CodeArena: Evaluating and Aligning CodeLLMs on Human Preference

Anonymous ACL submission

Abstract

Code large language models (codeLLMs) have
made significant strides in code generation.
Most previous code-related benchmarks, which
consist of various programming exercises along
with the corresponding test cases, are used
as a common measure to evaluate the perfor-
mance and capabilities of code LLMs. How-
ever, the current code LLMs focus on synthe-
sizing the correct code snippet, ignoring the
alignment with human preferences, where the
query should be sampled from the practical ap-
plication scenarios and the model-generated
responses should satisfy the human prefer-
ence. To bridge the gap between the model-
generated response and human preference, we
present a rigorous human-curated benchmark
CodeArena to emulate the complexity and di-
versity of real-world coding tasks, where 397
high-quality samples spanning 40 categories
and 44 programming languages, carefully cu-
rated from user queries. Further, we propose a
diverse synthetic instruction corpus SynCode-
Instruct (nearly 20B tokens) by scaling in-
structions from the website to verify the ef-
fectiveness of the large-scale synthetic instruc-
tion fine-tuning, where Qwen2.5-SynCoder to-
tally trained on synthetic instruction data can
achieve top-tier performance of open-source
code LLMs. The results find performance dif-
ferences between execution-based benchmarks
and CodeArena. Our systematic experiments of
CodeArena on 40+ LLMs reveal a notable per-
formance gap between open SOTA code LLMs
(e.g. Qwen2.5-Coder) and proprietary LLMs
(e.g., OpenAl ol), underscoring the importance
of the human preference alignment.!

1 Introduction

Advanced large language models (LLMs)(OpenAl,
2023; Anthropic, 2023) have demonstrated impres-
sive performance across a wide range of tasks, par-
ticularly excelling in code completion and genera-
tion. Code capabilities have established LLMs as

IThe evaluation code and leaderboard will be released.

Problem Description: Please write a quick sort algorithm

def quick_sort(x): '7
lambda 1st: quicksort ... # one line
Evaluation Environment,

def quick_sort(arr):
[— “* Algorithm Explanation™”
- if len(arr) <= 1
return arr # directly return
else
.. (Omitted fragment) # detailed comment

2

docker UnitTest

(a) Code-execution-based Benchmark

Problem Description: show me a JS code for modern browsers to copy a selection of text
with predefined start and ending words

= N Code LLM ——
m Claude3.5 L= N4 Qwen2.5-Coder-7B
. First, we consider... o Certainly! Below is an_example: |
CoT| |-+ htm © html
—%—{ <!DOCTYPE html> . <IDOCTYPE html> g
<html lang="en"> A‘Ic‘f‘{ICd and | (henl lang="en"> A short without
<head> beautiful reply | chead> further explanation
<title>Copy Text Selection</titles <meta charset="UTF-8">
N <style> ... </style> <title>Copy Example</title>
Code
</head> </head> Code
.. (Omitted fragment) .. (Omitted fragment)
</html> </html>
Explain} | greakdown of the code: (1) ... Explanation:
Step § | How to try it: (1) ... (3) ...) ... Very Short Explain
Not 1 | Note: (1) ... (4) ... () ... |

(b) Evaluation for Human Preference

Figure 1: A comparison between the Claude3.5 with bet-
ter human preference and Qwen2.5-Coder-7B-Instruct.
Qwen?2.5-Coder-7B-Instruct solves the user question by
simply replying with the code snippet without details.

essential productivity tools in software engineering.
Recently, open code-specific LLMs, such as Star-
Coder(Li et al., 2023), DeepSeekCoder (Guo et al.,
2024a), and QwenCoder (Hui et al., 2024), have
made significant progress, achieving performance
on fundamental code generation tasks (Austin et al.,
2021; Cassano et al., 2023) that approaches the
level of top-tier proprietary models. Moreover,
their open and transparent model weights address
the concerns of developers about privacy, enabling
the deployment of localized code assistants.

With the advancing code capabilities of LLMs,
effectively evaluating performance on code-related
tasks has emerged as a challenge. Popu-
lar code-related benchmarks typically focus on
self-contained function snippets, relying on a
limited number of test cases to verify code
correctness, such as HumanEval (Chen et al.,
2021a), MBPP (Austin et al.,, 2021) and Big-
CodeBench (Zhuo et al., 2024). While recent ef-
forts have expanded the scope of test cases (Liu
et al., 2023), tasks (Lai et al., 2022) and program-

ming languages (Chai et al., 2024; Kwiatkowski
et al., 2019), these benchmarks remain constrained
to validating the correctness of generated code snip-
pets. However, ChatBot Arena (Chiang et al., 2024)
has demonstrated that alignment between model-
generated responses and user preferences is also
a critical evaluation criterion. As shown in Fig-
ure 1, Qwen2.5-Coder primarily generates alone
code snippets, while Claude3.5 produces responses
that include detailed explanations, well-structured
formatting, and code comments, making it more
favorable in terms of human preference. Therefore,
there is an urgent need to establish a human prefer-
ence benchmark specifically for code-related tasks,
enabling the community to evaluate and track the
alignment between human preferences and model-
generated responses in real-world scenarios. Fur-
thermore, effective data for improving the human
preference alignment of codeLLMs remains scarce.
Achieving robust alignment across diverse coding
tasks poses significant challenges, particularly in
terms of the quantity and quality of data required
during the supervised fine-tuning (SFT) stage.

To this end, we first introduce a comprehensive
human-curated benchmark, CodeArena, compris-
ing 397 high-quality samples across 40 categories
derived from real-world user queries. Additionally,
we develop a diverse synthetic instruction corpus,
SynCode-Instruct, containing nearly 20 billion
tokens, by scaling instructions from web sources.
Our extensive evaluation of over nearly 40 large
language models (LLMs) using CodeArena re-
veals significant performance differences between
code-execution-based benchmarks and our human-
curated benchmark. Notably, we observe a substan-
tial performance gap between open-source code
LLMs (such as Qwen-Coder) and closed-source
LLMs (like the ol and Claude series), emphasizing
the critical role of aligning AI models with human
preferences in coding tasks.

The contributions are summarized as follows:
(1) We propose CodeArena comprised of 397 man-
ually annotated samples, a comprehensive code
evaluation benchmark for evaluating the alignment
between the model-generated response and hu-
man preference, encompassing 7 major categories
and 40 subcategories. (2) We introduce SynCode-
Instruct, the large-scale synthetic code instruction
corpora from the website. Based on SynCode-
Instruct, an effective coder Qwen2.5-SynCoder is
used as a strong baseline for CodeArena. (3) We

systematically evaluate 40+ LLMs on CodeArena
and create a leaderboard to dynamically update the
results. Notably, extensive experiments suggest
that CodeArena can effectively measure the align-
ment between the model-generated response and
human preference.

2 CodeArena

Dataset Statistics As shown in Figure 2 and Ta-
ble 1, CodeArena consists of nearly 400 problems.
All samples can be classified into 7 main classes
and 40 subclasses. Each sample in CodeArena in-
cludes (question, gpt-40-2024-05-13 response, gpt-
40-2024-08-06 response, gpt-4-turbo-2024-04-09
response) and we adopt the gpt-4-turbo-2024-04-
09 as the baseline in this paper. We tokenized the
question prompts using the Qwen2.5-Coder tok-
enizer, resulting in question lengths ranging from
5 to 6736 tokens, with an average length of 291
tokens, as detailed in Table 1.

Statistics Number
Problems 397
User Interface&Experience 45
Development&Programming 131
Specialized Computing 91
Tools, Environments, and Application 39
Miscellaneous and General Inquiry 62
Databases&Data Handling 22
Miscellaneous and General Inquiry 7
#Difficulty Level
- Easy/Medium/Hard 97/173/132
Length
Question
- maximum length 6736 tokens
- minimum length 5 tokens
- avg length 291 tokens
Baseline Answer
- maximum length 5913 tokens
- minimum length 7 tokens
- avg length 4517 tokens

Table 1: CodeArena dataset statistics.

Multiple Programming Languages Figure 3
plots the distribution of programming languages,
where we strive to cover common programming
languages in CodeArena. Unlike previous stud-
ies (Cassano et al., 2023), our benchmarks empha-
size a diverse range of programming languages that
are commonly used in everyday programming tasks.
For instance, we have incorporated languages like
“Google Apps Script (GAS)” and “PowerShell” in
CodeArena to better address the needs of practical
Q&A scenarios.

d T
s, ec}lno")g' S
pec’b‘ed
3 lop -
,)/‘/O,LC Picg
Oy,
4, 7,
o NS 2 % fo) “
Vo' O FBEERR Y ™,
¥ gp‘ﬁg‘a% %5?9 ",
L & 5 2 2% %,
AV 5 &% % “
S S 5 £ B
z
S8 £ e & %
o g o % 9
ESR -t S
a2 e

Figure 2: Task types of CodeArena.

Difficulty levels of CodeArena Figure 4 shows
the difficulty levels of CodeArena, where all sam-
ples are classified into easy, medium, and hard. The
majority of the samples are recognized as medium
or hard, presenting a significant challenge to LLM:s.

Human Annotation & Quality Control To
make CodeArena a comprehensive evaluation
benchmark, we implement a rigorous human an-
notation process involving 4 full-time employees
proficient in various programming languages for
human annotation and 4 other senior program-
ming developers for quality check. All annota-
tors participate in a annotation tutorial and learn
the annotation guidelines. The annotation pro-
cess involved creating a new question based on
the given question, checking the difficulty level
(easy/medium/hard) based on the complexity of the
prompt, and annotating the corresponding program-
ming languages. Following the classification in
Figure 2, we uniformly sample 2K samples and as-
sign them to annotators. The annotators select 822
suitable original samples to create queries. The pro-
cess includes regular quality checks and feedback
sessions to maintain high standards throughout the
annotation phase, which results in a diverse and
well-curated dataset spanning multiple program-
ming languages and tasks, suitable for evaluating
and improving alignment between the human pref-
erence and model-generated response. The other
four senior programming developers vote on the
same issue to determine whether it is valid and can
be resolved. Finally, 397 samples are kept (at least
3 checkers reach a consensus) to from CodeArena,
considering the cost of the LLM-as-a-judge.

Evaluation Inspired by the previous work (Chi-
ang et al., 2024), we apply GPT-40-2024-08-06
as the judger to evaluate the model performance.
Specifically, we use two games “compare A and B ”
and “compare B and A” (avoid the relative position
of A and B affecting the results) to calculate the
win rate of A compared to the baseline B.

Decontainmation. To avoid data leakage, we
apply decontamination to ensure the uniqueness
of prompts in CodeArena, by removing exact
matches (10-gram word overlap) from MultiPL-
E (Cassano et al., 2023), MBPP (Austin et al.,
2021), McEval (Chen et al., 2021a), and Natural-
CodeBench (Zhang et al., 2024).

Comparison with other benchmarks We com-
pare CodeArena with other code benchmarks. Our
benchmark provides a valuable comprehensive
benchmark for 40 subtasks and 44 programming
languages, which satisfies the evaluation in realistic
scenarios. CodeArena provides many problems for
evaluation under realistic scenarios, which are not
suitable for verification through unit testing.

3 SynCode-Instruct

Recall from Common Crawl. A trained fast-
text is used to distinguish the code-related text and
other common raw text, which is used to recall
and clean potential code data and filter out low-
quality content using weak model-based classifiers
and scorers.

Code Classification for Code Snippet. We ex-
tract the first layer of CodeBERT (Feng et al., 2020)
and fine-tune the tiny classifier on nearly 100 pro-
gramming languages to build a language identifi-
cation model. We keep the main language data
(e.g. C, Python, and Java) and downsample high-
resource language data (e.g. HTML and Java) to
keep the balance. Besides, we also remove the
samples with no code snippets.

Scaling Code Instruction Initially, we adopt
rule-based filtering to clean pre-extracted content
from recalled documents by removing site infor-
mation, advertisements, and HTML tags, thereby
significantly reducing document length for further
processing. Different from the previous work (Yue
et al., 2024), we utilize Qwen2.5-72B to create new
questions instead of extracting question and answer
pairs. As shown in Figure 6. We use the Qwen2.5-
Coder to generate multiple responses by sampling

3 prompt_len (50 tokens)
[response_len (50 tokens)

401
201
04 | I .|. || d .|.. h Il ||. |... - L Il | AL o
2 F §% 3§ S 1T EC n.%-a«.:kog%&~_5‘a,:g'5,_acv:v A5 Q 85 =2 %-:’géc:'s,v
S5 58505 F £55F TEUTEUE FoST T 2SS £S5 E5F
= & S 59 < £95 5§ K 5 5 S g
2§ § =5 S5 £ £ gz 3 =
< 2 H
Figure 3: Statistics of programming languages in CodeArena.
50
3 Easy
40 [Middle
o 3 Hard
5. _
930
£
ZZO‘ 1
S §SESST 8 F $59
g I Y FY g .2
§§F8ss5 ~ 7§53
S S 5§ § 9 F s £ g
¥ 584 Qg E 8
cFF §9 £
g

Figure 4: Number of samples of different difficulties (Easy/Medium/Hard) across categories in CodeArena.

Benchmark #Programming #Task Source #Languages Evaluation HumaF
Languages Annotation

HumanEval (Chen et al., 2021a) 1 1 Human Creation 1 Execution

MBPP (Austin et al., 2021) 1 1 Human Creation 1 Execution

LiveCodeBench (Jain et al., 2024) 1 4 Scraped from Code Contest Website 1 Execution

MultiPI-E (Cassano et al., 2023) 24 1 Translated from HumanEval & MBPP 1 Execution X

McEval (Chai et al., 2024) 40 3 Human Creation 1 Execution

MdEval (Liu et al., 2024b) 18 3 Human Creation 1 Execution

CruxEval (Gu et al., 2024) 1 2 LLM Generation 1 Execution X

NaturalCodeBench (Zhang et al., 2024) 2 6 Scrape & LLM Generation & Human Filtered 1 Execution X

DebugBench (Tian et al., 2024) 3 18 Scrape & LLM Generation & Human Filtered 1 Execution X

CodeEditorBench (Guo et al., 2024b) 3 4 Scrape & LLM Generation & Human Filtered 1 Execution X

CodeArena (Ours) ‘ 44 40 Online Q&A 2 Human Preference

Table 2: Comparison between CodeArena and other benchmarks. CodeArena provides a comprehensive view by
creating diverse user prompts to evaluation alignment between the model-generated response and human preference.

Code Q&A Website
O How do I convert hexidecimal to @
£\ decimal using C# & BigInt?

If value is a hexadecimal string,

the Parse(String, NumberStyles)
method interprets value as a negative
number ...

o
Clustering,
@ Code-related Website +
<IDOCTYPE html>
<html lang="zh-CN">
<head>
<title>Python Tutorial</title>
</head>
<body>
<h1>Python EFti#F2</h1>
<p>SCHUMEHERR: </p>
</body>
</html>

ur/ux
* UI/UX Design

o Test & Debug
Data Handling

Figure 5: Overview of the CodeArena creation benchmark.

@ Multiple Languages

E $scala

E Multiple Domains

« Frontend Technologies
Dev & Programming

. Quality Control

[[] The question is clear.
[] The question doesn’t contain ethical issues.
[The question is solvable.

@ Problem Construction
1. Select the original text or query.
2. Summarize knowledge from text.
3. Manually create the user prompt. &
4. Check the difficulty level of the prompt.

@ G =)

Verification E
o =
m Large-Scale
¢ SFT Dataset
corer Executor

Synthesizing

We first collect the online code Q&A and code-related

raw text from the website. We cluster the code-related data and classify them into different categories using LLM.
We uniformly sample the samples from different subtasks as the seed data for manual annotation.

for the same document. For the algorithmic gen-
erated question and answer, we first adopt a fine-
tuned generator to generate the test cases and adopt
the multilingual sandbox to verify the correctness
of the generated code snippet. As shown in Figure
5, for the non-algorithmic query, we first randomly

generate four candidates and use the LLM to score
the candidates (LLM scorer), where the candidates
are fed into the LLM to select the best response
with the reason. For the algorithmic queries, the
generated test cases by LLM are used to verify the
correctness of the responses (Executor). Finally,

You are an expert programmer and educational
content creator specializing in crafting high-
quality programming questions.

Task: Create an engaging, self-contained
programming question inspired by the given text.
Guidelines:

1. Human Language: The question should be in
either Chinese or English.

2. Programming Language: The programming
language of the created problem must be
consistent with the programming language of the
given text.

3. Inspiration: Draw inspiration from the
concepts, techniques, or themes present in the
given text.

4. Independence: Ensure the question is
completely self-contained and does not require
knowledge of the original text to understand or
solve.

5. Clarity: Provide clear instructions and
requirements for the task.

6. Difficulty: Adjust the complexity to be
challenging yet solvable for an intermediate
programmer.

7. Relevance: Focus on practical, real-world
applications of programming concepts.

8. Originality: Avoid directly copying examples
from the text; instead, create a new scenario or
problem.

Given Text:

{given text}

Created Question:

{Your carefully crafted programming question
goes here}

Figure 6: Prompt of generating large-scale self-
contained synthetic instruction data.

we select the response with the best score as the
response to create SynCode-Instruct. The synthetic
instruction corpora generated by Qwen2.5 is used
for the first stage and the high-quality data from
GPT-40 is used for the second stage.

4 Experimental Setup

4.1 Instruction Dataset

CodeLLMs We evaluate 40+ models with sizes
ranging from 0.5B to 200B parameters, including
general/code LLMs and open/closed-source mod-
els. For general models, we evaluate GPTs (Brown
et al., 2020; OpenAl, 2023) (GPT-3.5-Turbo,
GPT4-0), Qwen series (Qwen2.5 and Qwen-
Max) (Bai et al., 2023), Claude series (Anthropic,
2023), Llama3/3.1 (Dubey et al., 2024), Yi (Young
et al., 2024), and ol series. For code models,
we test CodeLlama (Roziere et al., 2023), Open-
Coder (Huang et al., 2024), Qwen-Coder (Hui et al.,
2024), DeepSeekCoder (Guo et al., 2024a), and
CodeStral (MistralAl 2024).

4.2 Evaluation Benchmark

The EvalPlus (Liu et al., 2023) is an upgraded ver-
sion of the HumanEval (Chen et al., 2021a) and
MBPP (Austin et al., 2021) to test the code gen-
eration capabilities. The benchmark reports the
scores of HumanEval (HE)/MBPP with base test
cases and HumanEval+ (HE+)/MBPP+ with plus
test cases. The MultiPL-E test set (Cassano et al.,
2023) contains the HumanEval (Python) and trans-
lated test set of other programming languages, i.e.,
Java, C++, Javascript, and Typescript. Different

from the EvalPlus and MultiPL-E, CodeArena
consists of many non-algorihtmic, which is not
suitable for code-execution-based evaluation. Each
question is scored twice to calculate the win rate
and tie rate by GPT-40 using a different input or-
der “A, B” and “B, A”, where “A” is the baseline
from gpt—-4-turbo-2024-04-09 and “B” is
the model-generated response.

4.3 Evaluation Metrics

For the code execution benchmarks EvalPlus and
MultiPL-E, we extract the expected function and
feed the test cases into the extracted function to
verify the correctness of the generation and report
greedy Pass@1 (Chen et al., 2021a). Due to the
high cost of collecting human preferences (Zheng
et al., 2023a), we use pairwise comparison for judg-
ment (LLM-as-a-Judge), where an LLM judger is
fed with a question and two answers and deter-
mines which one is better or declares a tie>. We
report win rate/tie rate for CodeArena.

4.4 Impletmentation Details

We fine-tune Qwen2.5-Coder-32B on nearly 20B
synthetic tokens generated from website data,
where GPT-40 generates 1B tokens and Qwen2.5-
Coder-Instruct generates the left tokens. Qwen2.5-
SynCoder is fine-tuned on the synthetic instruction
corpus SynCode-Instruct with 256 NVIDIA A100-
80GB GPUs. The learning rate first increases into
3 x 10~* with 100 warmup steps and then adopts
a cosine decay scheduler. We adopt the Adam opti-
mizer (Kingma and Ba, 2015) with a global batch
size of 2048 samples and a tensor parallel size of
8, truncating sentences to 32K tokens.

5 Results and Discussion

5.1 Main Results

CodeArena. Table 3 shows that the win rate/tie
rate of different instruction LLM on CodeArena.
The closed-source LLMs such as Claude and ol
series still get a dominant advantage compared to
Qwen2.5-Coder and DeepseekCoder. There still
exists a notable performance gap between open
codeLLMs (e.g. Qwen-Coder) and closed-source
LLMs (e.g., ol and Claude series), emphasizing the
importance of alignment between model-generated
response human preference. Qwen2.5-SynCoder

https://github.com/lmarena/
arena—-hard-auto

https://github.com/lmarena/arena-hard-auto
https://github.com/lmarena/arena-hard-auto

Development& Specialized Tools, Environs,

Emerging Techs Miscellaneous & Databases&

Model Size | UL&UX Programming Computing & Practices &Apps General Inquiry ~ Data Handling e
Proprietary LLMs and 200B+ LLMs
Claude-3.5-Sonnet-20240620 a | 839122 71.3/13.6 74.2/18.0 81.4/11.9 78.9/10.5 71.4/28.6 63.6/4.5 71.8/12.5
Claude-3.5-Sonnet-20241022 a | 82267 75.8/12.9 76.4/16.9 84.7/10.2 84.2/13.2 57.1/28.6 68.2/22.7 78.1/13.5
GPT-3.5-turbo-0125 Q| 178244 11.4/20.5 4.5/19.1 11.9/18.6 10.5/21.1 13.6/9.1 0.0/14.3 10.5/19.6
GPT-40-mini-2024-07-18 a|71.1/133 62.1/17.4 50.0/13.6 65.2/14.6 72.9/13.6 71.1/18.4 71.4/14.3 65.8/15.6
GPT-40-2024-08-06 | 66.7/178 72.7119.7 62.9/19.1 69.5/15.3 76.3/13.2 85.7/14.3 59.1/22.7 69.1/18.1
ol-mini 8| 93.3/44 94.7/2.6 84.1/7.6 91.0/5.6 88.1/3.4 95.5/0.0 100.0/0.0 89.3/5.1
ol-preview a| 93322 81.8/7.6 85.4/7.9 78.0/6.8 92.1/2.6 71.3/4.5 71.4/28.6 83.9/6.6
Yi-lightning a | 62.2/156 60.0/11.5 57.9/5.3 49.4/16.9 71.2/11.9 54.5/13.6 85.7/0.0 59.5/12.6
Doubao-Pro a | 51.1/20.0 40.8/18.5 55.3/26.3 38.2/19.1 47.5/22.0 36.4/31.8 42.9/57.1 43.6/21.5
Qwen-Max a | 75.6/17.8 74.2/13.6 59.6/24.7 78.0/6.8 68.4/23.7 100.0/0.0 81.8/4.5 71.9/15.8
0.5B+ Open-source LLMs
Qwen2.5-0.5B-Instruct 0.5B 2.2/4.4 4.6/4.6 5.3/10.5 2.2/4.5 3.4/5.1 4.5/9.1 0.0/14.3 3.6/5.6
Qwen2.5-Coder-0.5B-Instruct 0.5B | 2222 4.6/6.9 2.6/5.3 4.5/2.2 3.4/5.1 4.5/0.0 28.6/14.3 4.4/4.6
1B+ Open-source LLMs
DS-Coder-1.3B-Instruct 13B | 66.7/2.2 2.3/5.4 2.6/10.5 1.7/6.8 0.0/9.1 22/34 0.0/14.3 2.6/5.6
Yi-Coder-1.5B-Chat 1.5B | 11.1/2.2 5.1/3.4 5.4/4.6 2.6/5.3 2.2/5.6 4.5/4.5 14.3/14.3 7.4/5.1
Qwen2.5-Coder-1.5B-Instruct 1.5B | 11.1/44 15.9/9.1 9.0/16.9 13.6/11.9 13.2/5.3 14.3/42.9 18.2/4.5 13.2/10.7
OpenCoder-1.5B-Instruct 1.5B | 11.1/4.4 3.8/5.4 0.0/5.3 2.2/4.5 3.4/8.5 4.5/9.1 0.0/0.0 6.7/3.8
3B+ Open-source LLMs
Qwen2.5-Coder-3B-Instruct 3B | 35.6/11.1 29.5/10.6 27.0/15.7 20.3/18.6 28.9/10.5 42.9/14.3 27.3/13.6 28.3/13.3
6B+ Open-source Models
CodeLlama-7B-Instruct 7B | 33.3/8.9 28.8/18.6 23.8/13.8 18.2/9.1 31.6/5.3 29.2/14.6 71.4/0.0 28.2/12.8
Llama3-8B-Instruct 7B | 20.0/17.8 14.6/11.5 15.8/2.6 13.5/9.0 16.9/11.9 22.7/0.0 57.1/14.3 16.7/10.3
Llama3.1-8B-Instruct 7B | 22/89 4.5/10.1 3.8/6.2 3.4/6.8 5.3/2.6 9.1/9.1 14.3/0.0 7.9/4.4
DS-Coder-6.7B-Instruct 6.7B | 11.1/17.8 13.1/13.8 13.6/8.5 13.2/71.9 9.0/7.9 13.6/4.5 28.6/0.0 12.3/10.8
CodeQwen1.5-7B-Chat 7B | 17.8/15.6 13.8/12.3 15.8/0.0 15.79.0 15.3/15.3 18.2/13.6 14.3/42.9 15.4/11.8
Yi-Coder-9B-Chat 9B | 15.6/17.8 15.4/9.2 15.8/7.9 13.5/13.5 10.2/20.3 18.2/13.6 28.6/28.6 14.6/13.3
DS-Coder-V2-Lite-Instruct 2.4/16B | 42.2/20.0 33.3/174 31.5/16.9 35.6/20.3 39.5/21.1 71.4/14.3 31.8/22.7 35.5/18.6
Qwen2.5-Coder-7B-Instruct 7B | 40.0/22.2 46.2/19.7 43.8/15.7 40.7/20.3 34.2/15.8 71.4/0.0 40.9/22.7 43.1/18.6
OpenCoder-8B-Instruct 8B | 24.4/89 14.6/8.5 10.5/7.9 9.0/4.5 13.6/6.8 18.2/9.1 14.3/0.0 14.1/7.1
13B+ Models
CodeLlama-13B-Instruct 13B | 13.3/4.4 7.9/6.7 6.8/8.5 7.716.2 4.5/4.5 5.3/53 14.3/14.3 11.2/7.9
Starcoder2-15B-Instruct-v0. 1 15B 6.7/6.7 6.8/12.9 4.5/15.7 6.8/6.8 5.3/13.2 13.6/13.6 0.0/14.3 6.4/12.0
Qwen2.5-Coder-14B-Instruct 14B | 51.1/24.4 53.0/17.4 52.8/16.9 50.8/18.6 57.9/7.9 28.6/28.6 36.4/27.3 60.6/51.5
20B+ Models
CodeLlama-34B-Instruct 34B | 11.1/6.7 2.6/2.6 6.9/2.3 8.5/6.8 7.9/10.1 9.1/9.1 14.3/0.0 7.715.6
CodeStral-22B-v0.1 22B | 17.8/22.2 27.3/13.6 14.6/14.6 25.4/10.2 18.4/10.5 14.3/42.9 22.7/22.7 21.7/15.8
DS-Coder-33B-Instruct 33B | 13.3/11.1 22.09.8 12.4/12.4 13.6/6.8 13.2/18.4 28.6/42.9 22.7/18.2 16.8/12.0
CodeLlama-70B-Instruct 70B | 11.1/22.2 9.2/10.0 10.5/5.3 9.0/6.7 16.9/8.5 9.1/13.6 0.0/0.0 15.5/10.5
DS-Coder-V2-Instruct 21/236B | 55.6/11.1 62.1/18.2 60.7/14.6 50.8/18.6 52.6/21.1 71.4/14.3 40.9/31.8 57.4/17.6
DS-V2.5 21/236B | 77.8/11.1 72.0/12.9 71.9113.5 71.2/18.5 73.7/10.5 100.0/0.0 68.2/13.6 73.0/11.7
Llama3-70B-Instruct 7B | 35.6/20.0 26.2/26.2 25.4/22.0 34.2/15.8 23.6/14.6 36.4/4.5 14.3/57.1 217.7/120.5
Llama3.1-70B-Instruct 7B | 48.9/24.4 43.8/20.0 34.2/26.3 40.4/22.5 54.2/20.3 45.5/9.1 71.4/143 44.921.0
Qwen2.5-Coder-32B-Instruct 32B | 71.1/13.3 66.7/15.9 67.4/16.9 74.6/13.6 65.8/18.4 100.0/0.0 63.6/18.2 68.9/15.6
Qwen2.5-32B-Instruct 32B | 62.2/15.6 52.3/15.4 57.9/18.4 50.6/23.6 54.2/13.6 50.0/13.6 71.4/14.3 54.1/17.1
QwQ-32B-Preview 32B | 53.3/15.6 56.8/16.7 50.6/16.9 64.4/5.1 52.6/21.1 85.7/0.0 63.6/9.1 56.6/14.5
Qwen2.5-72B-Instruct 72B | 82.2/6.7 71.5/14.6 76.3/13.2 75.3/15.7 71.2/18.6 63.6/13.6 85.7/14.3 73.8/14.4
Qwen2.5-SynCoder 32B | 55.6/26.7 49.2/20.8 36.8/36.8 50.6/20.2 52.5/20.3 40.9/18.2 57.1/0.0 49.2/22.3

Table 3: The win/tie rate of different instruction LLMs on CodeArena. The underlined numbers represent the best

scores within the same model size range.

totally trained on the large-scale synthetic instruc-
tion corpus SynCode-Instruct can still get a strong
performance on CodeArena, which verifies the cor-
rectness of the route of taking large-scale synthetic
data to improve model performance.

EvalPlus and MultiPL-E. Table 4 shows that
Qwen2.5-SynCoder significantly beats previous
strong open-source baselines using large-scale syn-
thetic instruction, closing the gap with GPT-40 and
Claude, which verifies that the large-scale synthetic
data can bring more significant improvement for
the base model in the code-execution-based bench-
mark (code generation) compared to CodeArena.

5.2 Discussion

Examples of CodeArena. Figure 7 lists 6 ex-
amples from different subtasks, covering Python,
HTML, CSS, and Java. Different from the previ-
ous benchmarks (Cassano et al., 2023; Jain et al.,

2024) comprised of algorithmic questions in a fixed
format, the queries of CodeArena are more con-
sistent with the distribution of user questions in
real Q&A scenarios. For example, the query “hug-
gingface dataset move all the columns to metadata,
except two, problem and solution™ is closer to the
question style of real users. GPT4o thinks model-
generated response B beats the baseline A based
on the judgment “B provides a correct and rele-
vant solution using the appropriate library for Hug-
ging Face datasets”, which select responses that are
more aligned with human preferences.

Difference between CodeArena and Execution-
based Benchmark. Compared to MultiPL-E
evaluated by code execution, CodeArena is cre-
ated from real-world Q&A and evaluated by LLM-
as-a-judge to evaluate the alignment between the
model-generated response and human preference.
For example, the LLMs tend to only generate the

Model Size ‘ HE HE+ MBPP MBPP+ | Python Java C++ C# TS JS PHP Bash | Avg.
Closed-APIs
Claude-3.5-Sonnet-20240620 8890 8lL1 876 72.0 89.6 86.1 826 854 843 845 807 48.1 | 80.2
Claude-3.5-Sonnet-20241022 a8 |921 860 910 74.6 939 867 882 873 881 913 826 525|838
GPT-40-mini-2024-07-18 & 878 848 860 72.2 872 759 776 797 792 814 752 437|750
GPT-40-2024-08-06 & |921 860 868 72.5 90.9 835 764 810 83.6 90.1 789 48.1 | 79.1
ol-mini & 976 9.2 939 78.3 957 905 938 772 91.2 925 845 55.1 | 85.1
ol-preview & 951 834 934 77.8 963 880 919 842 906 938 90.1 475 | 85.3
0.5B+ Models
Qwen2.5-Coder-0.5B-Instruct 05B | 616 573 524 437 | 6L6 573 524 437 503 503 528 27.8 | 496
1B+ Models
DS-Coder-1.3B-Instruct 13B | 659 604 653 54.8 652 519 453 551 59.7 522 453 12.7 | 484
Yi-Coder-1.5B-Chat 15B | 69.5 640 659 57.7 67.7 519 49.1 576 579 596 522 19.0 | 519
Qwen2.5-Coder-1.5B-Instruct 1.5B | 70.7 66.5 69.2 59.4 712 557 509 646 61.0 62.1 59.0 29.1 | 56.7
3B+ Models
Qwen2.5-Coder-3B-Instruct 3B | 84.1 805 73.6 62.4 835 747 683 785 799 752 733 430 | 72.1
6B+ Models
CodeLlama-7B-Instruct 7B | 40.9 335 540 44.4 348 304 31.1 216 327 - 286 10.1 -
DS-Coder-6.7B-Instruct 6.7B | 744 713 749 65.6 786 684 634 728 672 727 689 36.7 | 66.1
CodeQwen1.5-7B-Chat 7B | 835 787 717 67.2 84.1 734 745 778 71.7 752 708 392 | 70.8
Yi-Coder-9B-Chat 9B | 823 744 820 69.0 854 760 677 766 723 789 721 456 | 71.8
DS-Coder-V2-Lite-Instruct 2.4/16B | 81.1 756 82.8 70.4 81.1 76.6 758 76.6 80.5 71.6 745 43.0 | 73.2
Qwen2.5-Coder-7B-Instruct 7B | 88.4 84.1 83.5 1.7 878 765 75.6 803 818 832 783 48.7 | 76.5
OpenCoder-8B-Instruct 8B | 835 787 79.1 69.0 835 722 615 759 78.0 795 733 443 | 71.0
13B+ Models
CodeLlama-13B-Instruct 13B | 402 323 603 511 427 405 422 240 39.0 - 323 139 -
Starcoder2-15B-Instruct-v0. 1 15B | 67.7 604 78.0 65.1 68.9 538 509 627 579 596 534 247 | 540
Qwen2.5-Coder-14B-Instruct 14B | 89.6 872 862 72.8 89.0 797 851 842 868 845 80.1 475 | 79.6
20B+ Models
CodeLlama-34B-Instruct 34B | 482 402 6l1.1 50.5 415 437 453 310 403 - 36.6 19.6 -
CodeStral-22B-v0.1 22B | 81.1 732 782 62.2 81.1 633 652 437 68.6 - 689 424 -
DS-Coder-33B-Instruct 33B [81.1 750 804 70.1 793 734 689 741 679 739 727 430 | 69.2
CodeLlama-70B-Instruct 70B | 72.0 659 778 64.6 67.8 582 534 367 39.0 - 584 29.7 -
DS-Coder-V2-Instruct 21/236B | 854 823 894 75.1 902 823 84.8 823 830 845 795 525|799
Qwen2.5-Coder-32B-Instruct 32B [927 872 902 75.1 927 804 795 829 86.8 857 789 48.1 | 794
Qwen2.5-32B-Instruct 32B | 87.8 829 86.8 70.9 884 804 81.0 745 835 824 783 46.8 | 769
Qwen2.5-72B-Instruct 32B | 854 793 90.5 77.0 829 81.0 80.7 8l.6 8l.1 820 77.0 487 | 75.1
Qwen2.5-SynCoder 32B 927 878 862 74.7 92.1 804 80.7 816 830 857 776 494 | 78.8

Table 4: The performance of different instruction LLMs

on EvalPlus and MultiPL-E. “HE” denotes the HumanEval,

“HE+" denotes the plus version with more test cases, and “MBPP+" denotes the plus version with more test cases.

[I] Numerical Methods (Python)

I have example.xlsx in C:\Users\admin\Desktop. Under
‘Sheet1', There are 3 header 'Catergory’, 'Task', 'Time
Taken (seconds)'. These are sample data, each column
seperated by |:

[I] UnUX Design (HTML.CSS) |

can you help with MUI, Ts there way to limit number of
visible bars and add scroll
se [

Algorithm Design and Implementation (C)

EERMCGEEMARER: [MEHER]

u%%ﬂﬁﬁ»‘ﬂﬂiﬂm‘r VEHIEIEF 1. 5%,
EIEMERIR2.75% SEMEMERE. 0%

HRERSETINERARBPERBEBNES D,

<BarChart

2FMRMERIR2. 1%,
SEIREFIR.35%,

stack: "A", label ﬁﬁgr BAKE,
Room ATO | Don personal protective equipment | 16 S
Room ATO | in kidney dish | 40 , stack: "A", label (2) KBERE, HUEASHEE
Room AIO | perform hand hygiene | a8 (3) 473%E, AWEASBEEAE,;
write python to generate workflow chart with arrow, small , stack: "A", label (4) 14, BAS
font size as there are 62 rows in total, based on (5) E8, BFES AEF B EANTHAS,
‘Catergory'. There are only 3 catergory, 'Room AIO', , stack: "A", label BB A Fdouble, ﬁ)ws*m "R1E" ,m‘mﬂéfm "%F, R —
‘Normal Medcart Single Room' and ‘Single Room Med Admin "Se Ay pes
AIO'., with each catergory, there are respective Task. { data: [10, 6 3, 3, 3], label: "Series C1" },)

o ¢ Baseline A and R B 1} width-{600} height {350} slots=(2}/> HAD 1000

4 L Hitti: 1150.000000 1127.965600 1127.965000 1077.284004
° Jud : Baseline A and R B 1017.646235

Assistant B's response is more accurate, complete, and

helpful in generating the workflow chart as requested.
Therefore, my final verdict is: [[B>>A]]

Assistant B's response is more accurate and practical, provid

0" Baseline A and R B

[I] Data Science and Analytics (Python)

compute the frequency domain of the following data using fft:
y = mat['eeg'][0][0][0][0][0]

X = range(len(y))

plt.plot(x, y)

Adding title and labels

plt.title('Sample Line Graph with Indices on X-axis')

Q" B

Both assistants provide correct implementations of FFT, but
Assistant B offers a more comprehensive visualization by
plotting both the original data and its frequency domain

o e b

Aand R

ing a solution that aligns with common web development practi
ces. Therefore, the final verdict is: [[B>A]]

@ File and Data Operations (Python)

huggingface dataset move all the columns to metadata,
except two, 'problem’ and 'solution'*

Q-,.

Assistant B provides a correct and relevant solution using
the appropriate library for Hugging Face datasets, whereas
Assistant A's response is not applicable to the task.

t: Baseline A and R B

Therefore, Assistant B is significantly better.

Based on the evaluation, Assistant B provides a correct and

concise solution to the problem, while Assistant A's respo
nse contains significant errors and irrelevant information.
My final verdict is: [[B>>A]]

REFL— RS, FRFEHIAVA2L, KifRecplise, T
R Gihiwindowl0BIRER.

0--

Assistant B provides a more comprehensive and practical resp
onse by including additional features, a code example, and c

Development Processes and Practices (Java)

Raceli

Aand R B

P

representation. My final verdict is that Assistant B's
answer is slightly better due to its more comprehensive

[[8>A]].

My final verdict is:
visualization:

[[8>>A]]

onsiderations for data storage and testing. This makes Assis
tant B's response more helpful and relevant to the user's re
quest. My final verdict is: [[B>A]]

Figure 7: Examples of CodeArena. The LLM judger decides which response is better.

code without any natural description (even the code
is correct) will bring an unsatisfactory experience
to users, which will also lead to poor performance
in CodeArena. In Figure 8, we can observe that the
state-of-the-art closed-source LLMs (e.g. ol and
Claude series) get a balanced performance between
the code execution benchmark and CodeArena.
The open-source models (e.g. DeepseekCoder and
Qwen-Coder) are likely to bring a bad experience
to users, where the generated response lacks a more
detailed explanation or more complete details com-

pared to closed-source LLMs.

Scaling Synthetic Instruction Corpora. We
would like to further analyze the performance of
Qwen2.5-SynCoder in MultiPIl-E and CodeArena
given different sizes of instruction corpora. There-
fore, we select the full instruction (19B synthetic
data is at the front of the data and 1B high-quality
data is at the end) set SynCode-Instruct and extract
the first K billion tokens as the fine-tuned data. We
set K = {2,4,...,20}. We randomly extract spe-

MultiPL-E (Pass@1)

0 2.0 4.0 5‘0 x.u 12)0
CodeArena (win rate)
Figure 8: Comparison between MultiPL-E and

CodeArena. LLMs in the blue circle present relatively

mismatched performances on two benchmarks.
90

80

2B 4B 6B 8B 10B 12B 14B 16B 18B ALL
Size of Instruction Tuning Data

Figure 9: Results of CodeArena with different data size
on MultiPL-E and CodeArena.

cific data from the whole corpus. Figure 9 shows
the performance on CodeArena. With the increase
of instruction data, Qwen2.5-SynCoder still can
get significant improvement, which emphasizes the
importance of the scaling instruction corpora. The
two-stage SFT gets a better performance compared
to the one-stage training (red line), where the high-
quality data brings a huge improvement at last.

Figure 10: Distribution of CodeArena and MultiPL-E
of different languages.

Distribution of different benchmarks. The
queries of CodeArena and MultiPL-E (Python,
Java, and CPP) are visualized by extracting the last
BERT representations for t-SNE (Van der Maaten
and Hinton, 2008). The average of all hidden states
of the last encoder layer is viewed as the query
representation. In Figure 10, the representations
of CodeArena are distributed in the whole area,
while the representations of different languages
in MultiPL-E are separately located in a narrow

area, which shows that the distribution of queries
in CodeArena is very diverse, which is suitable for
evaluating human preferences in realistic scenarios.

6 Related Work

Large language models (LLMs) designed for cod-
ing tasks have demonstrated exceptional capabil-
ities in code generation and other essential func-
tions for modern software engineering (Chen et al.,
2021b; Xu et al., 2022; Sun et al., 2024). how-
ever, many of them focus on a limited selection
of programming languages, such as Python and
Java (Zheng et al., 2023b; Austin et al., 2021; Jain
et al., 2024). Recent advancements in code LLMs,
such as DeepSeek-Coder (Guo et al., 2024a) and
Qwen2.5-Coder (Hui et al., 2024), have made sig-
nificant strides in multilingual code generation.
Code generation is a basic task for code LLMs,
requiring them to interpret natural language de-
scriptions and generate corresponding code snip-
pets that fulfill user requirements (Gu et al., 2024;
Lai et al., 2022; Liu et al., 2023; Yu et al., 2024;
Li et al., 2024). To thoroughly evaluate the diverse
capabilities of LLMs, numerous benchmarks have
been proposed, such as code translation (Jiao et al.,
2023; Yan et al., 2023; Zhu et al., 2022) and code
debugging (Huq et al., 2022; Tian et al., 2024; Liu
et al., 2024b). Nonetheless, many studies concen-
trate on assessing only a single aspect of LLM
capabilities, often overlooking the evaluation of
LLMs for a variety of real-world scenarios.

7 Conclusion

In this work, we introduce CodeArena, a metic-
ulously human-curated benchmark composed of
397 high-quality samples spanning 40 categories,
derived from real-world user queries, to address dis-
crepancies between model-generated responses and
human preferences in coding tasks. Additionally,
we create SynCode-Instruct, a diverse synthetic
instruction corpus containing nearly 20 billion to-
kens, by scaling web-sourced instructions. Our
evaluation of over 40+ LLMs using CodeArena
highlights significant performance discrepancies
between code-execution-based benchmarks and our
human-curated benchmark. Notably, there is a re-
markable performance gap between open-source
code LLMs and closed-source LLMs (such as the
ol series), underscoring the importance of aligning
LLMs with human preferences in coding tasks.

Limitations

We acknowledge the following limitations of this
study: (1) The evaluation depends on the LL.M-as-
a-Judge, which requires extra API costs (GPT-40)
and may lead to a biased evaluation. In the future,
we will try to design a more fair and fast evalu-
ation metric for coding tasks, which can not be
evaluated by unit tests. (2) The effectiveness of the
synthetic data is only evaluated on programming
language benchmarks. Its effectiveness in other
common domains has not been evaluated, limiting
the generalizability of the method.

Ethics Statement

CodeArena, as an evaluation benchmark, can com-
prehensively assess the capability of large language
models in realistic scenarios with a wide range of
programming tasks and languages, thereby advanc-
ing the development of LLLM evaluation in coding
domain. However, unsafe queries CodeArena may
contain pornographic and personal privacy infor-
mation. Therefore, to ensure the security and reli-
ability of the queries, the annotators are asked to
rephrase the original question to a safe query.

References

Anthropic. 2023. Introducing Claude.

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten
Bosma, Henryk Michalewski, David Dohan, Ellen
Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. 2021.
Program synthesis with large language models. arXiv
preprint arXiv:2108.07732.

Jinze Bai, Shuai Bai, Yunfei Chu, Zeyu Cui, Kai Dang,
Xiaodong Deng, Yang Fan, Wenbin Ge, Yu Han, Fei
Huang, Binyuan Hui, Luo Ji, Mei Li, Junyang Lin,
Runji Lin, Dayiheng Liu, Gao Liu, Chenggiang Lu,
Keming Lu, Jianxin Ma, Rui Men, Xingzhang Ren,
Xuancheng Ren, Chuangi Tan, Sinan Tan, Jianhong
Tu, Peng Wang, Shijie Wang, Wei Wang, Sheng-
guang Wu, Benfeng Xu, Jin Xu, An Yang, Hao Yang,
Jian Yang, Shusheng Yang, Yang Yao, Bowen Yu,
Hongyi Yuan, Zheng Yuan, Jianwei Zhang, Xingx-
uan Zhang, Yichang Zhang, Zhenru Zhang, Chang
Zhou, Jingren Zhou, Xiaohuan Zhou, and Tianhang
Zhu. 2023. Qwen technical report. arXiv preprint
arXiv:2309.16609, abs/2309.16609.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak,
John Schulman, Christine McLeavey, Jerry Tworek,
and Mark Chen. 2022. Efficient training of lan-
guage models to fill in the middle. arXiv preprint
arXiv:2207.14255.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie
Subbiah, Jared D Kaplan, Prafulla Dhariwal, Arvind
Neelakantan, Pranav Shyam, Girish Sastry, Amanda
Askell, et al. 2020. Language models are few-shot
learners. Advances in neural information processing
systems, 33:1877-1901.

Federico Cassano, John Gouwar, Daniel Nguyen, Syd-
ney Nguyen, Luna Phipps-Costin, Donald Pinckney,
Ming-Ho Yee, Yangtian Zi, Carolyn Jane Anderson,
Molly Q Feldman, Arjun Guha, Michael Greenberg,
and Abhinav Jangda. 2023. Multipl-e: A scalable
and polyglot approach to benchmarking neural code
generation. IEEE Transactions on Software Engi-
neering, 49(7):3675-3691.

Linzheng Chai, Shukai Liu, Jian Yang, Yuwei Yin,
Ke Jin, Jiaheng Liu, Tao Sun, Ge Zhang, Changyu
Ren, Hongcheng Guo, et al. 2024. Mceval: Mas-
sively multilingual code evaluation. arXiv preprint
arXiv:2406.07436.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Pondé de Oliveira Pinto, Jared Kaplan,
Harrison Edwards, Yuri Burda, Nicholas Joseph,
Greg Brockman, Alex Ray, Raul Puri, Gretchen
Krueger, Michael Petrov, Heidy Khlaaf, Girish Sas-
try, Pamela Mishkin, Brooke Chan, Scott Gray,
Nick Ryder, Mikhail Pavlov, Alethea Power, Lukasz
Kaiser, Mohammad Bavarian, Clemens Winter,
Philippe Tillet, Felipe Petroski Such, Dave Cum-
mings, Matthias Plappert, Fotios Chantzis, Eliza-
beth Barnes, Ariel Herbert-Voss, William Hebgen
Guss, Alex Nichol, Alex Paino, Nikolas Tezak, Jie
Tang, Igor Babuschkin, Suchir Balaji, Shantanu Jain,
William Saunders, Christopher Hesse, Andrew N.
Carr, Jan Leike, Joshua Achiam, Vedant Misra, Evan
Morikawa, Alec Radford, Matthew Knight, Miles
Brundage, Mira Murati, Katie Mayer, Peter Welinder,
Bob McGrew, Dario Amodei, Sam McCandlish, Ilya
Sutskever, and Wojciech Zaremba. 2021a. Evaluat-
ing large language models trained on code. arXiv
preprint arXiv:2107.03374, abs/2107.03374.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan,
Henrique Ponde de Oliveira Pinto, Jared Kaplan,
Harri Edwards, Yuri Burda, Nicholas Joseph, Greg
Brockman, et al. 2021b. Evaluating large lan-
guage models trained on code. ArXiv preprint,
abs/2107.03374.

Wei-Lin Chiang, Lianmin Zheng, Ying Sheng, Anas-
tasios Nikolas Angelopoulos, Tianle Li, Dacheng
Li, Banghua Zhu, Hao Zhang, Michael 1. Jordan,
Joseph E. Gonzalez, and Ion Stoica. 2024. Chat-
bot arena: An open platform for evaluating llms by
human preference. In Forty-first International Con-
ference on Machine Learning, ICML 2024, Vienna,
Austria, July 21-27, 2024. OpenReview.net.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey,
Abhishek Kadian, Ahmad Al-Dahle, Aiesha Letman,
Akhil Mathur, Alan Schelten, Amy Yang, Angela
Fan, et al. 2024. The llama 3 herd of models. arXiv
preprint arXiv:2407.21783.

https://www.anthropic.com/index/introducing-claude
https://arxiv.org/abs/2108.07732
https://arxiv.org/abs/2309.16609
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1109/TSE.2023.3267446
https://doi.org/10.1109/TSE.2023.3267446
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
http://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://arxiv.org/abs/2107.03374
https://openreview.net/forum?id=3MW8GKNyzI
https://openreview.net/forum?id=3MW8GKNyzI
https://openreview.net/forum?id=3MW8GKNyzI
https://openreview.net/forum?id=3MW8GKNyzI
https://openreview.net/forum?id=3MW8GKNyzI

Zhangyin Feng, Daya Guo, Duyu Tang, Nan Duan, Xi-
aocheng Feng, Ming Gong, Linjun Shou, Bing Qin,
Ting Liu, Daxin Jiang, and Ming Zhou. 2020. Code-
bert: A pre-trained model for programming and nat-
ural languages. In Findings of the Association for
Computational Linguistics: EMNLP 2020, Online
Event, 16-20 November 2020, volume EMNLP 2020
of Findings of ACL, pages 1536—1547. Association
for Computational Linguistics.

Daniel Fried, Armen Aghajanyan, Jessy Lin, Sida Wang,
Eric Wallace, Freda Shi, Ruiqi Zhong, Scott Yih,
Luke Zettlemoyer, and Mike Lewis. 2023. Incoder:
A generative model for code infilling and synthesis.
In The Eleventh International Conference on Learn-
ing Representations.

Alex Gu, Baptiste Roziere, Hugh Leather, Armando
Solar-Lezama, Gabriel Synnaeve, and Sida I Wang.
2024. Cruxeval: A benchmark for code reasoning,
understanding and execution.

Daya Guo, Qihao Zhu, Dejian Yang, Zhenda Xie,
Kai Dong, Wentao Zhang, Guanting Chen, Xiao
Bi, Y Wu, YK Li, et al. 2024a. Deepseek-coder:
When the large language model meets programming—
the rise of code intelligence. arXiv preprint
arXiv:2401.14196.

Jiawei Guo, Ziming Li, Xueling Liu, Kaijing Ma,
Tianyu Zheng, Zhouliang Yu, Ding Pan, Yizhi Li,
Ruibo Liu, Yue Wang, et al. 2024b. Codeeditor-
bench: Evaluating code editing capability of large
language models. arXiv preprint arXiv:2404.03543.

Junjie Huang, Duyu Tang, Linjun Shou, Ming Gong,
Ke Xu, Daxin Jiang, Ming Zhou, and Nan Duan.
2021. Cosqga: 20,000+ web queries for code search
and question answering.

Siming Huang, Tianhao Cheng, Jason Klein Liu, Jiaran
Hao, Liuyihan Song, Yang Xu, J Yang, JH Liu,
Chenchen Zhang, Linzheng Chai, et al. 2024. Open-
coder: The open cookbook for top-tier code large
language models. arXiv e-prints, pages arXiv—2411.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Day-
iheng Liu, Lei Zhang, Tianyu Liu, Jiajun Zhang,
Bowen Yu, Kai Dang, et al. 2024. Qwen2. 5-coder
technical report. arXiv preprint arXiv:2409.12186.

Faria Huq, Masum Hasan, Md Mahim Anjum Haque,
Sazan Mahbub, Anindya Igbal, and Toufique Ahmed.
2022. Review4repair: Code review aided automatic
program repairing. 143:106765.

Hamel Husain, Ho-Hsiang Wu, Tiferet Gazit, Miltiadis
Allamanis, and Marc Brockschmidt. 2019. Code-
searchnet challenge: Evaluating the state of seman-
tic code search. arXiv preprint arXiv:1909.09436,
abs/1909.09436.

Naman Jain, King Han, Alex Gu, Wen-Ding Li, Fanjia
Yan, Tianjun Zhang, Sida Wang, Armando Solar-
Lezama, Koushik Sen, and Ion Stoica. 2024. Live-
codebench: Holistic and contamination free eval-

10

uation of large language models for code. arXiv
preprint arXiv:2403.07974.

Mingsheng Jiao, Tingrui Yu, Xuan Li, Guanjie Qiu,
Xiaodong Gu, and Beijun Shen. 2023. On the evalua-
tion of neural code translation: Taxonomy and bench-
mark. In 2023 38th IEEE/ACM International Con-
ference on Automated Software Engineering (ASE),
pages 1529-1541. IEEE.

Diederik P. Kingma and Jimmy Ba. 2015. Adam: A
method for stochastic optimization. In 3rd Inter-
national Conference on Learning Representations,
ICLR 2015, San Diego, CA, USA, May 7-9, 2015,
Conference Track Proceedings.

Tom Kwiatkowski, Jennimaria Palomaki, Olivia Red-
field, Michael Collins, Ankur P. Parikh, Chris Alberti,
Danielle Epstein, Illia Polosukhin, Jacob Devlin, Ken-
ton Lee, Kristina Toutanova, Llion Jones, Matthew
Kelcey, Ming-Wei Chang, Andrew M. Dai, Jakob
Uszkoreit, Quoc Le, and Slav Petrov. 2019. Natu-
ral questions: a benchmark for question answering
research. Trans. Assoc. Comput. Linguistics, 7:452—
466.

Yuhang Lai, Chengxi Li, Yiming Wang, Tianyi Zhang,
Ruiqi Zhong, Luke Zettlemoyer, Wen-Tau Yih,
Daniel Fried, Sida Wang, and Tao Yu. 2022. Ds-
1000: A natural and reliable benchmark for data sci-
ence code generation. ArXiv, abs/2211.11501.

Raymond Li, Loubna Ben Allal, Yangtian Zi, Niklas
Muennighoff, Denis Kocetkov, Chenghao Mou,
Marc Marone, Christopher Akiki, Jia Li, Jenny
Chim, Qian Liu, Evgenii Zheltonozhskii, Terry Yue
Zhuo, Thomas Wang, Olivier Dehaene, Mishig
Davaadorj, Joel Lamy-Poirier, Jodo Monteiro, Oleh
Shliazhko, Nicolas Gontier, Nicholas Meade, Armel
Zebaze, Ming-Ho Yee, Logesh Kumar Umapathi,
Jian Zhu, Benjamin Lipkin, Muhtasham Oblokulov,
Zhiruo Wang, Rudra Murthy V, Jason Stillerman,
Siva Sankalp Patel, Dmitry Abulkhanov, Marco
Zocca, Manan Dey, Zhihan Zhang, Nour Moustafa-
Fahmy, Urvashi Bhattacharyya, Wenhao Yu, Swayam
Singh, Sasha Luccioni, Paulo Villegas, Maxim Ku-
nakov, Fedor Zhdanov, Manuel Romero, Tony Lee,
Nadav Timor, Jennifer Ding, Claire Schlesinger, Hai-
ley Schoelkopf, Jan Ebert, Tri Dao, Mayank Mishra,
Alex Gu, Jennifer Robinson, Carolyn Jane Ander-
son, Brendan Dolan-Gavitt, Danish Contractor, Siva
Reddy, Daniel Fried, Dzmitry Bahdanau, Yacine
Jernite, Carlos Mufioz Ferrandis, Sean Hughes,
Thomas Wolf, Arjun Guha, Leandro von Werra, and
Harm de Vries. 2023. StarCoder: May the source
be with you! arXiv preprint arXiv:2305.06161,
abs/2305.06161.

Ziming Li, Qianbo Zang, David Ma, Jiawei Guo, Tianyu
Zheng, Xinyao Niu, Xiang Yue, Yue Wang, Jian
Yang, Jiaheng Liu, et al. 2024. Autokaggle: A multi-
agent framework for autonomous data science com-
petitions. arXiv preprint arXiv:2410.20424.

https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://doi.org/10.18653/V1/2020.FINDINGS-EMNLP.139
https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=hQwb-lbM6EL
https://openreview.net/forum?id=hQwb-lbM6EL
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
https://arxiv.org/abs/2401.14196
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1909.09436
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
http://arxiv.org/abs/1412.6980
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.1162/tacl_a_00276
https://doi.org/10.48550/arXiv.2305.06161
https://doi.org/10.48550/arXiv.2305.06161
https://doi.org/10.48550/arXiv.2305.06161

Jiaheng Liu, Ken Deng, Congnan Liu, Jian Yang, Shukai
Liu, He Zhu, Peng Zhao, Linzheng Chai, Yanan Wu,
Ke Jin, et al. 2024a. M2rc-eval: Massively multi-
lingual repository-level code completion evaluation.
arXiv preprint arXiv:2410.21157.

Jiawei Liu, Chungiu Steven Xia, Yuyao Wang, and Ling-
ming Zhang. 2023. Is your code generated by chat-
gpt really correct? rigorous evaluation of large lan-
guage models for code generation. arXiv preprint
arXiv:2305.01210, abs/2305.01210.

Shukai Liu, Linzheng Chai, Jian Yang, Jiajun Shi,
He Zhu, Liran Wang, Ke Jin, Wei Zhang, Hualei
Zhu, Shuyue Guo, et al. 2024b. Mdeval: Mas-
sively multilingual code debugging. arXiv preprint
arXiv:2411.02310.

Shuai Lu, Daya Guo, Shuo Ren, Junjie Huang, Alexey
Svyatkovskiy, Ambrosio Blanco, Colin Clement,
Dawn Drain, Daxin Jiang, Duyu Tang, Ge Li, Li-
dong Zhou, Linjun Shou, Long Zhou, Michele Tu-
fano, MING GONG, Ming Zhou, Nan Duan, Neel
Sundaresan, Shao Kun Deng, Shengyu Fu, and Shu-
jie LIU. 2021. CodeXGLUE: A machine learning
benchmark dataset for code understanding and gener-
ation. In Thirty-fifth Conference on Neural Informa-
tion Processing Systems Datasets and Benchmarks
Track (Round 1).

MistralAL. 2024. Codestral.
ai/news/codestral. 2024.05.29.

OpenAl. 2023. Gpt-4 technical report. arXiv preprint
arXiv:2303.08774.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code Llama: Open foundation models for code.
arXiv preprint arXiv:2308.12950.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten
Sootla, Itai Gat, Xiaoqing Ellen Tan, Yossi Adi,
Jingyu Liu, Tal Remez, Jérémy Rapin, et al. 2023.
Code llama: Open foundation models for code.

Aofeng Su, Aowen Wang, Chao Ye, Chen Zhou,
Ga Zhang, Guangcheng Zhu, Haobo Wang, Haokai
Xu, Hao Chen, Haoze Li, et al. 2024. Tablegpt2: A
large multimodal model with tabular data integration.
arXiv preprint arXiv:2411.02059.

Tao Sun, Linzheng Chai, Yuwei Yin Jian Yang,
Hongcheng Guo, Jiaheng Liu, Bing Wang, Liqun
Yang, and Zhoujun Li. 2024. Unicoder: Scaling code
large language model via universal code. ACL.

Runchu Tian, Yining Ye, Yujia Qin, Xin Cong, Yankai
Lin, Zhiyuan Liu, and Maosong Sun. 2024. De-
bugbench: Evaluating debugging capability of large
language models.

Laurens Van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of machine
learning research, 9(11).

https://mistral.

11

Xianjie Wu, Jian Yang, Linzheng Chai, Ge Zhang,
Jiaheng Liu, Xinrun Du, Di Liang, Daixin
Shu, Xianfu Cheng, Tianzhen Sun, et al. 2024.
Tablebench: A comprehensive and complex bench-
mark for table question answering. arXiv preprint
arXiv:2408.09174.

Frank F Xu, Uri Alon, Graham Neubig, and Vincent Jo-
sua Hellendoorn. 2022. A systematic evaluation of
large language models of code. In Proceedings of
the 6th ACM SIGPLAN International Symposium on
Machine Programming, pages 1-10.

Weixiang Yan, Yuchen Tian, Yunzhe Li, Qian Chen, and
Wen Wang. 2023. Codetransocean: A comprehen-
sive multilingual benchmark for code translation. In
Findings of the Association for Computational Lin-
guistics: EMNLP 2023, Singapore, December 6-10,
2023, pages 5067-5089. Association for Computa-
tional Linguistics.

Alex Young, Bei Chen, Chao Li, Chengen Huang,
Ge Zhang, Guanwei Zhang, Heng Li, Jiangcheng
Zhu, Jianqun Chen, Jing Chang, et al. 2024. Yi:
Open foundation models by 01. ai. arXiv preprint
arXiv:2403.04652.

Hao Yu, Bo Shen, Dezhi Ran, Jiaxin Zhang, Qi Zhang,
Yuchi Ma, Guangtai Liang, Ying Li, Qianxiang Wang,
and Tao Xie. 2024. Codereval: A benchmark of prag-
matic code generation with generative pre-trained
models. In Proceedings of the 46th IEEE/ACM Inter-
national Conference on Software Engineering, pages
1-12.

Xiang Yue, Tuney Zheng, Ge Zhang, and Wenhu Chen.
2024. Mammoth2: Scaling instructions from the web.
arXiv preprint arXiv:2405.03548.

Fengji Zhang, Bei Chen, Yue Zhang, Jin Liu, Daoguang
Zan, Yi Mao, Jian-Guang Lou, and Weizhu Chen.
2023. RepoCoder: Repository-level code comple-
tion through iterative retrieval and generation. arXiv
preprint arXiv:2303.12570, abs/2303.12570.

Shudan Zhang, Hanlin Zhao, Xiao Liu, Qinkai Zheng,
Zehan Qi, Xiaotao Gu, Yuxiao Dong, and Jie Tang.
2024. Naturalcodebench: Examining coding per-
formance mismatch on humaneval and natural user
queries. In Findings of the Association for Compu-
tational Linguistics, ACL 2024, Bangkok, Thailand
and virtual meeting, August 11-16, 2024, pages 7907—
7928.

Lianmin Zheng, Wei-Lin Chiang, Ying Sheng, Siyuan
Zhuang, Zhanghao Wu, Yonghao Zhuang, Zi Lin,
Zhuohan Li, Dacheng Li, Eric Xing, et al. 2023a.
Judging 1lm-as-a-judge with mt-bench and chatbot
arena. Advances in Neural Information Processing
Systems, 36:46595-46623.

Qinkai Zheng, Xiao Xia, Xu Zou, Yuxiao Dong, Shan
Wang, Yufei Xue, Zihan Wang, Lei Shen, Andi Wang,
Yang Li, Teng Su, Zhilin Yang, and Jie Tang. 2023b.
Codegeex: A pre-trained model for code generation

https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://arxiv.org/abs/2305.01210
https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
https://openreview.net/forum?id=6lE4dQXaUcb
https://mistral.ai/news/codestral
https://mistral.ai/news/codestral
https://mistral.ai/news/codestral
https://arxiv.org/abs/2303.08774
https://arxiv.org/abs/2308.12950
https://aclanthology.org/2023.findings-emnlp.337
https://aclanthology.org/2023.findings-emnlp.337
https://aclanthology.org/2023.findings-emnlp.337
https://doi.org/10.48550/arXiv.2303.12570
https://doi.org/10.48550/arXiv.2303.12570
https://doi.org/10.48550/arXiv.2303.12570
https://doi.org/10.48550/ARXIV.2303.17568
https://doi.org/10.48550/ARXIV.2303.17568

with multilingual evaluations on humaneval-x. arXiv
preprint arXiv:2303.17568, abs/2303.17568.

Ming Zhu, Aneesh Jain, Karthik Suresh, Roshan Ravin-
dran, Sindhu Tipirneni, and Chandan K Reddy. 2022.
Xlcost: A benchmark dataset for cross-lingual code
intelligence.

Terry Yue Zhuo, Minh Chien Vu, Jenny Chim, Han Hu,
Wenhao Yu, Ratnadira Widyasari, Imam Nur Bani
Yusuf, Haolan Zhan, Junda He, Indraneil Paul, et al.
2024. Bigcodebench: Benchmarking code genera-
tion with diverse function calls and complex instruc-
tions. arXiv preprint arXiv:2406.15877.

12

https://doi.org/10.48550/ARXIV.2303.17568

A Related Work

Code Large Language Model. Large language
models (LLMs) designed for coding tasks have
demonstrated exceptional capabilities in code gen-
eration, debugging, translation, and other essential
functions for modern software engineering (Chen
et al., 2021b; Anthropic, 2023; OpenAl, 2023;
Fried et al., 2023; Xu et al., 2022; Sun et al.,,
2024). Numerous in-file benchmarks have been
developed to evaluate these capabilities; how-
ever, many of them focus on a limited selection
of programming languages, such as Python and
Java (Zheng et al., 2023b; Austin et al., 2021;
Jain et al., 2024). Recent advancements in code
LLMs, including models like Code Llama (Roziere
et al., 2023), DeepSeek-Coder (Guo et al., 2024a),
OpenCoder (Huang et al., 2024), and Qwen2.5-
Coder (Hui et al., 2024), have made significant
strides in multilingual code generation and de-
bugging tasks. These models have been effec-
tively evaluated using benchmarks such as MultiPL-
E (Cassano et al., 2023), McEval (Chai et al., 2024),
and MdEval (Liu et al., 2024b).

Code Benchmarks. Code generation is a basic
task for code language models (LLMs), requir-
ing them to interpret natural language descriptions
and generate corresponding code snippets that ful-
fill user requirements (Gu et al., 2024; Lai et al.,
2022; Liu et al., 2023; Yu et al., 2024; Li et al.,
2024). To thoroughly evaluate the diverse capabil-
ities of LLMs, numerous benchmarks have been
proposed, including code translation (Jiao et al.,
2023; Yan et al., 2023; Zhu et al., 2022), code re-
trieval (Huang et al., 2021; Husain et al., 2019;
Lu et al., 2021), code completion (Bavarian et al.,
2022; Liu et al., 2024a; Zhang et al., 2023), code
debugging (Huq et al., 2022; Tian et al., 2024;
Liu et al., 2024b), and structured data understand-
ing (Wu et al., 2024; Su et al., 2024). Recent ini-
tiatives such as McEval (Chai et al., 2024) have
expanded the evaluative scope to 40 programming
languages for multilingual scenarios, while MdE-
val (Liu et al., 2024b) has developed a multilingual
code debugging benchmark encompassing nearly
20 programming languages. Nonetheless, many of
these studies concentrate on assessing only a sin-
gle aspect of LLM capabilities, often overlooking
the evaluation of LLMs as comprehensive program
developers across a variety of real-world coding
scenarios.

A.1 Evaluation Benchmark

EvalPlus and MultiPL-E. The EvalPlus (Liu
et al., 2023) is an upgraded version of the Hu-
manEval (Chen et al., 2021a) and MBPP (Austin
et al., 2021) to test the code generation capabilities.
The benchmark reports the scores of HumanEval
(HE)/MBPP with base test cases and HumanEval+
(HE+)/MBPP+ with plus test cases.

MultiPL-E The MultiPL-E test set (Cassano
et al., 2023) contains the HumanEval (Python) and
translated test set of other programming languages,
i.e., Java, C++, Javascript, and Typescript.

CodeArena Different from the EvalPlus and
MultiPL-E, CodeArena consists of many non-
algorihtmic, which is not suitable for code-
execution-based evaluation. Each question is
scored twice to calculate the win rate and tie
rate by GPT-40 using a different input order “A,
B and “B, A”, where “A” is the baseline from
gpt—-4-turbo-2024-04-09 and “B” is the
model-generated response.

A.2 Evaluation Metrics

Pass@k Given the model-generated response,
we extract the expected function and feed the
test cases into the extracted function to verify the
correctness of the generation. We adopt greedy
Pass@1 (Chen et al., 2021a) to report the results
on EvalPlus and MultiPL-E,

LLM as a judgement Due to the high cost of
collecting human preferences (Zheng et al., 2023a),
we use pairwise comparison for judgment, where
an LLM judger is fed with a question and two
answers and determines which one is better or
declares a tie’. We report win rate/tie rate for
CodeArena.

‘https://github.com/lmarena/
arena—-hard-auto

https://github.com/lmarena/arena-hard-auto
https://github.com/lmarena/arena-hard-auto

