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ABSTRACT

Federated Learning (FL) enables decentralized model training across clients with-
out sharing raw data, but its performance degrades under real-world data hetero-
geneity. Existing methods often fail to address distribution shift across clients
and distribution drift over time, or they rely on unrealistic assumptions such as
known number of client clusters and data heterogeneity types, which limits their
generalizability. We introduce FEROMA, a novel FL framework that explicitly
handles both distribution shift and drift without relying on client or cluster iden-
tity. FEROMA builds on client distribution profiles—compact, privacy-preserving
representations of local data—that guide model aggregation and test-time model
assignment through adaptive similarity-based weighting. This design allows FER-
OMA to dynamically select aggregation strategies during training, ranging from
clustered to personalized, and deploy suitable models to unseen, and unlabeled test
clients without retraining, online adaptation, or prior knowledge on clients’ data.
Extensive experiments show that compared to 10 state-of-the-art methods, FEROMA
improves performance and stability under dynamic data heterogeneity conditions—
an average accuracy gain of up to 12 percentage points over the best baselines
across 6 benchmarks—while maintaining computational and communication over-
head comparable to FedAvg. These results highlight that distribution-profile-based
aggregation offers a practical path toward robust FL under both data distribution
shifts and drifts.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017) has become a promising paradigm for training
models collaboratively across distributed clients without sharing their private data. However, one
of the central challenges in FL is the presence of heterogeneous client data, which can significantly
degrade model performance if not properly handled (Kairouz et al., 2021). In real-world deployments,
clients rarely hold independent and identically distributed (IID) data (Zhao et al., 2018; Zhu et al.,
2021). They often exhibit two forms of heterogeneity: distribution shift, where different clients
possess distinct data distributions (Sattler et al., 2021; Deng et al., 2020b; Guo et al., 2024), and
distribution drift, where a single client’s data distribution also evolves over time (Jothimurugesan
et al., 2023; Lu et al., 2019b; Gama et al., 2014). These dynamics challenge the notion of a single
global model that performs uniformly well across all clients throughout training and deployment.

Vanilla FedAvg (McMahan et al., 2017) struggles to converge efficiently due to its uniform aggregation
of all client updates, regardless of their data distributions. Under distribution shift (Figure 1 Left),
clients whose data distributions are underrepresented in the global model receive limited benefit,
resulting in persistently low accuracy and slow convergence. This issue is exacerbated under
distribution drift (Figure 1 Right), where local data distributions evolve over time. Such drift
may occur during training—causing instability and divergence in the global model—or during test
time, degrading performance as clients encounter data that no longer aligns with the distribution
observed during training.

Existing methods for handling heterogeneous data in FL typically fall into three categories: Clustered
FL (CFL) (Sattler et al., 2021; Guo et al., 2024; Jothimurugesan et al., 2023; Ghosh et al., 2020;
Marfoq et al., 2021; Long et al., 2023), Personalized FL (PFL) (Deng et al., 2020b; T. Dinh et al., 2020;
Tan et al., 2023a; Kulkarni et al., 2020), and Test-time Adaptive FL (TTA-FL) (Bao et al., 2023; Deng
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et al., 2020a; Wang et al., 2019). CFL methods group clients with similar data distributions based on
model parameters or training metrics, which can effectively address distribution shift. However, they
often lack adaptability under training and/or test-time drifts, require prior knowledge on the number
of clusters or assumptions about data distribution(Guo et al., 2024; Ghosh et al., 2020), and incur
significant training overhead due to the use of computationally intensive clustering techniques, as
well as the transmission, evaluation, or training of multiple models per client (Sattler et al., 2021;
Jothimurugesan et al., 2023). PFL methods optimize a personalized model for each client using its
local data distribution, thereby mitigating the negative effects of inter- and intra-client distribution
dissimilarity. While this yields strong performance locally—particularly when ample training data is
available per client—the resulting models often become highly client-specific, sacrificing robustness
in favour of personalization and offering limited generalization to unseen distributions or new clients.
TTA-FL approaches are designed to handle test-time drifts, but usually rely on online adaptation or
additional client interaction, which limits their practicality and efficiency in deployment. In addition,
they often overlook training-time drift and shift, which can lead to unstable or slowed convergence
and and degraded model performance across clients. Despite their strengths, these existing approaches
are often tailored to specific non-IID types (Sattler et al., 2021; Deng et al., 2020b; Guo et al., 2024;
Jothimurugesan et al., 2023; Ghosh et al., 2020; Marfoq et al., 2021; Long et al., 2023; T. Dinh
et al., 2020) and may struggle to balance generalization, adaptability, and efficiency—factors that are
increasingly important for practical FL deployments under real-world heterogeneous conditions.
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Figure 1: Comparison between FedAvg and FER-
OMA under (Left) distribution shift across clients,
and (Right) under distribution drift every 2 rounds.

To bridge this gap, we introduce Federated
Learning with Distribution Profile Mapping
(FEROMA), an FL framework that moves the
focus from client or cluster identity to the un-
derlying data distribution profile. To the best
of our knowledge, FEROMA is the first general-
purpose FL framework explicitly designed to ad-
dress both distribution shift and distribution drift,
during training as well as test time. FEROMA
extracts a lightweight, differentially private sta-
tistical profile from each client’s local data and
maps it to previously observed profiles from last
training round. This mapping guides model ag-
gregation through similarity-based weighting.
Based on these profiles, FEROMA automatically selects the most suitable aggregation strategy for
each round through adaptive similarity thresholds. This design enables FEROMA to remain both
flexible and scalable under dynamic, real-world FL settings, without relying on any prior knowledge.
Moreover, FEROMA assigns trained models to unseen clients based on profile similarity, enabling
robust model selection during test-time. We summarize the key contributions of FEROMA as follows:

• A unified and adaptive aggregation framework. FEROMA dynamically selects the best aggre-
gation strategy—ranging from clustered to personalized or global—based on client distribution
profiles, and naturally extends to test-time adaptation without retraining.

• Effective under both distribution shift and drift. FEROMA handles static and dynamic data
heterogeneity by leveraging round-wise distribution mapping, and scales efficiently to a large
number of clients. We evaluate FEROMA on four standard and two real-world datasets, showing
consistent gains over 10 SOTA baselines across a wide range of scenarios: including four types of
distribution shift (with low, medium, and high severity) and varying drift frequencies.

• Lightweight and efficient design. FEROMA introduces minimal communication and computation
overhead, with both server- and client-side costs comparable to FedAvg, enabling practical deploy-
ment in resource-constrained environments. We provide both theoretical bounds and empirical
measurements to validate its practicality in resource-constrained federated settings.

2 BACKGROUND

FL under IID assumption. FL systems (McMahan et al., 2017) consist of a collection of K ∈ N
distributed clients, denoted as K = {1, 2, . . . ,K}, coordinated by a central server. These clients
collaboratively train a shared machine learning model while keeping their local data private. Under
IID assumptions, FL typically assumes that each client k ∈ K holds an IID dataset sampled from

2
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Figure 2: Distribution shifts and drifts in FL. Colors indicate distinct local data distributions.
Changes across clients reflect distribution shifts; changes over rounds reflect distribution drifts.

a common joint distribution P (X,Y ). Specifically, client k possesses a local dataset (x(k), y(k))
of size s(k) ∈ N, which remains fixed throughout training. Here, x(k) ∈ Rs(k)×z denotes the input
features and y(k) ∈ {0, 1}s(k)×u the corresponding labels, where z is the number of features per
sample and u the number of output classes. During each communication round t, every client k
performs local training by optimizing its model parameters θ(k)t to maximize the likelihood over its
private dataset (x(k), y(k)), as shown in Equation 1. Once local updates are computed, clients transmit
their parameters to the central server. The server then aggregates the received updates—typically via
simple weighted averaging (McMahan et al., 2017)—to produce a new global model θt+1, as defined
in Equation 2. This updated global model is broadcast back to the clients to initialize the next training
round.

(Local training) θ
(k)
t ≈ argmax

θ
L(θ | x(k), y(k)) (1)

(Aggregation) θt+1 =
1

K

K∑
k=1

pk θ
(k)
t where pk =

s(k)∑K
j=1 s

(j)
,

K∑
k=1

pk = 1. (2)

FL under distribution shifts. In practical FL scenarios, clients commonly face inter-client dis-
tribution shift, where data distributions vary across clients—referred to here as distribution shift.
As illustrated in Figure 2 (vertical variation within each round), for any two clients k1, k2 ∈ K,
it may hold that P (X(k1), Y (k1)) ̸= P (X(k2), Y (k2)), violating the standard IID assumption
P (X(k), Y (k)) = P (X,Y ) for all k. Such shifts may result from variations in user behavior,
environment, or adversarial activity, and are typically grouped into four types (Kairouz et al., 2021):

• Feature distribution skew (covariate shift): Marginal distributions P (X) vary across clients.
• Label distribution skew (prior probability shift): Marginal distributions P (Y ) vary across clients.
• Concept shift (same X , different Y ): Conditional distributions P (Y | X) vary across clients.
• Concept shift (same Y , different X): Conditional distributions P (X | Y ) vary across clients.

While distribution shift is well-studied in centralized learning (Lu et al., 2019b; Koh et al., 2021; Li
et al., 2022c; Tahmasbi et al., 2021b), it remains underexplored in FL—where most works target
specific shift types and demand extra communication/computation costs (Sattler et al., 2021; Deng
et al., 2020b; Guo et al., 2024; Ghosh et al., 2020; Marfoq et al., 2021; Long et al., 2023; T. Dinh et al.,
2020; Tan et al., 2023a; Kulkarni et al., 2020), due to the server’s limited visibility into decentralized
client data. This challenge is further compounded by resource constraints on client devices, which
limit both the training capacity and the complexity of deployable models. As a result, global models
often fail to generalize across non-identically distributed client populations.

FL under distribution drifts. In addition to distribution shift, FL systems may also encounter
intra-client distribution drift, which we refer to as distribution drift. As illustrated in Figure 2
(horizontal variation across rounds), this occurs when the local data distribution of a single client
changes over time. Formally, for any client k ∈ K, the distribution at two different rounds t1 and
t2 may differ, i.e., Pt1(X

(k), Y (k)) ̸= Pt2(X
(k), Y (k)). Drift may manifest during training—due to
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changes in user behavior, sensor conditions, or data collection environments—or during testing. In the
latter case, drift arises either because the same client exhibits evolving behavior at inference time or
due to the presence of entirely new clients (e.g., test-only clients in Figure 2) whose data distributions
were not observed during training and for which label information is unavailable. Such temporal
drift significantly increases training and testing complexity and necessitates adaptive strategies that
can respond to evolving data. While distribution drift has been extensively studied in centralized
settings (Lu et al., 2019a; Gao et al., 2022; Li et al., 2022b; Tahmasbi et al., 2021a), only a few studies
have investigated training-time drift (Jothimurugesan et al., 2023; Chen et al., 2024) or test-time
drift (Bao et al., 2023; Tan et al., 2023c) in FL. However, to the best of our knowledge, the joint
presence of training and test-time drift has never been explored in existing FL literature—despite its
critical impact on model performance and accuracy in real-world deployments.

3 FEROMA

To tackle the challenges posed by dynamic and heterogeneous federated environments, we propose
FEROMA, a lightweight framework that adapts to both distribution shift and drift. This section begins
by formalizing the problem setting (section 3), then outlines the two core components of the FEROMA
pipeline, illustrated in Figure 3: distribution profile extraction (subsection 3.1) and distribution profile
mapping (subsection 3.2). In addition, section 3.2.1 details how FEROMA dynamically selects the
optimal aggregation strategy for each client based on the inferred distribution structure. The full
implementation and algorithmic details are provided in Appendix C.

Problem definition. We consider a dynamic FL system withKt clients at round t, where each client
holds local data (x

(k)
t , y

(k)
t ) and trains a local model θ(k)t . The number of clients may vary across

rounds due to client arrivals (cold-start) or departures, i.e., Kt−1 ̸= Kt. In practical FL settings,
data distributions are both non-identical across clients and non-stationary over time. Formally, for
any clients k1, k2 ∈ K and rounds t1, t2, the local distributions may differ: Pt1(X

(k1), Y (k1)) ̸=
Pt2(X

(k2), Y (k2)). This unified formulation captures both inter-client shift (when k1 ̸= k2) and
intra-client drift (when k1 = k2). Our goal is to design a lightweight FL framework that explicitly
addresses both distribution shift and drift during training and testing, without relying on client
identities or prior knowledge of underlying distributions.

3.1 DISTRIBUTION PROFILE EXTRACTION

When a client’s local distribution shifts between consecutive rounds—e.g., from P (X
(k)
t , Y

(k)
t ) to

P (X
(k)
t+1, Y

(k)
t+1) —adapting a model trained on its own earlier distribution may require significant

local computation and communication. A more efficient alternative is to reassign a model (or an
aggregation of models) previously trained on distributions that closely resemble the client’s current
distribution. To enable such model selection under distribution drift and to guide aggregation across
heterogeneous clients under distribution shift, we require a distribution profile, i.e., a low-dimensional,
stable summary that quantifies distribution similarity without exposing raw data or labels.

Definition 3.1 (Distribution–Profile Extractor). Let z ∈ N denote the feature dimension, and let d be
the desired profile dimension. A Distribution–Profile Extractor (DPE) is a stochastic mapping ϕψ :

Rv(k)×(z+u) → Rd, with v(k) ≤ s(k), parametrized by ψ, that maps a local dataset (x(k)t , y
(k)
t ) ∼

P (X
(k)
t , Y

(k)
t ) to a distribution profile d(k)t := ϕψ(x

(k)
t , y

(k)
t ). For any two client–round pairs

(k1, t1) and (k2, t2), the extractor must satisfy the requirements below.

(R1) Distribution fidelity. Profile distances should approximate a reference distance ∆ (e.g.,
Jensen–Shannon or Wasserstein distance) between the corresponding distributions:∣∣ ∥d(k1)t1 − d

(k2)
t2 ∥2 −∆

(
P (x

(k1)
t1 , y

(k1)
t1 ), P (x

(k2)
t2 , y

(k2)
t2 )

) ∣∣ ≤ ξ

In other words, the extractor ϕ should map similar distributions to nearby profiles and dissimilar
distributions to distant profiles.

(R2) Label agnosticism. The extractor ϕψ must support profile generation without labels:

d
′(k)
t := ϕψ

(
x
(k)
t ,0

)
∈ Rp, with p ≤ d, d

′(k)
t ⊆ d

(k)
t
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Figure 3: FEROMA pipeline. In each round t, clients extract distribution profiles (DPE), map them
to previous-round profiles (DPM), and compute weighted aggregation (WA) for local training (LT).

This enables profile extraction and similarity matching at test time. Here, d′(k)t captures the
marginal distributional characteristics based solely on the input features x(k)t .

(R3) Controlled stochasticity. The extractor ϕψ is a stochastic mapping: for a fixed input, the
profile d(k)t = ϕψ(x

(k)
t , y

(k)
t ) is a random variable. Its expectation preserves the distributional

properties, satisfying E[d(k)t ] = ϕ̄(x
(k)
t , y

(k)
t ), with bounded covariance Cov

(
d
(k)
t

)
⪯ ρ2Id.

This controlled stochasticity prevents exact fingerprinting of client distributions across rounds
while maintaining reliable inter-profile distances in expectation.

(R4) Differential-privacy guarantee. The mapping ϕψ satisfies (ε, δ)-differential privacy at the
sample level: for any two datasets (x(k)t , y

(k)
t ), (x

′(k)
t , y

′(k)
t ) that differ in exactly one example

and for every measurable set S ⊆ Rd,

Pr
[
ϕψ(x

(k)
t , y

(k)
t ) ∈ S

]
≤ eε Pr

[
ϕψ(x

′(k)
t , y

′(k)
t ) ∈ S

]
+ δ.

For example, this guarantee can be realized with a Gaussian (or Laplace) mechanism: d(k)t =

ϕ̄(x
(k)
t , y

(k)
t ) +N

(
0, σ2Id

)
, where σ is calibrated to the ℓ2-sensitivity of the profile ϕ̄ψ. The

resulting many-to-one mapping both limits information leakage and obfuscates client identity.
(R5) Compactness. Profile extraction introduces minimal overhead compared to vanilla FL: its

computational cost is negligible relative to a local training epoch, and the profile dimension
d satisfies d≪ |θ| (typically d/|θ| ≤ 10−2), ensuring that the additional communication cost
remains marginal compared to the transmitted model update.

We implemented our DPE using a four-step statistical moment extraction from latent space with
differential privacy. We provide details of the implemented DPE in our FEROMA in Appendix C.4,
which satisfies all five requirements: (R1) with a mapping ϕψ provably Lipschitz-equivalent to the
2-Wasserstein metric, showing ξ < 1.1 on MNIST (and < 0.54 under Jensen–Shannon); (R2) by
consistently providing a label-free subvector d′(k)t that approximates the marginal data distribution;
(R3) with bounded covariance ρ2 =

(
τ2

Mγv(k) + 2b2max

)
≤ 2.2×10−3 depending on a Monte-Carlo

subsampling (M,γ) plus Laplace noise (bmax); (R4) by ensuring (ε, 0)-DP for each profile vector
d
(k)
t with added variance ≤ 2.2×10−5; and (R5) by introducing negligible computation and an

communication cost of d/|θ| ≤ 3.5× 10−3. Full implementation details and theoretical justifications
are in Appendix C.4, with privacy calibration in Appendix E.

3.2 DISTRIBUTION PROFILE MAPPING

The core idea of FEROMA is to decouple model identity from specific clients or clusters, and instead
associate each model with a data distribution characterized by its distribution profile d(k)t . Once
profiles are extracted, we employ two complementary mapping strategies: during training, we enable
model sharing by matching current and past profiles to derive weighted aggregations across clients;
during testing, we extract a label-free profile for each unseen client and assign the closest model from
the final round for direct inference.
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3.2.1 TRAINING DISTRIBUTION MAPPING

After extracting all distribution profiles for the current round t, i.e., {d(k)t }Kt

k=1, we map them to the
last round profiles {d(k)t−1}

Kt−1

k=1 to define the weights for model aggregation and assignment. The
mapping can be done with a normalized distance function:

w
(k,j)
t =

exp
(
−D(d

(k)
t , d

(j)
t−1)

)
∑

j′∈At−1

exp
(
−D(d

(k)
t , d

(j′)
t−1)

) (3)

where D(·, ·) is a chosen distance function (e.g., Euclidean distance), w(k,j)
t the association weight

between current client k and previous-round client j, and At−1 the set of clients active in round t− 1.

Although weakly similar profiles receive small weights, their aggregation can still introduce noise.
To sharpen model selection, a threshold τ can be applied to discard any w(k,j)

t below τ , promoting
aggregation only among sufficiently similar profiles, similar to clustered FL approaches:

w̃
(k,j)
t =

{
w

(k,j)
t if w(k,j)

t ≥ τ

0 otherwise
(4)

After thresholding, the weights w̃(k,j)
t are renormalized to ensure they sum to 1 across j ∈ At−1.

This weight can be combined with weighting based on data size as in FedAvg. More details on the
distance function D(·, ·) and ablation studies on the utility of τ are in Appendices F.6 and F.7.

Automatic aggregation strategy selection. At each training round t, we compute the associa-
tion weights {w(k,j)

t }k∈K, j∈At−1 via equation 3 or the thresholded w̃(k,j)
t version via equation 4,

depending on the desired level of selectivity, and then aggregate as

θ
(k)
t =

∑
j∈At−1

w̄
(k,j)
t · θ(j)t−1 (5)

where w̄(k,j)
t denotes either w(k,j)

t or w̃(k,j)
t . After aggregation, each client proceeds with its local

training step as in equation 1. By inspecting the support of {w̄(k,j)
t }j∈At−1

for each client k at round
t, FEROMA independently and dynamically recovers the most suitable FL aggregation strategy:

• Clustered FL. (d(1)t in Figure 3) If multiple weights w̄(k,j)
t > 0 survive thresholding, the aggregation

for client k aggregates those models trained on similar data distribution, akin to CFL.
• Personalized FL. (d(3)t , d

(4)
t , d

(5)
t , d

(6)
t in Figure 3) If exactly one weight is nonzero, client k simply

inherits that single most similar model, yielding a personalized specialization.
• Global FL fallback. (d(2)t in Figure 3) If no sufficiently similar profile is identified, it falls back to

global aggregation (w̄(k,j)
t ≈1/|At−1|), thus combining all models before the next adaptive round.

3.2.2 TESTING DISTRIBUTION MAPPING

At test time, we aim to assign each unseen client k to the best-matching model learned in the final
training round R based on its feature distribution, without any further optimization. First, we extract
the label-free profile d′(k)test = ϕψ(x

(k)
test ,0), as required by (R2). Then we match d′(k)test against the set of

round-R profiles {d(j)R }j∈AR
by selecting the nearest neighbor in profile space:

j∗ = arg min
j∈AR

D
(
d
′(k)
test, d

′(j)
R

)
, θ

(k)
test = θ

(j∗)
R .

This one-shot assignment requires no gradient steps, leverages the DP-protected distribution profiles,
and naturally generalizes to unseen, unlabeled clients. As discussed in Appendix D, pure label-
free matching cannot inherently capture concept shift with identical X but different Y . However,
for addressing this problem, we show that a small, test-time labeled validation set can seamlessly
refine the associations and substantially improve performance. In addition, by assigning the most
appropriate pre-trained model to each test client, FEROMA enables the integration of unsupervised
test-time adaptation methods by offering a distribution-aware initialization point (see Appendix 5.2).
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4 EXPERIMENTS

This section presents our experimental setup and results from two primary scaling studies. We
evaluate FEROMA under varying drift frequencies, non-IID types, severity levels, and numbers of
clients. These experiments assess the scalability, robustness, and efficiency of FEROMA compared to
10 SOTA baselines across a wide range of real-world heterogeneity scenarios.

4.1 EXPERIMENT SETTINGS

Drifting datasets generation. We employ six publicly available datasets for our experiments:
MNIST (LeCun & Cortes, 2005), Fashion-MNIST (FMNIST) (Xiao et al., 2017), CIFAR-10,
CIFAR-100 (Krizhevsky), and two real-world datasets, CheXpert (Irvin et al., 2019) and Office-
Home (Venkateswara et al., 2017). To construct distribution shift and drift datasets under different
non-IID conditions, we use ANDA, a toolkit supporting operations such as class isolation and label
swapping. For the real-world datasets, we preserve their intrinsic characteristics without modification.
Detailed dataset information is provided in Appendix F.1.

Baseline algorithms. We evaluate our approach against baseline methods summarized in Table 3,
including: FedAvg (McMahan et al., 2017), FedRC (Guo et al., 2024), FedEM (Marfoq et al.,
2021), FeSEM (Long et al., 2023), CFL (Sattler et al., 2021), IFCA (Ghosh et al., 2020), FedDrift
(Jothimurugesan et al., 2023), pFedMe (T. Dinh et al., 2020), APFL (Deng et al., 2020b), and ATP
(Bao et al., 2023). The baseline methods are detailed further in Appendix A. The experimental
environment, models, and hyperparameter configurations are described in Appendices C.2 and C.3.

4.2 RESULTS

Dataset MNIST FMNIST CIFAR-10 CIFAR-100 CheXpert Office-Home

FedAvg 71.8 ± 5.5 63.7 ± 6.4 33.0 ± 5.3 28.2 ± 4.7 59.1 ± 3.0 41.0 ± 1.3
FedRC 30.9 ± 6.9 45.1 ± 6.9 23.2 ± 4.5 30.6 ± 4.2 55.1 ± 1.9 14.6 ± 3.5
FedEM 30.7 ± 7.0 46.1 ± 7.0 23.0 ± 4.8 31.7 ± 3.6 53.3 ± 2.2 15.5 ± 2.9
FeSEM 69.6 ± 5.7 59.0 ± 5.6 31.1 ± 4.8 26.2 ± 3.7 61.0 ± 1.9 33.8 ± 0.9
CFL 76.6 ± 3.9 65.6 ± 4.8 33.9 ± 4.7 28.9 ± 3.5 62.3 ± 2.2 34.8 ± 1.0
IFCA 44.1 ± 9.9 36.9 ± 9.2 27.4 ± 4.7 15.7 ± 4.6 52.8 ± 2.8 33.5 ± 4.5
pFedMe 53.2 ± 7.4 43.6 ± 6.8 24.2 ± 4.1 15.8 ± 2.2 58.2 ± 1.1 34.6 ± 1.6
APFL 70.0 ± 5.8 56.9 ± 5.8 31.4 ± 4.5 29.7 ± 3.1 54.4 ± 0.9 39.4 ± 2.2
FedDrift 57.0 ± 7.7 47.6 ± 7.2 29.2 ± 4.9 20.2 ± 3.5 72.3 ± 0.8 42.1 ± 2.4
ATP 72.1 ± 10.5 61.1 ± 12.1 28.7 ± 5.1 16.7 ± 3.8 N/A 40.8 ± 4.3

FEROMA 90.7 ± 1.8 79.9 ± 2.8 44.2 ± 3.8 39.9 ± 2.5 72.4 ± 0.6 42.4 ± 1.4

Table 1: Mean accuracy and standard deviation across dif-
ferent datasets, comparing FEROMA and baselines under
varying drifting frequency, non-IID types and levels.

Scaling the drifting frequency, non-
IID types, and non-IID levels. We
first evaluate the robustness of FER-
OMA by comparing it against baseline
methods across three drift frequencies:
each client’s dataset drifts every four
rounds, every two rounds, and at every
round. Additionally, we simulate four
types of distribution shifts—P (X),
P (Y ), P (Y |X), and P (X|Y )—each
under three levels of non-IID severity:
low, medium, and high. This setup
enables us to thoroughly assess the
adaptability of FEROMA in highly dy-
namic and heterogeneous FL environ-
ments. Detailed experimental setups
and results are provided in Appendices F.2 and F.4, and summarized in Table 1.

Table 1 shows that FEROMA consistently outperforms all baselines across six benchmark datasets.
Notably, FEROMA improves accuracy by up to 14.1, 14.3, and 10.3 percentage points (pp) over
the best-performing baseline CFL on MNIST, FMNIST, and CIFAR-10, respectively. On CIFAR-
100, it achieves an accuracy of 39.9%, surpassing FedEM by 8.2 pp. On the real-world datasets
CheXpert and Office-Home, FEROMA demonstrates consistent robustness, exceeding the strongest
baselines while maintaining lower variance. Table 2 further shows that FEROMA remains robust
under varying scales of distribution shift and drift (see Appendix F.2 for detailed results of additional
benchmarks). These improvements are achieved under realistic FL conditions with no prior knowledge
of distribution modes or test-time labels. While baselines are often specialized for either shift or drift,
FEROMA adapts to both with significantly lower variance. The results underscore the effectiveness of
distribution-profile-based aggregation and highlight FEROMA as a generalizable solution for dynamic
non-IID FL conditions.

Scaling the number of clients. In real-world FL deployments, the number of participating clients can
be large, requiring FL methods to remain scalable with minimal computational and communication
overhead—even under highly dynamic conditions. To evaluate scalability, we assess the performance

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Non-IID Level Low Medium High
# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20
FedAvg 72.1 ± 8.0 76.5 ± 4.7 79.3 ± 2.6 71.5 ± 4.2 73.6 ± 5.3 75.8 ± 2.6 63.5 ± 6.6 65.1 ± 6.6 68.6 ± 6.5
FedRC 40.5 ± 9.7 41.4 ± 7.3 44.8 ± 9.7 23.8 ± 4.2 26.6 ± 6.6 28.3 ± 4.1 21.1 ± 7.0 22.9 ± 7.2 28.6 ± 2.4
FedEM 40.3 ± 11.2 43.2 ± 7.3 44.5 ± 10.5 21.7 ± 4.8 25.8 ± 5.2 28.7 ± 5.1 20.2 ± 4.9 23.7 ± 6.2 28.4 ± 3.5
FeSEM 72.4 ± 5.7 75.8 ± 4.0 77.8 ± 3.8 69.6 ± 6.0 71.5 ± 3.6 72.0 ± 8.7 60.2 ± 6.2 61.6 ± 6.8 65.4 ± 4.3
CFL 79.1 ± 4.3 78.1 ± 4.0 82.5 ± 3.0 76.6 ± 4.8 78.3 ± 3.6 78.1 ± 3.9 69.5 ± 4.4 72.4 ± 3.7 74.5 ± 2.9
IFCA 51.0 ± 9.9 52.9 ± 10.9 51.1 ± 13.0 46.1 ± 12.1 45.3 ± 8.7 40.5 ± 4.4 40.6 ± 9.8 35.8 ± 8.4 33.4 ± 8.8
pFedMe 54.9 ± 7.3 59.3 ± 7.0 58.5 ± 9.9 53.3 ± 9.0 54.3 ± 7.2 53.6 ± 5.0 47.3 ± 5.2 47.8 ± 6.2 49.9 ± 8.4
APFL 69.0 ± 6.4 72.4 ± 4.7 76.1 ± 7.2 70.0 ± 7.4 71.8 ± 5.6 71.9 ± 4.4 64.5 ± 4.2 64.8 ± 5.3 69.3 ± 6.0
FedDrift 58.8 ± 9.0 63.1 ± 6.4 58.4 ± 11.1 58.1 ± 9.0 60.8 ± 7.8 56.6 ± 6.0 52.3 ± 6.0 52.7 ± 6.8 52.5 ± 5.5
ATP 70.8 ± 12.8 78.5 ± 10.7 83.9 ± 6.5 65.8 ± 14.2 77.6 ± 5.3 78.0 ± 8.7 59.1 ± 12.8 65.1 ± 11.5 70.4 ± 8.4

FEROMA 90.6 ± 2.9 91.4 ± 1.0 92.1 ± 1.1 90.0 ± 2.7 90.6 ± 1.8 91.0 ± 1.8 90.2 ± 1.2 89.8 ± 1.6 90.8 ± 0.8

Table 2: Performance comparison across three non-IID levels and three drifting levels of all non-IID
types on the MNIST dataset. 5 / 20, 10 / 20, 20 / 20: Drifting 5 / 10 / 20 times in overall 20 rounds.

of FEROMA and baseline methods with MNIST as the number of clients increases from 10 to 20,
50, and 100. Notably, FedDrift could not be evaluated with 50 or 100 clients due to excessive
computational requirements (see Appendix C.2 for details). A summary of the results is presented in
Figure 4, with detailed experimental setup and results provided in Appendix F.3.
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Figure 4: Performance comparison across varying numbers
of clients. Left: Mean accuracy and standard deviation.
Right: Training time per 20 rounds.

Despite the increased data heterogene-
ity and reduced data size introduced
by scaling up the client number, Fig-
ure 4 shows that FEROMA consistently
achieves the highest accuracy across all
settings—exceeding 90% with even 50
clients, and maintaining over 85% accu-
racy with 100 clients. It outperforms the
best baseline CFL by more than 10 pp at
the largest scale. In addition to accuracy,
FEROMA demonstrates strong compu-
tational and communication efficiency,
with training times comparable to Fe-
dAvg. In contrast, most other baselines
experience a sharp increase in runtime
as the number of clients grows. This ef-
ficiency is attributed to the lightweight

nature of distribution profiles which introduce minimal overhead throughout the training process. The
results underscore the robustness and scalability of FEROMA in large-scale, dynamic FL scenarios.

5 DISCUSSION

5.1 RELATED WORKS

FEROMA relates to three major lines of work in FL designed to address data heterogeneity: CFL, PFL,
and TTA-FL. CFL methods (Sattler et al., 2021; Guo et al., 2024; Jothimurugesan et al., 2023; Ghosh
et al., 2020; Marfoq et al., 2021; Long et al., 2023) group clients with similar data distributions and
aggregate models accordingly. While effective under distribution shift, they typically assume a fixed
number of clusters (Guo et al., 2024; Ghosh et al., 2020), require computationally intensive cluster
procedures, and involve transmitting or maintaining multiple models per client (Jothimurugesan
et al., 2023), limiting scalability. In contrast, FEROMA avoids explicit clustering by leveraging
continuous distribution profiles for soft, data-driven association. PFL methods (Deng et al., 2020b;
T. Dinh et al., 2020; Tan et al., 2023a; Kulkarni et al., 2020; Zhang et al., 2020a; Marfoq et al., 2022)
personalize models to each client’s local distribution, improving performance when sufficient local
data is available. However, they incur higher computation and storage costs on the client side and lack
mechanisms for model assignment in cold-start or test-time scenarios. FEROMA achieves a similar
personalization effect when required, by matching profiles without per-client optimization, and with
significantly lower system overhead. TTA-FL methods (Bao et al., 2023; Deng et al., 2020a; Wang
et al., 2019; Liang et al., 2025; Rajib et al.) are designed to handle test-time drift via online adaptation,
which requires additional client interaction or retraining. FEROMA, by contrast, supports test-time
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Algorithm Cat. D. shift D. drift T. adapt. Low comm. Low comp. (Server) Low comp. (Client) Scalability

FedAvg N/A ✓ ✓ ✓ ✓
FedRC CFL ✓ ✓ ⃝
FedEM CFL ✓ ✓ ⃝
FeSEM CFL ✓ ✓ ✓
CFL CFL ✓ ✓ ✓
IFCA CFL ✓ ✓ ⃝
pFedMe PFL ✓ ✓ ✓ ⃝ ✓
APFL PFL ✓ ✓ ✓ ✓
FedDrift CFL ✓ ✓ ✓
ATP TTA-FL ✓ ✓ ✓ ⃝ ✓
FEROMA N/A ✓ ✓ ✓ ✓ ✓ ✓ ✓

Table 3: Qualitative comparison among FEROMA and baselines. Cat.: FL category. D. shift/drift:
Designed to tackle distribution shift/drift. T. adapt.: Designed to adapt test time distribution. Low
comm.: Low communication cost (comparable to FedAvg). Low comp. (Server/Client): Low
computational cost on server/client side (comparable to FedAvg). Scalability: Scales efficiently to
large client number. CFL: Clustered FL. PFL: Pensonalized FL. TTA-FL: Test time adaptive FL. ✓:
Property satisfied. ⃝: Property conditionally satisfied.

adaptation by matching profiles to observed ones, requiring no further updates or communication.
We summarize the qualitative comparison in Table 3 and provide more details in Appendix A.

5.2 LIMITATIONS AND FUTURE WORKS

Extractor dependence. While prior works represent client distributions using model parameters,
gradients, or training metrics—which exhibit intrinsic limitations (see Appendix A)—the effectiveness
of FEROMA similarly depends on the quality of its DPE, which must generate reliable representations
of client data distributions. In our implementation, the DPE relies on a few-round pretrained model
to embed sampled data into a latent space. This approach may be limited in two scenarios: (1) if the
model is undertrained—e.g., due to a difficult task or limited data—the resulting latent space may not
adequately reflect the underlying distribution; (2) if the model is overly simplistic or overly complex,
the extracted representations may be uninformative or unstable. In both cases, suboptimal profiles
may impair the accuracy of distribution mapping and reduce the overall robustness of FEROMA.

Unseen Distributions. FEROMA associates models with training-time data distributions, but it does
not explicitly address two challenging scenarios: (1) distributions that were seen during training but
are absent in the final round, and thus not retained; and (2) entirely unseen distributions at test time.
(See Appendix B for further discussion) However, FEROMA demonstrates strong generalization, as
it assigns the most relevant model based on profile similarity—even for distributions not directly
observed during training. Moreover, the models associated with final-round profiles offer strong
initialization for downstream personalization or unsupervised adaptation. Unlike methods that begin
personalization from a generic global model, FEROMA provides a well-trained, distribution-aware
starting point. Future work could periodically checkpoint model in sparsely populated regions of the
descriptor space, ensuring that rare or transient distributions are retained for test deployment.

6 CONCLUSIONS

In this work, we proposed FEROMA, an FL framework that explicitly addresses both distribution shift
and drift across all four major types of data heterogeneity. By leveraging lightweight, differentially
private distribution profiles to represent client data, FEROMA enables adaptive model aggregation
based on distributional similarity without relying on any prior knowledge. This profile-based design
supports both training and test-time adaptation, allowing FEROMA to generalize across dynamic client
populations and unseen distributions, without requiring retraining or personalization from scratch.
Through extensive experiments, we demonstrated that FEROMA consistently improves robustness and
performance across a wide range of non-IID scenarios, with minimal overhead. Unlike prior methods
that specialize in clustered, personalized, or adaptive FL, FEROMA unifies these strategies under
a single framework—scalable, adaptable, and suitable for real-world heterogeneous deployments.
This work lays the foundation for distribution-driven FL, and opens new directions for profile-based
personalization, distribution tracking, and generalization to unseen client data in future systems.
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A RELATED APPROACHES TO DISTRIBUTION SHIFT AND DRIFT IN
FEDERATED LEARNING

A rich body of research has emerged to mitigate data heterogeneity in FL. Existing approaches can
be broadly grouped into three categories: clustered FL (CFL), personalised FL (PFL), or test-time
adaptive FL (TTA-FL). Below we summarise their core ideas and limitations and contrast them with
FEROMA.

Clustered Federated Learning (CFL) CFL assumes that the federation comprises M data distri-
butions and aims to learn one model per distribution. Two variations are common:

• Hard-CFL. Each client is assigned to exactly one cluster cm ⊆ K based on predefined criteria or
similarity measures, such that clusters are disjoint and collectively exhaustive:

⋃M
m=1 cm = K

and cm ∩ cn = ∅ for all m ̸= n. In principle, each cluster cm contains a distinct subset of clients
with similar data distributions, enabling the training of specialized models. Algorithms typically
alternate between updating cluster models and re-assigning clients, using clustering on model
parameters (Sattler et al., 2021; Gong et al., 2024) or performance-based metrics (Ghosh et al.,
2020; Jothimurugesan et al., 2023; Morafah et al., 2023; Cai et al., 2023). Hard assignments
simplify optimisation but struggle when distributions overlap, and they generally require prior
knowledge of the number of clusters M—which is generally unavailable in practice.

• Soft-CFL. This approach allows clients to belong to multiple clusters with certain probabilities,
accommodating scenarios where client data may exhibit overlapping distributions. Accordingly,
each client holds a probability vector π(k) ∈ RM and trains an ensemble of M models; examples
include FedEM (Marfoq et al., 2021) and FedRC (Guo et al., 2024). The joint optimisation of
{π(k)}Kk=1 and model parameters {θm}Mm=1 is typically tackled via Expectation–Maximization
or alternating minimisation (Zhou et al., 2011), which incurs additional communication and may
suffer from convergence issues. Soft-CFL also requires per-client labeled data to estimate π(k),
making cold-start and unseen-client scenarios problematic.

Personalized Federated Learning (PFL). PFL reframes FL as a client-centric optimization
problem, where each client k learns its own personalized model f (k) that minimizes its local loss.
This approach explicitly addresses the presence of heterogeneous non-IID data distributions across
clients, rather than enforcing a single global model for all participants. Broadly, PFL methods fall
into three classes:

• Fine-tuning. A global model is first trained and then locally adapted through additional gradient
steps or meta-learning techniques to simplify personalization (Chen et al., 2019; Fallah et al.,
2020; Jiang et al., 2023). While simple, fine-tuning requires careful hyperparameter selection (e.g.
learning rates, number of steps) and sufficient per-client data to avoid overfitting.

• Model decoupling. The network is partitioned into shared (global) and private (local) components.
A common strategy is to jointly train a shared backbone while equipping it with separate global and
personalized heads (Arivazhagan et al., 2019; Deng et al., 2020b; Collins et al., 2021; Jiang & Lin,
2022; Marfoq et al., 2022). Others personalize only batch-norm statistics (Li et al., 2021b) or allow
heterogeneous encoder architectures (Diao et al., 2020). These approaches improve representational
capacity at the cost of increased on-device model size and computation.

• Regularization-based. These methods introduce a regularization term to balance local and global
objectives. For example, a popular strategy is to augment each client’s loss with a penalty that
ties the personalized model ϕ(k) to the global model θ: minϕ(k) L(k)

(
ϕ(k)

)
+ λ

2

∥∥ϕ(k) − θ
∥∥2,

where λ balances local versus global objectives (Fallah et al., 2020; Li et al., 2021a). Such bi-level
formulations yield smooth personalization but introduce per-client hyperparameters, and nested
optimization loops.

Despite their effectiveness when large amount of labeled data are available, PFL methods degrade
with limited local samples, incur additional client-side compute and memory costs, and—being
inherently supervised—are ill-suited for unseen, unlabeled clients or dynamic distribution drift at test
time.

Test-time adaptive federated learning (TTA-FL). TTA-FL addresses post-deployment distribution
shift: after global training has concluded, each client adapts the received model to its own (unlabeled)
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test data. Most methods rely on unsupervised objectives such as entropy minimisation (Jiang & Lin,
2022; Bao et al., 2023; Rajib et al.) or self-supervised contrastive losses (Tan et al., 2023b; Chen
et al., 2022; Liang et al., 2025). Since gradients must be estimated without labels, the optimization
landscape is often ill-conditioned (e.g., in the presence of concept shift): entropy minimization can
drive the model toward over-confident but incorrect predictions, while contrastive objectives may
collapse when test batches are small or unbalanced—a common situation in on-device FL. To mitigate
this instability, recent works restrict adaptation to a few parameters (e.g., batch-norm statistics or a
single gating weight that interpolates between global and personalized heads (Jiang & Lin, 2022)).
However, these approaches still require labeled data during training to learn the personalized head,
making them unsuitable for unseen and unlabeled clients at test time.

Contrast with FEROMA. While PFL, CFL, and TTA-FL each address aspects of client heterogene-
ity, FEROMA unifies their strengths in a lightweight, privacy-preserving framework:

• vs. PFL. Instead of learning a separate model ϕ(k) for each client—incurring per-client hyperpa-
rameters, inner-loop optimization, and fine-tuning overhead (Arivazhagan et al., 2019; Deng et al.,
2020b)—FEROMA optimizes a single model per observed distribution. Each client then receives its
best-matching distribution slice based on a DP-protected profile, eliminating the need for client-
specific adaptation or supervision. In doing so, FEROMA shifts the objective from client-centric to
distribution-centric optimization.

• vs. CFL. Unlike hard- or soft-CFL methods that assume M disjoint distributions known a priori
(Guo et al., 2024; Jothimurugesan et al., 2023; Ghosh et al., 2020; Marfoq et al., 2021; Long
et al., 2023), FEROMA imposes no such assumptions. Its distribution profiles adapt continuously
to overlapping or drifting distributions and naturally support unseen clients via the label-agnostic
component (R2). Moreover, FEROMA avoids the need to train multiple models per client or transmit
multiple updates per round, thereby reducing both computation and communication costs compared
to CFL approaches (see Table 3).

• vs. TTA-FL. Rather than relying on costly and unstable unsupervised fine-tuning at test time (e.g.,
entropy or contrastive minimisation (Jiang & Lin, 2022; Chen et al., 2022)), FEROMA performs a
one-shot profile extraction followed by nearest-distribution association. This eliminates the risk
of overconfident predictions or collapsed representations, incurs negligible overhead (R5), and
generalizes seamlessly to unseen, unlabeled clients.

B DISCUSSION: HANDLING SEEN-ONCE OR UNSEEN DISTRIBUTIONS

As illustrated in Figure 5 and Figure 6, there are two drifting scenarios that FEROMA does not
explicitly target: (1) Seen-once distributions, which appear during intermediate training rounds but
are absent in the final round; and (2) Unseen distributions, which never occur during training but
appear during testing. These two conditions may also coexist.

While FEROMA retains only final-round profiles and models by default, it can be extended to address
both cases effectively. For seen-once distributions, the server can optionally store their corresponding
profiles and models during training, provided they yield acceptable validation performance. This
enables FEROMA to retain models for all distributions encountered during training, not just those
from the final round. For entirely unseen distributions, which are fundamentally unpredictable,
FEROMA still assigns the closest available model based on distribution profile similarity. Unlike
standard baselines (e.g., FedAvg) that rely on a single global model, FEROMA selects from a diverse
set of models trained on different distributional modes. This leads to better initial performance and
provides a stronger starting point for downstream personalization or test-time adaptation. In this
sense, FEROMA complements and can be naturally integrated with test-time adaptive FL methods to
further improve robustness in dynamic environments.

Empirical validation. Importantly, both seen-once and unseen distribution scenarios are inherently
present in our experimental setup. Our dynamic FL experiments with varying drift frequencies (every
2-4 rounds) naturally create seen-once distributions as client data evolves over time. Similarly, our
test-time evaluation on cold-start and test-only clients directly evaluates performance on unseen distri-
butions. The consistent performance gains of FEROMA across all experimental conditions—achieving
up to 12 percentage points improvement over baselines—demonstrate that our framework effectively
handles these challenging scenarios in practice. This empirical evidence validates that distribution-
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profile-based model selection provides robust generalization even when exact distributional matches
are unavailable.

Figure 5: Seen-once distribution in training stage.

Figure 6: Unseen distribution in testing stage.

C IMPLEMENTATION DETAILS

C.1 ALGORITHM PSEUDO-CODE

We provide the pseudo-code for the training phase (Algorithm 1) and inference phase (Algorithm 2)
of the proposed FEROMA framework. Both algorithms detail the server-side and client-side operations
involved at each round. During training, FEROMA extracts distribution profiles from client data, maps
them to previous-round profiles, and assigns models accordingly for local updates (Line 6 and 11 in
Algorithm 1). During inference, FEROMA matches test clients to the closest available model based
on distribution profile similarity, without requiring retraining (Line 9 in Algorithm 2).

C.2 CODE, LICENSES AND HARDWARE

Our experiments were implemented using Python 3.12 and open-source libraries including Scikit-
learn 1.5 (Pedregosa et al., 2011) (BSD license), Flower 1.11 (Beutel et al., 2022) (Apache License),
and PyTorch 2.4 (Paszke et al., 2019) (BSD license). For visualization, we use Matplotlib 3.9 (Hunter,
2007) (BSD license) and Seaborn 0.13 (Waskom, 2021) (BSD license), For data processing, we use
Pandas 2.2 (Wes McKinney, 2010) (BSD license). The datasets used in our experiments—MNIST
(GNU license), FMNIST (MIT license), CIFAR-10, CIFAR-100, CheXpert (Irvin et al., 2019), and
Office-Home—are freely available online. To ensure reproducibility, our code, along with detailed
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Algorithm 1 The FEROMA Framework - Training Phase

Require: initial set of clients K0 = {1, 2, . . . ,K0},A0 = K0, initial global models {θ(k)0 }k∈K1 , initial
profiles {d(k)0 }k∈K1 , number of rounds R, DPE ϕψ , distance function D(·, ·).

1: for t = 1 to R do
2: // Server-side
3: Kt ← UPDATECLIENTPOOL(Kt−1) {# Update set of available clients}
4: At ← CLIENTSELECT(Kt) {# Sample clients for training round}
5: // Client-side
6: for each client k ∈ At in parallel do
7: d

(k)
t ← ϕψ(x

(k)
t , y

(k)
t ) {# Def. 3.1}

8: Send d
(k)
t to the server

9: end for
10: // Server-side
11: for each client k ∈ At do
12: {w̄(k,j)

t }j∈At−1 ← PROFILEMAP(d(k)t , {d(j)t−1}j∈At−1 ) {# Eq. equation 3/equation 4}
13: θ

(k)
t =

∑
j∈At−1

pk · w̄(k,j)
t · θ(j)t−1 {# Eq. equation 5}

14: Send θ
(k)
t to client k

15: end for
16: // Client-side
17: for each client k ∈ At in parallel do
18: θ(k) ← θ

(k)
t

19: θ(k) ← LOCALUPDATE(θ(k), x(k), y(k))

20: Send θ(k) to the server
21: end for
22: end for

Algorithm 2 The FEROMA Algorithm - Inference Phase

Require: set of test clients Ktest = {1, 2, . . . ,Ktest}, last-round client participation AR, last-round models
{θ(k)R }k∈AR with profiles {d(k)R }k∈AR , DPE ϕψ , distance function D(·, ·).

1: // Client-side
2: for each client k ∈ Ktest in parallel do
3: d

′(k)
test ← ϕψ(x

(k)
test ,0) {# (R2)}

4: Send d
′(k)
test to the server

5: end for
6: // Server-side
7: {d′(j)R }j∈AR ← GETPRIME({d(j)R }j∈AR )
8: for each client k ∈ Ktest do
9: {w̄(k,j)

test }j∈AR ← PROFILEMAP(d′(k)test , {d
′(j)
R }j∈AR ) {# Eq. equation 3}

10: j∗ ← argmaxj∈AR w̄
(k,j)
test

11: θ
(k)
test ← θ

(j∗)
R {# Best-matching model}

12: Send θ
(k)
test to client k

13: end for
14: // Client-side
15: for each client k ∈ Ktest in parallel do
16: θ(k) ← θ

(k)
test

17: ŷ(k) = f(x
(k)
test ; θ

(k))
18: end for

instructions for reproducing the experiments, is publicly accessible on GitHub1 under the MIT license.
We implement publicly available codes for our baselines (except FedAvg). All experiments were
conducted on a workstation equipped with four NVIDIA RTX A6000 GPUs (48 GB each), two AMD
EPYC 7513 32-Core processors, and 512 GB of RAM.

1https://github.com/
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C.3 MODELS AND HYPER-PARAMETER SETTINGS

We employ a 5-fold cross-validation strategy to evaluate the model’s performance, using random
seeds (from 42 to 46) for all experiments to ensure reproducibility. For datasets MNIST, FMNIST,
and CIFAR-10, we use the LeNet-5 (Lecun et al., 1998) as the base model. For datasets CIFAR-100,
CheXpert and Office-Home, we use the ResNet-9 (He et al., 2016) as the base model. Specifically,
we use CheXpert-v1.0-small, a subset from CheXpert, and use the first 120,000 samples for our
experiments. We train the model with a batch size of 64 for both training and testing. Each client
allocated 20% of their local data for evaluation. The Federated Learning process is conducted over
20 communication rounds, with each client performing 2 local epochs per round. The learning rate is
set to 0.005, and a momentum value of 0.9 is applied to optimize the training process.

C.4 DISTRIBUTION PROFILE EXTRACTION

This section details the implementation of the distribution profile extractor (DPE) ϕ, which is used
to capture the local data distribution of each client in a privacy-preserving yet consistent manner
across the federation. In addition, we provide a requirement-by-requirement justification that it fulfills
Definition 3.1.

C.4.1 DPE IMPLEMENTATION.

Let the last hidden layer of the global model produce, for client k in round t, a matrix of latent
vectors h(k)t ∈ Rv(k)×z . Our extractor maps these latents to a d-dimensional profile d(k)t in four
privacy-preserving steps:

S1 Global alignment (one shot, no raw data). Each client computes the element-wise minimum and
maximum of its latents and sends only the two z-dimensional vectors (2z floats) to the server.
The server aggregates by coordinate-wise minimum and maximum, obtaining global bounds
[m−,m+], and broadcasts these bounds together with the current model weights. No gradients,
labels, or raw examples leave the devices.

S2 Shared PCA on synthetic reference points. Using an agreed-upon random seed, every client
draws 200 points uniformly in the range [m−,m+] and fits a PCA map g : Rz → Rl (with
l = 10) on this synthetic dataset only. Because both the seed and the data are identical, the
resulting linear projector g is the same on every client, ensuring that Euclidean geometry in the
reduced space is comparable across the federation.

S3 Monte-Carlo moment computation. Each client projects its latents z(k)t = g
(
h
(k)
t

)
∈ Rv(k)×l

and draws M = 3 independent Bernoulli(γ = 0.5) masks (see subsection F.5 for the ablation
study on M ). For each mask m, it computes (µ(k,m)

x ,Σ
(k,m)
x ) and

{
(µ

(k,m)
u ,Σ

(k,m)
u )

}U
u=1

,

then averages over m to obtain (µ
(k)
x ,Σ

(k)
x ) and

{
(µ

(k)
u ,Σ

(k)
u )

}U
u=1

. Here, µ(k)
x ,Σ

(k)
x are the

mean and covariance of the reduced latents (approximating the marginal P (X) of client data),
and (µ

(k)
u ,Σ

(k)
u ) are the corresponding class-conditional moments (approximating P (Y |X)).

These averaged moments can be written coordinate-wise as gi
(
x
(k)
t , y

(k)
t

)
= 1

M

∑M
m=1 g

(m)
i ,

where each g(m)
i is an unbiased estimate of the full-sample statistic. Under sub-Gaussianity

with proxy variance τ2, the variance of this estimator is bounded by τ2/(Mγv(k)) (see C.4.4
for derivation).

S4 Differential-privacy sanitisation & profile assembly. The concatenated statistics are each per-
turbed with an independent Laplace mechanism (δ = 0) (Dwork et al., 2006):

ηi
iid∼ Laplace

(
0, bi

)
, bi = ∆1,i/ε,

where ∆1,i is the ℓ1-sensitivity of statistic gi. For a mean or standard-deviation coordinate we
conservatively bound ∆1,i ≤ Range(gi)

v(k) . The released profile is therefore

d
(k)
t = [ g1, . . . , gd ]

⊤ + η, η ∼ Laplace
(
0,diag(b1, . . . , bd)

)
.

Across the pipeline, the only raw, example-level information ever transmitted is the 2z-float
(i.e., min/max pair from S1), ensuring compliance with FL privacy constraints. Moreover, with
ε = 10.0 and typical v(k) > 300 and Range(gi) < 10, the worst-case variance 2b2i ≤ 2.2×10−5

is negligible relative to inherent data variability, yet it guarantees (ε, 0)-DP at the profile level.
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C.4.2 DISTRIBUTION FIDELITY (R1)

To meet the distribution fidelity requirement (R1), we design our DPE so that Euclidean distances
in the profile space provably track the 2-Wasserstein distance W2 between client data distributions.
After aligning all clients with a globally consistent, privacy-preserving PCA (see Paragraph C.4.1),
each profile concatenates the first two moments of (i) the marginal latent distribution P (X) and (ii)
the class-conditional latents {P (X |Y = u)}Uu=1.

Consider the following assumptions:

(A1) (Latent Gaussianity) Each latent distribution can be approximated by a Gaussian: Pi ≈
N (µi,Σi). This is a standard assumption for deep features.

(A2) (Spectral bounds) There exist constants 0 < λmin ≤ λmax <∞ such that the spectra of all
covariances lie in [λmin, λmax]. This is enforced in our case by Step S1 of the DPE, which
ensures that all latent representations lie within a global bounding box [m−,m+].

(A3) (Approximate commutation) Post-PCA, the covariances are (close to) diagonal; we use
commutation to obtain tight identities and can otherwise rely on standard operator bounds.

We can define the following proposition for marginals, which then extends to class-conditionals.
Proposition 1 (Lipschitz-equivalence toW2 for marginals). Define the profile distance for two clients
as

∆2 = ∥µ1 − µ2∥22 + ∥Σ1 − Σ2∥2F . (1)
If (A1)–(A3) hold, then for constants

c− = min{1, (2
√
λmax)

−1}, c+ = max{1, (2
√
λmin)

−1},
we have the two-sided bound

c2− ∆2 ≤ W 2
2

(
N (µ1,Σ1),N (µ2,Σ2)

)
≤ c2+ ∆2.

Consequently W2 and ∆ are Lipschitz-equivalent on the set of admissible covariances.

Proof. For notational simplicity, we write each client’s marginal profile as d(k) = [µk, vec(Σk)].
Then the squared ℓ2 distance between two client profiles is

∥d(1) − d(2)∥22 = ∥µ1 − µ2∥22 + ∥vec(Σ1 − Σ2)∥22.
For any matrix A, ∥vec(A)∥22 = ∥A∥2F . With A = Σ1 − Σ2, we obtain Appendix equation 1:

∆2 = ∥d(1) − d(2)∥22 = ∥µ1 − µ2∥22 + ∥Σ1 − Σ2∥2F .
For Gaussians, W 2

2 = ∥µ1 − µ2∥22 + B2(Σ1,Σ2), where B2(Σ1,Σ2) = Tr
(
Σ1 + Σ2 −

2(Σ
1/2
1 Σ2Σ

1/2
1 )1/2

)
is the squared Bures distance (Villani et al., 2008). The mean terms coincide; it

remains to compare B to ∥Σ1 − Σ2∥F .

Under (A3) (covariances commute Σ1Σ2 = Σ2Σ1—e.g., are diagonal in the shared PCA basis),

Σ
1/2
1 Σ2Σ

1/2
1 = Σ

1/2
1 Σ

1/2
2 Σ

1/2
2 Σ

1/2
1 =

(
Σ

1/2
1 Σ

1/2
2

)2 ⇒
(
Σ

1/2
1 Σ2Σ

1/2
1

)1/2
= Σ

1/2
1 Σ

1/2
2 .

Plugging this into the Bures formula:

B2(Σ1,Σ2) = Tr(Σ1)+Tr(Σ2)−2Tr
((

Σ
1/2
1 Σ2Σ

1/2
1

)1/2)
= Tr(Σ1)+Tr(Σ2)−2Tr(Σ

1/2
1 Σ

1/2
2 ).

Using the identity for the squared Frobenius norm of the difference between two symmetric matrices:∥∥Σ1/2
1 −Σ

1/2
2

∥∥2
F
= Tr(Σ1) +Tr(Σ2)− 2Tr(Σ

1/2
1 Σ

1/2
2 ) ⇒ B2(Σ1,Σ2) =

∥∥Σ1/2
1 −Σ

1/2
2

∥∥2
F
.

By the mean value theorem for f(x) =
√
x on [λmin, λmax], applied entrywise,

1

2
√
λmax

∥Σ1 − Σ2∥F ≤ B(Σ1,Σ2) ≤ 1

2
√
λmin

∥Σ1 − Σ2∥F .

Let a = ∥µ1 − µ2∥22, b = ∥Σ1 − Σ2∥2F , and k ∈ [kmin, kmax] with kmin = 1/(4λmax), kmax =
1/(4λmin). Then

min{1, k}(a+ b) ≤ a+ kb ≤ max{1, k}(a+ b),

which yields c2− ∆2 ≤W 2
2 ≤ c2+ ∆2 with the stated c− and c+.
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Non-IID Level Max Min Mean Std

low 1.060 0.194 0.526 0.106
medium 1.028 0.159 0.479 0.113
high 1.016 0.136 0.458 0.108

((a)) 2-Wasserstein

Non-IID Level Max Min Mean Std

low 0.477 0.030 0.288 0.074
medium 0.517 0.009 0.332 0.084
high 0.535 0.007 0.352 0.078

((b)) Jensen–Shannon

Table 4: Absolute error δ between profile distance and the true inter-client distance under three
non-IID Levels on MNIST under P (Y |X) concept shift.

Empirical validation. We validate this guarantee on 44 850 client–round pairs generated from
MNIST under three levels of non-IID concept shift that perturb P (Y | X) (low, medium, high;
see Appendix F.1 for the protocol). Table 4 reports the absolute error δ = |∥d(k1)t1 − d

(k2)
t2 ∥2 −

D
(
P (x

(k1)
t1 , y

(k1)
t1 ), P (x

(k2)
t2 , y

(k2)
t2 )

)
|. For the target 2-Wasserstein metric, the worst-case error never

exceeds 1.1, with a mean of 0.49± 0.11. We also compute the gap w.r.t. the Jensen–Shannon (JS)
distance to demonstrate robustness to the choice of D; the maximum JS error is < 0.54 and the mean
is 0.32 ± 0.08. These results confirm that our extractor satisfies (R1) with ξ < 1.1 across a broad
spectrum of distribution shifts while preserving local-data privacy.

C.4.3 LABEL AGNOSTICISM (R2)

In a deployed FL system the clients encountered at test-time rarely possess reliable labels. Require-
ment (R2) therefore asks for a sub-vector of every profile that can be computed with features only.
Our implementation already provides such a component:

• Training phase. Step S3 produces both the marginal moments (µ(k)
x ,Σ

(k)
x ) and the class-conditional

moments {(µ(k)
u ,Σ

(k)
u )}Uu=1. The resulting profile splits naturally into

d
(k)
t =

[
µ(k)
x ,Σ(k)

x︸ ︷︷ ︸
d
′(k)
t ∈ Rp

, µ
(k)
1 ,Σ

(k)
1 , . . . , µ

(k)
U ,Σ

(k)
U︸ ︷︷ ︸

d
′′(k)
t ∈ Rd−p

]
.

• Test phase (labels unavailable). The client repeats S1–S2 unchanged, then executes the label-free
part of S3, yielding only (µ

(k)
x ,Σ

(k)
x ). Reasonably, the conditional distribution P (Y |X) cannot be

approximated at test time in the absence of labels. These statistics form the sub-vector d′(k)t :=

ϕψ
(
x
(k)
t ,0

)
∈ Rp, fully satisfying the formal condition in the main text. Step S4 applies the

same Laplace mechanism coordinate-wise, so d′(k)t enjoys the same (ε, δ=0) differential-privacy
guarantee as the full profile.

Because the PCA projector is shared (S2) and the noise calibration in S4 is data-independent,
Euclidean distances between two label-agnostic profiles, ∥d′(k1)t1 − d

′(k2)
t2 ∥2, remain a meaningful

proxy for the marginal Wasserstein distance between P (X) distributions. Consequently, our DPE
allows us to match, at test time, unseen and unlabeled clients to the closest marginal distributions
fitted during training—satisfying Requirement (R2).

C.4.4 CONTROLLED STOCHASTICITY (R3)

To thwart exact fingerprinting of a client whose distribution remains static across rounds—which
would otherwise cause it to be matched with certainty at each round, potentially suppressing the
contribution of other clients with similarly relevant distributions during aggregation—the extractor
must output similar but not identical profiles for the same input—while preserving the true geometry
in expectation. We achieve this with two independent randomness sources.

1. Monte-Carlo subsampling. Given v(k) examples, the client draws M = 3 independent
Bernoulli(γ = 0.5) masks and computes the moments of each subsample. Averaging these
estimates yields the profile statistic g̃ := 1

M

∑M
m=1 g

(m), where each g(m) is unbiased for the
full-sample statistic g = ϕ̄i(x

(k)
t , y

(k)
t ). If every latent coordinate is sub-Gaussian with proxy
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variance τ2, then

Var
(
g̃
)

≤ τ2

Mγv(k)
,

giving a data-dependent variance that shrinks both with sample size and with the number of
Monte-Carlo replicas.

2. Laplace mechanism (Step S4). The zero-mean noise ηi ∼ Laplace(0, bi) adds fixed variance
2b2i per coordinate. Because the noise is independent of the subsampling, the total covariance is
diagonal and bounded:

Cov
(
d
(k)
t

)
⪯

(
τ2

Mγv(k) + 2b2max

)
Id = ρ2Id. (2)

Hence E
[
d
(k)
t

]
= ϕ̄

(
x
(k)
t , y

(k)
t

)
and Cov

(
d
(k)
t

)
⪯ ρ2Id, exactly matching Requirement (R3) with

ρ2 = τ2

Mγv(k) + 2b2max. In our experiments (v(k) > 300, τ2 < 1.0, bmax = 0.003) this gives
ρ2 ≤ 2.2×10−3, yielding profile distances that are stable across draws yet impossible to replicate
perfectly—providing the desired controlled stochasticity.

C.4.5 DIFFERENTIAL-PRIVACY GUARANTEE (R4)

Because FEROMA transmits client-side profiles {d(k)t }k∈Kt
⊂ Rd—which, by design, capture each

client’s data distribution—an adversary could, in principle, combine them with model updates to
mount stronger data reconstruction or membership inference attacks (Shokri et al., 2017; Zari et al.,
2021; Li et al., 2022a; Hitaj et al., 2017; Zhu et al., 2019; Yin et al., 2021). For this reason, Require-
ment (R4) mandates an (ε, δ)-differential privacy guarantee at the sample level. The multivariate
Laplace mechanism (implemented in S4) ensures (ε, 0)-DP for the entire profile vector d(k)t , since
each coordinate is perturbed with noise scaled to the same ε, and sensitivities are computed in the ℓ1
norm. Thus, for any neighbouring datasets (x, y) and (x′, y′) that differ in one example, and for any
measurable set S ⊆ Rd,

Pr
[
ϕψ(x, y) ∈ S

]
≤ eε Pr

[
ϕψ(x

′, y′) ∈ S
]
,

with δ = 0. In our experiments we set ε = 10.0; with typical client sizes v(k) > 300, the added
variance 2(∆1,i/ε)

2 ≤ 2.2× 10−5 is negligible compared to natural data variability, so inter-profile
distances remain reliable. Combined with the many-to-one nature of ϕψ : Rv(k)×(z+u) → Rd—where
infinitely many distinct datasets map to the same profile, making inversion information-theoretically
impossible—this DP mechanism bounds any additional leakage to an ε-limited factor beyond what is
already exposed by model parameters, thereby fully satisfying Requirement (R4).

C.4.6 COMPACTNESS (R5)

Requirement (R5) demands that profile extraction adds only marginal computation and communica-
tion overhead relative to standard FL. Our implementation meets this target in both aspects.

• Computation. The only non-trivial operation is fitting a rank-l PCA on sPCA = 200
synthetic latent vectors of dimension z (Step S2). Using an SVD solver, the cost is
O
(
min(sPCAz2, (sPCA)2z)

)
. In practice z>sPCA, so the second term dominates: (sPCA)2z=

2002z ≈ 4 × 104z floating-point operations. For typical latent sizes (z ∈ [128, 2048]),
this results in at most 8.2×107 FLOPs—negligible compared to the cost of a single local
training epoch. For reference, a single forward pass (no backward, no optimization) with
our smallest network on MNIST exceeds 6.5×108 FLOPs, while the largest network used
on CIFAR-100 requires over 6×1011 FLOPs per epoch. Moment computation (Step S3)
involves simple summations and products, and is therefore negligible, while Laplace noise
injection (Step S4) has complexity O(d).

• Communication. Each profile transmits d = (l + l)× (1 + U) floats, i.e. a mean and a
(diagonal) covariance entry per latent dimension for the marginal distribution plus the same
for each of the U classes. With l = 10 this yields d = 220 floats for MNIST (U = 10) and
d = 2020 for CIFAR-100 (U = 100). By contrast, the model updates in our experiments
range from 62 006 parameters (MNIST) to 6 775 140 parameters (CIFAR-100). Hence the
profile occupies at most d/|θ| ≤ 3.5× 10−3 of the uplink payload, comfortably satisfying
the compactness criterion d/|θ| ≤ 10−2.
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These results demonstrate that the DPE introduces only minimal overhead while maintaining the
communication efficiency expected in FL, thereby fully satisfying Requirement (R5).

C.5 CONVERGENCE GUARANTEES UNDER STATIONARY DISTRIBUTIONS

We now provide a theoretical convergence guarantee for FEROMA under a natural piecewise-stationary
assumption on the client distributions. As discussed in the main text, unbounded and adversarial
concept drift precludes classical convergence guarantees. Instead, we analyze the behavior of
FEROMA on a time interval between two distribution-shift events, where the local data distributions
are approximately stationary. For this analysis, we adopt the common idealized setting of a fixed set
of clients with full participation in every round. Although FEROMA supports partial participation in
practice, this does not affect the core convergence argument and is therefore abstracted away in the
formal treatment.

Setup. Fix an interval of communication rounds T = {t0, . . . , t0 + T − 1} during which the local
distributions are stationary:

P (X
(k)
t , Y

(k)
t ) ≡ P (k) ∀ t ∈ T , k ∈ {1, . . . ,K}.

For each client k, let fk(θ) := E(x,y)∼P (k) [ℓ(θ;x, y)] denote its local objective, and F (θ) :=∑K
k=1 pkfk(θ) the global objective with aggregation weights pk > 0,

∑
k pk = 1. Within the

interval T , the local training step (Eq. (1)) is standard stochastic gradient descent (SGD) on fk, with a
fixed number τ of local steps per communication round. We adopt the following standard conditions
from decentralized/local-SGD analysis Koloskova et al. (2020); Stich (2019); Gao et al. (2021).

Assumption C.1 (Smoothness and bounded variance). For each client k, fk is L-smooth: ∥∇fk(θ)−
∇fk(θ′)∥ ≤ L∥θ − θ′∥, ∀θ, θ′, and is bounded below by f⋆k . Stochastic gradients are unbiased and
have bounded variance: E[g(k)t | θ(k)t ] = ∇fk(θ(k)t ) and E∥g(k)t −∇fk(θ(k)t )∥2 ≤ σ2 for all t, k.

Assumption C.2 (Profile-induced mixing matrices). At each round t ∈ T , FEROMA’s distribution-
profile mapping (equation 3–equation 5) induces a mixing matrix Wt ∈ RK×K with entries
(Wt)kj := w̄

(k,j)
t , where w̄(k,j)

t denotes the (possibly thresholded and renormalized) association
weight used in Eq. equation 5. We assume:

(a) Symmetry and double stochasticity. Each Wt is a mixing matrix in the sense of Koloskova et al.
(2020): it is symmetric and doubly stochastic,

Wt =W⊤
t , Wt1 = 1, 1⊤Wt = 1⊤,

with non-negative entries (Wt)kj ≥ 0.

(b) Expected consensus rate. The sequence {Wt}t∈T satisfies the expected consensus condition of
Assumption 4 in Koloskova et al. (2020): there exist constants p ∈ (0, 1] and integer τ ≥ 1 such
that, for all matrices X ∈ Rd×K and all integers ℓ,

E
∥∥XWℓ,τ − X̄

∥∥2
F

≤ (1− p)
∥∥X − X̄

∥∥2
F
,

where Wℓ,τ := W(ℓ+1)τ−1 · · ·Wℓτ , X̄ := X 1
K11⊤, and the expectation is taken over the

randomness of the mixing matrices in the block {Wℓτ , . . . ,W(ℓ+1)τ−1}.

Assumption C.2 is standard in decentralized SGD with time-varying topologies and ensures that
repeated applications of {Wt} drive the local models towards consensus on the weighted average
defined by p Koloskova et al. (2020); Pu et al. (2020).

Assumption C.3 (Stable DPE and DP noise). The DPE ϕψ satisfies requirements (R1)–(R3): profile
distances approximate a reference distributional distance up to additive distortion ξ, and the stochas-
ticity of d(k)t = ϕψ(x

(k)
t , y

(k)
t ) has bounded covariance Cov(d

(k)
t ) ⪯ ρ2Id. Let d̄(k)t := E[d(k)t ]

denote the noise-free profiles and let W̄t be the mixing matrix obtained from equation 3–equation 5
when computed from {d̄(k)t } instead of {d(k)t }. We assume that:

(a) the mapping from profiles to weights d 7→Wt(d) is Lipschitz;
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(b) the DP noise and moment-estimation noise are sufficiently small so that ∥Wt − W̄t∥2 ≤ cdpeρ
for all t, for some constant cdpe;

(c) the deterministic matrices W̄t satisfy Assumption C.2, hence so do the stochastic Wt for ρ small
enough.

Intuitively, (R1) and (R3) ensure that, within a stationary window, profiles vary smoothly across
rounds and the DP noise is small enough that the profile-based matching does not destroy connectivity
or the spectral gap of the induced mixing matrices.

Feroma as decentralised local-SGD. Let Θt := [θ
(1)
t , . . . , θ

(K)
t ] ∈ Rd×K denote the matrix of

client parameters at the beginning of round t. One round of FEROMA on the stationary interval T can
be written as

Θt+1︸ ︷︷ ︸
after local SGD

=
(
ΘtWt

)︸ ︷︷ ︸
profile-based aggregation (Eq. equation 5)

− ηtGt︸︷︷︸
local SGD on each fk

, (3)

where the k-th column of ΘtWt is exactly
∑
j w̄

(k,j)
t θ

(j)
t , as in Eq. equation 5, ηt is the stepsize at

round t, and Gt stacks the (mini-batch) stochastic gradients performed by the clients during their
local updates starting from ΘtWt. This recursion coincides with the generic decentralized local-SGD
iteration with time-varying mixing matrices studied in Koloskova et al. (2020), specialized to the
star-shaped topology in which the averaging is computed centrally but applied client-side.

Lemma C.1 (Equivalence to decentralized local-SGD). Under Assumptions C.1–C.3, and restricted
to a stationary interval T , the iterates of FEROMA satisfy the matrix recursion above with mixing ma-
trices {Wt} that obey Assumption C.2. Consequently, FEROMA is a special case of the decentralized
local-SGD framework with changing topology and local updates analyzed by Koloskova et al. (2020).

Proof sketch. The profile-based aggregation step is a linear mixing of previous-round models with
coefficients w̄(k,j)

t that, by construction and renormalization, define a row-stochastic matrix Wt.
The DPE requirements (R1)–(R3) and Assumption C.3 ensure that, within a stationary window, the
random perturbations of the true profiles induce only bounded perturbations of Wt, preserving the
spectral properties required in Assumption C.2. The subsequent local SGD step on each client is
exactly the local update considered in Koloskova et al. (2020), with τ local steps per communication
round. Thus the overall update coincides with the decentralized local-SGD recursion with dynamic
mixing matrices.

Convergence guarantee. We now state the resulting convergence guarantee; the proof follows
directly from existing results for decentralized local-SGD and is not repeated here.

Theorem C.1 (Convergence of FEROMA on a stationary window). Let Assumptions C.1–C.3 hold on
a stationary interval T = {t0, . . . , t0 + T − 1} and let {Θt}t∈T be the iterates of FEROMA. Define
the weighted average model θ̄t :=

∑K
k=1 pkθ

(k)
t . Choose a stepsize sequence {ηt} as in Koloskova

et al. (2020) (e.g., a diminishing stepsize ηt ∝ 1/
√
T for non-convex objectives).

Then:

(i) In the non-convex case, the averaged model converges to a stationary point of F at the standard
sub-linear rate of decentralized SGD:

1

T

∑
t∈T

E
[
∥∇F (θ̄t)∥2

]
−−−−→
T→∞

0,

with the same order of convergence as centralized SGD, up to constants that depend on
the network spectral gap γ, the number of local steps τ , and the variance terms σ2 and ρ2
introduced by gradient and profile noise, respectively.

(ii) In the µ-strongly convex case, FEROMA converges linearly to a neighbourhood of the global
minimiser θ⋆ of F , with a rate that matches that of decentralised/local-SGD up to constants
depending on the same problem and network parameters.
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Figure 7: Test accuracy of FEROMA on MNIST under P (Y | X) concept shift, as a function of
the number of labeled test samples per class used for model association. Dashed lines indicate the
performance under (optimal) known model assignment. Results are shown for three levels of non-IID
severity.

In both cases, the DP noise injected by the DPE affects only the constants in the convergence
bounds through the effective variance term, but does not change the asymptotic rates as long as the
covariance bound in Assumption C.3 holds.

Discussion. The theorem formalises the intuition that, between two distribution drifts, FEROMA
behaves like a decentralised/local-SGD method on a fixed objective F , with a data-dependent mixing
matrix induced by distribution profiles. Under mild connectivity and smoothness assumptions,
FEROMA therefore inherits the convergence guarantees of decentralised local-SGD. When a new
drift occurs (i.e., the distributions P (X(k)

t , Y
(k)
t ) change), the global objective F itself changes,

and classical convergence guarantees no longer apply across the entire horizon. Instead, training is
best viewed as tracking a sequence of piecewise-stationary objectives, for which Theorem C.1 gives
guarantees on each stationary segment.

D TEST-TIME MODEL ASSOCIATION UNDER P (Y |X) CONCEPT SHIFT

In practical settings, class-conditional distributions P (X | Y = y) cannot be estimated at test time,
as labels are typically unavailable. As a result, detecting P (Y | X) concept shift during inference is
a known impossibility: different label distributions can induce identical feature distributions, leaving
no observable signal for detecting the shift based solely on input features. In real-world applications,
P (Y | X) shifts are often linked to evolving user preferences, and the only feasible solution is to
query a small number of labeled examples at test time to infer the underlying preference.

To assess the feasibility of this approach, we evaluated FEROMA under varying amounts of labeled test
samples. Specifically, we measured test-time model association accuracy on MNIST with P (Y | X)
shifts of increasing severity (low, medium, high non-IID), using between 1 and 50 labeled samples per
class. Importantly, these labels were used solely for model selection and not for any model retraining.
Results are reported in Figure 7. As expected, increasing the number of labeled samples improves
the association quality, approaching the upper bound defined by the optimal association (shown as
dashed lines). Moreover, stronger non-IID levels require more labeled examples to achieve a good
association, reflecting the inherent difficulty of P (Y | X) shift scenarios.

Practical instantiation. From these results, we conclude that using 20 labeled samples per class
strikes a good trade-off between performance and labeling cost. Accordingly, we adopt this configura-
tion in all our experiments involving test-time association with FEROMA. To ensure a fair comparison,
baseline methods are evaluated under (optimal) known association, since they do not natively address
P (Y | X) shifts or propose alternative strategies.

Numerical experiments. For clarity and completeness, we additionally tracked the performance of
FEROMA under the (optimal) known association condition across all experiments. This comparison
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isolates the influence of test-time association errors from the effects of distribution drift and shift
occurring during training. Tables 5–8 report the test accuracy of FEROMA when using either the
known association or the automatically detected association (with 20 labeled test samples per class)
across four datasets: MNIST, FMNIST, CIFAR-10, and CIFAR-100. As expected, the results
show that under higher non-IID severity, the gap between known and detected association widens,
reflecting the increasing difficulty of matching clients to appropriate models in the presence of
stronger P (Y |X) shifts. Nevertheless, FEROMA maintains strong performance even when relying on
few labeled samples, demonstrating robustness to moderate test-time association errors.

In addition, these results confirm that when labels are available—as is the case during train-
ing—FEROMA consistently maintains high performance across all levels of non-IID severity and
client drift rates. This stability highlights the robustness of the framework in handling both distri-
bution shift and drift during training, demonstrating that FEROMA’s adaptive aggregation remains
effective even under highly heterogeneous and dynamic conditions.

Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

Known Association 89.58 ± 0.50 89.48 ± 0.45 89.80 ± 0.75 88.90 ± 0.53 88.87 ± 0.68 89.01 ± 0.64 88.15 ± 0.66 88.06 ± 0.51 88.41 ± 0.68
Few labeled samples 83.44 ± 3.24 85.04 ± 2.44 84.76 ± 1.47 78.15 ± 3.40 80.09 ± 2.14 80.33 ± 3.14 78.65 ± 2.45 78.38 ± 2.62 79.65 ± 1.26

Table 5: Test accuracy of FEROMA on MNIST under known test-time model association and automatic
detection with few labeled samples (20 per class). Results are reported across low, medium, and high
non-IID levels, with varying numbers of drifting clients.

Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

Known Association 75.37 ± 0.33 75.23 ± 0.42 75.25 ± 0.27 74.83 ± 0.38 74.64 ± 0.37 74.69 ± 0.36 74.29 ± 0.37 73.83 ± 0.42 73.93 ± 0.26
Few labeled samples 72.49 ± 1.69 70.62 ± 2.79 72.48 ± 1.64 67.14 ± 1.95 68.61 ± 1.40 66.74 ± 1.66 65.11 ± 1.15 63.47 ± 1.57 63.08 ± 2.01

Table 6: Test accuracy of FEROMA on FMNIST under known test-time model association and
automatic detection with few labeled samples (20 per class). Results are reported across low, medium,
and high non-IID levels, with varying numbers of drifting clients.

Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

Known Association 42.22 ± 0.54 42.47 ± 0.32 42.14 ± 0.32 41.18 ± 0.78 41.74 ± 0.25 41.47 ± 0.48 40.76 ± 0.61 41.01 ± 0.50 40.74 ± 0.64
Few labeled samples 37.19 ± 0.76 36.61 ± 1.61 37.37 ± 1.53 35.23 ± 0.45 33.43 ± 1.04 34.24 ± 0.81 31.96 ± 1.04 29.89 ± 1.42 29.87 ± 1.09

Table 7: Test accuracy of FEROMA on CIFAR-10 under known test-time model association and
automatic detection with few labeled samples (20 per class). Results are reported across low, medium,
and high non-IID levels, with varying numbers of drifting clients.

E PRIVACY IMPLICATIONS OF DISTRIBUTION PROFILE

Besides model parameters, FEROMA also transmits the client–side profiles {d(k)t }k∈Kt
⊂ Rd.

Because, by design, profile distances approximate distribution divergences (requirement R1 in 3.1),
an adversary could leverage d(k)t together with model updates to mount stronger data–reconstruction
or membership–inference attacks (e.g. (Shokri et al., 2017; Zari et al., 2021; Li et al., 2022a; Hitaj
et al., 2017; Zhang et al., 2020b; Ren et al., 2022; Zhu et al., 2019; Zhao et al., 2020; Yin et al.,
2021)).

For this reason, it is necessary to satisfy requirement R4. Requirement R4 (see subsection 3.1)
endows the Distribution-Profile Extractor ϕψ : Rv(k)×z→ Rd with (ε, δ)-differential privacy at the
sample level: for any neighbouring datasets (x, y) and (x′, y′) that differ in one example and every
measurable S ⊆ Rd,

Pr
[
ϕψ(x, y) ∈ S

]
≤ eε Pr

[
ϕψ(x

′, y′) ∈ S
]
+ δ.
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Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

Known Association 38.88 ± 0.28 39.62 ± 0.50 39.36 ± 0.30 35.63 ± 0.30 35.71 ± 0.29 35.72 ± 0.08 31.75 ± 0.14 32.46 ± 0.27 32.15 ± 0.25
Few labeled samples 30.42 ± 0.50 29.36 ± 1.08 30.05 ± 1.06 22.86 ± 0.71 21.88 ± 0.85 23.56 ± 1.58 16.73 ± 2.15 13.34 ± 1.99 15.98 ± 1.63

Table 8: Test accuracy of FEROMA on CIFAR-100 under known test-time model association and
automatic detection with few labeled samples (20 per class). Results are reported across low, medium,
and high non-IID levels, with varying numbers of drifting clients.

First, ϕψ is many–to–one: infinitely many distinct datasets map to the same profile, so inversion
is information-theoretically impossible. Second, the DP guarantee caps the additional leakage
introduced by the profile to at most ε beyond what is already exposed by model parameters.

Numerical experiments. We evaluated the impact of enforcing differential privacy on FEROMA
under varying privacy budgets ϵ, focusing on the trade-off between privacy and performance in
realistic FL scenarios. As shown in Tables 9 and 10, we tested FEROMA across all four types of
statistical heterogeneity—P (X), P (Y ), P (Y |X), and P (X|Y )—at three levels of non-IID severity
(low, medium, high).

Overall results are summarized in Figure 8. We observe that FEROMA maintains robust accuracy
across typical privacy budgets used in FL (1 ≤ ϵ ≤ 10), achieving performance comparable to the
non-private (No-DP) baseline. Specifically, when ϵ > 2, the accuracy degradation is negligible across
all non-IID types and levels. At the strictest privacy level (ϵ ≤ 2), a moderate performance drop
is observed, particularly under high non-IID severity, which is expected due to the stronger noise
injection required. These findings confirm that FEROMA’s differentially private distribution profiles
provide rigorous privacy guarantees while preserving high model utility, making the framework
suitable for deployments subject to regulatory constraints such as GDPR (Regulation, 2016) or
HIPAA (U.S. Congress, 1996).

As detailed in Table 9 and 10, we evaluated FEROMA under a varying privacy budgets ϵ in FL to
assess the trade-off between privacy and performance. We tested FEROMA under all the four type
of heterogeneity types (P (X), P (Y ), P (Y |X), P (X|Y ) and three different levels. In Figure 8, we
summarize the entire results across IID-types. The results demonstrate that FEROMA maintains robust
performance across commonly used privacy budgets in FL (1 ≤ ϵ ≤ 10), achieving comparable
accuracy to the non-DP version. However, under high level of non-IID-ness, stringent requirement
privacy setting (e.g., ϵ = 1 and ϵ = 2), FEROMA exhibits a decline in performance. While above
ϵ = 2, not noticiable differences are observed compared to the No-DP case. These results confirm
that the proposed DP integration provides rigorous privacy guarantees while fully preserving the
effectiveness of FEROMA, making it suitable for deployment in scenarios requiring strict regulatory
compliance.

Non-IID Type P (X) P (Y )

Non-IID Level Low Medium High Low Medium High

ϵ = 1 77.39 ± 6.23 77.78 ± 11.08 57.83 ± 13.07 98.48 ± 0.73 96.94 ± 3.06 97.72 ± 1.99
ϵ = 2 86.64 ± 2.10 83.32 ± 5.54 69.88 ± 11.25 98.25 ± 1.14 96.98 ± 2.98 97.21 ± 2.99
ϵ = 5 89.00 ± 0.38 85.15 ± 4.56 84.71 ± 1.71 98.69 ± 0.39 97.43 ± 2.85 97.21 ± 2.93
ϵ = 10 88.72 ± 0.50 86.46 ± 2.45 85.69 ± 0.43 98.67 ± 0.44 97.86 ± 2.02 97.29 ± 3.05
No DP 88.67 ± 0.30 86.50 ± 2.48 85.81 ± 0.36 98.66 ± 0.44 97.94 ± 2.01 97.24 ± 2.96

Table 9: Test accuracy of FEROMA under different privacy budgets ϵ for non-IID types based on
feature distribution skew P (X) and label distribution skew P (Y ) on the MNIST dataset. Results are
reported for low, medium, and high non-IID levels.
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Figure 8: Average test accuracy of FEROMA across different privacy budgets (ϵ) and non-IID
types. Results are aggregated over P (X), P (Y ), P (Y |X), and P (X|Y ) scenarios.

Non-IID Type P (Y |X) P (X|Y )

Non-IID Level Low Medium High Low Medium High

ϵ = 1 79.15 ± 3.25 74.23 ± 3.20 71.63 ± 4.94 83.95 ± 5.14 77.45 ± 9.22 67.14 ± 7.73
ϵ = 2 82.92 ± 3.44 77.04 ± 2.77 75.10 ± 4.50 77.82 ± 9.52 81.93 ± 4.03 77.44 ± 8.28
ϵ = 5 84.50 ± 2.22 78.23 ± 3.43 78.32 ± 2.08 89.28 ± 1.59 87.75 ± 1.99 86.28 ± 7.10
ϵ = 10 84.56 ± 2.63 79.16 ± 2.74 78.02 ± 2.86 89.27 ± 0.87 89.63 ± 1.13 86.96 ± 2.58
No DP 85.04 ± 2.44 80.09 ± 2.14 78.38 ± 2.62 88.81 ± 1.94 89.02 ± 1.59 88.29 ± 1.12

Table 10: Test accuracy of FEROMA under different privacy budgets ϵ for non-IID types based on
concept shifts P (Y |X) and P (X|Y ) on the MNIST dataset. Results are reported for low, medium,
and high non-IID levels.

F ADDITIONAL EXPERIMENT RESULTS

F.1 GENERATING DRIFTING DATASETS WITH ANDA, CHEXPERT AND OFFICE-HOME

For datasets MNIST, FMNIST, CIFAR-10, and CIFAR-100, we generate drifting datasets across
clients with four non-IID types using ANDA. ANDA (A Non-IID Data generator supporting Any
kind) is a toolkit designed to create non-IID datasets for reproducible FL experiments. It supports
datasets MNIST, EMNIST, FMNIST, CIFAR-10, and CIFAR-100, and facilitates five types of data
distribution shifts:

• Feature distribution skew (covariate shift): Marginal distributions P (X) vary across clients.
• Label distribution skew (prior probability shift): Marginal distributions P (Y ) vary across clients.
• Concept shift (same X , different Y ): Conditional distributions P (Y |X) vary across clients.
• Concept shift (same Y , different X): Conditional distributions P (X|Y ) vary across clients.
• Quantity shift: The amount of data vary across clients.

ANDA enables the generation of only shifting datasets or shifting with drifting datasets, allowing
clients to possess datasets with varying distributions across training rounds or test round.

ANDA applies commonly used approaches (Sattler et al., 2021; Deng et al., 2020b; Guo et al., 2024;
Jothimurugesan et al., 2023; Ghosh et al., 2020; Marfoq et al., 2021; Long et al., 2023; T. Dinh et al.,
2020) to generate drifting heterogeneous datasets:

• P (X) (Figure 9): Each image undergoes one of three color transformations (blue, green, or red)
and one of four rotations (0◦, 90◦, 180◦, or 270◦), with distinct distributions applied to each subset.

• P (Y ) (Figure 10): Each client receives data only from certain classes. For example, in the MNIST
dataset, the dataset in training round 2 only has digits 2, 4, and 7, while the dataset in training
round 3 has images of digits 0, 1, and 8.
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Figure 9: Distribution drifting in P (X) with MNIST.

Figure 10: Distribution drifting in P (Y ) with MNIST.

• P (Y |X) (Figure 11): Given identical feature distributions (e.g., image pixels), labels differ between
clients. For instance, in the MNIST dataset, the dataset in training round 2 labels the digit ’8’ as
’8’, ’1’ as ’5’, and ’5’ as ’1’, whereas the dataset in training round 3 labels ’8’ as ’1’, ’1’ as ’5’, and
’5’ as ’8’.

• P (X|Y ) (Figure 12): For the same label, different features are applied. For example, in the MNIST
dataset, the dataset in training round 2 applies a blue hue to images labeled ’0’, while the dataset in
training round 3 applies a red hue to the same label.

Figure 11: Distribution drifting in P (Y |X) with MNIST.

For the real-world dataset CheXpert, we do not apply any image augmentation or label modification
in order to preserve the correctness and integrity of the data. To simulate different levels of data
heterogeneity, we partition the dataset into multiple distributions based on three metadata attributes
available in the dataset: ViewPosition, Age, and Sex. Specifically, the dataset is split according to the
following criteria for each non-IID level used in our experiments:

• Low Non-IID Level: 2 distributions based on ViewPosition (Frontal / Lateral).
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Figure 12: Distribution drifting in P (X|Y ) with MNIST.

• Medium Non-IID Level: 4 distributions based on ViewPosition (Frontal / Lateral) and Age (≥50 /
<50).

• High Non-IID Level: 8 distributions based on ViewPosition (Frontal / Lateral), Age (≥50 / <50),
and Sex (Male / Female).

For the real-world dataset Office-Home, we do not apply any image augmentation or label modifi-
cation; instead, we directly use the dataset in its original form. For our experiments, we restrict the
dataset to images with labels from 0 to 9. To model different levels of data heterogeneity, we leverage
the four inherent domains of the dataset: Art, Clipart, Product, and Real-World. The domain shift
across these categories naturally induces heterogeneity in the data distribution.

F.2 SCALING THE DRIFTING FREQUENCY, NON-IID TYPES, AND NON-IID LEVELS

We evaluate the effects of data heterogeneity using four non-IID dataset types across 20 clients,
generated with ANDA at three distinct levels of heterogeneity and three levels of drifting frequency.

Drifting frequency. Client’s local data change every round, and we scale the local data distribution
drifting frequency. At level one, each client’s local training data distribution drifts every four rounds.
At level two, each client’s local training data distribution drifts every two rounds. At level three, each
client’s local training data distribution drifts every round. The test time distributions are always under
drift.

Non-IID Types and Levels. We evaluate FEROMA under four common types of non-IID data
distributions and define three levels of heterogeneity (low, medium, and high). The full configurations
are summarized in Table 11 and detailed as follows:

• Feature distribution skew (P (X)): Each client is assigned a unique combination of data aug-
mentations (e.g., rotation and color transformation), applied consistently to all local samples. The
non-IID level controls the number of available augmentation choices. For example, at the Level
Medium, a client may apply one rotation from {0◦, 180◦} and one color from {Red, Green, Blue}
to all images. At Level Low, the ”Original” color indicates no color transformation.

• Label distribution skew (P (Y )): Each client retains samples from a subset of classes. For
MNIST, FMNIST, and CIFAR-10, each client holds data from 2 classes; for CIFAR-100, from
20 classes. We define a bank of class subsets (e.g., 4 banks of {[0,4], [1,9], [3,5], [6,9]} at Level
Low), and clients randomly sample from these banks. Increasing the number of banks increases the
heterogeneity level.

• Conditional label skew (P (Y |X)): Clients receive relabeled versions of a subset of classes via
label permutation. For example, at the medium level, a class pool {2, 3, 5, 8} may be randomly
permuted to {5, 8, 3, 2}, mapping images originally labeled as ‘2’ to label ‘5’. The number of
classes in the permutation pool increases with the non-IID level.

• Conditional feature skew (P (X|Y )): Clients apply different augmentations to the same class.
For instance, Client A may apply a 0◦ rotation to class ‘5’, while Client B applies a 180◦ rotation.
Augmentations are limited to rotations ({0◦, 90◦, 180◦, 270◦}) and colors ({Red, Green, Blue}).
For MNIST, FMNIST, and CIFAR-10, this applies to 8 classes; for CIFAR-100, to 80 classes.
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The level of heterogeneity is scaled in the same way as for P (Y ), using banks of class-specific
transformations.

non-IID type P (X) P (Y ) P (Y |X) P (X|Y )

Low Rotation {0◦ , 90◦ , 180◦ , 270◦}, Color {Original} #Bank = 4 #Swapped Class = 3 (40) #Bank = 4
Medium Rotation {0◦ , 180◦}, Color {Red, Blue, Green} #Bank = 6 #Swapped Class = 4 (60) #Bank = 6
High Rotation {0◦ , 90◦ , 180◦ , 270◦}, Color {Red, Blue, Green} #Bank = 8 #Swapped Class = 5 (80) #Bank = 8

Table 11: Summary of non-IID data heterogeneity configurations across levels. Each type of
heterogeneity corresponds to a specific distribution shift. For P (Y |X), the numbers of swapped class
for CIFAR-100 are 40, 60, and 80, accordingly.

We dynamically scale the size of training dataset based on the factor of drifting frequency and
number of clients to ensure each subset preserves enough samples to train the local model. Tables 12
to Table 27 present detailed results of FEROMA and all baseline methods across various drifting
frequency, non-IID types and levels. For experiments on P (Y |X) concept shift, we keep the test
time distribution the same as the last training round (see Appendix D for more details).

Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

FedAvg 66.55 ± 1.23 67.92 ± 1.51 72.12 ± 3.45 73.19 ± 4.03 73.66 ± 2.29 73.25 ± 1.84 54.77 ± 1.81 54.32 ± 2.68 58.54 ± 5.87
FedRC 25.36 ± 1.71 25.79 ± 1.39 26.42 ± 1.33 11.35 ± 0.00 11.35 ± 0.00 11.35 ± 0.00 11.35 ± 0.00 11.35 ± 0.00 11.35 ± 0.00
FedEM 25.36 ± 1.71 25.79 ± 1.38 26.42 ± 1.33 11.35 ± 0.00 11.35 ± 0.00 11.35 ± 0.00 11.35 ± 0.00 11.35 ± 0.00 11.35 ± 0.00
FeSEM 60.88 ± 4.47 67.26 ± 3.33 70.39 ± 4.80 67.78 ± 6.39 72.97 ± 4.69 71.52 ± 4.04 47.95 ± 3.42 49.26 ± 0.99 49.89 ± 2.91
CFL 74.28 ± 1.51 75.65 ± 1.31 78.69 ± 2.55 82.95 ± 1.32 80.94 ± 2.30 80.23 ± 3.33 68.03 ± 2.18 68.78 ± 1.94 70.65 ± 4.20
IFCA 38.68 ± 8.39 37.48 ± 11.31 42.53 ± 6.00 40.41 ± 15.49 39.49 ± 4.71 38.55 ± 5.59 30.00 ± 11.54 31.27 ± 15.08 22.01 ± 14.43
pFedMe 35.20 ± 2.54 43.45 ± 8.54 47.72 ± 4.03 43.29 ± 4.98 46.52 ± 5.68 50.22 ± 3.47 30.31 ± 5.43 34.66 ± 9.46 34.76 ± 3.16
APFL 55.29 ± 1.22 61.87 ± 5.42 65.83 ± 3.98 70.88 ± 5.59 71.42 ± 3.50 72.26 ± 2.80 55.03 ± 3.60 59.80 ± 5.79 61.35 ± 5.22
FedDrift 41.31 ± 2.08 46.08 ± 8.46 46.41 ± 4.26 50.94 ± 10.99 54.49 ± 8.04 59.06 ± 4.54 39.63 ± 5.76 39.47 ± 8.12 37.40 ± 5.80
ATP 78.74 ± 2.69 82.43 ± 0.72 84.03 ± 1.93 82.56 ± 1.50 76.59 ± 2.64 80.49 ± 1.75 60.55 ± 14.14 39.60 ± 19.31 51.14 ± 14.01

FEROMA 88.90 ± 0.33 88.67 ± 0.30 89.52 ± 0.42 87.14 ± 2.29 86.50 ± 2.48 86.08 ± 3.36 86.40 ± 0.19 85.81 ± 0.36 85.74 ± 1.17

Table 12: Performance comparison across three different non-IID Levels of P (X) and three distribu-
tion drifting levels on the MNIST dataset.

Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

FedAvg 75.12 ± 12.47 83.77 ± 8.76 94.58 ± 1.61 74.46 ± 5.80 82.83 ± 9.38 90.77 ± 1.41 70.38 ± 11.91 74.70 ± 11.61 89.44 ± 5.75
FedRC 68.72 ± 12.82 76.24 ± 7.75 81.37 ± 8.20 56.44 ± 6.80 68.54 ± 12.47 72.72 ± 6.83 47.94 ± 13.45 56.24 ± 14.30 79.22 ± 3.89
FedEM 66.81 ± 14.63 78.29 ± 4.30 83.40 ± 2.76 48.68 ± 8.21 62.98 ± 6.57 73.85 ± 8.76 44.29 ± 8.81 59.28 ± 12.07 78.05 ± 6.27
FeSEM 80.00 ± 7.15 82.17 ± 4.80 86.79 ± 3.51 64.05 ± 5.32 75.46 ± 3.72 75.44 ± 13.45 54.07 ± 10.98 63.39 ± 11.30 81.49 ± 3.41
CFL 83.78 ± 7.14 83.78 ± 7.20 93.92 ± 2.13 77.18 ± 8.70 86.65 ± 5.89 87.97 ± 5.62 74.45 ± 8.32 83.15 ± 3.74 90.35 ± 2.31
IFCA 42.53 ± 12.68 47.09 ± 12.40 47.52 ± 22.21 39.16 ± 15.13 34.78 ± 9.81 23.50 ± 5.16 33.89 ± 9.71 22.06 ± 2.74 27.45 ± 5.85
pFedMe 45.59 ± 11.11 47.25 ± 8.41 42.03 ± 17.83 38.94 ± 13.87 37.17 ± 11.39 25.50 ± 5.17 30.80 ± 5.23 28.72 ± 7.36 29.50 ± 8.40
APFL 61.16 ± 11.47 63.98 ± 7.13 69.99 ± 10.55 51.64 ± 9.55 56.67 ± 6.98 54.33 ± 6.76 49.12 ± 6.00 47.60 ± 8.29 58.95 ± 9.33
FedDrift 54.08 ± 12.62 58.21 ± 8.00 48.36 ± 19.20 43.86 ± 12.37 47.16 ± 11.85 33.75 ± 5.75 36.44 ± 6.01 36.60 ± 9.05 42.36 ± 6.93
ATP 42.75 ± 25.29 76.00 ± 20.47 95.62 ± 2.20 38.30 ± 26.19 87.20 ± 8.07 84.64 ± 13.35 36.22 ± 21.01 83.91 ± 6.24 90.27 ± 6.21

FEROMA 96.50 ± 3.23 98.66 ± 0.44 99.36 ± 0.29 97.12 ± 1.75 97.94 ± 2.01 98.67 ± 1.08 96.91 ± 1.89 97.24 ± 2.96 99.32 ± 0.30

Table 13: Performance comparison across three different non-IID Levels of P (Y ) and three distribu-
tion drifting levels on the MNIST dataset.

F.3 SCALING THE NUMBER OF CLIENTS

We evaluate the scalability and efficiency of the proposed approach across varying numbers of
clients on MNIST dataset, with the non-IID Level Medium (see subsection F.2 for more details).
To ensure each client has sufficient local training data, we adjust the dataset size based on the total
number of clients. For 10 clients, we reduce the dataset to half the size used in the main experiments
(subsection F.2); for 20 clients, we retain the same dataset size. For larger scales, we increase the
dataset size via duplication: duplicating the dataset once for 50 clients, and twice for 100 clients.
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Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

FedAvg 73.51 ± 1.57 72.91 ± 0.81 72.93 ± 0.95 64.88 ± 1.74 64.96 ± 2.08 64.24 ± 2.01 57.10 ± 2.07 57.19 ± 2.04 56.38 ± 1.82
FedRC 29.62 ± 4.95 28.79 ± 5.42 28.33 ± 8.02 13.97 ± 3.91 12.91 ± 2.29 14.78 ± 2.95 12.96 ± 3.62 12.12 ± 2.26 11.62 ± 1.95
FedEM 29.61 ± 4.94 28.79 ± 5.42 28.34 ± 8.03 13.96 ± 3.90 12.91 ± 2.29 14.77 ± 2.94 12.96 ± 3.61 12.12 ± 2.25 11.62 ± 1.94
FeSEM 78.69 ± 1.37 78.98 ± 0.74 79.27 ± 0.41 78.58 ± 1.34 75.47 ± 1.41 77.39 ± 1.88 75.80 ± 1.58 73.68 ± 1.93 73.66 ± 3.38
CFL 75.41 ± 0.94 75.01 ± 0.79 75.53 ± 0.62 66.82 ± 1.56 67.26 ± 1.22 66.31 ± 2.01 58.88 ± 1.40 59.95 ± 1.66 58.11 ± 1.78
IFCA 76.89 ± 2.60 77.15 ± 2.31 78.31 ± 3.64 71.64 ± 2.80 69.70 ± 4.04 69.28 ± 2.08 63.46 ± 3.02 60.51 ± 1.13 58.44 ± 2.45
pFedMe 91.42 ± 0.38 91.55 ± 0.42 91.28 ± 0.77 91.28 ± 0.37 91.01 ± 0.41 90.37 ± 0.68 90.99 ± 0.35 90.56 ± 0.41 89.32 ± 0.66
APFL 92.70 ± 0.56 92.58 ± 0.53 92.54 ± 0.68 92.03 ± 0.62 91.64 ± 0.69 91.22 ± 0.68 91.05 ± 0.49 90.80 ± 0.58 89.87 ± 0.85
FedDrift 91.20 ± 2.60 92.55 ± 0.42 92.50 ± 0.27 89.71 ± 3.43 89.71 ± 2.82 90.54 ± 1.03 87.51 ± 2.09 84.43 ± 2.29 83.87 ± 3.09
ATP 76.94 ± 0.72 75.79 ± 0.63 77.10 ± 1.13 68.32 ± 1.29 67.73 ± 2.30 68.14 ± 1.97 60.37 ± 1.45 60.14 ± 1.27 60.23 ± 1.01

FEROMA 89.58 ± 0.50 89.48 ± 0.45 89.80 ± 0.75 88.90 ± 0.53 88.87 ± 0.68 89.01 ± 0.64 88.15 ± 0.66 88.06 ± 0.51 88.41 ± 0.68

Table 14: Performance comparison across three different non-IID Levels of P (Y |X) and three
distribution drifting levels on the MNIST dataset.

Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

FedAvg 73.39 ± 9.75 81.57 ± 2.86 77.66 ± 3.30 73.28 ± 4.02 73.09 ± 4.06 74.97 ± 4.10 71.56 ± 5.11 74.30 ± 5.09 69.94 ± 9.80
FedRC 38.39 ± 13.46 34.60 ± 11.07 42.95 ± 15.57 13.55 ± 3.01 13.71 ± 3.44 14.24 ± 3.57 11.95 ± 1.19 12.03 ± 0.84 12.36 ± 2.03
FedEM 39.48 ± 16.08 40.06 ± 12.86 39.86 ± 19.18 12.87 ± 3.04 15.95 ± 7.59 14.70 ± 4.40 12.31 ± 1.92 12.01 ± 1.33 12.55 ± 2.39
FeSEM 70.07 ± 7.57 74.58 ± 5.34 74.80 ± 4.84 67.89 ± 8.47 62.18 ± 3.89 63.74 ± 10.06 62.85 ± 4.13 59.89 ± 7.05 56.57 ± 6.46
CFL 82.84 ± 4.32 78.01 ± 2.92 81.78 ± 4.99 79.30 ± 3.25 78.22 ± 3.23 77.96 ± 3.70 76.52 ± 1.45 77.83 ± 5.80 78.94 ± 2.82
IFCA 45.78 ± 12.55 49.72 ± 13.79 35.88 ± 11.68 33.13 ± 10.31 37.07 ± 13.08 30.66 ± 3.80 34.99 ± 12.31 29.25 ± 6.99 25.62 ± 7.72
pFedMe 47.31 ± 9.19 54.89 ± 7.12 53.18 ± 7.55 39.63 ± 10.46 42.60 ± 6.62 48.26 ± 7.80 36.97 ± 7.00 37.18 ± 3.43 45.86 ± 14.27
APFL 66.94 ± 5.64 71.04 ± 2.56 76.07 ± 9.07 65.29 ± 9.73 67.60 ± 8.09 69.64 ± 4.79 62.99 ± 4.48 60.84 ± 3.22 66.99 ± 5.20
FedDrift 48.43 ± 12.31 55.56 ± 5.44 46.14 ± 10.31 47.79 ± 6.16 51.62 ± 5.61 43.21 ± 9.51 45.44 ± 8.37 50.35 ± 5.78 46.22 ± 5.39
ATP 84.74 ± 3.67 79.95 ± 6.33 78.96 ± 12.67 73.81 ± 10.86 78.94 ± 5.89 78.62 ± 10.91 79.43 ± 4.01 76.84 ± 10.65 79.88 ± 6.86

FEROMA 87.26 ± 4.80 88.81 ± 1.94 89.87 ± 2.09 86.99 ± 4.52 89.02 ± 1.59 90.11 ± 0.79 89.44 ± 1.17 88.29 ± 1.12 89.71 ± 0.60

Table 15: Performance comparison across three different non-IID Levels of P (X|Y ) and three
distribution drifting levels on the MNIST dataset.

Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

FedAvg 36.45 ± 0.83 37.34 ± 0.55 38.14 ± 0.49 20.46 ± 5.80 21.56 ± 3.40 26.80 ± 2.84 17.45 ± 7.18 17.09 ± 5.73 20.92 ± 2.85
FedRC 25.88 ± 0.24 26.17 ± 0.61 26.34 ± 0.70 13.40 ± 0.84 12.30 ± 1.09 15.55 ± 2.24 10.94 ± 0.73 10.66 ± 0.31 11.54 ± 0.78
FedEM 25.88 ± 0.26 26.18 ± 0.60 26.39 ± 0.71 13.39 ± 0.85 12.30 ± 1.08 15.55 ± 2.24 10.94 ± 0.74 10.66 ± 0.31 11.54 ± 0.78
FeSEM 35.03 ± 0.66 35.38 ± 1.03 34.87 ± 0.96 21.44 ± 1.93 20.73 ± 0.95 22.76 ± 4.76 19.28 ± 2.32 19.26 ± 1.55 18.99 ± 1.43
CFL 37.54 ± 0.67 38.29 ± 0.76 39.15 ± 1.14 22.69 ± 3.00 25.26 ± 0.96 27.67 ± 2.62 21.11 ± 4.86 16.93 ± 1.98 22.78 ± 1.96
IFCA 31.08 ± 1.99 33.18 ± 3.00 33.75 ± 2.12 17.33 ± 1.54 20.28 ± 2.92 21.82 ± 3.60 18.83 ± 3.16 18.45 ± 1.62 18.37 ± 1.40
pFedMe 23.54 ± 0.48 26.43 ± 2.35 27.51 ± 0.63 16.94 ± 0.47 18.12 ± 0.98 18.66 ± 1.59 16.55 ± 1.77 17.41 ± 1.72 15.25 ± 0.35
APFL 27.88 ± 0.47 31.59 ± 2.43 34.07 ± 0.58 20.04 ± 1.10 22.61 ± 1.16 24.73 ± 2.41 18.80 ± 2.98 19.53 ± 2.49 21.10 ± 1.12
FedDrift 31.10 ± 3.38 32.12 ± 4.98 32.25 ± 4.15 17.31 ± 1.42 20.50 ± 1.97 21.10 ± 1.15 17.86 ± 1.98 18.65 ± 1.86 17.92 ± 1.92
ATP 33.53 ± 1.17 32.15 ± 3.73 31.46 ± 2.78 28.27 ± 1.66 29.93 ± 1.77 28.17 ± 5.07 24.22 ± 2.87 24.39 ± 0.49 25.13 ± 0.38

FEROMA 40.38 ± 0.26 39.11 ± 2.14 40.30 ± 0.51 31.81 ± 0.60 31.71 ± 2.98 33.67 ± 0.63 28.78 ± 2.95 28.84 ± 1.06 29.96 ± 1.72

Table 16: Performance comparison across three different non-IID Levels of P (X) and three distribu-
tion drifting levels on the CIFAR-10 dataset.
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Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

FedAvg 44.72 ± 14.83 43.09 ± 3.40 56.75 ± 9.04 40.86 ± 9.09 45.75 ± 9.38 42.29 ± 2.39 38.33 ± 5.13 37.35 ± 9.07 44.29 ± 11.23
FedRC 43.49 ± 15.66 43.32 ± 4.50 54.57 ± 8.04 26.99 ± 5.28 43.05 ± 9.04 39.41 ± 5.05 27.16 ± 1.97 35.08 ± 9.91 44.42 ± 8.51
FedEM 42.95 ± 13.97 47.11 ± 6.56 50.36 ± 11.30 29.77 ± 6.50 39.36 ± 10.00 41.62 ± 4.74 26.85 ± 6.04 34.51 ± 10.46 44.16 ± 8.45
FeSEM 38.80 ± 7.70 40.48 ± 8.70 49.92 ± 8.95 31.75 ± 10.34 34.09 ± 10.76 31.37 ± 9.11 27.47 ± 7.95 33.42 ± 7.81 34.03 ± 6.70
CFL 48.02 ± 14.91 44.00 ± 6.16 55.99 ± 9.65 32.79 ± 5.51 48.37 ± 6.23 39.98 ± 3.12 39.13 ± 8.32 44.26 ± 9.04 41.43 ± 3.54
IFCA 36.96 ± 10.36 41.26 ± 6.62 32.50 ± 13.51 27.02 ± 5.27 27.12 ± 9.02 19.76 ± 6.24 23.55 ± 2.51 18.80 ± 2.99 20.10 ± 5.28
pFedMe 30.75 ± 8.65 29.95 ± 9.66 26.51 ± 11.54 27.57 ± 7.48 23.00 ± 8.06 16.86 ± 5.77 20.37 ± 4.17 20.03 ± 3.64 18.92 ± 6.83
APFL 42.48 ± 9.30 43.23 ± 5.90 39.24 ± 12.88 36.89 ± 6.09 34.81 ± 8.88 25.85 ± 4.95 30.50 ± 4.78 30.89 ± 8.94 29.99 ± 6.88
FedDrift 38.37 ± 10.39 41.35 ± 8.44 43.44 ± 12.65 33.52 ± 9.61 31.56 ± 9.90 26.85 ± 4.69 27.19 ± 5.98 27.96 ± 4.74 32.92 ± 4.20
ATP 30.51 ± 14.24 24.22 ± 6.96 34.46 ± 8.80 23.71 ± 7.36 24.68 ± 12.85 29.76 ± 13.14 18.05 ± 3.42 16.18 ± 5.04 35.29 ± 1.99

FEROMA 73.04 ± 8.46 73.15 ± 3.82 68.69 ± 5.26 58.31 ± 5.08 62.88 ± 6.31 58.60 ± 10.85 55.11 ± 3.82 67.47 ± 8.17 58.99 ± 6.57

Table 17: Performance comparison across three different non-IID Levels of P (Y ) and three distribu-
tion drifting levels on the CIFAR-10 dataset.

Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

FedAvg 40.05 ± 1.04 39.85 ± 1.44 39.65 ± 1.18 36.09 ± 0.97 36.12 ± 1.08 35.92 ± 1.07 32.56 ± 1.96 32.15 ± 2.25 32.05 ± 1.79
FedRC 27.06 ± 1.22 26.70 ± 1.53 27.26 ± 1.15 12.17 ± 1.64 11.16 ± 0.86 12.44 ± 1.75 11.31 ± 1.42 11.12 ± 0.84 10.95 ± 1.00
FedEM 27.03 ± 1.22 26.73 ± 1.51 27.25 ± 1.16 12.17 ± 1.64 11.15 ± 0.86 12.44 ± 1.76 11.31 ± 1.42 11.12 ± 0.84 10.95 ± 0.99
FeSEM 40.62 ± 0.65 40.94 ± 0.59 40.78 ± 0.84 38.36 ± 0.63 37.51 ± 1.02 38.51 ± 0.59 35.78 ± 1.17 36.26 ± 0.63 37.15 ± 0.66
CFL 41.17 ± 1.06 40.90 ± 1.30 40.91 ± 0.98 36.99 ± 1.06 37.09 ± 0.83 36.70 ± 1.19 33.39 ± 1.75 32.93 ± 2.00 32.86 ± 1.92
IFCA 42.36 ± 2.22 42.41 ± 2.42 42.09 ± 1.36 38.73 ± 1.97 38.79 ± 1.48 38.68 ± 0.54 35.81 ± 2.07 35.74 ± 1.57 34.98 ± 1.78
pFedMe 36.54 ± 0.51 36.83 ± 0.51 37.19 ± 0.47 36.26 ± 0.44 36.83 ± 0.51 37.57 ± 0.36 36.57 ± 0.65 37.27 ± 0.35 37.82 ± 0.44
APFL 41.78 ± 0.53 42.17 ± 0.31 42.59 ± 0.61 40.88 ± 0.40 41.66 ± 0.33 41.73 ± 0.32 40.44 ± 0.74 40.47 ± 0.58 41.32 ± 0.82
FedDrift 40.79 ± 0.29 41.04 ± 0.89 40.66 ± 0.58 37.13 ± 0.33 37.09 ± 0.23 37.13 ± 0.22 33.47 ± 1.77 34.07 ± 1.56 33.28 ± 1.48
ATP 39.37 ± 1.16 38.52 ± 0.73 39.58 ± 0.98 35.38 ± 0.82 36.13 ± 0.92 35.24 ± 0.97 31.67 ± 1.24 31.74 ± 1.19 31.71 ± 1.48

FEROMA 42.22 ± 0.54 42.47 ± 0.32 42.14 ± 0.32 41.18 ± 0.78 41.74 ± 0.25 41.47 ± 0.48 40.76 ± 0.61 41.01 ± 0.50 40.74 ± 0.64

Table 18: Performance comparison across three different non-IID Levels of P (Y |X) and three
distribution drifting levels on the CIFAR-10 dataset.

Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

FedAvg 32.17 ± 3.46 29.12 ± 3.97 26.62 ± 5.79 25.30 ± 3.66 25.37 ± 2.66 21.87 ± 3.09 26.09 ± 1.18 22.42 ± 2.15 23.92 ± 2.27
FedRC 22.01 ± 2.43 22.06 ± 1.52 25.18 ± 3.29 18.71 ± 2.85 18.01 ± 1.87 20.00 ± 3.76 16.28 ± 1.71 17.35 ± 1.83 15.62 ± 1.05
FedEM 20.87 ± 1.85 22.16 ± 4.10 22.98 ± 4.36 17.29 ± 1.90 18.33 ± 1.56 17.94 ± 1.78 15.71 ± 1.33 16.04 ± 2.11 16.27 ± 3.22
FeSEM 28.27 ± 2.44 29.70 ± 4.41 29.65 ± 4.45 25.57 ± 1.75 23.16 ± 3.36 22.54 ± 3.93 23.41 ± 2.41 21.74 ± 1.32 19.97 ± 2.78
CFL 29.29 ± 2.46 27.27 ± 4.88 29.32 ± 3.62 25.70 ± 3.39 27.69 ± 5.36 25.37 ± 4.29 22.85 ± 1.60 27.85 ± 2.50 25.02 ± 1.80
IFCA 23.48 ± 7.55 29.57 ± 3.28 22.87 ± 6.26 19.48 ± 6.33 18.58 ± 3.92 16.99 ± 2.15 17.32 ± 3.86 17.54 ± 3.90 10.61 ± 0.96
pFedMe 18.60 ± 3.04 22.47 ± 4.39 16.79 ± 3.10 16.65 ± 1.25 15.09 ± 2.31 12.75 ± 1.96 15.59 ± 1.87 14.09 ± 1.25 13.01 ± 0.94
APFL 25.02 ± 5.18 26.81 ± 3.06 29.18 ± 6.42 23.17 ± 3.43 24.37 ± 1.86 22.87 ± 2.75 22.45 ± 1.77 24.00 ± 2.79 24.82 ± 2.76
FedDrift 25.17 ± 7.09 28.72 ± 1.31 25.30 ± 5.45 19.48 ± 0.59 23.20 ± 3.84 20.53 ± 4.66 20.11 ± 3.67 22.37 ± 1.30 20.99 ± 2.88
ATP 27.81 ± 1.81 24.99 ± 6.25 26.08 ± 6.81 24.52 ± 1.81 26.54 ± 1.74 24.12 ± 2.24 22.49 ± 1.94 22.87 ± 1.43 21.48 ± 2.82

FEROMA 40.29 ± 3.29 38.32 ± 3.00 39.89 ± 2.23 38.54 ± 2.42 38.12 ± 2.48 36.96 ± 3.85 35.36 ± 1.86 35.83 ± 1.02 31.87 ± 1.76

Table 19: Performance comparison across three different non-IID Levels of P (X|Y ) and three
distribution drifting levels on the CIFAR-10 dataset.
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Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

FedAvg 61.86 ± 2.02 63.82 ± 1.54 64.19 ± 2.15 69.66 ± 1.31 69.87 ± 1.28 70.10 ± 0.46 55.85 ± 1.90 54.46 ± 2.30 55.94 ± 3.49
FedRC 46.24 ± 0.55 48.18 ± 2.34 50.42 ± 3.99 41.89 ± 3.53 44.61 ± 2.33 46.15 ± 5.89 12.55 ± 1.69 11.32 ± 0.82 11.65 ± 1.01
FedEM 46.08 ± 0.67 48.66 ± 2.49 50.10 ± 3.85 42.06 ± 3.52 44.80 ± 2.20 46.06 ± 5.96 12.56 ± 1.70 11.33 ± 0.84 11.64 ± 1.00
FeSEM 54.13 ± 4.07 54.84 ± 3.64 58.77 ± 5.76 65.00 ± 5.61 64.55 ± 4.52 66.59 ± 1.45 35.51 ± 6.56 38.13 ± 7.11 37.48 ± 5.87
CFL 65.82 ± 1.37 66.51 ± 0.99 67.89 ± 1.85 72.15 ± 1.41 71.89 ± 1.47 71.92 ± 0.39 59.43 ± 1.67 59.64 ± 1.10 58.13 ± 1.97
IFCA 27.72 ± 4.23 29.86 ± 7.74 33.61 ± 8.65 33.60 ± 7.54 35.74 ± 8.13 36.89 ± 7.38 19.16 ± 5.33 23.13 ± 12.49 10.32 ± 1.63
pFedMe 23.66 ± 1.94 28.71 ± 8.46 30.71 ± 3.25 41.81 ± 4.97 43.83 ± 4.32 47.87 ± 3.97 23.14 ± 7.06 24.29 ± 6.20 22.30 ± 4.67
APFL 41.28 ± 1.82 46.68 ± 5.77 49.51 ± 2.94 62.39 ± 3.02 64.52 ± 2.27 65.16 ± 2.21 38.03 ± 6.09 40.97 ± 5.78 41.25 ± 4.07
FedDrift 28.18 ± 2.48 33.83 ± 8.95 35.47 ± 3.53 40.77 ± 5.48 45.99 ± 6.78 48.31 ± 2.64 26.69 ± 8.62 28.36 ± 6.97 24.33 ± 4.42
ATP 60.87 ± 3.38 63.19 ± 2.03 62.96 ± 5.33 74.32 ± 0.48 72.71 ± 2.86 74.41 ± 0.98 54.80 ± 2.33 55.41 ± 1.17 59.67 ± 2.37

FEROMA 73.79 ± 0.41 73.83 ± 0.68 73.45 ± 0.76 74.84 ± 0.49 75.12 ± 0.60 75.03 ± 0.51 72.26 ± 0.37 71.62 ± 0.34 71.99 ± 0.65

Table 20: Performance comparison across three different non-IID Levels of P (X) and three distribu-
tion drifting levels on the FMNIST dataset.

Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

FedAvg 77.11 ± 12.18 72.21 ± 4.40 83.51 ± 5.09 65.95 ± 6.90 68.24 ± 10.91 79.23 ± 5.01 66.09 ± 8.88 55.08 ± 16.79 66.47 ± 20.60
FedRC 73.33 ± 13.70 68.69 ± 6.19 73.02 ± 12.34 64.14 ± 3.60 65.21 ± 9.05 62.11 ± 12.16 56.67 ± 5.41 53.72 ± 5.36 66.30 ± 11.81
FedEM 74.14 ± 9.01 76.95 ± 5.14 76.74 ± 8.07 60.32 ± 12.02 64.75 ± 4.05 68.48 ± 12.17 51.09 ± 9.43 60.92 ± 10.01 66.79 ± 11.45
FeSEM 73.41 ± 11.73 69.42 ± 9.37 69.29 ± 8.17 62.55 ± 5.86 60.59 ± 9.05 67.36 ± 8.50 50.85 ± 6.67 44.75 ± 8.58 64.80 ± 6.96
CFL 73.96 ± 13.42 73.43 ± 7.40 77.72 ± 8.62 70.97 ± 4.60 71.86 ± 8.44 80.63 ± 5.11 65.63 ± 4.32 62.01 ± 12.34 72.70 ± 9.01
IFCA 39.34 ± 12.56 42.07 ± 11.56 37.18 ± 13.17 37.72 ± 15.67 37.57 ± 7.43 27.73 ± 9.95 25.37 ± 7.80 21.58 ± 3.61 24.19 ± 6.23
pFedMe 43.05 ± 12.37 44.31 ± 8.35 38.76 ± 17.94 38.08 ± 13.36 33.00 ± 11.55 22.77 ± 6.17 31.35 ± 5.91 24.93 ± 7.18 22.75 ± 5.67
APFL 58.41 ± 9.33 56.31 ± 5.97 56.14 ± 12.79 51.51 ± 7.18 49.41 ± 9.51 44.99 ± 5.45 42.94 ± 4.82 42.26 ± 8.01 48.67 ± 8.59
FedDrift 45.09 ± 12.05 44.59 ± 11.60 41.92 ± 17.64 34.30 ± 6.98 44.59 ± 11.60 29.84 ± 6.98 55.02 ± 10.12 34.61 ± 4.94 35.46 ± 6.49
ATP 65.72 ± 19.17 51.93 ± 14.65 43.36 ± 32.78 61.35 ± 17.68 67.94 ± 18.31 55.95 ± 26.14 48.92 ± 27.49 46.53 ± 24.37 46.90 ± 26.28

FEROMA 96.58 ± 1.81 97.82 ± 1.46 97.82 ± 2.50 93.48 ± 4.75 96.09 ± 2.78 97.30 ± 1.88 93.26 ± 5.43 95.04 ± 4.29 95.50 ± 2.87

Table 21: Performance comparison across three different non-IID Levels of P (Y ) and three distribu-
tion drifting levels on the FMNIST dataset.

Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

FedAvg 62.98 ± 1.74 61.83 ± 2.81 62.62 ± 2.74 54.90 ± 2.56 54.45 ± 2.28 54.32 ± 2.49 50.96 ± 2.68 50.88 ± 3.46 50.03 ± 3.31
FedRC 58.95 ± 3.00 58.25 ± 3.15 58.66 ± 2.79 26.85 ± 11.47 30.44 ± 9.46 28.24 ± 7.44 20.77 ± 4.16 20.39 ± 4.02 19.06 ± 4.58
FedEM 59.08 ± 3.05 58.23 ± 3.13 58.61 ± 2.71 26.83 ± 11.46 30.43 ± 9.45 28.25 ± 7.45 20.77 ± 4.16 20.40 ± 4.02 19.06 ± 4.59
FeSEM 66.49 ± 2.08 66.50 ± 2.45 67.38 ± 2.03 64.98 ± 1.60 66.24 ± 1.46 64.84 ± 1.59 63.65 ± 2.65 65.37 ± 1.68 64.42 ± 3.99
CFL 64.04 ± 1.44 63.18 ± 2.53 63.47 ± 2.20 56.21 ± 1.85 55.72 ± 2.18 55.63 ± 2.12 51.07 ± 3.35 52.08 ± 3.61 50.25 ± 3.32
IFCA 69.58 ± 3.35 68.59 ± 2.98 68.28 ± 4.08 61.89 ± 1.76 60.78 ± 3.52 61.45 ± 2.78 49.74 ± 14.68 50.01 ± 9.74 42.42 ± 16.44
pFedMe 76.73 ± 0.34 76.42 ± 0.30 76.30 ± 0.35 76.43 ± 0.68 75.74 ± 0.15 75.71 ± 0.38 75.91 ± 0.38 75.33 ± 0.24 74.70 ± 0.36
APFL 78.63 ± 0.54 78.06 ± 0.59 77.90 ± 0.68 77.12 ± 0.82 76.94 ± 0.69 75.82 ± 1.03 76.31 ± 0.52 75.21 ± 0.64 74.31 ± 0.78
FedDrift 77.56 ± 0.74 76.93 ± 1.55 77.77 ± 0.30 75.52 ± 1.28 76.00 ± 0.60 75.12 ± 0.83 74.75 ± 0.94 73.22 ± 0.50 71.89 ± 0.97
ATP 64.48 ± 1.70 63.69 ± 2.61 63.63 ± 2.53 56.88 ± 2.56 56.39 ± 1.96 56.51 ± 3.13 53.05 ± 3.06 53.50 ± 3.54 52.00 ± 3.23

FEROMA 75.37 ± 0.33 75.23 ± 0.42 75.25 ± 0.27 74.83 ± 0.38 74.64 ± 0.37 74.69 ± 0.36 74.29 ± 0.37 73.83 ± 0.42 73.93 ± 0.26

Table 22: Performance comparison across three different non-IID Levels of P (Y |X) and three
distribution drifting levels on the FMNIST dataset.
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Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

FedAvg 65.15 ± 10.19 69.65 ± 3.73 67.79 ± 3.94 64.46 ± 1.14 66.62 ± 2.34 66.23 ± 4.61 64.09 ± 1.64 61.99 ± 5.29 64.42 ± 2.26
FedRC 48.93 ± 5.84 60.64 ± 5.33 52.11 ± 4.32 43.63 ± 4.19 48.53 ± 5.81 46.30 ± 9.01 34.81 ± 10.03 33.24 ± 9.71 36.21 ± 7.53
FedEM 56.66 ± 5.44 59.05 ± 2.30 62.28 ± 3.88 44.11 ± 5.97 43.58 ± 4.64 42.91 ± 11.92 44.28 ± 9.71 37.80 ± 10.92 34.75 ± 8.75
FeSEM 63.18 ± 2.08 63.19 ± 3.29 65.68 ± 1.07 55.72 ± 5.48 54.20 ± 4.28 54.19 ± 4.57 47.71 ± 4.15 44.83 ± 5.24 48.73 ± 7.02
CFL 71.20 ± 1.69 69.80 ± 2.05 72.93 ± 2.53 65.72 ± 4.45 66.24 ± 2.24 68.24 ± 1.58 63.27 ± 4.00 66.18 ± 4.57 65.05 ± 2.33
IFCA 34.03 ± 15.83 40.55 ± 10.38 23.44 ± 11.22 33.76 ± 12.59 30.71 ± 8.15 23.22 ± 6.64 24.94 ± 3.71 18.30 ± 6.85 23.63 ± 10.05
pFedMe 37.33 ± 7.78 41.24 ± 3.44 35.80 ± 10.07 35.75 ± 7.34 30.55 ± 5.25 28.78 ± 5.66 30.81 ± 7.53 28.17 ± 3.18 31.60 ± 5.50
APFL 54.85 ± 6.85 56.22 ± 4.92 56.31 ± 7.42 47.96 ± 6.79 50.92 ± 8.42 48.10 ± 5.86 49.11 ± 10.42 45.82 ± 5.65 46.84 ± 2.19
FedDrift 40.93 ± 7.29 46.06 ± 5.83 46.16 ± 8.85 38.03 ± 10.57 34.23 ± 6.04 38.54 ± 9.45 36.15 ± 6.39 37.69 ± 4.47 38.31 ± 8.71
ATP 70.44 ± 2.72 69.64 ± 1.43 71.45 ± 4.13 67.13 ± 4.32 67.65 ± 6.12 69.13 ± 1.35 66.85 ± 2.51 66.97 ± 4.65 62.36 ± 4.34

FEROMA 78.74 ± 1.78 75.17 ± 5.05 78.98 ± 1.49 75.15 ± 3.95 76.95 ± 3.40 73.12 ± 6.37 74.21 ± 2.44 76.79 ± 3.44 70.23 ± 7.08

Table 23: Performance comparison across three different non-IID Levels of P (X|Y ) and three
distribution drifting levels on the FMNIST dataset.

Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

FedAvg 43.85 ± 0.80 45.13 ± 0.68 44.87 ± 0.87 7.47 ± 5.13 13.74 ± 4.59 12.84 ± 2.75 10.52 ± 8.51 8.58 ± 4.26 8.30 ± 3.61
FedRC 44.97 ± 0.73 46.90 ± 0.73 48.07 ± 0.83 13.08 ± 0.64 16.64 ± 4.18 15.70 ± 1.96 19.97 ± 5.97 11.93 ± 2.50 13.97 ± 2.67
FedEM 44.97 ± 0.73 46.89 ± 0.72 48.07 ± 0.83 13.08 ± 0.64 16.63 ± 4.19 15.69 ± 1.95 19.97 ± 5.98 11.93 ± 2.51 13.97 ± 2.68
FeSEM 37.76 ± 1.27 40.33 ± 1.92 43.35 ± 2.04 11.57 ± 0.56 18.50 ± 4.07 15.92 ± 0.40 15.91 ± 3.34 10.62 ± 2.23 12.31 ± 1.79
CFL 43.73 ± 0.59 45.90 ± 0.55 46.98 ± 0.68 13.04 ± 1.82 15.91 ± 4.00 14.72 ± 1.56 18.95 ± 5.76 11.94 ± 2.42 11.45 ± 2.66
IFCA 43.19 ± 0.45 44.95 ± 0.68 45.69 ± 0.59 6.85 ± 2.79 0.99 ± 0.05 8.68 ± 4.58 9.43 ± 5.60 4.16 ± 0.74 6.79 ± 4.52
pFedMe 18.15 ± 0.85 20.58 ± 1.55 22.31 ± 0.48 7.17 ± 1.20 9.66 ± 2.02 10.43 ± 0.20 8.49 ± 2.11 8.23 ± 1.32 8.71 ± 0.87
APFL 37.54 ± 0.29 39.47 ± 1.43 40.66 ± 0.73 12.85 ± 0.59 15.70 ± 3.41 17.01 ± 0.70 16.73 ± 5.16 12.96 ± 1.77 14.38 ± 2.67
FedDrift 21.36 ± 1.13 23.62 ± 4.06 33.93 ± 3.34 8.72 ± 2.36 13.81 ± 3.54 14.71 ± 1.15 10.16 ± 3.69 10.00 ± 2.13 11.87 ± 1.71
ATP 11.77 ± 5.80 19.05 ± 3.56 14.29 ± 6.41 3.13 ± 1.04 3.47 ± 1.65 5.28 ± 1.49 2.96 ± 0.36 3.65 ± 0.85 5.56 ± 1.57

FEROMA 39.83 ± 0.62 39.40 ± 0.79 39.37 ± 0.81 36.97 ± 0.97 36.73 ± 0.46 36.53 ± 0.74 32.74 ± 1.47 34.15 ± 0.44 33.99 ± 0.89

Table 24: Performance comparison across three different non-IID Levels of P (X) and three distribu-
tion drifting levels on the CIFAR-100 dataset.

Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

FedAvg 35.10 ± 7.62 35.82 ± 5.54 41.28 ± 5.48 36.65 ± 3.67 40.69 ± 1.77 41.53 ± 3.70 33.17 ± 5.28 35.96 ± 3.40 37.42 ± 2.93
FedRC 34.83 ± 5.04 41.09 ± 6.33 38.67 ± 3.63 32.36 ± 5.43 36.92 ± 3.39 42.43 ± 3.39 40.45 ± 4.58 39.98 ± 2.23 42.35 ± 3.52
FedEM 36.03 ± 5.49 41.05 ± 6.33 38.40 ± 3.46 32.33 ± 5.33 36.80 ± 3.50 42.12 ± 3.38 40.32 ± 4.17 41.86 ± 3.48 42.17 ± 3.29
FeSEM 34.43 ± 7.45 35.61 ± 4.14 36.29 ± 3.80 29.09 ± 6.25 32.54 ± 3.23 30.65 ± 3.77 31.02 ± 4.26 32.24 ± 1.76 35.33 ± 2.50
CFL 33.89 ± 6.66 37.97 ± 5.32 33.51 ± 4.11 29.53 ± 3.35 37.14 ± 4.07 39.35 ± 4.70 35.67 ± 5.18 35.24 ± 2.77 38.48 ± 2.87
IFCA 11.28 ± 7.98 10.18 ± 2.18 12.97 ± 3.40 2.27 ± 1.28 8.85 ± 8.63 4.66 ± 1.67 2.45 ± 0.72 2.44 ± 0.36 2.65 ± 0.49
pFedMe 16.63 ± 5.20 13.85 ± 3.22 16.55 ± 1.22 11.88 ± 2.94 16.49 ± 4.73 11.26 ± 3.07 13.61 ± 2.90 11.87 ± 3.06 11.59 ± 3.26
APFL 35.11 ± 6.15 34.02 ± 1.18 34.25 ± 0.85 29.31 ± 4.51 31.13 ± 0.77 31.86 ± 4.09 30.90 ± 2.53 30.73 ± 2.87 34.72 ± 3.24
FedDrift 24.21 ± 7.61 21.91 ± 4.63 24.89 ± 2.87 18.08 ± 3.98 23.51 ± 6.41 17.09 ± 4.13 18.05 ± 3.02 17.42 ± 2.72 22.81 ± 4.11
ATP 15.65 ± 4.07 36.75 ± 6.32 40.72 ± 4.09 15.68 ± 5.18 36.71 ± 5.50 42.90 ± 6.47 18.53 ± 10.89 35.31 ± 4.91 40.81 ± 4.82

FEROMA 44.65 ± 4.42 51.03 ± 6.51 51.90 ± 2.13 48.43 ± 3.40 48.51 ± 2.59 52.90 ± 4.83 40.82 ± 5.57 47.56 ± 6.77 45.91 ± 3.54

Table 25: Performance comparison across three different non-IID Levels of P (Y ) and three distribu-
tion drifting levels on the CIFAR-100 dataset.
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Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

FedAvg 37.69 ± 0.81 37.84 ± 0.79 38.16 ± 0.98 27.39 ± 1.10 27.44 ± 1.26 27.44 ± 1.20 15.83 ± 0.49 15.75 ± 0.31 15.90 ± 0.40
FedRC 38.94 ± 0.80 38.98 ± 0.96 39.23 ± 0.94 28.14 ± 1.12 28.14 ± 1.15 28.16 ± 1.33 16.24 ± 0.41 16.19 ± 0.40 16.09 ± 0.33
FedEM 38.94 ± 0.80 38.98 ± 0.96 39.23 ± 0.94 28.14 ± 1.12 28.14 ± 1.15 28.16 ± 1.33 16.24 ± 0.41 16.19 ± 0.40 16.09 ± 0.33
FeSEM 35.99 ± 0.89 34.00 ± 1.04 33.39 ± 1.35 26.45 ± 1.11 26.23 ± 1.16 25.84 ± 1.30 16.00 ± 0.58 16.61 ± 0.55 16.47 ± 0.51
CFL 38.28 ± 0.69 38.61 ± 0.84 38.57 ± 0.68 27.78 ± 1.13 27.69 ± 1.21 27.63 ± 1.31 16.03 ± 0.42 15.92 ± 0.39 15.90 ± 0.41
IFCA 38.17 ± 0.74 38.36 ± 0.87 38.54 ± 0.83 27.78 ± 1.25 27.62 ± 1.30 27.83 ± 1.31 0.97 ± 0.05 1.00 ± 0.06 0.97 ± 0.09
pFedMe 24.81 ± 0.19 24.88 ± 0.17 24.41 ± 0.24 24.28 ± 0.26 24.73 ± 0.25 23.89 ± 0.24 24.34 ± 0.65 24.32 ± 0.27 22.34 ± 0.14
APFL 41.52 ± 0.19 42.07 ± 0.85 42.25 ± 0.48 35.44 ± 0.49 35.79 ± 0.21 36.23 ± 0.28 29.43 ± 0.37 29.85 ± 0.38 29.88 ± 0.24
FedDrift 28.70 ± 0.09 26.42 ± 1.03 36.93 ± 1.26 26.56 ± 0.32 25.76 ± 0.35 26.87 ± 0.88 25.08 ± 0.32 19.23 ± 0.88 15.98 ± 0.60
ATP 19.63 ± 1.67 25.84 ± 1.81 20.18 ± 3.30 17.03 ± 2.41 19.95 ± 2.22 20.22 ± 1.81 12.41 ± 0.66 12.16 ± 0.53 15.54 ± 0.79

FEROMA 38.88 ± 0.28 39.62 ± 0.50 39.36 ± 0.30 35.63 ± 0.30 35.71 ± 0.29 35.72 ± 0.08 31.75 ± 0.14 32.46 ± 0.27 32.15 ± 0.25

Table 26: Performance comparison across three different non-IID Levels of P (Y |X) and three
distribution drifting levels on the CIFAR-100 dataset.

Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

FedAvg 33.07 ± 7.39 29.13 ± 8.76 28.00 ± 5.13 23.18 ± 7.07 28.56 ± 8.56 21.69 ± 1.68 25.20 ± 8.82 24.30 ± 6.84 27.08 ± 4.87
FedRC 25.46 ± 2.53 35.48 ± 11.24 29.95 ± 5.14 26.94 ± 2.37 32.09 ± 3.38 30.88 ± 9.80 31.46 ± 7.76 27.68 ± 0.91 30.58 ± 7.60
FedEM 45.53 ± 3.56 37.30 ± 6.95 38.41 ± 2.37 37.70 ± 6.61 31.42 ± 6.46 33.02 ± 5.90 26.20 ± 4.04 29.08 ± 2.66 29.85 ± 2.40
FeSEM 27.20 ± 5.57 29.57 ± 6.20 24.66 ± 4.30 22.86 ± 9.39 21.38 ± 3.72 23.60 ± 5.06 18.62 ± 4.58 21.19 ± 3.14 19.88 ± 2.59
CFL 28.45 ± 2.88 29.24 ± 6.12 34.74 ± 4.86 33.92 ± 4.22 29.60 ± 7.61 25.33 ± 2.70 23.74 ± 4.10 22.52 ± 3.53 24.20 ± 1.50
IFCA 10.90 ± 7.53 23.22 ± 13.20 22.02 ± 2.80 22.78 ± 8.67 14.63 ± 6.90 17.00 ± 7.77 7.53 ± 6.56 7.76 ± 4.82 7.68 ± 6.20
pFedMe 17.02 ± 2.99 11.58 ± 3.07 12.74 ± 0.32 10.83 ± 0.79 14.38 ± 4.82 10.37 ± 1.07 11.87 ± 1.52 10.72 ± 1.21 14.19 ± 0.71
APFL 27.51 ± 7.08 29.31 ± 6.17 27.94 ± 3.97 30.56 ± 5.32 29.41 ± 2.92 30.33 ± 3.73 20.23 ± 2.38 25.26 ± 5.16 26.20 ± 2.74
FedDrift 22.58 ± 3.57 19.13 ± 6.14 24.14 ± 0.75 15.26 ± 6.22 19.76 ± 3.65 12.51 ± 3.63 13.61 ± 2.02 14.84 ± 4.35 19.21 ± 4.50
ATP 6.38 ± 1.63 11.15 ± 1.96 12.95 ± 2.72 7.01 ± 0.73 9.56 ± 0.81 12.39 ± 1.99 5.55 ± 2.03 8.40 ± 2.85 13.70 ± 4.16

FEROMA 40.24 ± 1.79 40.64 ± 1.00 40.41 ± 2.24 39.53 ± 1.31 38.26 ± 1.94 39.73 ± 1.34 37.92 ± 0.86 39.25 ± 1.08 37.99 ± 0.87

Table 27: Performance comparison across three different non-IID Levels of P (X|Y ) and three
distribution drifting levels on the CIFAR-100 dataset.
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Tables 28 to Table 32 provide detailed results for FLUX and baseline methods, evaluated across
increasing numbers of clients and various distribution shift types and levels. We could not evaluate
the performance of FedDrift under 50 and 100 clients due to prohibitive memory and computational
costs (see Appendix C.2 for details). For the baselines that do not provide a solution for test-only
clients, we weight all models by the number of clients in the cluster, and use the expectation that
weights all model outputs as an estimation of the predicted labels.

# Clients 10 Clients 20 Clients 50 Clients 100 Clients

Algorithm Accuracy Time Accuracy Time Accuracy Time Accuracy Time

FedAvg 74.85 ± 5.71 3.77 73.98 ± 3.04 5.91 74.00 ± 3.33 7.16 73.27 ± 3.84 8.28
FedRC 29.84 ± 7.47 8.63 29.44 ± 5.35 9.83 25.02 ± 3.94 11.36 24.06 ± 3.44 12.38
FedEM 32.01 ± 8.56 8.53 26.78 ± 4.58 9.27 25.95 ± 4.28 11.27 24.77 ± 3.03 12.11
FeSEM 73.02 ± 6.63 7.11 72.58 ± 4.65 7.65 73.11 ± 3.93 9.12 74.30 ± 3.36 9.93
CFL 77.17 ± 6.96 6.32 78.22 ± 4.21 6.57 76.92 ± 4.18 8.52 76.25 ± 2.88 8.74
IFCA 37.16 ± 10.44 6.77 45.99 ± 9.90 8.14 48.40 ± 6.12 9.66 43.15 ± 5.22 10.66
pFedMe 55.20 ± 12.16 5.65 55.36 ± 8.79 6.60 54.40 ± 3.48 7.71 49.77 ± 5.08 9.01
APFL 71.43 ± 8.02 7.40 72.24 ± 5.31 8.38 72.99 ± 4.18 10.05 68.39 ± 4.96 10.23
FedDrift 63.34 ± 11.52 8.74 57.88 ± 9.40 9.56 N/A N/A N/A N/A
ATP 71.39 ± 8.95 4.95 74.83 ± 4.37 6.51 72.46 ± 4.55 7.74 71.21 ± 5.45 8.68

FEROMA 91.27 ± 0.67 4.84 90.17 ± 1.96 6.43 90.16 ± 1.98 7.67 87.06 ± 2.70 8.61

Table 28: Performance comparison across the number of clients in 10, 20, 50, and 100, summarizing
all four types of heterogeneity (P (X), P (Y ), P (Y |X), P (X|Y )) on the MNIST dataset. Time is
reported in log2 seconds.

# Clients 10 Clients 20 Clients 50 Clients 100 Clients

Algorithm Accuracy Time Accuracy Time Accuracy Time Accuracy Time

FedAvg 74.20 ± 3.72 3.54 74.64 ± 1.50 5.74 74.50 ± 3.06 7.15 71.05 ± 3.41 8.16
FedRC 11.44 ± 0.18 8.34 11.35 ± 0.00 9.60 11.35 ± 0.00 10.95 11.35 ± 0.00 11.43
FedEM 11.44 ± 0.18 8.07 11.35 ± 0.00 8.80 11.35 ± 0.00 10.13 11.35 ± 0.00 11.49
FeSEM 69.43 ± 3.59 6.90 72.98 ± 4.49 7.30 74.54 ± 1.80 8.50 75.48 ± 1.34 9.38
CFL 79.66 ± 3.93 6.47 81.08 ± 2.36 6.38 78.73 ± 3.18 8.40 77.04 ± 1.24 8.52
IFCA 22.70 ± 6.75 6.51 39.79 ± 4.79 7.56 47.86 ± 9.25 9.43 42.23 ± 3.40 10.15
pFedMe 52.90 ± 1.71 5.57 46.24 ± 6.37 6.66 50.62 ± 3.74 7.63 47.22 ± 1.47 9.06
APFL 72.89 ± 2.14 7.01 71.85 ± 3.77 7.94 74.07 ± 0.96 9.97 72.40 ± 1.04 10.12
FedDrift 60.13 ± 5.80 8.74 46.86 ± 8.80 9.55 N/A N/A N/A N/A
ATP 71.08 ± 7.72 3.95 75.81 ± 2.38 6.43 76.44 ± 0.56 7.79 74.96 ± 1.54 8.81

FEROMA 87.51 ± 1.19 4.00 86.45 ± 1.22 6.32 87.69 ± 0.91 7.88 83.09 ± 1.29 8.87

Table 29: Performance comparison across heterogeneity type P (X) on the MNIST dataset. Time is
reported in log2 seconds.

F.4 RESULTS ON REAL-WORLD DATASETS

Following the setup in subsection F.1, we compare the performance of FEROMA against baseline
methods on both the CheXpert and Office-Home datasets (baseline ATP cannot be adapted to the
multi-label classification task of CheXpert dataset). As shown in Table 33 and Table 34, FEROMA
consistently achieves top-tier performance across various settings of non-IID severity and degrees of
distribution drift. Specifically, it either outperforms or closely matches the best-performing methods
in nearly all configurations. While personalized methods such as ATP and APFL occasionally
yield strong results—particularly in low-drift scenarios, their performance tends to degrade under
increasing drift levels, indicating overfitting to local data. In contrast, FEROMA maintains stable and
high performance even in highly drifted or non-IID environments, demonstrating strong robustness
and generalization without relying on explicit personalization.
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# Clients 10 Clients 20 Clients 50 Clients 100 Clients

Algorithm Accuracy Time Accuracy Time Accuracy Time Accuracy Time

FedAvg 85.98 ± 6.45 4.34 84.82 ± 4.58 6.19 80.64 ± 3.01 7.30 84.38 ± 6.68 8.41
FedRC 68.89 ± 10.89 8.88 75.08 ± 5.67 10.32 63.79 ± 5.65 11.52 60.82 ± 6.26 12.25
FedEM 72.31 ± 9.84 8.85 66.08 ± 5.81 9.42 67.11 ± 5.95 11.19 62.14 ± 4.71 11.87
FeSEM 78.62 ± 6.58 7.44 72.37 ± 3.53 7.97 75.11 ± 7.31 9.19 77.53 ± 5.33 9.88
CFL 81.56 ± 12.51 6.89 85.21 ± 5.86 7.03 81.90 ± 6.52 8.96 82.39 ± 5.34 9.05
IFCA 36.77 ± 17.81 7.10 35.27 ± 10.01 8.20 37.22 ± 3.98 10.05 26.81 ± 6.73 10.74
pFedMe 38.59 ± 18.23 6.06 39.32 ± 13.26 7.00 34.31 ± 4.61 8.10 25.16 ± 7.59 9.53
APFL 53.90 ± 13.88 7.68 56.56 ± 8.56 8.70 55.12 ± 6.09 10.60 47.32 ± 8.51 10.60
FedDrift 45.60 ± 16.15 8.87 43.46 ± 14.96 9.69 N/A N/A N/A N/A
ATP 80.42 ± 10.16 4.93 86.25 ± 7.72 6.62 81.29 ± 8.67 7.91 74.85 ± 8.51 8.79

FEROMA 99.12 ± 0.37 4.84 95.75 ± 3.62 6.54 94.77 ± 3.74 7.73 89.01 ± 5.03 8.71

Table 30: Performance comparison across heterogeneity type P (Y ) on the MNIST dataset. Time is
reported in log2 seconds.

# Clients 10 Clients 20 Clients 50 Clients 100 Clients

Algorithm Accuracy Time Accuracy Time Accuracy Time Accuracy Time

FedAvg 66.16 ± 1.87 3.45 65.75 ± 1.63 5.88 63.30 ± 0.91 7.20 62.92 ± 0.69 8.37
FedRC 13.84 ± 3.24 8.98 12.91 ± 2.29 9.87 10.50 ± 0.42 11.90 11.48 ± 1.49 13.45
FedEM 13.84 ± 3.24 8.85 12.91 ± 2.29 9.81 10.50 ± 0.42 12.22 11.49 ± 1.49 13.11
FeSEM 81.24 ± 2.17 7.17 75.43 ± 1.55 7.90 73.89 ± 1.31 9.84 70.97 ± 0.67 10.67
CFL 68.73 ± 1.90 5.35 67.26 ± 1.23 6.25 65.71 ± 0.75 8.14 64.87 ± 0.83 8.72
IFCA 69.66 ± 1.58 6.90 69.70 ± 4.02 8.84 70.14 ± 4.59 9.95 69.12 ± 5.36 11.32
pFedMe 91.31 ± 0.32 5.32 90.95 ± 0.47 6.17 90.01 ± 0.36 7.38 88.39 ± 0.46 8.32
APFL 91.85 ± 0.47 7.64 91.61 ± 0.68 8.36 91.05 ± 0.35 9.46 90.09 ± 0.62 9.99
FedDrift 95.56 ± 1.48 8.53 96.59 ± 0.26 9.41 N/A N/A N/A N/A
ATP 66.40 ± 1.23 5.39 64.67 ± 2.82 6.28 63.24 ± 1.45 7.50 61.57 ± 1.53 8.56

FEROMA 88.81 ± 0.40 5.74 88.59 ± 0.62 6.24 88.40 ± 0.47 7.44 88.10 ± 0.57 8.44

Table 31: Performance comparison across heterogeneity type P (Y |X) on the MNIST dataset. Time
is reported in log2 seconds.

# Clients 10 Clients 20 Clients 50 Clients 100 Clients

Algorithm Accuracy Time Accuracy Time Accuracy Time Accuracy Time

FedAvg 73.04 ± 8.44 3.57 70.71 ± 3.32 5.76 77.57 ± 5.02 6.98 74.72 ± 1.54 8.13
FedRC 25.20 ± 9.70 8.13 18.43 ± 8.77 9.34 14.43 ± 5.46 10.80 12.57 ± 2.44 11.29
FedEM 30.45 ± 13.63 8.16 16.79 ± 6.72 8.77 14.85 ± 6.14 10.71 14.10 ± 3.52 11.10
FeSEM 62.78 ± 10.71 6.84 69.53 ± 7.16 7.26 68.90 ± 1.84 8.53 73.22 ± 3.80 9.39
CFL 78.74 ± 4.27 6.16 79.31 ± 5.43 6.49 81.35 ± 4.08 8.46 80.69 ± 1.53 8.64
IFCA 19.49 ± 8.37 6.47 39.20 ± 15.89 7.55 38.37 ± 5.22 8.98 34.44 ± 4.84 10.04
pFedMe 38.00 ± 16.00 5.57 44.92 ± 9.61 6.44 42.67 ± 3.61 7.64 38.31 ± 6.57 8.89
APFL 67.09 ± 7.75 7.16 68.95 ± 4.98 8.41 71.71 ± 5.63 9.94 63.73 ± 4.93 10.12
FedDrift 52.08 ± 15.30 8.79 44.62 ± 7.23 9.58 N/A N/A N/A N/A
ATP 67.67 ± 12.49 5.17 72.62 ± 1.79 6.67 68.87 ± 2.28 7.73 73.47 ± 6.46 8.53

FEROMA 89.64 ± 0.29 4.05 89.90 ± 0.63 6.60 89.77 ± 0.82 7.60 88.04 ± 1.41 8.37

Table 32: Performance comparison across heterogeneity type P (X|Y ) on the MNIST dataset. Time
is reported in log2 seconds.
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Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

FedAvg 59.50 ± 1.04 62.07 ± 6.04 57.68 ± 2.05 60.91 ± 1.19 59.34 ± 5.33 61.26 ± 1.25 57.38 ± 1.17 56.76 ± 2.00 56.62 ± 1.31
FedRC 57.07 ± 3.12 58.80 ± 0.15 56.77 ± 0.19 54.38 ± 0.32 55.23 ± 2.43 55.79 ± 3.43 52.76 ± 1.24 53.55 ± 1.54 51.46 ± 1.23
FedEM 56.31 ± 1.27 55.12 ± 0.24 56.54 ± 3.42 53.58 ± 0.32 53.45 ± 2.34 52.44 ± 1.23 50.45 ± 2.34 51.34 ± 3.34 50.44 ± 2.32
FeSEM 64.09 ± 3.63 63.76 ± 0.05 64.45 ± 0.18 59.33 ± 0.29 60.76 ± 0.18 61.32 ± 0.14 59.23 ± 2.43 58.55 ± 1.35 57.54 ± 3.44
CFL 65.09 ± 5.21 64.85 ± 0.07 63.73 ± 0.24 62.34 ± 0.29 62.21 ± 0.22 60.31 ± 0.16 60.44 ± 0.45 61.43 ± 0.83 60.43 ± 3.91
IFCA 55.94 ± 0.74 55.12 ± 1.32 54.31 ± 4.35 52.54 ± 1.54 52.00 ± 2.43 51.33 ± 2.78 51.14 ± 0.92 50.88 ± 3.44 51.54 ± 4.53
pFedMe 61.70 ± 0.64 61.12 ± 2.78 58.68 ± 1.46 59.92 ± 0.31 57.56 ± 0.14 57.88 ± 0.11 55.54 ± 0.04 55.48 ± 0.03 56.07 ± 0.28
APFL 56.35 ± 1.23 56.90 ± 0.06 55.90 ± 0.18 54.78 ± 1.72 54.83 ± 0.53 53.55 ± 1.35 53.78 ± 0.28 52.83 ± 0.12 51.00 ± 1.02
FedDrift 75.79 ± 0.24 74.86 ± 0.20 74.03 ± 0.60 71.70 ± 0.64 72.02 ± 0.48 71.91 ± 0.20 70.47 ± 0.94 70.48 ± 1.59 69.11 ± 1.31
ATP N/A N/A N/A N/A N/A N/A N/A N/A N/A

FEROMA 76.32 ± 0.05 75.99 ± 0.14 76.64 ± 0.72 72.16 ± 0.67 71.96 ± 0.15 71.82 ± 0.69 69.35 ± 0.85 68.90 ± 0.70 68.59 ± 0.75

Table 33: Performance comparison across three different non-IID Levels and three distribution
drifting levels on the CheXpert dataset.

# Drifting 5 / 20 10 / 20 20 / 20

FedAvg 41.83 ± 1.44 40.11 ± 1.42 41.02 ± 0.89
FedRC 13.83 ± 5.30 13.32 ± 1.44 16.63 ± 2.50
FedEM 14.32 ± 4.30 14.86 ± 0.50 17.43 ± 2.50
FeSEM 35.47 ± 0.17 33.60 ± 0.86 32.40 ± 1.31
CFL 36.27 ± 0.33 33.93 ± 0.77 34.33 ± 1.60
IFCA 40.40 ± 4.54 37.17 ± 2.12 22.83 ± 5.90
pFedMe 37.70 ± 1.04 34.53 ± 2.05 31.70 ± 1.53
APFL 44.19 ± 2.98 39.99 ± 0.50 34.08 ± 2.20
FedDrift 42.08 ± 3.94 42.34 ± 0.43 41.94 ± 1.12
ATP 41.90 ± 3.13 40.88 ± 4.29 39.55 ± 5.26

FEROMA 43.43 ± 0.86 42.75 ± 1.21 41.11 ± 1.95

Table 34: Performance comparison across three distribution drifting levels on the Office-Home
dataset.

F.5 ABLATION STUDY ON MONTE-CARLO SUBSAMPLING

The Distribution Profile Extractor (DPE) must satisfy Requirement (R3) on controlled stochasticity.
As described in Section C.4.1, our implementation enforces this property via a Monte Carlo subsam-
pling strategy. Specifically, for each client, we apply M independent Bernoulli masks with sampling
probability γ = 0.5, and compute distribution profiles over the resulting subsets. The variance
introduced by this process is governed by the number of subsamples M , the number of used data
points v(k), and the proxy variance τ2 of the latent coordinates, as derived in Appendix equation 2.
Among these parameters, M and γ are design choices under our control. In this ablation, we study
the impact of varying M ∈ {1, 2, 3}, keeping γ = 0.5 fixed, across all four types of distribution
shifts (P (X), P (Y ), P (Y |X), P (X|Y )) and three heterogeneity levels (low, medium, high), on
both MNIST and CIFAR-10.

The results, reported in Tables 35–38, show that FEROMA is robust to the choice of M , with only
minor accuracy differences across values. Nevertheless, slightly better performance is observed with
larger M , suggesting that reducing the variance of the extracted profiles improves model association
and final accuracy. This supports the intuition that while stochasticity is essential for privacy and
regularization, excessive noise may degrade the reliability of distribution similarity computations.

F.6 ABLATION STUDY ON THRESHOLD PROFILE ASSOCIATION

To prevent noisy or weakly related distributions from influencing model aggregation, we apply a
thresholding mechanism to the profile similarity weights. Specifically, a threshold τ is introduced to
discard low-similarity associations, thereby promoting aggregation only among clients with suffi-
ciently aligned distributions. This design is motivated by clustered FL principles, where collaboration
is restricted to similar clients, but implemented here in a soft and data-driven manner. The threshold-
ing step is applied after computing the similarity-based weights w(k,j)

t , as described in Equation 4. In
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the ablation study, we set the threshold τ to the average value of the similarity weights (e.g., 0.05 in
the case of 20 clients), providing a simple heuristic to evaluate the effect of thresholding.

From Table 35 to Table 38, the results show that accuracy remains largely stable with thresholding
enabled or disabled. In future work, we expect that more principled or adaptive strategies for selecting
the threshold τ could further enhance aggregation quality—particularly in highly imbalanced or noisy
distribution settings.

Non-IID Type P (X) P (Y )

Non-IID Level Low Medium High Low Medium High

#M = 1, threshold off 87.88 ± 1.07 87.29 ± 1.48 85.30 ± 1.34 84.56 ± 9.61 79.69 ± 10.61 79.85 ± 10.41
#M = 2, threshold off 88.10 ± 0.88 87.55 ± 1.61 85.89 ± 0.30 87.61 ± 6.53 83.81 ± 8.62 78.91 ± 10.86
#M = 3, threshold off 88.67 ± 0.30 86.50 ± 2.48 85.81 ± 0.36 86.24 ± 8.27 85.94 ± 5.23 80.11 ± 9.65
#M = 1, threshold on 87.62 ± 0.98 87.21 ± 1.40 85.71 ± 0.52 86.05 ± 8.60 76.37 ± 10.30 73.26 ± 11.61
#M = 2, threshold on 87.53 ± 1.00 85.61 ± 4.75 85.48 ± 0.46 86.95 ± 7.53 81.59 ± 8.67 75.75 ± 7.90
#M = 3, threshold on 88.20 ± 0.42 85.98 ± 2.10 85.43 ± 0.27 86.80 ± 9.44 79.89 ± 8.26 68.67 ± 12.67

Table 35: Test accuracy on MNIST under varying numbers of Monte Carlo masks (M = 1, 2, 3) and
with thresholding enabled or disabled, across different non-IID levels in P (X) and P (Y ).

Non-IID Type P (Y |X) P (X|Y )

Non-IID Level Low Medium High Low Medium High

#M = 1, threshold off 84.10 ± 2.90 76.40 ± 3.70 73.88 ± 1.75 90.02 ± 0.47 88.64 ± 1.21 89.67 ± 1.14
#M = 2, threshold off 84.40 ± 3.36 78.71 ± 3.78 77.12 ± 3.07 88.70 ± 2.12 90.06 ± 0.23 88.53 ± 0.96
#M = 3, threshold off 85.04 ± 2.44 80.09 ± 2.14 78.38 ± 2.62 88.81 ± 1.94 89.02 ± 1.59 88.29 ± 1.12
#M = 1, threshold on 84.09 ± 2.87 76.54 ± 3.68 73.76 ± 1.75 89.38 ± 0.87 88.24 ± 2.52 88.88 ± 0.93
#M = 2, threshold on 84.50 ± 3.25 78.59 ± 3.68 76.99 ± 3.10 89.80 ± 0.41 88.26 ± 2.04 86.03 ± 3.24
#M = 3, threshold on 85.02 ± 2.43 79.90 ± 2.03 78.05 ± 2.57 90.05 ± 0.69 89.47 ± 1.35 88.86 ± 1.23

Table 36: Test accuracy on MNIST under varying numbers of Monte Carlo masks (M = 1, 2, 3) and
with thresholding enabled or disabled, across different non-IID levels in P (Y |X) and P (X|Y ).

Non-IID Type P (X) P (Y )

Non-IID Level Low Medium High Low Medium High

#M = 1, threshold off 40.25 ± 0.79 32.76 ± 2.43 30.97 ± 1.05 39.54 ± 5.29 34.73 ± 5.06 31.16 ± 3.31
#M = 2, threshold off 40.11 ± 0.57 32.41 ± 2.78 31.05 ± 1.73 38.73 ± 6.90 35.62 ± 5.37 32.24 ± 9.06
#M = 3, threshold off 40.13 ± 0.73 32.94 ± 1.78 31.61 ± 1.69 41.01 ± 7.51 41.33 ± 4.71 33.94 ± 7.60
#M = 1, threshold on 39.98 ± 0.58 31.48 ± 2.45 30.62 ± 1.00 38.81 ± 5.73 38.91 ± 1.38 30.24 ± 3.50
#M = 2, threshold on 40.06 ± 0.68 32.23 ± 2.54 30.54 ± 1.93 39.01 ± 8.81 35.74 ± 5.19 29.95 ± 8.30
#M = 3, threshold on 40.19 ± 0.60 32.10 ± 1.57 30.76 ± 1.28 39.98 ± 8.64 41.48 ± 3.04 31.64 ± 5.89

Table 37: Test accuracy on CIFAR-10 under varying numbers of Monte Carlo masks (M = 1, 2, 3)
and with thresholding enabled or disabled, across different non-IID levels in P (X) and P (Y ).

F.7 ABLATION STUDY ON DISTANCE FUNCTION

We analyze the impact of the distance function D(·, ·), introduced in Equation 3, on the overall
performance of FEROMA. Specifically, we compare two commonly used similarity measures:
Euclidean distance and cosine distance. To isolate their effects, we evaluate four combinations by
varying the choice of D during training and test-time profile matching.

The evaluated settings are as follows:

• E.E.: Euclidean distance used in both training and testing.
• C.C.: Cosine distance used in both training and testing.
• E.C.: Euclidean distance used during training; cosine distance during testing.
• C.E.: Cosine distance used during training; Euclidean distance during testing.
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Non-IID Type P (Y |X) P (X|Y )

Non-IID Level Low Medium High Low Medium High

#M = 1, threshold off 36.83 ± 1.91 34.16 ± 1.30 29.47 ± 0.50 41.56 ± 1.72 39.77 ± 1.30 38.94 ± 2.85
#M = 2, threshold off 36.24 ± 0.36 34.20 ± 1.47 30.01 ± 0.99 43.91 ± 1.36 37.93 ± 1.41 37.59 ± 3.65
#M = 3, threshold off 36.78 ± 1.74 34.48 ± 1.85 29.91 ± 1.00 41.25 ± 3.77 42.38 ± 1.82 38.91 ± 1.89
#M = 1, threshold on 36.83 ± 1.53 34.23 ± 1.22 29.64 ± 0.55 40.22 ± 3.31 40.30 ± 0.99 37.93 ± 1.56
#M = 2, threshold on 36.32 ± 0.67 34.49 ± 1.51 30.07 ± 1.22 41.62 ± 3.37 38.71 ± 2.85 34.21 ± 2.71
#M = 3, threshold on 36.94 ± 1.42 34.55 ± 1.72 29.94 ± 0.93 38.17 ± 2.85 39.04 ± 2.68 37.25 ± 1.51

Table 38: Test accuracy on CIFAR-10 under varying numbers of Monte Carlo masks (M = 1, 2, 3)
and with thresholding enabled or disabled, across different non-IID levels in P (Y |X) and P (X|Y ).

These combinations allow us to assess whether consistency between training and testing distance
functions is important, and whether certain metrics generalize better under mismatch. The ablation
study is conducted on the FMNIST dataset using all four non-IID types described in the main
experiments. For each type, we evaluate three non-IID levels (Low, Medium, High) and three
distribution drift levels (5/20, 10/20, 20/20), following the same settings as detailed in subsection F.2.
Table 39 summarizes the overall performance across all combinations, and the result shows FEROMA
is robust despite the choices of D. We adopt the C.E. configuration (cosine distance for training
and Euclidean distance for testing) for the remainder of our experiments, as it consistently achieves
slightly better performance. Detailed results for each non-IID type are provided in Table 40 through
Table 43.

# Drifting 5 / 20 10 / 20 20 / 20

E.C. 75.911 ± 3.12 76.419 ± 3.94 75.930 ± 5.75
E.E. 77.833 ± 3.43 77.079 ± 3.76 76.603 ± 4.59
C.E. 77.904 ± 3.42 77.357 ± 3.93 76.891 ± 4.73
C.C. 75.864 ± 3.01 76.302 ± 3.78 75.809 ± 5.75

Table 39: Performance comparison among different distance functions across all non-IID types and
levels on the FMNIST dataset.

Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

E.C. 73.73 ± 0.48 74.89 ± 0.43 72.13 ± 0.43 73.76 ± 0.73 75.11 ± 0.67 71.58 ± 0.35 73.43 ± 0.75 75.09 ± 0.48 72.08 ± 0.62
E.E. 73.63 ± 0.53 74.87 ± 0.57 71.98 ± 0.25 73.69 ± 0.70 75.01 ± 0.63 71.30 ± 0.52 73.65 ± 0.69 75.01 ± 0.50 71.56 ± 0.77
C.E. 73.69 ± 0.46 74.87 ± 0.57 72.95 ± 0.25 73.70 ± 0.60 75.04 ± 0.70 71.23 ± 0.59 73.55 ± 0.72 75.01 ± 0.47 71.71 ± 0.62
C.C. 73.79 ± 0.41 74.84 ± 0.49 72.26 ± 0.37 73.83 ± 0.68 75.12 ± 0.60 71.62 ± 0.34 73.45 ± 0.76 75.03 ± 0.51 71.99 ± 0.65

Table 40: Performance comparison among different distance functions across non-IID type P (X) on
the FMNIST dataset.

Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

E.C. 94.11 ± 2.60 82.89 ± 7.27 83.09 ± 4.43 95.05 ± 3.45 90.20 ± 6.38 84.29 ± 8.43 94.07 ± 6.25 90.46 ± 6.10 85.09 ± 14.84
E.E. 94.49 ± 2.70 88.30 ± 6.23 86.22 ± 9.08 94.44 ± 3.67 90.22 ± 6.84 78.27 ± 9.74 93.99 ± 6.29 90.00 ± 5.63 81.07 ± 12.77
C.E. 94.46 ± 2.65 88.38 ± 6.34 86.22 ± 9.08 94.43 ± 3.63 90.33 ± 6.92 81.61 ± 10.57 94.11 ± 6.08 90.05 ± 5.73 83.92 ± 13.43
C.C. 93.82 ± 2.98 82.93 ± 7.32 82.98 ± 3.56 95.01 ± 3.48 90.10 ± 6.27 83.51 ± 7.60 93.88 ± 6.57 90.34 ± 5.91 83.97 ± 14.66

Table 41: Performance comparison among different distance functions across non-IID type P (Y ) on
the FMNIST dataset.
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Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

E.C. 72.52 ± 1.69 66.83 ± 2.61 65.28 ± 1.21 71.00 ± 2.71 69.14 ± 1.41 63.29 ± 1.54 72.41 ± 1.63 67.01 ± 2.00 63.03 ± 1.81
E.E. 73.68 ± 0.57 72.26 ± 1.37 71.24 ± 1.31 71.62 ± 1.63 72.10 ± 1.01 70.21 ± 2.00 72.55 ± 1.72 66.59 ± 1.82 62.99 ± 2.07
C.E. 73.68 ± 0.80 72.44 ± 1.18 71.54 ± 0.85 71.83 ± 1.70 72.38 ± 1.03 70.63 ± 1.45 72.46 ± 1.72 66.87 ± 2.14 64.00 ± 1.92
C.C. 72.49 ± 1.69 67.14 ± 1.95 65.11 ± 1.15 70.62 ± 2.79 68.61 ± 1.40 63.47 ± 1.57 72.48 ± 1.64 66.74 ± 1.66 63.08 ± 2.01

Table 42: Performance comparison among different distance functions across non-IID type P (Y |X)
on the FMNIST dataset.

Non-IID Level Low Medium High

# Drifting 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20 5 / 20 10 / 20 20 / 20

E.C. 78.55 ± 1.92 75.55 ± 3.96 74.62 ± 2.53 75.14 ± 5.05 77.27 ± 3.61 76.74 ± 3.40 79.02 ± 1.49 73.06 ± 6.13 70.34 ± 7.06
E.E. 78.81 ± 1.67 79.22 ± 1.98 78.65 ± 1.03 78.82 ± 1.43 78.38 ± 1.14 78.32 ± 1.46 79.33 ± 1.53 79.84 ± 1.76 78.92 ± 0.84
C.E. 78.88 ± 1.68 79.11 ± 1.99 78.22 ± 0.88 78.81 ± 1.39 78.42 ± 1.19 78.14 ± 1.56 79.55 ± 1.41 79.75 ± 1.83 78.86 ± 0.94
C.C. 78.74 ± 1.78 75.15 ± 3.95 74.21 ± 2.44 75.17 ± 5.05 76.95 ± 3.40 76.79 ± 3.44 78.98 ± 1.49 73.12 ± 6.37 70.23 ± 7.08

Table 43: Performance comparison among different distance functions across non-IID type P (X|Y )
on the FMNIST dataset.
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