instruction Tuning Data

20

30

40

50

60

70

80

90

Sc
or

e

CodeArena
MultiPL-E
MultiPL-E (one stage)
CodeArena (one stage)

Figure 9: Results of CodeArena with different data size
on MultiPL-E and CodeArena.

cific data from the whole corpus. Figure 9 shows374

the performance on CodeArena. With the increase375

of instruction data, Qwen2.5-SynCoder still can376

get significant improvement, which emphasizes the377

importance of the scaling instruction corpora. The378

two-stage SFT gets a better performance compared379

to the one-stage training (red line), where the high-380

quality data brings a huge improvement at last.381

CodeArena
MultiPL-E-CPP
MultiPL-E-JAVA
MultiPl-E-PYTHON

Figure 10: Distribution of CodeArena and MultiPL-E
of different languages.

Distribution of different benchmarks. The382

queries of CodeArena and MultiPL-E (Python,383

Java, and CPP) are visualized by extracting the last384

BERT representations for t-SNE (Van der Maaten385

and Hinton, 2008). The average of all hidden states386

of the last encoder layer is viewed as the query387

representation. In Figure 10, the representations388

of CodeArena are distributed in the whole area,389

while the representations of different languages390

in MultiPL-E are separately located in a narrow391

area, which shows that the distribution of queries 392

in CodeArena is very diverse, which is suitable for 393

evaluating human preferences in realistic scenarios. 394

6 Related Work 395

Large language models (LLMs) designed for cod- 396

ing tasks have demonstrated exceptional capabil- 397

ities in code generation and other essential func- 398

tions for modern software engineering (Chen et al., 399

2021b; Xu et al., 2022; Sun et al., 2024). how- 400

ever, many of them focus on a limited selection 401

of programming languages, such as Python and 402

Java (Zheng et al., 2023b; Austin et al., 2021; Jain 403

et al., 2024). Recent advancements in code LLMs, 404

such as DeepSeek-Coder (Guo et al., 2024a) and 405

Qwen2.5-Coder (Hui et al., 2024), have made sig- 406

nificant strides in multilingual code generation. 407

Code generation is a basic task for code LLMs, 408

requiring them to interpret natural language de- 409

scriptions and generate corresponding code snip- 410

pets that fulfill user requirements (Gu et al., 2024; 411

Lai et al., 2022; Liu et al., 2023; Yu et al., 2024; 412

Li et al., 2024). To thoroughly evaluate the diverse 413

capabilities of LLMs, numerous benchmarks have 414

been proposed, such as code translation (Jiao et al., 415

2023; Yan et al., 2023; Zhu et al., 2022) and code 416

debugging (Huq et al., 2022; Tian et al., 2024; Liu 417

et al., 2024b). Nonetheless, many studies concen- 418

trate on assessing only a single aspect of LLM 419

capabilities, often overlooking the evaluation of 420

LLMs for a variety of real-world scenarios. 421

7 Conclusion 422

In this work, we introduce CodeArena, a metic- 423

ulously human-curated benchmark composed of 424

397 high-quality samples spanning 40 categories, 425

derived from real-world user queries, to address dis- 426

crepancies between model-generated responses and 427

human preferences in coding tasks. Additionally, 428

we create SynCode-Instruct, a diverse synthetic 429

instruction corpus containing nearly 20 billion to- 430

kens, by scaling web-sourced instructions. Our 431

evaluation of over 40+ LLMs using CodeArena 432

highlights significant performance discrepancies 433

between code-execution-based benchmarks and our 434

human-curated benchmark. Notably, there is a re- 435

markable performance gap between open-source 436

code LLMs and closed-source LLMs (such as the 437

o1 series), underscoring the importance of aligning 438

LLMs with human preferences in coding tasks. 439

8



Limitations440

We acknowledge the following limitations of this441

study: (1) The evaluation depends on the LLM-as-442

a-Judge, which requires extra API costs (GPT-4o)443

and may lead to a biased evaluation. In the future,444

we will try to design a more fair and fast evalu-445

ation metric for coding tasks, which can not be446

evaluated by unit tests. (2) The effectiveness of the447

synthetic data is only evaluated on programming448

language benchmarks. Its effectiveness in other449

common domains has not been evaluated, limiting450

the generalizability of the method.451

Ethics Statement452

CodeArena, as an evaluation benchmark, can com-453

prehensively assess the capability of large language454

models in realistic scenarios with a wide range of455

programming tasks and languages, thereby advanc-456

ing the development of LLM evaluation in coding457

domain. However, unsafe queries CodeArena may458

contain pornographic and personal privacy infor-459

mation. Therefore, to ensure the security and reli-460

ability of the queries, the annotators are asked to461

rephrase the original question to a safe query.462

References463

Anthropic. 2023. Introducing Claude.464

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten465
Bosma, Henryk Michalewski, David Dohan, Ellen466
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.467
Program synthesis with large language models. arXiv468
preprint arXiv:2108.07732.469

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,470
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei471
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,472
Runji Lin, Dayiheng Liu, Gao Liu, Chengqiang Lu,473
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,474
Xuancheng Ren, Chuanqi Tan, Sinan Tan, Jianhong475
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-476
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,477
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,478
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-479
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang480
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang481
Zhu. 2023. Qwen technical report. arXiv preprint482
arXiv:2309.16609, abs/2309.16609.483

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak,484
John Schulman, Christine McLeavey, Jerry Tworek,485
and Mark Chen. 2022. Efficient training of lan-486
guage models to fill in the middle. arXiv preprint487
arXiv:2207.14255.488

Tom Brown, Benjamin Mann, Nick Ryder, Melanie 489
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind 490
Neelakantan, Pranav Shyam, Girish Sastry, Amanda 491
Askell, et al. 2020. Language models are few-shot 492
learners. Advances in neural information processing 493
systems, 33:1877–1901. 494

Federico Cassano, John Gouwar, Daniel Nguyen, Syd- 495
ney Nguyen, Luna Phipps-Costin, Donald Pinckney, 496
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson, 497
Molly Q Feldman, Arjun Guha, Michael Greenberg, 498
and Abhinav Jangda. 2023. Multipl-e: A scalable 499
and polyglot approach to benchmarking neural code 500
generation. IEEE Transactions on Software Engi- 501
neering, 49(7):3675–3691. 502

Linzheng Chai, Shukai Liu, Jian Yang, Yuwei Yin, 503
Ke Jin, Jiaheng Liu, Tao Sun, Ge Zhang, Changyu 504
Ren, Hongcheng Guo, et al. 2024. Mceval: Mas- 505
sively multilingual code evaluation. arXiv preprint 506
arXiv:2406.07436. 507

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 508
Henrique Pondé de Oliveira Pinto, Jared Kaplan, 509
Harrison Edwards, Yuri Burda, Nicholas Joseph, 510
Greg Brockman, Alex Ray, Raul Puri, Gretchen 511
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas- 512
try, Pamela Mishkin, Brooke Chan, Scott Gray, 513
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz 514
Kaiser, Mohammad Bavarian, Clemens Winter, 515
Philippe Tillet, Felipe Petroski Such, Dave Cum- 516
mings, Matthias Plappert, Fotios Chantzis, Eliza- 517
beth Barnes, Ariel Herbert-Voss, William Hebgen 518
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie 519
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain, 520
William Saunders, Christopher Hesse, Andrew N. 521
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan 522
Morikawa, Alec Radford, Matthew Knight, Miles 523
Brundage, Mira Murati, Katie Mayer, Peter Welinder, 524
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya 525
Sutskever, and Wojciech Zaremba. 2021a. Evaluat- 526
ing large language models trained on code. arXiv 527
preprint arXiv:2107.03374, abs/2107.03374. 528

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, 529
Henrique Ponde de Oliveira Pinto, Jared Kaplan, 530
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg 531
Brockman, et al. 2021b. Evaluating large lan- 532
guage models trained on code. ArXiv preprint, 533
abs/2107.03374. 534

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anas- 535
tasios Nikolas Angelopoulos, Tianle Li, Dacheng 536
Li, Banghua Zhu, Hao Zhang, Michael I. Jordan, 537
Joseph E. Gonzalez, and Ion Stoica. 2024. Chat- 538
bot arena: An open platform for evaluating llms by 539
human preference. In Forty-first International Con- 540
ference on Machine Learning, ICML 2024, Vienna, 541
Austria, July 21-27, 2024. OpenReview.net. 542

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, 543
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman, 544
Akhil Mathur, Alan Schelten, Amy Yang, Angela 545
Fan, et al. 2024. The llama 3 herd of models. arXiv 546
preprint arXiv:2407.21783. 547

9

https://www.anthropic.com/index/introducing-claude
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2309.16609
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1109/TSE.2023.3267446
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=3MW8GKNyzI
https://openreview.net/forum?id=3MW8GKNyzI
https://openreview.net/forum?id=3MW8GKNyzI
https://openreview.net/forum?id=3MW8GKNyzI
https://openreview.net/forum?id=3MW8GKNyzI


Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-548
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,549
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-550
bert: A pre-trained model for programming and nat-551
ural languages. In Findings of the Association for552
Computational Linguistics: EMNLP 2020, Online553
Event, 16-20 November 2020, volume EMNLP 2020554
of Findings of ACL, pages 1536–1547. Association555
for Computational Linguistics.556

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,557
Eric Wallace, Freda Shi, Ruiqi Zhong, Scott Yih,558
Luke Zettlemoyer, and Mike Lewis. 2023. Incoder:559
A generative model for code infilling and synthesis.560
In The Eleventh International Conference on Learn-561
ing Representations.562

Alex Gu, Baptiste Rozière, Hugh Leather, Armando563
Solar-Lezama, Gabriel Synnaeve, and Sida I Wang.564
2024. Cruxeval: A benchmark for code reasoning,565
understanding and execution.566

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,567
Kai Dong, Wentao Zhang, Guanting Chen, Xiao568
Bi, Y Wu, YK Li, et al. 2024a. Deepseek-coder:569
When the large language model meets programming–570
the rise of code intelligence. arXiv preprint571
arXiv:2401.14196.572

Jiawei Guo, Ziming Li, Xueling Liu, Kaijing Ma,573
Tianyu Zheng, Zhouliang Yu, Ding Pan, Yizhi Li,574
Ruibo Liu, Yue Wang, et al. 2024b. Codeeditor-575
bench: Evaluating code editing capability of large576
language models. arXiv preprint arXiv:2404.03543.577

Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong,578
Ke Xu, Daxin Jiang, Ming Zhou, and Nan Duan.579
2021. Cosqa: 20,000+ web queries for code search580
and question answering.581

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran582
Hao, Liuyihan Song, Yang Xu, J Yang, JH Liu,583
Chenchen Zhang, Linzheng Chai, et al. 2024. Open-584
coder: The open cookbook for top-tier code large585
language models. arXiv e-prints, pages arXiv–2411.586

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-587
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,588
Bowen Yu, Kai Dang, et al. 2024. Qwen2. 5-coder589
technical report. arXiv preprint arXiv:2409.12186.590

Faria Huq, Masum Hasan, Md Mahim Anjum Haque,591
Sazan Mahbub, Anindya Iqbal, and Toufique Ahmed.592
2022. Review4repair: Code review aided automatic593
program repairing. 143:106765.594

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis595
Allamanis, and Marc Brockschmidt. 2019. Code-596
searchnet challenge: Evaluating the state of seman-597
tic code search. arXiv preprint arXiv:1909.09436,598
abs/1909.09436.599

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia600
Yan, Tianjun Zhang, Sida Wang, Armando Solar-601
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-602
codebench: Holistic and contamination free eval-603

uation of large language models for code. arXiv 604
preprint arXiv:2403.07974. 605

Mingsheng Jiao, Tingrui Yu, Xuan Li, Guanjie Qiu, 606
Xiaodong Gu, and Beijun Shen. 2023. On the evalua- 607
tion of neural code translation: Taxonomy and bench- 608
mark. In 2023 38th IEEE/ACM International Con- 609
ference on Automated Software Engineering (ASE), 610
pages 1529–1541. IEEE. 611

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A 612
method for stochastic optimization. In 3rd Inter- 613
national Conference on Learning Representations, 614
ICLR 2015, San Diego, CA, USA, May 7-9, 2015, 615
Conference Track Proceedings. 616

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red- 617
field, Michael Collins, Ankur P. Parikh, Chris Alberti, 618
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken- 619
ton Lee, Kristina Toutanova, Llion Jones, Matthew 620
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob 621
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu- 622
ral questions: a benchmark for question answering 623
research. Trans. Assoc. Comput. Linguistics, 7:452– 624
466. 625

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang, 626
Ruiqi Zhong, Luke Zettlemoyer, Wen-Tau Yih, 627
Daniel Fried, Sida Wang, and Tao Yu. 2022. Ds- 628
1000: A natural and reliable benchmark for data sci- 629
ence code generation. ArXiv, abs/2211.11501. 630

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas 631
Muennighoff, Denis Kocetkov, Chenghao Mou, 632
Marc Marone, Christopher Akiki, Jia Li, Jenny 633
Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue 634
Zhuo, Thomas Wang, Olivier Dehaene, Mishig 635
Davaadorj, Joel Lamy-Poirier, João Monteiro, Oleh 636
Shliazhko, Nicolas Gontier, Nicholas Meade, Armel 637
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi, 638
Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov, 639
Zhiruo Wang, Rudra Murthy V, Jason Stillerman, 640
Siva Sankalp Patel, Dmitry Abulkhanov, Marco 641
Zocca, Manan Dey, Zhihan Zhang, Nour Moustafa- 642
Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam 643
Singh, Sasha Luccioni, Paulo Villegas, Maxim Ku- 644
nakov, Fedor Zhdanov, Manuel Romero, Tony Lee, 645
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hai- 646
ley Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra, 647
Alex Gu, Jennifer Robinson, Carolyn Jane Ander- 648
son, Brendan Dolan-Gavitt, Danish Contractor, Siva 649
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine 650
Jernite, Carlos Muñoz Ferrandis, Sean Hughes, 651
Thomas Wolf, Arjun Guha, Leandro von Werra, and 652
Harm de Vries. 2023. StarCoder: May the source 653
be with you! arXiv preprint arXiv:2305.06161, 654
abs/2305.06161. 655

Ziming Li, Qianbo Zang, David Ma, Jiawei Guo, Tianyu 656
Zheng, Xinyao Niu, Xiang Yue, Yue Wang, Jian 657
Yang, Jiaheng Liu, et al. 2024. Autokaggle: A multi- 658
agent framework for autonomous data science com- 659
petitions. arXiv preprint arXiv:2410.20424. 660

10

https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=hQwb-lbM6EL
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.48550/arXiv.2305.06161
https://doi.org/10.48550/arXiv.2305.06161
https://doi.org/10.48550/arXiv.2305.06161


Jiaheng Liu, Ken Deng, Congnan Liu, Jian Yang, Shukai661
Liu, He Zhu, Peng Zhao, Linzheng Chai, Yanan Wu,662
Ke Jin, et al. 2024a. M2rc-eval: Massively multi-663
lingual repository-level code completion evaluation.664
arXiv preprint arXiv:2410.21157.665

Jiawei Liu, Chunqiu Steven Xia, Yuyao Wang, and Ling-666
ming Zhang. 2023. Is your code generated by chat-667
gpt really correct? rigorous evaluation of large lan-668
guage models for code generation. arXiv preprint669
arXiv:2305.01210, abs/2305.01210.670

Shukai Liu, Linzheng Chai, Jian Yang, Jiajun Shi,671
He Zhu, Liran Wang, Ke Jin, Wei Zhang, Hualei672
Zhu, Shuyue Guo, et al. 2024b. Mdeval: Mas-673
sively multilingual code debugging. arXiv preprint674
arXiv:2411.02310.675

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey676
Svyatkovskiy, Ambrosio Blanco, Colin Clement,677
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-678
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-679
fano, MING GONG, Ming Zhou, Nan Duan, Neel680
Sundaresan, Shao Kun Deng, Shengyu Fu, and Shu-681
jie LIU. 2021. CodeXGLUE: A machine learning682
benchmark dataset for code understanding and gener-683
ation. In Thirty-fifth Conference on Neural Informa-684
tion Processing Systems Datasets and Benchmarks685
Track (Round 1).686

MistralAI. 2024. Codestral. https://mistral.687
ai/news/codestral. 2024.05.29.688

OpenAI. 2023. Gpt-4 technical report. arXiv preprint689
arXiv:2303.08774.690

Baptiste Rozière, Jonas Gehring, Fabian Gloeckle, Sten691
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,692
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.693
Code Llama: Open foundation models for code.694
arXiv preprint arXiv:2308.12950.695

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten696
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,697
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.698
Code llama: Open foundation models for code.699

Aofeng Su, Aowen Wang, Chao Ye, Chen Zhou,700
Ga Zhang, Guangcheng Zhu, Haobo Wang, Haokai701
Xu, Hao Chen, Haoze Li, et al. 2024. Tablegpt2: A702
large multimodal model with tabular data integration.703
arXiv preprint arXiv:2411.02059.704

Tao Sun, Linzheng Chai, Yuwei Yin Jian Yang,705
Hongcheng Guo, Jiaheng Liu, Bing Wang, Liqun706
Yang, and Zhoujun Li. 2024. Unicoder: Scaling code707
large language model via universal code. ACL.708

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai709
Lin, Zhiyuan Liu, and Maosong Sun. 2024. De-710
bugbench: Evaluating debugging capability of large711
language models.712

Laurens Van der Maaten and Geoffrey Hinton. 2008.713
Visualizing data using t-sne. Journal of machine714
learning research, 9(11).715

Xianjie Wu, Jian Yang, Linzheng Chai, Ge Zhang, 716
Jiaheng Liu, Xinrun Du, Di Liang, Daixin 717
Shu, Xianfu Cheng, Tianzhen Sun, et al. 2024. 718
Tablebench: A comprehensive and complex bench- 719
mark for table question answering. arXiv preprint 720
arXiv:2408.09174. 721

Frank F Xu, Uri Alon, Graham Neubig, and Vincent Jo- 722
sua Hellendoorn. 2022. A systematic evaluation of 723
large language models of code. In Proceedings of 724
the 6th ACM SIGPLAN International Symposium on 725
Machine Programming, pages 1–10. 726

Weixiang Yan, Yuchen Tian, Yunzhe Li, Qian Chen, and 727
Wen Wang. 2023. Codetransocean: A comprehen- 728
sive multilingual benchmark for code translation. In 729
Findings of the Association for Computational Lin- 730
guistics: EMNLP 2023, Singapore, December 6-10, 731
2023, pages 5067–5089. Association for Computa- 732
tional Linguistics. 733

Alex Young, Bei Chen, Chao Li, Chengen Huang, 734
Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng 735
Zhu, Jianqun Chen, Jing Chang, et al. 2024. Yi: 736
Open foundation models by 01. ai. arXiv preprint 737
arXiv:2403.04652. 738

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang, 739
Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang Wang, 740
and Tao Xie. 2024. Codereval: A benchmark of prag- 741
matic code generation with generative pre-trained 742
models. In Proceedings of the 46th IEEE/ACM Inter- 743
national Conference on Software Engineering, pages 744
1–12. 745

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen. 746
2024. Mammoth2: Scaling instructions from the web. 747
arXiv preprint arXiv:2405.03548. 748

Fengji Zhang, Bei Chen, Yue Zhang, Jin Liu, Daoguang 749
Zan, Yi Mao, Jian-Guang Lou, and Weizhu Chen. 750
2023. RepoCoder: Repository-level code comple- 751
tion through iterative retrieval and generation. arXiv 752
preprint arXiv:2303.12570, abs/2303.12570. 753

Shudan Zhang, Hanlin Zhao, Xiao Liu, Qinkai Zheng, 754
Zehan Qi, Xiaotao Gu, Yuxiao Dong, and Jie Tang. 755
2024. Naturalcodebench: Examining coding per- 756
formance mismatch on humaneval and natural user 757
queries. In Findings of the Association for Compu- 758
tational Linguistics, ACL 2024, Bangkok, Thailand 759
and virtual meeting, August 11-16, 2024, pages 7907– 760
7928. 761

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan 762
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin, 763
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023a. 764
Judging llm-as-a-judge with mt-bench and chatbot 765
arena. Advances in Neural Information Processing 766
Systems, 36:46595–46623. 767

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan 768
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang, 769
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023b. 770
Codegeex: A pre-trained model for code generation 771

11

https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
https://mistral.ai/news/codestral
https://mistral.ai/news/codestral
https://mistral.ai/news/codestral
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2308.12950
https://aclanthology.org/2023.findings-emnlp.337
https://aclanthology.org/2023.findings-emnlp.337
https://aclanthology.org/2023.findings-emnlp.337
https://doi.org/10.48550/arXiv.2303.12570
https://doi.org/10.48550/arXiv.2303.12570
https://doi.org/10.48550/arXiv.2303.12570
https://doi.org/10.48550/ARXIV.2303.17568
https://doi.org/10.48550/ARXIV.2303.17568


with multilingual evaluations on humaneval-x. arXiv772
preprint arXiv:2303.17568, abs/2303.17568.773

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravin-774
dran, Sindhu Tipirneni, and Chandan K Reddy. 2022.775
Xlcost: A benchmark dataset for cross-lingual code776
intelligence.777

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,778
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani779
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al.780
2024. Bigcodebench: Benchmarking code genera-781
tion with diverse function calls and complex instruc-782
tions. arXiv preprint arXiv:2406.15877.783

12

https://doi.org/10.48550/ARXIV.2303.17568


A Related Work784

Code Large Language Model. Large language785

models (LLMs) designed for coding tasks have786

demonstrated exceptional capabilities in code gen-787

eration, debugging, translation, and other essential788

functions for modern software engineering (Chen789

et al., 2021b; Anthropic, 2023; OpenAI, 2023;790

Fried et al., 2023; Xu et al., 2022; Sun et al.,791

2024). Numerous in-file benchmarks have been792

developed to evaluate these capabilities; how-793

ever, many of them focus on a limited selection794

of programming languages, such as Python and795

Java (Zheng et al., 2023b; Austin et al., 2021;796

Jain et al., 2024). Recent advancements in code797

LLMs, including models like Code Llama (Roziere798

et al., 2023), DeepSeek-Coder (Guo et al., 2024a),799

OpenCoder (Huang et al., 2024), and Qwen2.5-800

Coder (Hui et al., 2024), have made significant801

strides in multilingual code generation and de-802

bugging tasks. These models have been effec-803

tively evaluated using benchmarks such as MultiPL-804

E (Cassano et al., 2023), McEval (Chai et al., 2024),805

and MdEval (Liu et al., 2024b).806

Code Benchmarks. Code generation is a basic807

task for code language models (LLMs), requir-808

ing them to interpret natural language descriptions809

and generate corresponding code snippets that ful-810

fill user requirements (Gu et al., 2024; Lai et al.,811

2022; Liu et al., 2023; Yu et al., 2024; Li et al.,812

2024). To thoroughly evaluate the diverse capabil-813

ities of LLMs, numerous benchmarks have been814

proposed, including code translation (Jiao et al.,815

2023; Yan et al., 2023; Zhu et al., 2022), code re-816

trieval (Huang et al., 2021; Husain et al., 2019;817

Lu et al., 2021), code completion (Bavarian et al.,818

2022; Liu et al., 2024a; Zhang et al., 2023), code819

debugging (Huq et al., 2022; Tian et al., 2024;820

Liu et al., 2024b), and structured data understand-821

ing (Wu et al., 2024; Su et al., 2024). Recent ini-822

tiatives such as McEval (Chai et al., 2024) have823

expanded the evaluative scope to 40 programming824

languages for multilingual scenarios, while MdE-825

val (Liu et al., 2024b) has developed a multilingual826

code debugging benchmark encompassing nearly827

20 programming languages. Nonetheless, many of828

these studies concentrate on assessing only a sin-829

gle aspect of LLM capabilities, often overlooking830

the evaluation of LLMs as comprehensive program831

developers across a variety of real-world coding832

scenarios.833

A.1 Evaluation Benchmark 834

EvalPlus and MultiPL-E. The EvalPlus (Liu 835

et al., 2023) is an upgraded version of the Hu- 836

manEval (Chen et al., 2021a) and MBPP (Austin 837

et al., 2021) to test the code generation capabilities. 838

The benchmark reports the scores of HumanEval 839

(HE)/MBPP with base test cases and HumanEval+ 840

(HE+)/MBPP+ with plus test cases. 841

MultiPL-E The MultiPL-E test set (Cassano 842

et al., 2023) contains the HumanEval (Python) and 843

translated test set of other programming languages, 844

i.e., Java, C++, Javascript, and Typescript. 845

CodeArena Different from the EvalPlus and 846

MultiPL-E, CodeArena consists of many non- 847

algorihtmic, which is not suitable for code- 848

execution-based evaluation. Each question is 849

scored twice to calculate the win rate and tie 850

rate by GPT-4o using a different input order “A, 851

B” and “B, A”, where “A” is the baseline from 852

gpt-4-turbo-2024-04-09 and “B” is the 853

model-generated response. 854

A.2 Evaluation Metrics 855

Pass@k Given the model-generated response, 856

we extract the expected function and feed the 857

test cases into the extracted function to verify the 858

correctness of the generation. We adopt greedy 859

Pass@1 (Chen et al., 2021a) to report the results 860

on EvalPlus and MultiPL-E, 861

LLM as a judgement Due to the high cost of 862

collecting human preferences (Zheng et al., 2023a), 863

we use pairwise comparison for judgment, where 864

an LLM judger is fed with a question and two 865

answers and determines which one is better or 866

declares a tie3. We report win rate/tie rate for 867

CodeArena. 868

3https://github.com/lmarena/
arena-hard-auto

13

https://github.com/lmarena/arena-hard-auto
https://github.com/lmarena/arena-hard-auto

