

000 001 002 003 004 005 006 007 008 009 010 011 012 013 014 015 016 017 018 019 020 021 022 023 024 025 026 027 028 029 030 031 032 033 034 035 036 037 038 039 040 041 042 043 044 045 046 047 048 049 050 051 052 053 FEDERATED LEARNING WITH PROFILE MAPPING UNDER DISTRIBUTION SHIFTS AND DRIFTS

Anonymous authors

Paper under double-blind review

ABSTRACT

Federated Learning (FL) enables decentralized model training across clients without sharing raw data, but its performance degrades under real-world data heterogeneity. Existing methods often fail to address distribution shift across clients and distribution drift over time, or they rely on unrealistic assumptions such as known number of client clusters and data heterogeneity types, which limits their generalizability. We introduce FEROMA, a novel FL framework that explicitly handles both distribution shift and drift without relying on client or cluster identity. FEROMA builds on client distribution profiles—compact, privacy-preserving representations of local data—that guide model aggregation and test-time model assignment through adaptive similarity-based weighting. This design allows FEROMA to dynamically select aggregation strategies during training, ranging from clustered to personalized, and deploy suitable models to unseen, and unlabeled test clients without retraining, online adaptation, or prior knowledge on clients’ data. Extensive experiments show that compared to 10 state-of-the-art methods, FEROMA improves performance and stability under dynamic data heterogeneity conditions—an average accuracy gain of up to 12 percentage points over the best baselines across 6 benchmarks—while maintaining computational and communication overhead comparable to FedAvg. These results highlight that distribution-profile-based aggregation offers a practical path toward robust FL under both data distribution shifts and drifts.

1 INTRODUCTION

Federated Learning (FL) (McMahan et al., 2017) has become a promising paradigm for training models collaboratively across distributed clients without sharing their private data. However, one of the central challenges in FL is the presence of heterogeneous client data, which can significantly degrade model performance if not properly handled (Kairouz et al., 2021). In real-world deployments, clients rarely hold independent and identically distributed (IID) data (Zhao et al., 2018; Zhu et al., 2021). They often exhibit two forms of heterogeneity: *distribution shift*, where different clients possess distinct data distributions (Sattler et al., 2021; Deng et al., 2020b; Guo et al., 2024), and *distribution drift*, where a single client’s data distribution also evolves over time (Jothimurugesan et al., 2023; Lu et al., 2019b; Gama et al., 2014). These dynamics challenge the notion of a single global model that performs uniformly well across all clients throughout training and deployment.

Vanilla FedAvg (McMahan et al., 2017) struggles to converge efficiently due to its uniform aggregation of all client updates, regardless of their data distributions. Under distribution shift (Figure 1 Left), clients whose data distributions are underrepresented in the global model receive limited benefit, resulting in persistently low accuracy and slow convergence. This issue is exacerbated under distribution drift (Figure 1 Right), where local data distributions evolve over time. Such drift may occur during training—causing instability and divergence in the global model—or during test time, degrading performance as clients encounter data that no longer aligns with the distribution observed during training.

Existing methods for handling heterogeneous data in FL typically fall into three categories: Clustered FL (CFL) (Sattler et al., 2021; Guo et al., 2024; Jothimurugesan et al., 2023; Ghosh et al., 2020; Marfoq et al., 2021; Long et al., 2023), Personalized FL (PFL) (Deng et al., 2020b; T. Dinh et al., 2020; Tan et al., 2023a; Kulkarni et al., 2020), and Test-time Adaptive FL (TTA-FL) (Bao et al., 2023; Deng

et al., 2020a; Wang et al., 2019). CFL methods group clients with similar data distributions based on model parameters or training metrics, which can effectively address distribution shift. However, they often lack adaptability under training and/or test-time drifts, require prior knowledge on the number of clusters or assumptions about data distribution(Guo et al., 2024; Ghosh et al., 2020), and incur significant training overhead due to the use of computationally intensive clustering techniques, as well as the transmission, evaluation, or training of multiple models per client (Sattler et al., 2021; Jothimurugesan et al., 2023). PFL methods optimize a personalized model for each client using its local data distribution, thereby mitigating the negative effects of inter- and intra-client distribution dissimilarity. While this yields strong performance locally—particularly when ample training data is available per client—the resulting models often become highly client-specific, sacrificing robustness in favour of personalization and offering limited generalization to unseen distributions or new clients. TTA-FL approaches are designed to handle test-time drifts, but usually rely on online adaptation or additional client interaction, which limits their practicality and efficiency in deployment. In addition, they often overlook training-time drift and shift, which can lead to unstable or slowed convergence and degraded model performance across clients. Despite their strengths, these existing approaches are often tailored to specific non-IID types (Sattler et al., 2021; Deng et al., 2020b; Guo et al., 2024; Jothimurugesan et al., 2023; Ghosh et al., 2020; Marfoq et al., 2021; Long et al., 2023; T. Dinh et al., 2020) and may struggle to balance generalization, adaptability, and efficiency—factors that are increasingly important for practical FL deployments under real-world heterogeneous conditions.

To bridge this gap, we introduce **Federated Learning with Distribution Profile Mapping (FEROMA)**, an FL framework that moves the focus from client or cluster identity to the underlying data *distribution profile*. To the best of our knowledge, FEROMA is the first general-purpose FL framework explicitly designed to address both distribution shift and distribution drift, during training as well as test time. FEROMA extracts a lightweight, differentially private statistical profile from each client’s local data and maps it to previously observed profiles from last training round. This mapping guides model aggregation through similarity-based weighting. Based on these profiles, FEROMA automatically selects the most suitable aggregation strategy for each round through adaptive similarity thresholds. This design enables FEROMA to remain both flexible and scalable under dynamic, real-world FL settings, without relying on any prior knowledge. Moreover, FEROMA assigns trained models to unseen clients based on profile similarity, enabling robust model selection during test-time. We summarize the key contributions of FEROMA as follows:

- **A unified and adaptive aggregation framework.** FEROMA dynamically selects the best aggregation strategy—ranging from clustered to personalized or global—based on client distribution profiles, and naturally extends to test-time adaptation without retraining.
- **Effective under both distribution shift and drift.** FEROMA handles static and dynamic data heterogeneity by leveraging round-wise distribution mapping, and scales efficiently to a large number of clients. We evaluate FEROMA on four standard and two real-world datasets, showing consistent gains over 10 SOTA baselines across a wide range of scenarios: including four types of distribution shift (with low, medium, and high severity) and varying drift frequencies.
- **Lightweight and efficient design.** FEROMA introduces minimal communication and computation overhead, with both server- and client-side costs comparable to FedAvg, enabling practical deployment in resource-constrained environments. We provide both theoretical bounds and empirical measurements to validate its practicality in resource-constrained federated settings.

2 BACKGROUND

FL under IID assumption. FL systems (McMahan et al., 2017) consist of a collection of $K \in \mathbb{N}$ distributed clients, denoted as $\mathcal{K} = \{1, 2, \dots, K\}$, coordinated by a central server. These clients collaboratively train a shared machine learning model while keeping their local data private. Under IID assumptions, FL typically assumes that each client $k \in \mathcal{K}$ holds an IID dataset sampled from

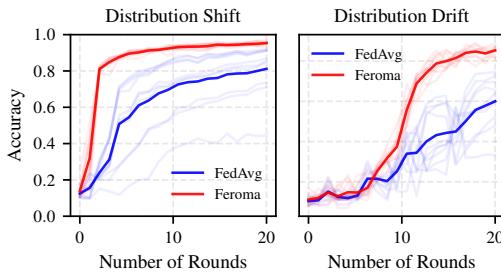


Figure 1: Comparison between FedAvg and FEROMA under (Left) distribution shift across clients, and (Right) under distribution drift every 2 rounds.

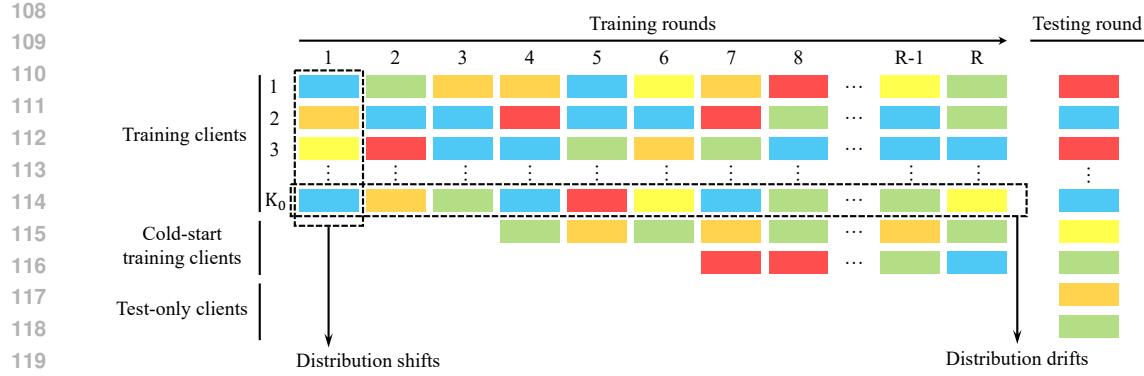


Figure 2: **Distribution shifts and drifts in FL.** Colors indicate distinct local data distributions. Changes across clients reflect *distribution shifts*; changes over rounds reflect *distribution drifts*.

a common joint distribution $P(X, Y)$. Specifically, client k possesses a local dataset $(x^{(k)}, y^{(k)})$ of size $s^{(k)} \in \mathbb{N}$, which remains fixed throughout training. Here, $x^{(k)} \in \mathbb{R}^{s^{(k)} \times z}$ denotes the input features and $y^{(k)} \in \{0, 1\}^{s^{(k)} \times u}$ the corresponding labels, where z is the number of features per sample and u the number of output classes. During each communication round t , every client k performs local training by optimizing its model parameters $\theta_t^{(k)}$ to maximize the likelihood over its private dataset $(x^{(k)}, y^{(k)})$, as shown in Equation 1. Once local updates are computed, clients transmit their parameters to the central server. The server then aggregates the received updates—typically via simple weighted averaging (McMahan et al., 2017)—to produce a new global model θ_{t+1} , as defined in Equation 2. This updated global model is broadcast back to the clients to initialize the next training round.

$$(\text{Local training}) \quad \theta_t^{(k)} \approx \arg \max_{\theta} \mathcal{L}(\theta \mid x^{(k)}, y^{(k)}) \quad (1)$$

$$(\text{Aggregation}) \quad \theta_{t+1} = \frac{1}{K} \sum_{k=1}^K p_k \theta_t^{(k)} \quad \text{where} \quad p_k = \frac{s^{(k)}}{\sum_{j=1}^K s^{(j)}}, \quad \sum_{k=1}^K p_k = 1. \quad (2)$$

FL under distribution shifts. In practical FL scenarios, clients commonly face *inter-client distribution shift*, where data distributions vary across clients—referred to here as distribution shift. As illustrated in Figure 2 (vertical variation within each round), for any two clients $k_1, k_2 \in \mathcal{K}$, it may hold that $P(X^{(k_1)}, Y^{(k_1)}) \neq P(X^{(k_2)}, Y^{(k_2)})$, violating the standard IID assumption $P(X^{(k)}, Y^{(k)}) = P(X, Y)$ for all k . Such shifts may result from variations in user behavior, environment, or adversarial activity, and are typically grouped into four types (Kairouz et al., 2021):

- *Feature distribution skew (covariate shift)*: Marginal distributions $P(X)$ vary across clients.
- *Label distribution skew (prior probability shift)*: Marginal distributions $P(Y)$ vary across clients.
- *Concept shift (same X, different Y)*: Conditional distributions $P(Y \mid X)$ vary across clients.
- *Concept shift (same Y, different X)*: Conditional distributions $P(X \mid Y)$ vary across clients.

While distribution shift is well-studied in centralized learning (Lu et al., 2019b; Koh et al., 2021; Li et al., 2022c; Tahmasbi et al., 2021b), it remains underexplored in FL—where most works target specific shift types and demand extra communication/computation costs (Sattler et al., 2021; Deng et al., 2020b; Guo et al., 2024; Ghosh et al., 2020; Marfoq et al., 2021; Long et al., 2023; T. Dinh et al., 2020; Tan et al., 2023a; Kulkarni et al., 2020), due to the server’s limited visibility into decentralized client data. This challenge is further compounded by resource constraints on client devices, which limit both the training capacity and the complexity of deployable models. As a result, global models often fail to generalize across non-identically distributed client populations.

FL under distribution drifts. In addition to distribution shift, FL systems may also encounter *intra-client distribution drift*, which we refer to as distribution drift. As illustrated in Figure 2 (horizontal variation across rounds), this occurs when the local data distribution of a single client changes over time. Formally, for any client $k \in \mathcal{K}$, the distribution at two different rounds t_1 and t_2 may differ, i.e., $P_{t_1}(X^{(k)}, Y^{(k)}) \neq P_{t_2}(X^{(k)}, Y^{(k)})$. Drift may manifest during training—due to

162 changes in user behavior, sensor conditions, or data collection environments—or during testing. In the
 163 latter case, drift arises either because the same client exhibits evolving behavior at inference time or
 164 due to the presence of entirely new clients (e.g., *test-only* clients in [Figure 2](#)) whose data distributions
 165 were not observed during training and for which label information is unavailable. Such temporal
 166 drift significantly increases training and testing complexity and necessitates adaptive strategies that
 167 can respond to evolving data. While distribution drift has been extensively studied in centralized
 168 settings ([Lu et al., 2019a](#); [Gao et al., 2022](#); [Li et al., 2022b](#); [Tahmasbi et al., 2021a](#)), only a few studies
 169 have investigated training-time drift ([Jothimurugesan et al., 2023](#); [Chen et al., 2024](#)) or test-time
 170 drift ([Bao et al., 2023](#); [Tan et al., 2023c](#)) in FL. However, to the best of our knowledge, the joint
 171 presence of training and test-time drift has never been explored in existing FL literature—despite its
 172 critical impact on model performance and accuracy in real-world deployments.

3 FEROMA

173 To tackle the challenges posed by dynamic and heterogeneous federated environments, we propose
 174 FEROMA, a lightweight framework that adapts to both distribution shift and drift. This section begins
 175 by formalizing the problem setting ([section 3](#)), then outlines the two core components of the FEROMA
 176 pipeline, illustrated in [Figure 3](#): *distribution profile extraction* ([subsection 3.1](#)) and *distribution profile*
 177 *mapping* ([subsection 3.2](#)). In addition, [section 3.2.1](#) details how FEROMA dynamically selects the
 178 optimal aggregation strategy for each client based on the inferred distribution structure. The full
 179 implementation and algorithmic details are provided in [Appendix C](#).

180 **Problem definition.** We consider a dynamic FL system with K_t clients at round t , where each client
 181 holds local data $(x_t^{(k)}, y_t^{(k)})$ and trains a local model $\theta_t^{(k)}$. The number of clients may vary across
 182 rounds due to client arrivals (*cold-start*) or departures, i.e., $K_{t-1} \neq K_t$. In practical FL settings,
 183 data distributions are both *non-identical across clients* and *non-stationary over time*. Formally, for
 184 any clients $k_1, k_2 \in \mathcal{K}$ and rounds t_1, t_2 , the local distributions may differ: $P_{t_1}(X^{(k_1)}, Y^{(k_1)}) \neq$
 185 $P_{t_2}(X^{(k_2)}, Y^{(k_2)})$. This unified formulation captures both *inter-client shift* (when $k_1 \neq k_2$) and
 186 *intra-client drift* (when $k_1 = k_2$). Our goal is to design a lightweight FL framework that explicitly
 187 addresses both distribution shift and drift during training and testing, without relying on client
 188 identities or prior knowledge of underlying distributions.

3.1 DISTRIBUTION PROFILE EXTRACTION

189 When a client’s local distribution shifts between consecutive rounds—e.g., from $P(X_t^{(k)}, Y_t^{(k)})$ to
 190 $P(X_{t+1}^{(k)}, Y_{t+1}^{(k)})$ —adapting a model trained on its own earlier distribution may require significant
 191 local computation and communication. A more efficient alternative is to reassign a model (or an
 192 aggregation of models) previously trained on distributions that closely resemble the client’s current
 193 distribution. To enable such model selection under distribution drift and to guide aggregation across
 194 heterogeneous clients under distribution shift, we require a distribution profile, i.e., a low-dimensional,
 195 stable summary that quantifies distribution similarity without exposing raw data or labels.

196 **Definition 3.1** (Distribution–Profile Extractor). *Let $z \in \mathbb{N}$ denote the feature dimension, and let d be
 197 the desired profile dimension. A Distribution–Profile Extractor (DPE) is a stochastic mapping $\phi_\psi :
 198 \mathbb{R}^{v^{(k)} \times (z+u)} \rightarrow \mathbb{R}^d$, with $v^{(k)} \leq s^{(k)}$, parametrized by ψ , that maps a local dataset
 199 $(x_t^{(k)}, y_t^{(k)}) \sim P(X_t^{(k)}, Y_t^{(k)})$ to a distribution profile $d_t^{(k)} := \phi_\psi(x_t^{(k)}, y_t^{(k)})$. For any two client–round pairs
 200 (k_1, t_1) and (k_2, t_2) , the extractor must satisfy the requirements below.*

201 (R1) **Distribution fidelity.** Profile distances should approximate a reference distance Δ (e.g.,
 202 Jensen–Shannon or Wasserstein distance) between the corresponding distributions:

$$203 \quad | \|d_{t_1}^{(k_1)} - d_{t_2}^{(k_2)}\|_2 - \Delta(P(x_{t_1}^{(k_1)}, y_{t_1}^{(k_1)}), P(x_{t_2}^{(k_2)}, y_{t_2}^{(k_2)})) | \leq \xi$$

204 In other words, the extractor ϕ should map similar distributions to nearby profiles and dissimilar
 205 distributions to distant profiles.

206 (R2) **Label agnosticism.** The extractor ϕ_ψ must support profile generation *without* labels:

$$207 \quad d_t^{(k)} := \phi_\psi(x_t^{(k)}, \mathbf{0}) \in \mathbb{R}^p, \quad \text{with } p \leq d, \quad d_t^{(k)} \subseteq d_t^{(k)}$$

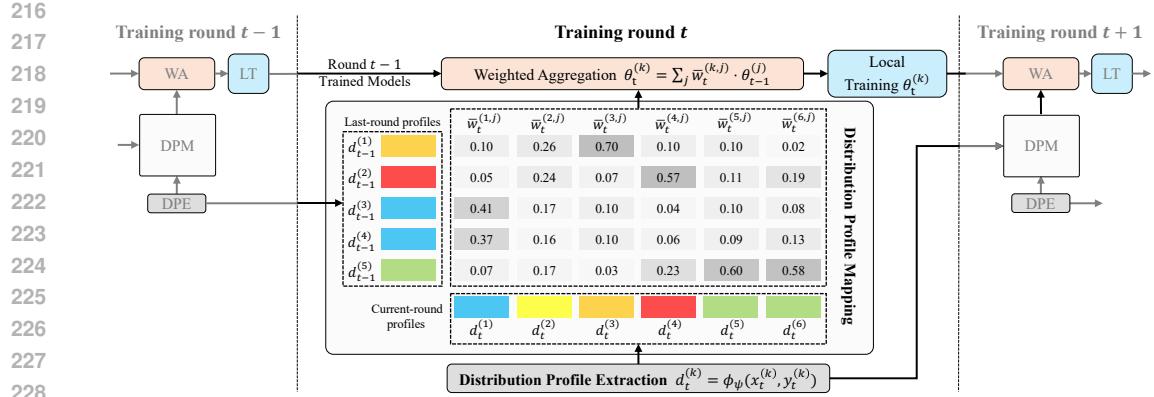


Figure 3: **FEROMA pipeline.** In each round t , clients extract distribution profiles (DPE), map them to previous-round profiles (DPM), and compute weighted aggregation (WA) for local training (LT).

This enables profile extraction and similarity matching at test time. Here, $d_t^{(k)}$ captures the marginal distributional characteristics based solely on the input features $x_t^{(k)}$.

(R3) **Controlled stochasticity.** The extractor ϕ_ψ is a stochastic mapping: for a fixed input, the profile $d_t^{(k)} = \phi_\psi(x_t^{(k)}, y_t^{(k)})$ is a random variable. Its expectation preserves the distributional properties, satisfying $\mathbb{E}[d_t^{(k)}] = \bar{\phi}(x_t^{(k)}, y_t^{(k)})$, with bounded covariance $\text{Cov}(d_t^{(k)}) \preceq \rho^2 \mathbf{I}_d$. This controlled stochasticity prevents exact fingerprinting of client distributions across rounds while maintaining reliable inter-profile distances in expectation.

(R4) **Differential-privacy guarantee.** The mapping ϕ_ψ satisfies (ε, δ) -differential privacy at the *sample* level: for any two datasets $(x_t^{(k)}, y_t^{(k)}), (x_t'^{(k)}, y_t'^{(k)})$ that differ in exactly one example and for every measurable set $\mathcal{S} \subseteq \mathbb{R}^d$,

$$\Pr[\phi_\psi(x_t^{(k)}, y_t^{(k)}) \in \mathcal{S}] \leq e^\varepsilon \Pr[\phi_\psi(x_t'^{(k)}, y_t'^{(k)}) \in \mathcal{S}] + \delta.$$

For example, this guarantee can be realized with a Gaussian (or Laplace) mechanism: $d_t^{(k)} = \bar{\phi}(x_t^{(k)}, y_t^{(k)}) + \mathcal{N}(0, \sigma^2 \mathbf{I}_d)$, where σ is calibrated to the ℓ_2 -sensitivity of the profile $\bar{\phi}_\psi$. The resulting many-to-one mapping both limits information leakage and obfuscates client identity.

(R5) **Compactness.** Profile extraction introduces minimal overhead compared to vanilla FL: its computational cost is negligible relative to a local training epoch, and the profile dimension d satisfies $d \ll |\theta|$ (typically $d/|\theta| \leq 10^{-2}$), ensuring that the additional communication cost remains marginal compared to the transmitted model update.

We implemented our DPE using a four-step statistical moment extraction from latent space with differential privacy. We provide details of the implemented DPE in our FEROMA in Appendix C.4, which satisfies all five requirements: (R1) with a mapping ϕ_ψ provably Lipschitz-equivalent to the 2-Wasserstein metric, showing $\xi < 1.1$ on MNIST (and < 0.54 under Jensen–Shannon); (R2) by consistently providing a label-free subvector $d_t^{(k)}$ that approximates the marginal data distribution; (R3) with bounded covariance $\rho^2 = (\frac{\tau^2}{M\gamma v^{(k)}} + 2b_{\max}^2) \leq 2.2 \times 10^{-3}$ depending on a Monte-Carlo subsampling (M, γ) plus Laplace noise (b_{\max}); (R4) by ensuring $(\varepsilon, 0)$ -DP for each profile vector $d_t^{(k)}$ with added variance $\leq 2.2 \times 10^{-5}$; and (R5) by introducing negligible computation and an communication cost of $d/|\theta| \leq 3.5 \times 10^{-3}$. Full implementation details and theoretical justifications are in Appendix C.4, with privacy calibration in Appendix E.

3.2 DISTRIBUTION PROFILE MAPPING

The core idea of FEROMA is to decouple model identity from specific clients or clusters, and instead associate each model with a data distribution characterized by its distribution profile $d_t^{(k)}$. Once profiles are extracted, we employ two complementary mapping strategies: during *training*, we enable model sharing by matching current and past profiles to derive weighted aggregations across clients; during *testing*, we extract a label-free profile for each unseen client and assign the closest model from the final round for direct inference.

270 3.2.1 TRAINING DISTRIBUTION MAPPING
271

272 After extracting all distribution profiles for the current round t , i.e., $\{d_t^{(k)}\}_{k=1}^{K_t}$, we map them to the
273 last round profiles $\{d_{t-1}^{(k)}\}_{k=1}^{K_{t-1}}$ to define the weights for model aggregation and assignment. The
274 mapping can be done with a normalized distance function:

$$275 \quad w_t^{(k,j)} = \frac{\exp(-\mathcal{D}(d_t^{(k)}, d_{t-1}^{(j)}))}{\sum_{j' \in \mathcal{A}_{t-1}} \exp(-\mathcal{D}(d_t^{(k)}, d_{t-1}^{(j')}))} \quad (3)$$

280 where $\mathcal{D}(\cdot, \cdot)$ is a chosen distance function (e.g., Euclidean distance), $w_t^{(k,j)}$ the association weight
281 between current client k and previous-round client j , and \mathcal{A}_{t-1} the set of clients active in round $t-1$.

282 Although weakly similar profiles receive small weights, their aggregation can still introduce noise.
283 To sharpen model selection, a threshold τ can be applied to discard any $w_t^{(k,j)}$ below τ , promoting
284 aggregation only among sufficiently similar profiles, similar to clustered FL approaches:

$$286 \quad \tilde{w}_t^{(k,j)} = \begin{cases} w_t^{(k,j)} & \text{if } w_t^{(k,j)} \geq \tau \\ 0 & \text{otherwise} \end{cases} \quad (4)$$

289 After thresholding, the weights $\tilde{w}_t^{(k,j)}$ are renormalized to ensure they sum to 1 across $j \in \mathcal{A}_{t-1}$.
290 This weight can be combined with weighting based on data size as in FedAvg. More details on the
291 distance function $\mathcal{D}(\cdot, \cdot)$ and ablation studies on the utility of τ are in Appendices F.6 and F.7.

292 **Automatic aggregation strategy selection.** At each training round t , we compute the associa-
293 tion weights $\{w_t^{(k,j)}\}_{k \in \mathcal{K}, j \in \mathcal{A}_{t-1}}$ via equation 3 or the thresholded $\tilde{w}_t^{(k,j)}$ version via equation 4,
294 depending on the desired level of selectivity, and then aggregate as

$$296 \quad \theta_t^{(k)} = \sum_{j \in \mathcal{A}_{t-1}} \bar{w}_t^{(k,j)} \cdot \theta_{t-1}^{(j)} \quad (5)$$

299 where $\bar{w}_t^{(k,j)}$ denotes either $w_t^{(k,j)}$ or $\tilde{w}_t^{(k,j)}$. After aggregation, each client proceeds with its local
300 training step as in equation 1. By inspecting the support of $\{\bar{w}_t^{(k,j)}\}_{j \in \mathcal{A}_{t-1}}$ for each client k at round
301 t , FEROMA independently and dynamically recovers the most suitable FL aggregation strategy:

- 302 • *Clustered FL.* ($d_t^{(1)}$ in [Figure 3](#)) If multiple weights $\bar{w}_t^{(k,j)} > 0$ survive thresholding, the aggregation
303 for client k aggregates those models trained on similar data distribution, akin to CFL.
- 305 • *Personalized FL.* ($d_t^{(3)}, d_t^{(4)}, d_t^{(5)}, d_t^{(6)}$ in [Figure 3](#)) If exactly one weight is nonzero, client k simply
306 inherits that single most similar model, yielding a personalized specialization.
- 307 • *Global FL fallback.* ($d_t^{(2)}$ in [Figure 3](#)) If no sufficiently similar profile is identified, it falls back to
308 global aggregation ($\bar{w}_t^{(k,j)} \approx 1/|\mathcal{A}_{t-1}|$), thus combining all models before the next adaptive round.

310 3.2.2 TESTING DISTRIBUTION MAPPING

311 At test time, we aim to assign each unseen client k to the best-matching model learned in the final
312 training round R based on its feature distribution, without any further optimization. First, we extract
313 the label-free profile $d_{\text{test}}^{(k)} = \phi_{\psi}(x_{\text{test}}^{(k)}, \mathbf{0})$, as required by (R2). Then we match $d_{\text{test}}^{(k)}$ against the set of
314 round- R profiles $\{d_R^{(j)}\}_{j \in \mathcal{A}_R}$ by selecting the nearest neighbor in profile space:

$$316 \quad j^* = \arg \min_{j \in \mathcal{A}_R} \mathcal{D}(d_{\text{test}}^{(k)}, d_R^{(j)}), \quad \theta_{\text{test}}^{(k)} = \theta_R^{(j^*)}.$$

318 This one-shot assignment requires no gradient steps, leverages the DP-protected distribution profiles,
319 and naturally generalizes to unseen, unlabeled clients. As discussed in [Appendix D](#), pure label-
320 free matching cannot inherently capture concept shift with identical X but different Y . However,
321 for addressing this problem, we show that a small, test-time labeled validation set can seamlessly
322 refine the associations and substantially improve performance. In addition, by assigning the most
323 appropriate pre-trained model to each test client, FEROMA enables the integration of unsupervised
324 test-time adaptation methods by offering a distribution-aware initialization point (see [Appendix 5.2](#)).

324 4 EXPERIMENTS

326 This section presents our experimental setup and results from two primary scaling studies. We
 327 evaluate FEROMA under varying drift frequencies, non-IID types, severity levels, and numbers of
 328 clients. These experiments assess the scalability, robustness, and efficiency of FEROMA compared to
 329 10 SOTA baselines across a wide range of real-world heterogeneity scenarios.

331 4.1 EXPERIMENT SETTINGS

333 **Drifting datasets generation.** We employ six publicly available datasets for our experiments:
 334 MNIST (LeCun & Cortes, 2005), Fashion-MNIST (FMNIST) (Xiao et al., 2017), CIFAR-10,
 335 CIFAR-100 (Krizhevsky), and two real-world datasets, CheXpert (Irvin et al., 2019) and Office-
 336 Home (Venkateswara et al., 2017). To construct distribution shift and drift datasets under different
 337 non-IID conditions, we use ANDA, a toolkit supporting operations such as class isolation and label
 338 swapping. For the real-world datasets, we preserve their intrinsic characteristics without modification.
 339 Detailed dataset information is provided in Appendix F.1.

340 **Baseline algorithms.** We evaluate our approach against baseline methods summarized in Table 3,
 341 including: FedAvg (McMahan et al., 2017), FedRC (Guo et al., 2024), FedEM (Marfoq et al.,
 342 2021), FeSEM (Long et al., 2023), CFL (Sattler et al., 2021), IFCA (Ghosh et al., 2020), FedDrift
 343 (Jothimurugesan et al., 2023), pFedMe (T. Dinh et al., 2020), APFL (Deng et al., 2020b), and ATP
 344 (Bao et al., 2023). The baseline methods are detailed further in Appendix A. The experimental
 345 environment, models, and hyperparameter configurations are described in Appendices C.2 and C.3.

346 4.2 RESULTS

348 **Scaling the drifting frequency, non-
 349 IID types, and non-IID levels.** We
 350 first evaluate the robustness of FER-
 351 OMA by comparing it against baseline
 352 methods across three drift frequencies:
 353 each client’s dataset drifts every four
 354 rounds, every two rounds, and at every
 355 round. Additionally, we simulate four
 356 types of distribution shifts— $P(X)$,
 357 $P(Y)$, $P(Y|X)$, and $P(X|Y)$ —each
 358 under three levels of non-IID severity:
 359 low, medium, and high. This setup
 360 enables us to thoroughly assess the
 361 adaptability of FEROMA in highly dy-
 362 namic and heterogeneous FL environ-
 363 ments. Detailed experimental setups
 364 and results are provided in Appendices F.2 and F.4, and summarized in Table 1.

365 **Table 1** shows that FEROMA consistently outperforms all baselines across six benchmark datasets.
 366 Notably, FEROMA improves accuracy by up to 14.1, 14.3, and 10.3 percentage points (pp) over
 367 the best-performing baseline CFL on MNIST, FMNIST, and CIFAR-10, respectively. On CIFAR-
 368 100, it achieves an accuracy of 39.9%, surpassing FedEM by 8.2 pp. On the real-world datasets
 369 CheXpert and Office-Home, FEROMA demonstrates consistent robustness, exceeding the strongest
 370 baselines while maintaining lower variance. **Table 2** further shows that FEROMA remains robust
 371 under varying scales of distribution shift and drift (see Appendix F.2 for detailed results of additional
 372 benchmarks). These improvements are achieved under realistic FL conditions with no prior knowledge
 373 of distribution modes or test-time labels. While baselines are often specialized for either shift or drift,
 374 FEROMA adapts to both with significantly lower variance. The results underscore the effectiveness of
 375 distribution-profile-based aggregation and highlight FEROMA as a generalizable solution for dynamic
 376 non-IID FL conditions.

377 **Scaling the number of clients.** In real-world FL deployments, the number of participating clients can
 378 be large, requiring FL methods to remain scalable with minimal computational and communication
 379 overhead—even under highly dynamic conditions. To evaluate scalability, we assess the performance

Dataset	MNIST	FMNIST	CIFAR-10	CIFAR-100	CheXpert	Office-Home
FedAvg	71.8 \pm 5.5	63.7 \pm 6.4	33.0 \pm 5.3	28.2 \pm 4.7	59.1 \pm 3.0	41.0 \pm 1.3
FedRC	30.9 \pm 6.9	45.1 \pm 6.9	23.2 \pm 4.5	30.6 \pm 4.2	55.1 \pm 1.9	14.6 \pm 3.5
FedEM	30.7 \pm 7.0	46.1 \pm 7.0	23.0 \pm 4.8	31.7 \pm 3.6	53.3 \pm 2.2	15.5 \pm 2.9
FeSEM	69.6 \pm 5.7	59.0 \pm 5.6	31.1 \pm 4.8	26.2 \pm 3.7	61.0 \pm 1.9	33.8 \pm 0.9
CFL	76.6 \pm 3.9	65.6 \pm 4.8	33.9 \pm 4.7	28.9 \pm 3.5	62.3 \pm 2.2	34.8 \pm 1.0
IFCA	44.1 \pm 9.9	36.9 \pm 9.2	27.4 \pm 4.7	15.7 \pm 4.6	52.8 \pm 2.8	33.5 \pm 4.5
pFedMe	53.2 \pm 7.4	43.6 \pm 6.8	24.2 \pm 4.1	15.8 \pm 2.2	58.2 \pm 1.1	34.6 \pm 1.6
APFL	70.0 \pm 5.8	56.9 \pm 5.8	31.4 \pm 4.5	29.7 \pm 3.1	54.4 \pm 0.9	39.4 \pm 2.2
FedDrift	57.0 \pm 7.7	47.6 \pm 7.2	29.2 \pm 4.9	20.2 \pm 3.5	72.3 \pm 0.8	42.1 \pm 2.4
ATP	72.1 \pm 10.5	61.1 \pm 12.1	28.7 \pm 5.1	16.7 \pm 3.8	N/A	40.8 \pm 4.3
FEROMA	90.7 \pm 1.8	79.9 \pm 2.8	44.2 \pm 3.8	39.9 \pm 2.5	72.4 \pm 0.6	42.4 \pm 1.4

Table 1: Mean accuracy and standard deviation across different datasets, comparing FEROMA and baselines under varying drifting frequency, non-IID types and levels.

378 379 380 381 382 383 384 385 386 387	Non-IID Level # Drifting	Low			Medium			High		
		5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20
FedAvg	72.1 \pm 8.0	76.5 \pm 4.7	79.3 \pm 2.6	71.5 \pm 4.2	73.6 \pm 5.3	75.8 \pm 2.6	63.5 \pm 6.6	65.1 \pm 6.6	68.6 \pm 6.5	
FedRC	40.5 \pm 9.7	41.4 \pm 7.3	44.8 \pm 9.7	23.8 \pm 4.2	26.6 \pm 6.6	28.3 \pm 4.1	21.1 \pm 7.0	22.9 \pm 7.2	28.6 \pm 2.4	
FedEM	40.3 \pm 11.2	43.2 \pm 7.3	44.5 \pm 10.5	21.7 \pm 4.8	25.8 \pm 5.2	28.7 \pm 5.1	20.2 \pm 4.9	23.7 \pm 6.2	28.4 \pm 3.5	
FeSEM	72.4 \pm 5.7	75.8 \pm 4.0	77.8 \pm 3.8	69.6 \pm 6.0	71.5 \pm 3.6	72.0 \pm 8.7	60.2 \pm 6.2	61.6 \pm 6.8	65.4 \pm 4.3	
CFL	79.1 \pm 4.3	78.1 \pm 4.0	82.5 \pm 3.0	76.6 \pm 4.8	78.3 \pm 3.6	78.1 \pm 3.9	69.5 \pm 4.4	72.4 \pm 3.7	74.5 \pm 2.9	
IFCA	51.0 \pm 9.9	52.9 \pm 10.9	51.1 \pm 13.0	46.1 \pm 12.1	45.3 \pm 8.7	40.5 \pm 4.4	40.6 \pm 9.8	35.8 \pm 8.4	33.4 \pm 8.8	
pFedMe	54.9 \pm 7.3	59.3 \pm 7.0	58.5 \pm 9.9	53.3 \pm 9.0	54.3 \pm 7.2	53.6 \pm 5.0	47.3 \pm 5.2	47.8 \pm 6.2	49.9 \pm 8.4	
APFL	69.0 \pm 6.4	72.4 \pm 4.7	76.1 \pm 7.2	70.0 \pm 7.4	71.8 \pm 5.6	71.9 \pm 4.4	64.5 \pm 4.2	64.8 \pm 5.3	69.3 \pm 6.0	
FedDrift	58.8 \pm 9.0	63.1 \pm 6.4	58.4 \pm 11.1	58.1 \pm 9.0	60.8 \pm 7.8	56.6 \pm 6.0	52.3 \pm 6.0	52.7 \pm 6.8	52.5 \pm 5.5	
ATP	70.8 \pm 12.8	78.5 \pm 10.7	83.9 \pm 6.5	65.8 \pm 14.2	77.6 \pm 5.3	78.0 \pm 8.7	59.1 \pm 12.8	65.1 \pm 11.5	70.4 \pm 8.4	
FEROMA	90.6 \pm 2.9	91.4 \pm 1.0	92.1 \pm 1.1	90.0 \pm 2.7	90.6 \pm 1.8	91.0 \pm 1.8	90.2 \pm 1.2	89.8 \pm 1.6	90.8 \pm 0.8	

Table 2: Performance comparison across three non-IID levels and three drifting levels of all non-IID types on the MNIST dataset. **5 / 20, 10 / 20, 20 / 20:** Drifting 5 / 10 / 20 times in overall 20 rounds.

of FEROMA and baseline methods with MNIST as the number of clients increases from 10 to 20, 50, and 100. Notably, FedDrift could not be evaluated with 50 or 100 clients due to excessive computational requirements (see Appendix C.2 for details). A summary of the results is presented in Figure 4, with detailed experimental setup and results provided in Appendix F.3.

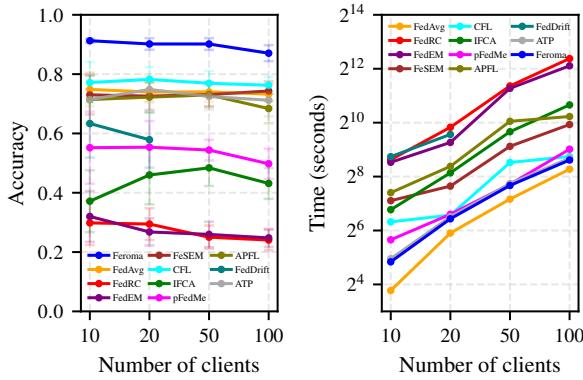


Figure 4: Performance comparison across varying numbers of clients. Left: Mean accuracy and standard deviation. Right: Training time per 20 rounds.

nature of distribution profiles which introduce minimal overhead throughout the training process. The results underscore the robustness and scalability of FEROMA in large-scale, dynamic FL scenarios.

5 DISCUSSION

5.1 RELATED WORKS

FEROMA relates to three major lines of work in FL designed to address data heterogeneity: CFL, PFL, and TTA-FL. CFL methods (Sattler et al., 2021; Guo et al., 2024; Jothimurugesan et al., 2023; Ghosh et al., 2020; Marfoq et al., 2021; Long et al., 2023) group clients with similar data distributions and aggregate models accordingly. While effective under distribution shift, they typically assume a fixed number of clusters (Guo et al., 2024; Ghosh et al., 2020), require computationally intensive cluster procedures, and involve transmitting or maintaining multiple models per client (Jothimurugesan et al., 2023), limiting scalability. In contrast, FEROMA avoids explicit clustering by leveraging continuous distribution profiles for soft, data-driven association. PFL methods (Deng et al., 2020b; T. Dinh et al., 2020; Tan et al., 2023a; Kulkarni et al., 2020; Zhang et al., 2020a; Marfoq et al., 2022) personalize models to each client’s local distribution, improving performance when sufficient local data is available. However, they incur higher computation and storage costs on the client side and lack mechanisms for model assignment in cold-start or test-time scenarios. FEROMA achieves a similar personalization effect when required, by matching profiles without per-client optimization, and with significantly lower system overhead. TTA-FL methods (Bao et al., 2023; Deng et al., 2020a; Wang et al., 2019; Liang et al., 2025; Rajib et al.) are designed to handle test-time drift via online adaptation, which requires additional client interaction or retraining. FEROMA, by contrast, supports test-time

Despite the increased data heterogeneity and reduced data size introduced by scaling up the client number, Figure 4 shows that FEROMA consistently achieves the highest accuracy across all settings—exceeding 90% with even 50 clients, and maintaining over 85% accuracy with 100 clients. It outperforms the best baseline CFL by more than 50 pp at the largest scale. In addition to accuracy, FEROMA demonstrates strong computational and communication efficiency, with training times comparable to FedAvg. In contrast, most other baselines experience a sharp increase in runtime as the number of clients grows. This efficiency is attributed to the lightweight

Algorithm	Cat.	D. shift	D. drift	T. adapt.	Low comm.	Low comp. (Server)	Low comp. (Client)	Scalability
FedAvg	N/A				✓	✓	✓	✓
FedRC	CFL	✓				✓		○
FedEM	CFL	✓				✓		○
FeSEM	CFL	✓			✓		✓	
CFL	CFL	✓			✓		✓	
IFCA	CFL	✓				✓		○
pFedMe	PFL	✓			✓	✓	○	✓
APFL	PFL	✓			✓	✓		✓
FedDrift	CFL	✓	✓			✓		
ATP	TTA-FL				✓	✓	○	✓
FEROMA	N/A	✓	✓	✓	✓	✓	✓	✓

Table 3: **Qualitative comparison among FEROMA and baselines.** **Cat.:** FL category. **D. shift/drift:** Designed to tackle distribution shift/drift. **T. adapt.:** Designed to adapt test time distribution. **Low comm.:** Low communication cost (comparable to FedAvg). **Low comp. (Server/Client):** Low computational cost on server/client side (comparable to FedAvg). **Scalability:** Scales efficiently to large client number. **CFL:** Clustered FL. **PFL:** Personalized FL. **TTA-FL:** Test time adaptive FL. ✓: Property satisfied. ○: Property conditionally satisfied.

adaptation by matching profiles to observed ones, requiring no further updates or communication. We summarize the qualitative comparison in Table 3 and provide more details in Appendix A.

5.2 LIMITATIONS AND FUTURE WORKS

Extractor dependence. While prior works represent client distributions using model parameters, gradients, or training metrics—which exhibit intrinsic limitations (see Appendix A)—the effectiveness of FEROMA similarly depends on the quality of its DPE, which must generate reliable representations of client data distributions. In our implementation, the DPE relies on a few-round pretrained model to embed sampled data into a latent space. This approach may be limited in two scenarios: (1) if the model is undertrained—e.g., due to a difficult task or limited data—the resulting latent space may not adequately reflect the underlying distribution; (2) if the model is overly simplistic or overly complex, the extracted representations may be uninformative or unstable. In both cases, suboptimal profiles may impair the accuracy of distribution mapping and reduce the overall robustness of FEROMA.

Unseen Distributions. FEROMA associates models with training-time data distributions, but it does not explicitly address two challenging scenarios: (1) distributions that were seen during training but are absent in the final round, and thus not retained; and (2) entirely unseen distributions at test time. (See Appendix B for further discussion) However, FEROMA demonstrates strong generalization, as it assigns the most relevant model based on profile similarity—even for distributions not directly observed during training. Moreover, the models associated with final-round profiles offer strong initialization for downstream personalization or unsupervised adaptation. Unlike methods that begin personalization from a generic global model, FEROMA provides a well-trained, distribution-aware starting point. Future work could periodically checkpoint model in sparsely populated regions of the descriptor space, ensuring that rare or transient distributions are retained for test deployment.

6 CONCLUSIONS

In this work, we proposed FEROMA, an FL framework that explicitly addresses both distribution shift and drift across all four major types of data heterogeneity. By leveraging lightweight, differentially private distribution profiles to represent client data, FEROMA enables adaptive model aggregation based on distributional similarity without relying on any prior knowledge. This profile-based design supports both training and test-time adaptation, allowing FEROMA to generalize across dynamic client populations and unseen distributions, without requiring retraining or personalization from scratch. Through extensive experiments, we demonstrated that FEROMA consistently improves robustness and performance across a wide range of non-IID scenarios, with minimal overhead. Unlike prior methods that specialize in clustered, personalized, or adaptive FL, FEROMA unifies these strategies under a single framework—scalable, adaptable, and suitable for real-world heterogeneous deployments. This work lays the foundation for distribution-driven FL, and opens new directions for profile-based personalization, distribution tracking, and generalization to unseen client data in future systems.

486 REFERENCES
487

488 Manoj Ghuhan Arivazhagan, Vinay Aggarwal, Aaditya Kumar Singh, and Sunav Choudhary. Federated Learning with Personalization Layers, December 2019.

489

490 Wenxuan Bao, Tianxin Wei, Haohan Wang, and Jingrui He. Adaptive Test-Time Personalization
491 for Federated Learning. *Advances in Neural Information Processing Systems*, 36:77882–77914,
492 December 2023.

493

494 Daniel J. Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Javier Fernandez-Marques, Yan Gao,
495 Lorenzo Sani, Kwing Hei Li, Titouan Parcollet, Pedro Porto Buarque de Gusmão, and Nicholas D.
496 Lane. Flower: A Friendly Federated Learning Research Framework, March 2022.

497

498 Luxin Cai, Naiyue Chen, Yuanzhouhan Cao, Jiahuan He, and Yidong Li. FedCE: Personalized
499 Federated Learning Method based on Clustering Ensembles. In *Proceedings of the 31st ACM
500 International Conference on Multimedia*, MM '23, pp. 1625–1633, New York, NY, USA, October
501 2023. Association for Computing Machinery. ISBN 9798400701085. doi: 10.1145/3581783.
502 3612217.

503

504 Dian Chen, Dequan Wang, Trevor Darrell, and Sayna Ebrahimi. Contrastive Test-Time Adaptation.
505 In *2022 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)*, pp. 295–305,
506 New Orleans, LA, USA, June 2022. IEEE. ISBN 978-1-66546-946-3. doi: 10.1109/CVPR52688.
507 2022.00039.

508

509 Fei Chen, Mi Luo, Zhenhua Dong, Zhenguo Li, and Xiuqiang He. Federated Meta-Learning with
510 Fast Convergence and Efficient Communication, December 2019.

511

512 Junbao Chen, Jingfeng Xue, Yong Wang, Zhenyan Liu, and Lu Huang. Classifier Clustering and
513 Feature Alignment for Federated Learning under Distributed Concept Drift. *Advances in Neural
514 Information Processing Systems*, 37:81360–81388, December 2024.

515

516 Liam Collins, Hamed Hassani, Aryan Mokhtari, and Sanjay Shakkottai. Exploiting Shared Representations
517 for Personalized Federated Learning. In *Proceedings of the 38th International Conference
518 on Machine Learning*, pp. 2089–2099. PMLR, July 2021.

519

520 Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive Personalized
521 Federated Learning, November 2020a. URL <http://arxiv.org/abs/2003.13461>.
522 arXiv:2003.13461 [cs, stat].

523

524 Yuyang Deng, Mohammad Mahdi Kamani, and Mehrdad Mahdavi. Adaptive Personalized
525 Federated Learning, November 2020b. URL <http://arxiv.org/abs/2003.13461>.
526 arXiv:2003.13461 [cs, stat].

527

528 Enmao Diao, Jie Ding, and Vahid Tarokh. HeteroFL: Computation and Communication Efficient
529 Federated Learning for Heterogeneous Clients. In *International Conference on Learning Representations*,
530 October 2020.

531

532 Cynthia Dwork, Frank McSherry, Kobbi Nissim, and Adam Smith. Calibrating Noise to Sensitivity in
533 Private Data Analysis. In Shai Halevi and Tal Rabin (eds.), *Theory of Cryptography*, pp. 265–284,
534 Berlin, Heidelberg, 2006. Springer. ISBN 978-3-540-32732-5. doi: 10.1007/11681878_14.

535

536 Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. Personalized Federated Learning: A Meta-
537 Learning Approach, October 2020.

538

539 João Gama, Indré Žliobaitė, Albert Bifet, Mykola Pechenizkiy, and Abdelhamid Bouchachia. A
540 survey on concept drift adaptation. *ACM Computing Surveys*, 46(4):1–37, April 2014. ISSN 0360-
541 0300, 1557-7341. doi: 10.1145/2523813. URL <https://dl.acm.org/doi/10.1145/2523813>.

541

542 Hongchang Gao, An Xu, and Heng Huang. On the Convergence of Communication-Efficient Local
543 SGD for Federated Learning. *Proceedings of the AAAI Conference on Artificial Intelligence*, 35(9):
544 7510–7518, May 2021. ISSN 2374-3468. doi: 10.1609/aaai.v35i9.16920.

540 Yang Gao, Swarup Chandra, Yifan Li, Latifur Khan, and Thuraisingham Bhavani. SACCOS: A
 541 Semi-Supervised Framework for Emerging Class Detection and Concept Drift Adaption Over Data
 542 Streams. *IEEE Transactions on Knowledge and Data Engineering*, 34(3):1416–1426, March 2022.
 543 ISSN 1558-2191. doi: 10.1109/TKDE.2020.2993193.

544 Avishek Ghosh, Jichan Chung, Dong Yin, and Kannan Ramchandran. An Efficient Framework for
 545 Clustered Federated Learning. In *Advances in Neural Information Processing Systems*, volume 33,
 546 pp. 19586–19597. Curran Associates, Inc., 2020.

548 Biyao Gong, Tianzhang Xing, Zhidan Liu, Wei Xi, and Xiaojiang Chen. Adaptive Client Clustering
 549 for Efficient Federated Learning Over Non-IID and Imbalanced Data. *IEEE Transactions on Big
 550 Data*, 10(6):1051–1065, December 2024. ISSN 2332-7790. doi: 10.1109/TBDA.2022.3167994.

552 Yongxin Guo, Xiaoying Tang, and Tao Lin. FedRC: Tackling Diverse Distribution Shifts Challenge
 553 in Federated Learning by Robust Clustering, June 2024.

554 Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep Residual Learning for Image
 555 Recognition. In *2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR)*, pp.
 556 770–778, Las Vegas, NV, USA, June 2016. IEEE. ISBN 978-1-4673-8851-1. doi: 10.1109/CVPR.
 557 2016.90. URL <http://ieeexplore.ieee.org/document/7780459/>.

559 Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. Deep Models Under the GAN: Infor-
 560 mation Leakage from Collaborative Deep Learning. In *Proceedings of the 2017 ACM SIGSAC
 561 Conference on Computer and Communications Security*, CCS ’17, pp. 603–618, New York, NY,
 562 USA, October 2017. Association for Computing Machinery. ISBN 978-1-4503-4946-8. doi:
 563 10.1145/3133956.3134012.

564 J. D. Hunter. Matplotlib: A 2D graphics environment. *Computing in Science & Engineering*, 9(3):
 565 90–95, 2007. doi: 10.1109/MCSE.2007.55.

567 Jeremy Irvin, Pranav Rajpurkar, Michael Ko, Yifan Yu, Silviana Ciurea-Ilcus, Chris Chute, Henrik
 568 Marklund, Behzad Haghgoo, Robyn Ball, Katie Shpanskaya, Jayne Seekins, David A. Mong,
 569 Safwan S. Halabi, Jesse K. Sandberg, Ricky Jones, David B. Larson, Curtis P. Langlotz, Bhavik N.
 570 Patel, Matthew P. Lungren, and Andrew Y. Ng. CheXpert: A Large Chest Radiograph Dataset with
 571 Uncertainty Labels and Expert Comparison. *Proceedings of the AAAI Conference on Artificial
 572 Intelligence*, 33(01):590–597, July 2019. ISSN 2374-3468. doi: 10.1609/aaai.v33i01.3301590.
 573 URL <https://ojs.aaai.org/index.php/AAAI/article/view/3834>. Number:
 574 01.

575 Liangze Jiang and Tao Lin. Test-Time Robust Personalization for Federated Learning. In *The
 576 Eleventh International Conference on Learning Representations*, September 2022.

577 Yihan Jiang, Jakub Konečný, Keith Rush, and Sreeram Kannan. Improving Federated Learning
 578 Personalization via Model Agnostic Meta Learning, January 2023.

580 Ellango Jothimurugesan, Kevin Hsieh, Jianyu Wang, Gauri Joshi, and Phillip B. Gibbons. Federated
 581 Learning under Distributed Concept Drift. In *Proceedings of The 26th International Conference
 582 on Artificial Intelligence and Statistics*, pp. 5834–5853. PMLR, April 2023.

583 Peter Kairouz, H. Brendan McMahan, Brendan Avent, Aurélien Bellet, Mehdi Bennis, Arjun Nitin
 584 Bhagoji, Kallista Bonawitz, Zachary Charles, Graham Cormode, Rachel Cummings, Rafael G. L.
 585 D’Oliveira, Hubert Eichner, Salim El Rouayheb, David Evans, Josh Gardner, Zachary Garrett,
 586 Adrià Gascón, Badih Ghazi, Phillip B. Gibbons, Marco Gruteser, Zaid Harchaoui, Chaoyang
 587 He, Lie He, Zhouyuan Huo, Ben Hutchinson, Justin Hsu, Martin Jaggi, Tara Javidi, Gauri Joshi,
 588 Mikhail Khodak, Jakub Konečný, Aleksandra Korolova, Farinaz Koushanfar, Sanmi Koyejo,
 589 Tancrède Lepoint, Yang Liu, Prateek Mittal, Mehryar Mohri, Richard Nock, Ayfer Özgür, Rasmus
 590 Pagh, Hang Qi, Daniel Ramage, Ramesh Raskar, Mariana Raykova, Dawn Song, Weikang Song,
 591 Sebastian U. Stich, Ziteng Sun, Ananda Theertha Suresh, Florian Tramèr, Praneeth Vepakomma,
 592 Jianyu Wang, Li Xiong, Zheng Xu, Qiang Yang, Felix X. Yu, Han Yu, and Sen Zhao. Advances
 593 and Open Problems in Federated Learning. *Foundations and Trends® in Machine Learning*, 14
 (1–2):1–210, June 2021. ISSN 1935-8237, 1935-8245. doi: 10.1561/2200000083.

594 Pang Wei Koh, Shiori Sagawa, Henrik Marklund, Sang Michael Xie, Marvin Zhang, Akshay Balsub-
 595 ramani, Weihua Hu, Michihiro Yasunaga, Richard Lanas Phillips, Irena Gao, Tony Lee, Etienne
 596 David, Ian Stavness, Wei Guo, Berton Earnshaw, Imran Haque, Sara M. Beery, Jure Leskovec,
 597 Anshul Kundaje, Emma Pierson, Sergey Levine, Chelsea Finn, and Percy Liang. WILDS: A
 598 Benchmark of in-the-Wild Distribution Shifts. In *Proceedings of the 38th International Conference
 599 on Machine Learning*, pp. 5637–5664. PMLR, July 2021.

600 Anastasia Koloskova, Nicolas Loizou, Sadra Boreiri, Martin Jaggi, and Sebastian Stich. A Unified
 601 Theory of Decentralized SGD with Changing Topology and Local Updates. In *Proceedings of the
 602 37th International Conference on Machine Learning*, pp. 5381–5393. PMLR, November 2020.

603 Alex Krizhevsky. Learning Multiple Layers of Features from Tiny Images.

604 Viraj Kulkarni, Milind Kulkarni, and Aniruddha Pant. Survey of Personalization Techniques for
 605 Federated Learning. In *2020 Fourth World Conference on Smart Trends in Systems, Security and
 606 Sustainability (WorldS4)*, pp. 794–797, July 2020. doi: 10.1109/WorldS450073.2020.9210355.
 607 URL <https://ieeexplore.ieee.org/abstract/document/9210355>.

608 Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. Gradient-based learning applied to document recogni-
 609 tion. *Proceedings of the IEEE*, 86(11):2278–2324, November 1998. ISSN 1558-2256. doi: 10.1109/
 610 5.726791. URL <https://ieeexplore.ieee.org/abstract/document/726791>.
 611 Conference Name: Proceedings of the IEEE.

612 Yann LeCun and Corinna Cortes. The mnist database of handwritten digits. 2005.

613 Jiacheng Li, Ninghui Li, and Bruno Ribeiro. Effective passive membership inference attacks in
 614 federated learning against overparameterized models. In *The Eleventh International Conference
 615 on Learning Representations*, September 2022a.

616 Tian Li, Shengyuan Hu, Ahmad Beirami, and Virginia Smith. Ditto: Fair and Robust Federated
 617 Learning Through Personalization. In *Proceedings of the 38th International Conference on
 618 Machine Learning*, pp. 6357–6368. PMLR, July 2021a.

619 Wendi Li, Xiao Yang, Weiqing Liu, Yingce Xia, and Jiang Bian. DDG-DA: Data Distribution
 620 Generation for Predictable Concept Drift Adaptation. *Proceedings of the AAAI Conference on
 621 Artificial Intelligence*, 36(4):4092–4100, June 2022b. ISSN 2374-3468. doi: 10.1609/aaai.v36i4.
 622 20327.

623 Wendi Li, Xiao Yang, Weiqing Liu, Yingce Xia, and Jiang Bian. DDG-DA: Data Distribution Gener-
 624 ation for Predictable Concept Drift Adaptation. *Proceedings of the AAAI Conference on Artificial
 625 Intelligence*, 36(4):4092–4100, June 2022c. ISSN 2374-3468. doi: 10.1609/aaai.v36i4.20327.
 626 URL <https://ojs.aaai.org/index.php/AAAI/article/view/20327>. Number:
 627 4.

628 Xiaoxiao Li, Meirui Jiang, Xiaofei Zhang, Michael Kamp, and Qi Dou. FedBN: Federated Learning
 629 on Non-IID Features via Local Batch Normalization, May 2021b.

630 Haoyuan Liang, Xinyu Zhang, Shilei Cao, Guowen Li, and Juepeng Zheng. TTA-FedDG: Leveraging
 631 Test-Time Adaptation to Address Federated Domain Generalization. *Proceedings of the AAAI
 632 Conference on Artificial Intelligence*, 39(18):18658–18666, April 2025. ISSN 2374-3468. doi:
 633 10.1609/aaai.v39i18.34053.

634 Guodong Long, Ming Xie, Tao Shen, Tianyi Zhou, Xianzhi Wang, and Jing Jiang. Multi-center
 635 federated learning: Clients clustering for better personalization. *World Wide Web*, 26(1):481–500,
 636 January 2023. ISSN 1573-1413. doi: 10.1007/s11280-022-01046-x.

637 Jie Lu, Anjin Liu, Fan Dong, Feng Gu, João Gama, and Guangquan Zhang. Learning under Concept
 638 Drift: A Review. *IEEE Transactions on Knowledge and Data Engineering*, 31(12):2346–2363,
 639 December 2019a. ISSN 1558-2191. doi: 10.1109/TKDE.2018.2876857.

640 Jie Lu, Anjin Liu, Fan Dong, Feng Gu, João Gama, and Guangquan Zhang. Learning under
 641 Concept Drift: A Review. *IEEE Transactions on Knowledge and Data Engineering*, 31(12):2346–
 642 2363, December 2019b. ISSN 1558-2191. doi: 10.1109/TKDE.2018.2876857. URL <https://ieeexplore.ieee.org/abstract/document/8496795>. Conference Name: IEEE
 643 Transactions on Knowledge and Data Engineering.

648 Othmane Marfoq, Giovanni Neglia, Aurélien Bellet, Laetitia Kameni, and Richard Vidal. Federated
 649 Multi-Task Learning under a Mixture of Distributions. In *Advances in Neural Information*
 650 *Processing Systems*, volume 34, pp. 15434–15447. Curran Associates, Inc., 2021.

651 Othmane Marfoq, Giovanni Neglia, Richard Vidal, and Laetitia Kameni. Personalized Federated
 652 Learning through Local Memorization. In *Proceedings of the 39th International Conference on*
 653 *Machine Learning*, pp. 15070–15092. PMLR, June 2022.

654 Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
 655 Communication-Efficient Learning of Deep Networks from Decentralized Data. In *Proceedings of*
 656 *the 20th International Conference on Artificial Intelligence and Statistics*, pp. 1273–1282. PMLR,
 657 April 2017.

658 Mahdi Morafah, Saeed Vahidian, Weijia Wang, and Bill Lin. FLIS: Clustered Federated Learning Via
 659 Inference Similarity for Non-IID Data Distribution. *IEEE Open Journal of the Computer Society*,
 660 4:109–120, 2023. ISSN 2644-1268. doi: 10.1109/OJCS.2023.3262203.

661 Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
 662 Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward
 663 Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner,
 664 Lu Fang, Junjie Bai, and Soumith Chintala. PyTorch: An Imperative Style, High-Performance
 665 Deep Learning Library. *Advances in Neural Information Processing Systems*, 32, 2019.

666 F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blondel, P. Pretten-
 667 hofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau, M. Brucher, M. Perrot, and
 668 E. Duchesnay. Scikit-learn: Machine Learning in Python. *Journal of Machine Learning Research*,
 669 12:2825–2830, 2011.

670 Shi Pu, Alex Olshevsky, and Ioannis Ch. Paschalidis. Asymptotic Network Independence in Dis-
 671 tributed Stochastic Optimization for Machine Learning: Examining Distributed and Centralized
 672 Stochastic Gradient Descent. *IEEE Signal Processing Magazine*, 37(3):114–122, May 2020. ISSN
 673 1053-5888, 1558-0792. doi: 10.1109/MSP.2020.2975212.

674 Rakibul Hasan Rajib, Akil Raihan Iftee, Mir Sazzat Hossain, Sajib Mistry, M Ashraful Amin, and
 675 Amin Ahsan Ali. FedCTTA: A Collaborative Approach to Continual Test-Time Adaptation in
 676 Federated Learning.

677 Protection Regulation. Regulation (EU) 2016/679 of the European Parliament and of the Council.
 678 *Regulation (eu)*, 679:2016, 2016.

679 Hanchi Ren, Jingjing Deng, and Xianghua Xie. GRNN: Generative Regression Neural Network—A
 680 Data Leakage Attack for Federated Learning. *ACM Trans. Intell. Syst. Technol.*, 13(4):65:1–65:24,
 681 May 2022. ISSN 2157-6904. doi: 10.1145/3510032.

682 Felix Sattler, Klaus-Robert Müller, and Wojciech Samek. Clustered Federated Learning: Model-
 683 Agnostic Distributed Multitask Optimization Under Privacy Constraints. *IEEE Transactions on*
 684 *Neural Networks and Learning Systems*, 32(8):3710–3722, August 2021. ISSN 2162-2388. doi:
 685 10.1109/TNNLS.2020.3015958.

686 Reza Shokri, Marco Stronati, Congzheng Song, and Vitaly Shmatikov. Membership Inference Attacks
 687 Against Machine Learning Models. In *2017 IEEE Symposium on Security and Privacy (SP)*, pp.
 688 3–18, May 2017. doi: 10.1109/SP.2017.41.

689 Sebastian U Stich. Local SGD Converges Fast and Communicates Little. *International Conference*
 690 *on Machine Learning*, 2019.

691 Canh T. Dinh, Nguyen Tran, and Josh Nguyen. Personalized Federated Learning with Moreau En-
 692 velopes. In *Advances in Neural Information Processing Systems*, volume 33, pp. 21394–21405. Cur-
 693 ran Associates, Inc., 2020. URL https://proceedings.neurips.cc/paper_files/paper/2020/hash/f4f1f13c8289ac1b1ee0ff176b56fc60-Abstract.html.

694 Ashraf Tahmasbi, Ellango Jothimurugesan, Srikantha Tirthapura, and Phillip B. Gibbons. DriftSurf:
 695 Stable-State / Reactive-State Learning under Concept Drift. In *Proceedings of the 38th International*
 696 *Conference on Machine Learning*, pp. 10054–10064. PMLR, July 2021a.

702 Ashraf Tahmasbi, Ellango Jothimurugesan, Srikanta Tirthapura, and Phillip B. Gibbons. DriftSurf:
 703 Stable-State / Reactive-State Learning under Concept Drift. In *Proceedings of the 38th International*
 704 *Conference on Machine Learning*, pp. 10054–10064. PMLR, July 2021b. URL <https://proceedings.mlr.press/v139/tahmasbi21a.html>. ISSN: 2640-3498.

705

706 Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards Personalized Federated Learning.
 707 *IEEE Transactions on Neural Networks and Learning Systems*, 34(12):9587–9603, December
 708 2023a. ISSN 2162-2388. doi: 10.1109/TNNLS.2022.3160699. URL <https://ieeexplore.ieee.org/abstract/document/9743558>.

709

710

711 Yue Tan, Chen Chen, Weiming Zhuang, Xin Dong, Lingjuan Lyu, and Guodong Long. Is Heterogeneity
 712 Notorious? Taming Heterogeneity to Handle Test-Time Shift in Federated Learning. *Advances*
 713 *in Neural Information Processing Systems*, 36:27167–27180, December 2023b.

714

715 Yue Tan, Chen Chen, Weiming Zhuang, Xin Dong, Lingjuan Lyu, and Guodong Long. Is Heterogeneity
 716 Notorious? Taming Heterogeneity to Handle Test-Time Shift in Federated Learning. *Advances*
 717 *in Neural Information Processing Systems*, 36:27167–27180, December 2023c.

718

719 U.S. Congress. Health Insurance Portability and Accountability Act of 1996. <https://www.hhs.gov/hipaa/>, 1996. Public Law 104-191.

720

721 Hemanth Venkateswara, Jose Eusebio, Shayok Chakraborty, and Sethuraman Panchanathan. Deep
 722 hashing network for unsupervised domain adaptation. In *Proceedings of the IEEE conference on*
 723 *computer vision and pattern recognition*, pp. 5018–5027, 2017.

724

725 Cédric Villani et al. *Optimal transport: old and new*, volume 338 of *Grundlehren der Mathematischen*
 726 *Wissenschaften*. Springer, 2008.

727

728 Shiqiang Wang, Tiffany Tuor, Theodoros Salonidis, Kin K. Leung, Christian Makaya, Ting He,
 729 and Kevin Chan. Adaptive Federated Learning in Resource Constrained Edge Computing Sys-
 730 tems. *IEEE Journal on Selected Areas in Communications*, 37(6):1205–1221, June 2019. ISSN
 731 1558-0008. doi: 10.1109/JSAC.2019.2904348. URL <https://ieeexplore.ieee.org/abstract/document/8664630>.

732

733 Michael L. Waskom. seaborn: statistical data visualization. *Journal of Open Source Software*, 6(60):
 734 3021, 2021. doi: 10.21105/joss.03021. URL <https://doi.org/10.21105/joss.03021>.

735

736 Wes McKinney. Data Structures for Statistical Computing in Python. In Stéfan van der Walt and
 737 Jarrod Millman (eds.), *Proceedings of the 9th Python in Science Conference*, pp. 56 – 61, 2010.
 doi: 10.25080/Majora-92bf1922-00a.

738

739 Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-MNIST: a Novel Image Dataset for Bench-
 740 marking Machine Learning Algorithms, September 2017. URL <http://arxiv.org/abs/1708.07747>. arXiv:1708.07747 [cs].

741

742 Hongxu Yin, Arun Mallya, Arash Vahdat, Jose M. Alvarez, Jan Kautz, and Pavlo Molchanov. See
 743 Through Gradients: Image Batch Recovery via GradInversion. In *Proceedings of the IEEE/CVF*
 744 *Conference on Computer Vision and Pattern Recognition*, pp. 16337–16346, 2021.

745

746 Oualid Zari, Chuan Xu, and Giovanni Neglia. Efficient passive membership inference attack in
 747 federated learning, October 2021.

748

749 Michael Zhang, Karan Sapra, Sanja Fidler, Serena Yeung, and Jose M. Alvarez. Personalized
 750 Federated Learning with First Order Model Optimization. In *International Conference on Learning*
 751 *Representations*, October 2020a.

752

753 Yuheng Zhang, Ruoxi Jia, Hengzhi Pei, Wenxiao Wang, Bo Li, and Dawn Song. The Secret Revealer:
 754 Generative Model-Inversion Attacks Against Deep Neural Networks. In *Proceedings of the*
 755 *IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 253–261, 2020b.

756

757 Bo Zhao, Konda Reddy Mopuri, and Hakan Bilen. iDLG: Improved Deep Leakage from Gradients,
 758 January 2020.

756 Yue Zhao, Meng Li, Liangzhen Lai, Naveen Suda, Damon Civin, and Vikas Chandra. Federated
 757 Learning with Non-IID Data. 2018. doi: 10.48550/arXiv.1806.00582. URL <http://arxiv.org/abs/1806.00582>. arXiv:1806.00582 [cs].
 758

760 Jiayu Zhou, Jianhui Chen, and Jieping Ye. Clustered Multi-Task Learning Via Alternating Struc-
 761 ture Optimization. In *Advances in Neural Information Processing Systems*, volume 24. Curran
 762 Associates, Inc., 2011.

763 Hangyu Zhu, Jinjin Xu, Shiqing Liu, and Yaochu Jin. Federated learning on non-IID data: A
 764 survey. *Neurocomputing*, 465:371–390, November 2021. ISSN 09252312. doi: 10.1016/j.
 765 neucom.2021.07.098. URL <https://linkinghub.elsevier.com/retrieve/pii/S0925231221013254>.
 766

767 Ligeng Zhu, Zhijian Liu, and Song Han. Deep Leakage from Gradients. In *Advances in Neural
 768 Information Processing Systems*, volume 32. Curran Associates, Inc., 2019.
 769

770 APPENDIX CONTENTS

774	A Related Approaches to Distribution Shift and Drift in Federated Learning	17
775		
776	B Discussion: handling seen-once or unseen distributions	18
777		
778	C Implementation details	19
779		
780	C.1 Algorithm pseudo-code	19
781	C.2 Code, licenses and hardware	19
782	C.3 Models and hyper-parameter settings	21
783	C.4 Distribution profile extraction	21
784	C.4.1 DPE implementation	21
785	C.4.2 Distribution fidelity (R1)	22
786	C.4.3 Label agnosticism (R2)	23
787	C.4.4 Controlled stochasticity (R3)	23
788	C.4.5 Differential-privacy guarantee (R4)	24
789	C.4.6 Compactness (R5)	24
790	D Test-Time Model Association under $P(Y X)$ Concept Shift	27
791		
792	E Privacy implications of distribution profile	28
793		
794	F Additional Experiment Results	30
795		
796	F.1 Generating drifting datasets with ANDA, CheXpert and Office-Home	30
797	F.2 Scaling the drifting frequency, non-IID types, and non-IID levels	32
798	F.3 Scaling the number of clients	33
799	F.4 Results on real-world datasets	39
800		
801	F.5 Ablation study on Monte-Carlo subsampling	41

810	F.6 Ablation study on threshold profile association	41
811		
812	F.7 Ablation study on distance function	42
813		
814	G Large Language Model Usage Disclosure	44
815		
816		
817		
818		
819		
820		
821		
822		
823		
824		
825		
826		
827		
828		
829		
830		
831		
832		
833		
834		
835		
836		
837		
838		
839		
840		
841		
842		
843		
844		
845		
846		
847		
848		
849		
850		
851		
852		
853		
854		
855		
856		
857		
858		
859		
860		
861		
862		
863		

864 **A RELATED APPROACHES TO DISTRIBUTION SHIFT AND DRIFT IN**
 865 **FEDERATED LEARNING**
 866

867 A rich body of research has emerged to mitigate data heterogeneity in FL. Existing approaches can
 868 be broadly grouped into three categories: *clustered FL (CFL)*, *personalised FL (PFL)*, or *test-time*
 869 *adaptive FL (TTA-FL)*. Below we summarise their core ideas and limitations and contrast them with
 870 FEROMA.

871

872 **Clustered Federated Learning (CFL)** CFL assumes that the federation comprises M data distri-
 873 butions and aims to learn one model per distribution. Two variations are common:

- 874 • *Hard-CFL*. Each client is assigned to *exactly one* cluster $c_m \subseteq \mathcal{K}$ based on predefined criteria or
 875 similarity measures, such that clusters are disjoint and collectively exhaustive: $\bigcup_{m=1}^M c_m = \mathcal{K}$
 876 and $c_m \cap c_n = \emptyset$ for all $m \neq n$. In principle, each cluster c_m contains a distinct subset of clients
 877 with similar data distributions, enabling the training of specialized models. Algorithms typically
 878 alternate between updating cluster models and re-assigning clients, using clustering on model
 879 parameters (Sattler et al., 2021; Gong et al., 2024) or performance-based metrics (Ghosh et al.,
 880 2020; Jothimurugesan et al., 2023; Morafah et al., 2023; Cai et al., 2023). Hard assignments
 881 simplify optimisation but struggle when distributions overlap, and they generally require prior
 882 knowledge of the number of clusters M —which is generally unavailable in practice.
- 883 • *Soft-CFL*. This approach allows clients to belong to multiple clusters with certain probabilities,
 884 accommodating scenarios where client data may exhibit overlapping distributions. Accordingly,
 885 each client holds a probability vector $\pi^{(k)} \in \mathbb{R}^M$ and trains an ensemble of M models; examples
 886 include FedEM (Marfoq et al., 2021) and FedRC (Guo et al., 2024). The joint optimisation of
 887 $\{\pi^{(k)}\}_{k=1}^K$ and model parameters $\{\theta_m\}_{m=1}^M$ is typically tackled via Expectation–Maximization
 888 or alternating minimisation (Zhou et al., 2011), which incurs additional communication and may
 889 suffer from convergence issues. Soft-CFL also requires per-client labeled data to estimate $\pi^{(k)}$,
 890 making cold-start and unseen-client scenarios problematic.

891

892 **Personalized Federated Learning (PFL).** PFL reframes FL as a client-centric optimization
 893 problem, where each client k learns its own personalized model $f^{(k)}$ that minimizes its local loss.
 894 This approach explicitly addresses the presence of heterogeneous non-IID data distributions across
 895 clients, rather than enforcing a single global model for all participants. Broadly, PFL methods fall
 896 into three classes:

- 897 • *Fine-tuning*. A global model is first trained and then locally adapted through additional gradient
 898 steps or meta-learning techniques to simplify personalization (Chen et al., 2019; Fallah et al.,
 899 2020; Jiang et al., 2023). While simple, fine-tuning requires careful hyperparameter selection (e.g.
 900 learning rates, number of steps) and sufficient per-client data to avoid overfitting.
- 901 • *Model decoupling*. The network is partitioned into shared (global) and private (local) components.
 902 A common strategy is to jointly train a shared backbone while equipping it with separate global and
 903 personalized heads (Arivazhagan et al., 2019; Deng et al., 2020b; Collins et al., 2021; Jiang & Lin,
 904 2022; Marfoq et al., 2022). Others personalize only batch-norm statistics (Li et al., 2021b) or allow
 905 heterogeneous encoder architectures (Diao et al., 2020). These approaches improve representational
 906 capacity at the cost of increased on-device model size and computation.
- 907 • *Regularization-based*. These methods introduce a regularization term to balance local and global
 908 objectives. For example, a popular strategy is to augment each client’s loss with a penalty that
 909 ties the personalized model $\phi^{(k)}$ to the global model θ : $\min_{\phi^{(k)}} \mathcal{L}^{(k)}(\phi^{(k)}) + \frac{\lambda}{2} \|\phi^{(k)} - \theta\|^2$,
 910 where λ balances local versus global objectives (Fallah et al., 2020; Li et al., 2021a). Such bi-level
 911 formulations yield smooth personalization but introduce per-client hyperparameters, and nested
 912 optimization loops.

913 Despite their effectiveness when large amount of labeled data are available, PFL methods degrade
 914 with limited local samples, incur additional client-side compute and memory costs, and—being
 915 inherently supervised—are ill-suited for unseen, unlabeled clients or dynamic distribution drift at test
 916 time.

917 **Test-time adaptive federated learning (TTA-FL).** TTA-FL addresses *post-deployment* distribution
 918 shift: after global training has concluded, each client adapts the received model to its own (unlabeled)

918 test data. Most methods rely on *unsupervised* objectives such as entropy minimisation (Jiang & Lin, 919 2022; Bao et al., 2023; Rajib et al.) or self-supervised contrastive losses (Tan et al., 2023b; Chen 920 et al., 2022; Liang et al., 2025). Since gradients must be estimated without labels, the optimization 921 landscape is often ill-conditioned (e.g., in the presence of concept shift): entropy minimization can 922 drive the model toward over-confident but incorrect predictions, while contrastive objectives may 923 collapse when test batches are small or unbalanced—a common situation in on-device FL. To mitigate 924 this instability, recent works restrict adaptation to a few parameters (e.g., batch-norm statistics or a 925 single gating weight that interpolates between global and personalized heads (Jiang & Lin, 2022)). 926 However, these approaches still require labeled data during training to learn the personalized head, 927 making them unsuitable for unseen and unlabeled clients at test time.

928 **Contrast with FEROMA.** While PFL, CFL, and TTA-FL each address aspects of client heterogeneity, 929 FEROMA unifies their strengths in a lightweight, privacy-preserving framework:

- 930 • **vs. PFL.** Instead of learning a separate model $\phi^{(k)}$ for each client—incurred per-client hyperparameters, inner-loop optimization, and fine-tuning overhead (Arivazhagan et al., 2019; Deng et al., 931 2020b)—FEROMA optimizes a *single* model per observed distribution. Each client then receives its 932 best-matching distribution slice based on a DP-protected profile, eliminating the need for client-specific 933 adaptation or supervision. In doing so, FEROMA shifts the objective from client-centric to 934 distribution-centric optimization.
- 935 • **vs. CFL.** Unlike hard- or soft-CFL methods that assume M disjoint distributions known a priori 936 (Guo et al., 2024; Jothimurugesan et al., 2023; Ghosh et al., 2020; Marfoq et al., 2021; Long et al., 937 2023), FEROMA imposes no such assumptions. Its distribution profiles adapt continuously 938 to overlapping or drifting distributions and naturally support unseen clients via the label-agnostic 939 component (R2). Moreover, FEROMA avoids the need to train multiple models per client or transmit 940 multiple updates per round, thereby reducing both computation and communication costs compared 941 to CFL approaches (see Table 3).
- 942 • **vs. TTA-FL.** Rather than relying on costly and unstable unsupervised fine-tuning at test time (e.g., 943 entropy or contrastive minimisation (Jiang & Lin, 2022; Chen et al., 2022)), FEROMA performs a 944 one-shot profile extraction followed by nearest-distribution association. This eliminates the risk 945 of overconfident predictions or collapsed representations, incurs negligible overhead (R5), and 946 generalizes seamlessly to unseen, unlabeled clients.

947 B DISCUSSION: HANDLING SEEN-ONCE OR UNSEEN DISTRIBUTIONS

948 As illustrated in Figure 5 and Figure 6, there are two drifting scenarios that FEROMA does not 949 explicitly target: (1) **Seen-once distributions**, which appear during intermediate training rounds but 950 are absent in the final round; and (2) **Unseen distributions**, which never occur during training but 951 appear during testing. These two conditions may also coexist.

952 While FEROMA retains only final-round profiles and models by default, it can be extended to address 953 both cases effectively. For seen-once distributions, the server can optionally store their corresponding 954 profiles and models during training, provided they yield acceptable validation performance. This 955 enables FEROMA to retain models for all distributions encountered during training, not just those 956 from the final round. For entirely unseen distributions, which are fundamentally unpredictable, 957 FEROMA still assigns the closest available model based on distribution profile similarity. Unlike 958 standard baselines (e.g., FedAvg) that rely on a single global model, FEROMA selects from a diverse 959 set of models trained on different distributional modes. This leads to better initial performance and 960 provides a stronger starting point for downstream personalization or test-time adaptation. In this 961 sense, FEROMA complements and can be naturally integrated with test-time adaptive FL methods to 962 further improve robustness in dynamic environments.

963 **Empirical validation.** Importantly, both seen-once and unseen distribution scenarios are inherently 964 present in our experimental setup. Our dynamic FL experiments with varying drift frequencies (every 965 2-4 rounds) naturally create seen-once distributions as client data evolves over time. Similarly, our 966 test-time evaluation on cold-start and test-only clients directly evaluates performance on unseen 967 distributions. The consistent performance gains of FEROMA across all experimental conditions—achieving 968 up to 12 percentage points improvement over baselines—demonstrate that our framework effectively 969 handles these challenging scenarios in practice. This empirical evidence validates that distribution- 970

profile-based model selection provides robust generalization even when exact distributional matches are unavailable.



Figure 5: Seen-once distribution in training stage.

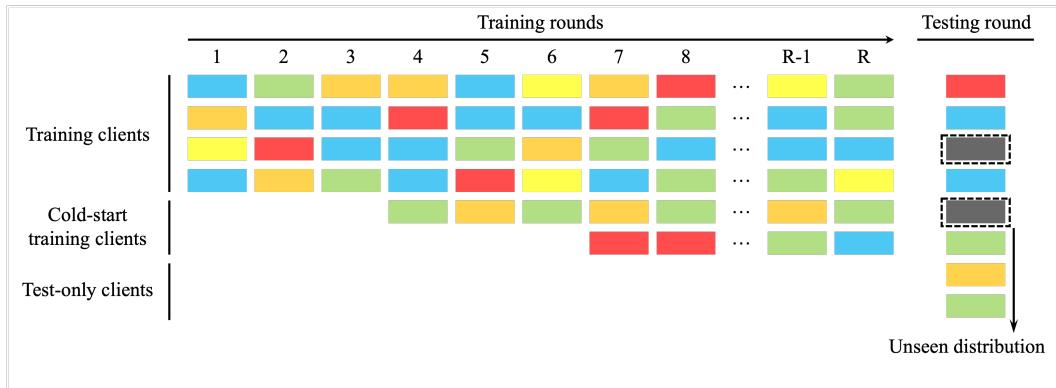


Figure 6: Unseen distribution in testing stage.

C IMPLEMENTATION DETAILS

C.1 ALGORITHM PSEUDO-CODE

We provide the pseudo-code for the training phase ([Algorithm 1](#)) and inference phase ([Algorithm 2](#)) of the proposed FEROMA framework. Both algorithms detail the server-side and client-side operations involved at each round. During training, FEROMA extracts distribution profiles from client data, maps them to previous-round profiles, and assigns models accordingly for local updates (Line 6 and 11 in [Algorithm 1](#)). During inference, FEROMA matches test clients to the closest available model based on distribution profile similarity, without requiring retraining (Line 9 in [Algorithm 2](#)).

C.2 CODE, LICENSES AND HARDWARE

Our experiments were implemented using Python 3.12 and open-source libraries including Scikit-learn 1.5 ([Pedregosa et al., 2011](#)) (BSD license), Flower 1.11 ([Beutel et al., 2022](#)) (Apache License), and PyTorch 2.4 ([Paszke et al., 2019](#)) (BSD license). For visualization, we use Matplotlib 3.9 ([Hunter, 2007](#)) (BSD license) and Seaborn 0.13 ([Waskom, 2021](#)) (BSD license). For data processing, we use Pandas 2.2 ([Wes McKinney, 2010](#)) (BSD license). The datasets used in our experiments—MNIST (GNU license), FMNIST (MIT license), CIFAR-10, CIFAR-100, CheXpert ([Irvin et al., 2019](#)), and Office-Home—are freely available online. To ensure reproducibility, our code, along with detailed

1026 **Algorithm 1** The FEROMA Framework - Training Phase

1027

1028 **Require:** initial set of clients $\mathcal{K}_0 = \{1, 2, \dots, K_0\}$, $\mathcal{A}_0 = \mathcal{K}_0$, initial global models $\{\theta_0^{(k)}\}_{k \in \mathcal{K}_1}$, initial
1029 profiles $\{d_0^{(k)}\}_{k \in \mathcal{K}_1}$, number of rounds R , DPE ϕ_ψ , distance function $\mathcal{D}(\cdot, \cdot)$.

1030 1: **for** $t = 1$ **to** R **do**

1031 2: // Server-side

1032 3: $\mathcal{K}_t \leftarrow \text{UPDATECLIENTPOOL}(\mathcal{K}_{t-1})$ {# Update set of available clients}

1033 4: $\mathcal{A}_t \leftarrow \text{CLIENTSELECT}(\mathcal{K}_t)$ {# Sample clients for training round}

1034 5: // Client-side

1035 6: **for** each client $k \in \mathcal{A}_t$ **in parallel do**

1036 7: $d_t^{(k)} \leftarrow \phi_\psi(x_t^{(k)}, y_t^{(k)})$ {# Def. 3.1}

1037 8: Send $d_t^{(k)}$ to the server

1038 9: **end for**

1039 10: // Server-side

1040 11: **for** each client $k \in \mathcal{A}_t$ **do**

1041 12: $\{\bar{w}_t^{(k,j)}\}_{j \in \mathcal{A}_{t-1}} \leftarrow \text{PROFILEMAP}(d_t^{(k)}, \{d_{t-1}^{(j)}\}_{j \in \mathcal{A}_{t-1}})$ {# Eq. equation 3/equation 4}

1042 13: $\theta_t^{(k)} = \sum_{j \in \mathcal{A}_{t-1}} p_k \cdot \bar{w}_t^{(k,j)} \cdot \theta_{t-1}^{(j)}$ {# Eq. equation 5}

1043 14: Send $\theta_t^{(k)}$ to client k

1044 15: **end for**

1045 16: // Client-side

1046 17: **for** each client $k \in \mathcal{A}_t$ **in parallel do**

1047 18: $\theta^{(k)} \leftarrow \theta_t^{(k)}$

1048 19: $\theta^{(k)} \leftarrow \text{LOCALUPDATE}(\theta^{(k)}, x^{(k)}, y^{(k)})$

1049 20: Send $\theta^{(k)}$ to the server

1050 21: **end for**

1051 22: **end for**

1051 **Algorithm 2** The FEROMA Algorithm - Inference Phase

1052

1053 **Require:** set of test clients $\mathcal{K}_{\text{test}} = \{1, 2, \dots, K_{\text{test}}\}$, last-round client participation \mathcal{A}_R , last-round models
1054 $\{\theta_R^{(k)}\}_{k \in \mathcal{A}_R}$ with profiles $\{d_R^{(k)}\}_{k \in \mathcal{A}_R}$, DPE ϕ_ψ , distance function $\mathcal{D}(\cdot, \cdot)$.

1055 1: // Client-side

1056 2: **for** each client $k \in \mathcal{K}_{\text{test}}$ **in parallel do**

1057 3: $d'_{\text{test}}^{(k)} \leftarrow \phi_\psi(x_{\text{test}}^{(k)}, \mathbf{0})$ {# (R2)}

1058 4: Send $d'_{\text{test}}^{(k)}$ to the server

1059 5: **end for**

1060 6: // Server-side

1061 7: $\{d'_R^{(j)}\}_{j \in \mathcal{A}_R} \leftarrow \text{GETPRIME}(\{d_R^{(j)}\}_{j \in \mathcal{A}_R})$

1062 8: **for** each client $k \in \mathcal{K}_{\text{test}}$ **do**

1063 9: $\{\bar{w}_{\text{test}}^{(k,j)}\}_{j \in \mathcal{A}_R} \leftarrow \text{PROFILEMAP}(d'_{\text{test}}^{(k)}, \{d'_R^{(j)}\}_{j \in \mathcal{A}_R})$ {# Eq. equation 3}

1064 10: $j^* \leftarrow \arg \max_{j \in \mathcal{A}_R} \bar{w}_{\text{test}}^{(k,j)}$

1065 11: $\theta_{\text{test}}^{(k)} \leftarrow \theta_R^{(j^*)}$ {# Best-matching model}

1066 12: Send $\theta_{\text{test}}^{(k)}$ to client k

1067 13: **end for**

1068 14: // Client-side

1069 15: **for** each client $k \in \mathcal{K}_{\text{test}}$ **in parallel do**

1070 16: $\theta^{(k)} \leftarrow \theta_{\text{test}}^{(k)}$

1071 17: $\hat{y}^{(k)} = f(x_{\text{test}}^{(k)}; \theta^{(k)})$

1072 18: **end for**

1073 instructions for reproducing the experiments, is publicly accessible on GitHub¹ under the MIT license.
1074 We implement publicly available codes for our baselines (except FedAvg). All experiments were
1075 conducted on a workstation equipped with four NVIDIA RTX A6000 GPUs (48 GB each), two AMD
1076 EPYC 7513 32-Core processors, and 512 GB of RAM.
1077

1078
1079

¹<https://github.com/>

1080 C.3 MODELS AND HYPER-PARAMETER SETTINGS
1081

1082 We employ a 5-fold cross-validation strategy to evaluate the model’s performance, using random
1083 seeds (from 42 to 46) for all experiments to ensure reproducibility. For datasets MNIST, FMNIST,
1084 and CIFAR-10, we use the LeNet-5 (Lecun et al., 1998) as the base model. For datasets CIFAR-100,
1085 CheXpert and Office-Home, we use the ResNet-9 (He et al., 2016) as the base model. Specifically,
1086 we use CheXpert-v1.0-small, a subset from CheXpert, and use the first 120,000 samples for our
1087 experiments. We train the model with a batch size of 64 for both training and testing. Each client
1088 allocated 20% of their local data for evaluation. The Federated Learning process is conducted over
1089 20 communication rounds, with each client performing 2 local epochs per round. The learning rate is
1090 set to 0.005, and a momentum value of 0.9 is applied to optimize the training process.
1091

1092 C.4 DISTRIBUTION PROFILE EXTRACTION
1093

1093 This section details the implementation of the distribution profile extractor (DPE) ϕ , which is used
1094 to capture the local data distribution of each client in a privacy-preserving yet consistent manner
1095 across the federation. In addition, we provide a requirement-by-requirement justification that it fulfills
1096 Definition 3.1.

1097 C.4.1 DPE IMPLEMENTATION.
1098

1099 Let the last hidden layer of the global model produce, for client k in round t , a matrix of latent
1100 vectors $h_t^{(k)} \in \mathbb{R}^{v^{(k)} \times z}$. Our extractor maps these latents to a d -dimensional profile $d_t^{(k)}$ in four
1101 privacy-preserving steps:

1102 S1 *Global alignment (one shot, no raw data).* Each client computes the element-wise minimum and
1103 maximum of its latents and sends only the two z -dimensional vectors (2 z floats) to the server.
1104 The server aggregates by coordinate-wise minimum and maximum, obtaining global bounds
1105 $[m^-, m^+]$, and broadcasts these bounds together with the current model weights. No gradients,
1106 labels, or raw examples leave the devices.
1107 S2 *Shared PCA on synthetic reference points.* Using an agreed-upon random seed, every client
1108 draws 200 points uniformly in the range $[m^-, m^+]$ and fits a PCA map $g : \mathbb{R}^z \rightarrow \mathbb{R}^l$ (with
1109 $l = 10$) on this *synthetic* dataset only. Because both the seed and the data are identical, the
1110 resulting linear projector g is the same on every client, ensuring that Euclidean geometry in the
1111 reduced space is comparable across the federation.
1112 S3 *Monte-Carlo moment computation.* Each client projects its latents $z_t^{(k)} = g(h_t^{(k)}) \in \mathbb{R}^{v^{(k)} \times l}$
1113 and draws $M = 3$ independent Bernoulli($\gamma = 0.5$) masks (see subsection F.5 for the ablation
1114 study on M). For each mask m , it computes $(\mu_x^{(k,m)}, \Sigma_x^{(k,m)})$ and $\{(\mu_u^{(k,m)}, \Sigma_u^{(k,m)})\}_{u=1}^U$,
1115 then averages over m to obtain $(\mu_x^{(k)}, \Sigma_x^{(k)})$ and $\{(\mu_u^{(k)}, \Sigma_u^{(k)})\}_{u=1}^U$. Here, $\mu_x^{(k)}, \Sigma_x^{(k)}$ are the
1116 mean and covariance of the reduced latents (approximating the marginal $P(X)$ of client data),
1117 and $(\mu_u^{(k)}, \Sigma_u^{(k)})$ are the corresponding class-conditional moments (approximating $P(Y|X)$).
1118 These averaged moments can be written coordinate-wise as $g_i(x_t^{(k)}, y_t^{(k)}) = \frac{1}{M} \sum_{m=1}^M g_i^{(m)}$,
1119 where each $g_i^{(m)}$ is an unbiased estimate of the full-sample statistic. Under sub-Gaussianity
1120 with proxy variance τ^2 , the variance of this estimator is bounded by $\tau^2/(M\gamma v^{(k)})$ (see C.4.4
1121 for derivation).
1122 S4 *Differential-privacy sanitisation & profile assembly.* The concatenated statistics are each per-
1123 turbed with an independent Laplace mechanism ($\delta = 0$) (Dwork et al., 2006):

$$\eta_i \stackrel{\text{iid}}{\sim} \text{Laplace}(0, b_i), \quad b_i = \Delta_{1,i}/\varepsilon,$$

1124 where $\Delta_{1,i}$ is the ℓ_1 -sensitivity of statistic g_i . For a mean or standard-deviation coordinate we
1125 conservatively bound $\Delta_{1,i} \leq \frac{\text{Range}(g_i)}{v^{(k)}}$. The released profile is therefore

$$d_t^{(k)} = [g_1, \dots, g_d]^\top + \eta, \quad \eta \sim \text{Laplace}(0, \text{diag}(b_1, \dots, b_d)).$$

1126 Across the pipeline, the only raw, example-level information ever transmitted is the $2z$ -float
1127 (i.e., min/max pair from S1), ensuring compliance with FL privacy constraints. Moreover, with
1128 $\varepsilon = 10.0$ and typical $v^{(k)} > 300$ and $\text{Range}(g_i) < 10$, the worst-case variance $2b_i^2 \leq 2.2 \times 10^{-5}$
1129 is negligible relative to inherent data variability, yet it guarantees $(\varepsilon, 0)$ -DP at the profile level.
1130

1134 C.4.2 DISTRIBUTION FIDELITY (R1)
1135

1136 To meet the *distribution fidelity* requirement (R1), we design our DPE so that Euclidean distances
1137 in the profile space provably track the 2-Wasserstein distance W_2 between client data distributions.
1138 After aligning all clients with a globally consistent, privacy-preserving PCA (see Paragraph C.4.1),
1139 each profile concatenates the first two moments of (i) the marginal latent distribution $P(X)$ and (ii)
1140 the class-conditional latents $\{P(X|Y=u)\}_{u=1}^U$.

1141 Consider the following assumptions:

1142 (A1) (Latent Gaussianity) Each latent distribution can be approximated by a Gaussian: $P_i \approx$
1143 $\mathcal{N}(\mu_i, \Sigma_i)$. This is a standard assumption for deep features.
1144

1145 (A2) (Spectral bounds) There exist constants $0 < \lambda_{\min} \leq \lambda_{\max} < \infty$ such that the spectra of all
1146 covariances lie in $[\lambda_{\min}, \lambda_{\max}]$. This is enforced in our case by Step S1 of the DPE, which
1147 ensures that all latent representations lie within a global bounding box $[m^-, m^+]$.
1148

1149 (A3) (Approximate commutation) Post-PCA, the covariances are (close to) diagonal; we use
1150 commutation to obtain tight identities and can otherwise rely on standard operator bounds.

1150 We can define the following proposition for marginals, which then extends to class-conditionals.

1151 **Proposition 1** (Lipschitz-equivalence to W_2 for marginals). *Define the profile distance for two clients
1152 as*

$$1153 \Delta^2 = \|\mu_1 - \mu_2\|_2^2 + \|\Sigma_1 - \Sigma_2\|_F^2. \quad (1)$$

1154 *If (A1)–(A3) hold, then for constants*

$$1155 c_- = \min\{1, (2\sqrt{\lambda_{\max}})^{-1}\}, \quad c_+ = \max\{1, (2\sqrt{\lambda_{\min}})^{-1}\},$$

1156 *we have the two-sided bound*

$$1158 c_-^2 \Delta^2 \leq W_2^2(\mathcal{N}(\mu_1, \Sigma_1), \mathcal{N}(\mu_2, \Sigma_2)) \leq c_+^2 \Delta^2.$$

1159 *Consequently W_2 and Δ are Lipschitz-equivalent on the set of admissible covariances.*

1160 *Proof.* For notational simplicity, we write each client’s marginal profile as $d^{(k)} = [\mu_k, \text{vec}(\Sigma_k)]$.
1161 Then the squared ℓ_2 distance between two client profiles is

$$1163 \|d^{(1)} - d^{(2)}\|_2^2 = \|\mu_1 - \mu_2\|_2^2 + \|\text{vec}(\Sigma_1 - \Sigma_2)\|_2^2.$$

1164 For any matrix A , $\|\text{vec}(A)\|_2^2 = \|A\|_F^2$. With $A = \Sigma_1 - \Sigma_2$, we obtain Appendix equation 1:

$$1166 \Delta^2 = \|d^{(1)} - d^{(2)}\|_2^2 = \|\mu_1 - \mu_2\|_2^2 + \|\Sigma_1 - \Sigma_2\|_F^2.$$

1167 For Gaussians, $W_2^2 = \|\mu_1 - \mu_2\|_2^2 + B^2(\Sigma_1, \Sigma_2)$, where $B^2(\Sigma_1, \Sigma_2) = \text{Tr}(\Sigma_1 + \Sigma_2 - 2(\Sigma_1^{1/2} \Sigma_2 \Sigma_1^{1/2})^{1/2})$ is the squared Bures distance (Villani et al., 2008). The mean terms coincide; it
1168 remains to compare B to $\|\Sigma_1 - \Sigma_2\|_F$.
1169

1170 Under (A3) (covariances commute $\Sigma_1 \Sigma_2 = \Sigma_2 \Sigma_1$ —e.g., are diagonal in the shared PCA basis),

$$1173 \Sigma_1^{1/2} \Sigma_2 \Sigma_1^{1/2} = \Sigma_1^{1/2} \Sigma_2^{1/2} \Sigma_2^{1/2} \Sigma_1^{1/2} = (\Sigma_1^{1/2} \Sigma_2^{1/2})^2 \Rightarrow (\Sigma_1^{1/2} \Sigma_2 \Sigma_1^{1/2})^{1/2} = \Sigma_1^{1/2} \Sigma_2^{1/2}.$$

1174 Plugging this into the Bures formula:

$$1175 B^2(\Sigma_1, \Sigma_2) = \text{Tr}(\Sigma_1) + \text{Tr}(\Sigma_2) - 2 \text{Tr}\left((\Sigma_1^{1/2} \Sigma_2 \Sigma_1^{1/2})^{1/2}\right) = \text{Tr}(\Sigma_1) + \text{Tr}(\Sigma_2) - 2 \text{Tr}(\Sigma_1^{1/2} \Sigma_2^{1/2}).$$

1176 Using the identity for the squared Frobenius norm of the difference between two symmetric matrices:

$$1178 \|\Sigma_1^{1/2} - \Sigma_2^{1/2}\|_F^2 = \text{Tr}(\Sigma_1) + \text{Tr}(\Sigma_2) - 2 \text{Tr}(\Sigma_1^{1/2} \Sigma_2^{1/2}) \Rightarrow B^2(\Sigma_1, \Sigma_2) = \|\Sigma_1^{1/2} - \Sigma_2^{1/2}\|_F^2.$$

1179 By the mean value theorem for $f(x) = \sqrt{x}$ on $[\lambda_{\min}, \lambda_{\max}]$, applied entrywise,

$$1181 \frac{1}{2\sqrt{\lambda_{\max}}} \|\Sigma_1 - \Sigma_2\|_F \leq B(\Sigma_1, \Sigma_2) \leq \frac{1}{2\sqrt{\lambda_{\min}}} \|\Sigma_1 - \Sigma_2\|_F.$$

1182 Let $a = \|\mu_1 - \mu_2\|_2^2$, $b = \|\Sigma_1 - \Sigma_2\|_F^2$, and $k \in [k_{\min}, k_{\max}]$ with $k_{\min} = 1/(4\lambda_{\max})$, $k_{\max} = 1/(4\lambda_{\min})$. Then

$$1185 \min\{1, k\}(a + b) \leq a + kb \leq \max\{1, k\}(a + b),$$

1186 which yields $c_-^2 \Delta^2 \leq W_2^2 \leq c_+^2 \Delta^2$ with the stated c_- and c_+ .

1187 \square

Non-IID Level	Max	Min	Mean	Std
low	1.060	0.194	0.526	0.106
medium	1.028	0.159	0.479	0.113
high	1.016	0.136	0.458	0.108

((a)) 2-Wasserstein

Non-IID Level	Max	Min	Mean	Std
low	0.477	0.030	0.288	0.074
medium	0.517	0.009	0.332	0.084
high	0.535	0.007	0.352	0.078

((b)) Jensen–Shannon

Table 4: Absolute error δ between profile distance and the true inter-client distance under three non-IID Levels on MNIST under $P(Y | X)$ concept shift.

Empirical validation. We validate this guarantee on 44 850 client-round pairs generated from MNIST under three levels of non-IID concept shift that perturb $P(Y | X)$ (low, medium, high; see Appendix F.1 for the protocol). Table 4 reports the absolute error $\delta = \|\|d_{t_1}^{(k_1)} - d_{t_2}^{(k_2)}\|_2 - D(P(x_{t_1}^{(k_1)}, y_{t_1}^{(k_1)}), P(x_{t_2}^{(k_2)}, y_{t_2}^{(k_2)}))\|$. For the target 2-Wasserstein metric, the worst-case error never exceeds 1.1, with a mean of 0.49 ± 0.11 . We also compute the gap w.r.t. the Jensen–Shannon (JS) distance to demonstrate robustness to the choice of D ; the maximum JS error is < 0.54 and the mean is 0.32 ± 0.08 . These results confirm that our extractor satisfies (R1) with $\xi < 1.1$ across a broad spectrum of distribution shifts while preserving local-data privacy.

C.4.3 LABEL AGNOSTICISM (R2)

In a deployed FL system the clients encountered at test-time rarely possess reliable labels. Requirement (R2) therefore asks for a sub-vector of every profile that can be computed with *features only*. Our implementation already provides such a component:

- *Training phase.* Step S3 produces both the marginal moments $(\mu_x^{(k)}, \Sigma_x^{(k)})$ and the class-conditional moments $\{(\mu_u^{(k)}, \Sigma_u^{(k)})\}_{u=1}^U$. The resulting profile splits naturally into

$$d_t^{(k)} = [\underbrace{\mu_x^{(k)}, \Sigma_x^{(k)}}, \underbrace{\mu_1^{(k)}, \Sigma_1^{(k)}, \dots, \mu_U^{(k)}, \Sigma_U^{(k)}]. \\ d_t'^{(k)} \in \mathbb{R}^p \quad d_t''^{(k)} \in \mathbb{R}^{d-p}$$

- *Test phase (labels unavailable).* The client repeats S1–S2 unchanged, then executes the *label-free* part of S3, yielding only $(\mu_x^{(k)}, \Sigma_x^{(k)})$. Reasonably, the conditional distribution $P(Y | X)$ cannot be approximated at test time in the absence of labels. These statistics form the sub-vector $d_t'^{(k)} := \phi_\psi(x_t^{(k)}, \mathbf{0}) \in \mathbb{R}^p$, fully satisfying the formal condition in the main text. Step S4 applies the same Laplace mechanism coordinate-wise, so $d_t'^{(k)}$ enjoys the same $(\varepsilon, \delta=0)$ differential-privacy guarantee as the full profile.

Because the PCA projector is shared (S2) and the noise calibration in S4 is data-independent, Euclidean distances between two label-agnostic profiles, $\|d_{t_1}^{(k_1)} - d_{t_2}^{(k_2)}\|_2$, remain a meaningful proxy for the marginal Wasserstein distance between $P(X)$ distributions. Consequently, our DPE allows us to match, at test time, unseen and unlabeled clients to the closest marginal distributions fitted during training—satisfying Requirement (R2).

C.4.4 CONTROLLED STOCHASTICITY (R3)

To thwart exact fingerprinting of a client whose distribution remains static across rounds—which would otherwise cause it to be matched with certainty at each round, potentially suppressing the contribution of other clients with similarly relevant distributions during aggregation—the extractor must output similar but not identical profiles for the same input—while preserving the true geometry in expectation. We achieve this with two independent randomness sources.

1. *Monte-Carlo subsampling.* Given $v^{(k)}$ examples, the client draws $M = 3$ independent Bernoulli($\gamma = 0.5$) masks and computes the moments of each subsample. Averaging these estimates yields the profile statistic $\tilde{g} := \frac{1}{M} \sum_{m=1}^M g^{(m)}$, where each $g^{(m)}$ is unbiased for the full-sample statistic $g = \bar{\phi}_i(x_t^{(k)}, y_t^{(k)})$. If every latent coordinate is sub-Gaussian with proxy

1242 variance τ^2 , then

$$1243 \quad \text{Var}(\tilde{g}) \leq \frac{\tau^2}{M\gamma v^{(k)}},$$

1244 giving a data-dependent variance that shrinks both with sample size and with the number of
1245 Monte-Carlo replicas.

1246 2. *Laplace mechanism (Step S4)*. The zero-mean noise $\eta_i \sim \text{Laplace}(0, b_i)$ adds fixed variance
1247 $2b_i^2$ per coordinate. Because the noise is independent of the subsampling, the total covariance is
1248 diagonal and bounded:

$$1249 \quad \text{Cov}(d_t^{(k)}) \preceq \left(\frac{\tau^2}{M\gamma v^{(k)}} + 2b_{\max}^2 \right) \mathbf{I}_d = \rho^2 \mathbf{I}_d. \quad (2)$$

1250 Hence $\mathbb{E}[d_t^{(k)}] = \bar{\phi}(x_t^{(k)}, y_t^{(k)})$ and $\text{Cov}(d_t^{(k)}) \preceq \rho^2 \mathbf{I}_d$, exactly matching Requirement (R3) with
1251 $\rho^2 = \frac{\tau^2}{M\gamma v^{(k)}} + 2b_{\max}^2$. In our experiments ($v^{(k)} > 300$, $\tau^2 < 1.0$, $b_{\max} = 0.003$) this gives
1252 $\rho^2 \leq 2.2 \times 10^{-3}$, yielding profile distances that are stable across draws yet impossible to replicate
1253 perfectly—providing the desired controlled stochasticity.

1254 C.4.5 DIFFERENTIAL-PRIVACY GUARANTEE (R4)

1255 Because FEROMA transmits client-side profiles $\{d_t^{(k)}\}_{k \in \mathcal{K}_t} \subset \mathbb{R}^d$ —which, by design, capture each
1256 client’s data distribution—an adversary could, in principle, combine them with model updates to
1257 mount stronger data reconstruction or membership inference attacks (Shokri et al., 2017; Zari et al.,
1258 2021; Li et al., 2022a; Hitaj et al., 2017; Zhu et al., 2019; Yin et al., 2021). For this reason, Requirement
1259 (R4) mandates an (ε, δ) -differential privacy guarantee at the *sample* level. The multivariate
1260 Laplace mechanism (implemented in S4) ensures $(\varepsilon, 0)$ -DP for the entire profile vector $d_t^{(k)}$, since
1261 each coordinate is perturbed with noise scaled to the same ε , and sensitivities are computed in the ℓ_1
1262 norm. Thus, for any neighbouring datasets (x, y) and (x', y') that differ in one example, and for any
1263 measurable set $\mathcal{S} \subseteq \mathbb{R}^d$,

$$1264 \quad \Pr[\phi_\psi(x, y) \in \mathcal{S}] \leq e^\varepsilon \Pr[\phi_\psi(x', y') \in \mathcal{S}],$$

1265 with $\delta = 0$. In our experiments we set $\varepsilon = 10.0$; with typical client sizes $v^{(k)} > 300$, the added
1266 variance $2(\Delta_{1,i}/\varepsilon)^2 \leq 2.2 \times 10^{-5}$ is negligible compared to natural data variability, so inter-profile
1267 distances remain reliable. Combined with the many-to-one nature of $\phi_\psi : \mathbb{R}^{v^{(k)} \times (z+u)} \rightarrow \mathbb{R}^d$ —where
1268 infinitely many distinct datasets map to the same profile, making inversion information-theoretically
1269 impossible—this DP mechanism bounds any additional leakage to an ε -limited factor beyond what is
1270 already exposed by model parameters, thereby fully satisfying Requirement (R4).

1271 C.4.6 COMPACTNESS (R5)

1272 Requirement (R5) demands that profile extraction adds only marginal computation and communication
1273 overhead relative to standard FL. Our implementation meets this target in both aspects.

- 1274 • *Computation*. The only non-trivial operation is fitting a rank- l PCA on $s^{\text{PCA}} = 200$
1275 synthetic latent vectors of dimension z (Step S2). Using an SVD solver, the cost is
1276 $O(\min(s^{\text{PCA}} z^2, (s^{\text{PCA}})^2 z))$. In practice $z > s^{\text{PCA}}$, so the second term dominates: $(s^{\text{PCA}})^2 z =$
1277 $200^2 z \approx 4 \times 10^4 z$ floating-point operations. For typical latent sizes ($z \in [128, 2048]$),
1278 this results in at most 8.2×10^7 FLOPs—negligible compared to the cost of a single local
1279 training epoch. For reference, a single forward pass (no backward, no optimization) with
1280 our smallest network on MNIST exceeds 6.5×10^8 FLOPs, while the largest network used
1281 on CIFAR-100 requires over 6×10^{11} FLOPs per epoch. Moment computation (Step S3)
1282 involves simple summations and products, and is therefore negligible, while Laplace noise
1283 injection (Step S4) has complexity $O(d)$.
- 1284 • *Communication*. Each profile transmits $d = (l + l) \times (1 + U)$ floats, i.e. a mean and a
1285 (diagonal) covariance entry per latent dimension for the marginal distribution plus the same
1286 for each of the U classes. With $l = 10$ this yields $d = 220$ floats for MNIST ($U = 10$) and
1287 $d = 2020$ for CIFAR-100 ($U = 100$). By contrast, the model updates in our experiments
1288 range from 62 006 parameters (MNIST) to 6 775 140 parameters (CIFAR-100). Hence the
1289 profile occupies at most $d/|\theta| \leq 3.5 \times 10^{-3}$ of the uplink payload, comfortably satisfying
1290 the compactness criterion $d/|\theta| \leq 10^{-2}$.

1296 These results demonstrate that the DPE introduces only minimal overhead while maintaining the
 1297 communication efficiency expected in FL, thereby fully satisfying Requirement (R5).
 1298

1299 **C.5 CONVERGENCE GUARANTEES UNDER STATIONARY DISTRIBUTIONS**
 1300

1301 We now provide a theoretical convergence guarantee for FEROMA under a natural piecewise-stationary
 1302 assumption on the client distributions. As discussed in the main text, unbounded and adversarial
 1303 concept drift precludes classical convergence guarantees. Instead, we analyze the behavior of
 1304 FEROMA on a time interval between two distribution-shift events, where the local data distributions
 1305 are approximately stationary. For this analysis, we adopt the common idealized setting of a fixed set
 1306 of clients with full participation in every round. Although FEROMA supports partial participation in
 1307 practice, this does not affect the core convergence argument and is therefore abstracted away in the
 1308 formal treatment.
 1309

1310 **Setup.** Fix an interval of communication rounds $\mathcal{T} = \{t_0, \dots, t_0 + T - 1\}$ during which the local
 1311 distributions are stationary:

$$1312 P(X_t^{(k)}, Y_t^{(k)}) \equiv P^{(k)} \quad \forall t \in \mathcal{T}, k \in \{1, \dots, K\}.$$

1313 For each client k , let $f_k(\theta) := \mathbb{E}_{(x,y) \sim P^{(k)}}[\ell(\theta; x, y)]$ denote its local objective, and $F(\theta) :=$
 1314 $\sum_{k=1}^K p_k f_k(\theta)$ the global objective with aggregation weights $p_k > 0$, $\sum_k p_k = 1$. Within the
 1315 interval \mathcal{T} , the local training step (Eq. (1)) is standard stochastic gradient descent (SGD) on f_k , with a
 1316 fixed number τ of local steps per communication round. We adopt the following standard conditions
 1317 from decentralized/local-SGD analysis Koloskova et al. (2020); Stich (2019); Gao et al. (2021).
 1318

1319 **Assumption C.1** (Smoothness and bounded variance). *For each client k , f_k is L -smooth: $\|\nabla f_k(\theta) -$
 1320 $\nabla f_k(\theta')\| \leq L\|\theta - \theta'\|$, $\forall \theta, \theta'$, and is bounded below by f_k^* . Stochastic gradients are unbiased and
 1321 have bounded variance: $\mathbb{E}[g_t^{(k)} \mid \theta_t^{(k)}] = \nabla f_k(\theta_t^{(k)})$ and $\mathbb{E}\|g_t^{(k)} - \nabla f_k(\theta_t^{(k)})\|^2 \leq \sigma^2$ for all t, k .*

1322 **Assumption C.2** (Profile-induced mixing matrices). *At each round $t \in \mathcal{T}$, FEROMA's distribution-
 1323 profile mapping (equation 3–equation 5) induces a mixing matrix $W_t \in \mathbb{R}^{K \times K}$ with entries
 1324 $(W_t)_{kj} := \bar{w}_t^{(k,j)}$, where $\bar{w}_t^{(k,j)}$ denotes the (possibly thresholded and renormalized) association
 1325 weight used in Eq. equation 5. We assume:*

1326 (a) **Symmetry and double stochasticity.** *Each W_t is a mixing matrix in the sense of Koloskova et al.
 1327 (2020): it is symmetric and doubly stochastic,*

$$1328 W_t = W_t^\top, \quad W_t \mathbf{1} = \mathbf{1}, \quad \mathbf{1}^\top W_t = \mathbf{1}^\top,$$

1329 with non-negative entries $(W_t)_{kj} \geq 0$.

1330 (b) **Expected consensus rate.** *The sequence $\{W_t\}_{t \in \mathcal{T}}$ satisfies the expected consensus condition of
 1331 Assumption 4 in Koloskova et al. (2020): there exist constants $p \in (0, 1]$ and integer $\tau \geq 1$ such
 1332 that, for all matrices $X \in \mathbb{R}^{d \times K}$ and all integers ℓ ,*

$$1333 \mathbb{E}\|XW_{\ell,\tau} - \bar{X}\|_F^2 \leq (1-p)\|X - \bar{X}\|_F^2,$$

1334 where $W_{\ell,\tau} := W_{(\ell+1)\tau-1} \cdots W_{\ell\tau}$, $\bar{X} := X \frac{1}{K} \mathbf{1} \mathbf{1}^\top$, and the expectation is taken over the
 1335 randomness of the mixing matrices in the block $\{W_{\ell\tau}, \dots, W_{(\ell+1)\tau-1}\}$.

1336 Assumption C.2 is standard in decentralized SGD with time-varying topologies and ensures that
 1337 repeated applications of $\{W_t\}$ drive the local models towards consensus on the weighted average
 1338 defined by p Koloskova et al. (2020); Pu et al. (2020).

1339 **Assumption C.3** (Stable DPE and DP noise). *The DPE ϕ_ψ satisfies requirements (R1)–(R3): profile
 1340 distances approximate a reference distributional distance up to additive distortion ξ , and the stochas-
 1341 ticity of $d_t^{(k)} = \phi_\psi(x_t^{(k)}, y_t^{(k)})$ has bounded covariance $\text{Cov}(d_t^{(k)}) \preceq \rho^2 I_d$. Let $\bar{d}_t^{(k)} := \mathbb{E}[d_t^{(k)}]$
 1342 denote the noise-free profiles and let \bar{W}_t be the mixing matrix obtained from equation 3–equation 5
 1343 when computed from $\{\bar{d}_t^{(k)}\}$ instead of $\{d_t^{(k)}\}$. We assume that:*

1344 (a) *the mapping from profiles to weights $d \mapsto W_t(d)$ is Lipschitz;*

1350 (b) the DP noise and moment-estimation noise are sufficiently small so that $\|W_t - \bar{W}_t\|_2 \leq c_{\text{dpe}}\rho$
 1351 for all t , for some constant c_{dpe} ;
 1352
 1353 (c) the deterministic matrices \bar{W}_t satisfy Assumption C.2, hence so do the stochastic W_t for ρ small
 1354 enough.

1355 Intuitively, (R1) and (R3) ensure that, within a stationary window, profiles vary smoothly across
 1356 rounds and the DP noise is small enough that the profile-based matching does not destroy connectivity
 1357 or the spectral gap of the induced mixing matrices.
 1358

1359 **Feroma as decentralised local-SGD.** Let $\Theta_t := [\theta_t^{(1)}, \dots, \theta_t^{(K)}] \in \mathbb{R}^{d \times K}$ denote the matrix of
 1360 client parameters at the beginning of round t . One round of FEROMA on the stationary interval \mathcal{T} can
 1361 be written as
 1362

$$\underbrace{\Theta_{t+1}}_{\text{after local SGD}} = \underbrace{(\Theta_t W_t)}_{\text{profile-based aggregation (Eq. equation 5)}} - \underbrace{\eta_t G_t}_{\text{local SGD on each } f_k}, \quad (3)$$

1363 where the k -th column of $\Theta_t W_t$ is exactly $\sum_j \bar{w}_t^{(k,j)} \theta_t^{(j)}$, as in Eq. equation 5, η_t is the stepsize at
 1364 round t , and G_t stacks the (mini-batch) stochastic gradients performed by the clients during their
 1365 local updates starting from $\Theta_t W_t$. This recursion coincides with the generic decentralized local-SGD
 1366 iteration with time-varying mixing matrices studied in Koloskova et al. (2020), specialized to the
 1367 star-shaped topology in which the averaging is computed centrally but applied client-side.
 1368

1369 **Lemma C.1** (Equivalence to decentralized local-SGD). *Under Assumptions C.1–C.3, and restricted
 1370 to a stationary interval \mathcal{T} , the iterates of FEROMA satisfy the matrix recursion above with mixing
 1371 matrices $\{W_t\}$ that obey Assumption C.2. Consequently, FEROMA is a special case of the decentralized
 1372 local-SGD framework with changing topology and local updates analyzed by Koloskova et al. (2020).*
 1373

1374 *Proof sketch.* The profile-based aggregation step is a linear mixing of previous-round models with
 1375 coefficients $\bar{w}_t^{(k,j)}$ that, by construction and renormalization, define a row-stochastic matrix W_t .
 1376 The DPE requirements (R1)–(R3) and Assumption C.3 ensure that, within a stationary window, the
 1377 random perturbations of the true profiles induce only bounded perturbations of W_t , preserving the
 1378 spectral properties required in Assumption C.2. The subsequent local SGD step on each client is
 1379 exactly the local update considered in Koloskova et al. (2020), with τ local steps per communication
 1380 round. Thus the overall update coincides with the decentralized local-SGD recursion with dynamic
 1381 mixing matrices. \square
 1382

1383 **Convergence guarantee.** We now state the resulting convergence guarantee; the proof follows
 1384 directly from existing results for decentralized local-SGD and is not repeated here.
 1385

1386 **Theorem C.1** (Convergence of FEROMA on a stationary window). *Let Assumptions C.1–C.3 hold on
 1387 a stationary interval $\mathcal{T} = \{t_0, \dots, t_0 + T - 1\}$ and let $\{\Theta_t\}_{t \in \mathcal{T}}$ be the iterates of FEROMA. Define
 1388 the weighted average model $\bar{\theta}_t := \sum_{k=1}^K p_k \theta_t^{(k)}$. Choose a stepsize sequence $\{\eta_t\}$ as in Koloskova
 1389 et al. (2020) (e.g., a diminishing stepsize $\eta_t \propto 1/\sqrt{T}$ for non-convex objectives).
 1390*

1391 Then:

1392 (i) In the non-convex case, the averaged model converges to a stationary point of F at the standard
 1393 sub-linear rate of decentralized SGD:

$$\frac{1}{T} \sum_{t \in \mathcal{T}} \mathbb{E}[\|\nabla F(\bar{\theta}_t)\|^2] \xrightarrow{T \rightarrow \infty} 0,$$

1394 with the same order of convergence as centralized SGD, up to constants that depend on
 1395 the network spectral gap γ , the number of local steps τ , and the variance terms σ^2 and ρ^2
 1396 introduced by gradient and profile noise, respectively.
 1397

1398 (ii) In the μ -strongly convex case, FEROMA converges linearly to a neighbourhood of the global
 1399 minimiser θ^* of F , with a rate that matches that of decentralised/local-SGD up to constants
 1400 depending on the same problem and network parameters.
 1401

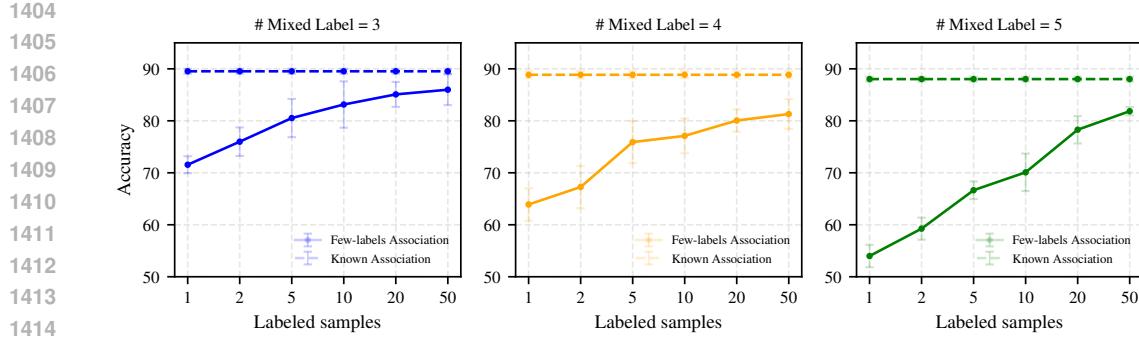


Figure 7: **Test accuracy of FEROMA on MNIST under $P(Y | X)$ concept shift, as a function of the number of labeled test samples per class used for model association.** Dashed lines indicate the performance under (optimal) known model assignment. Results are shown for three levels of non-IID severity.

In both cases, the DP noise injected by the DPE affects only the constants in the convergence bounds through the effective variance term, but does not change the asymptotic rates as long as the covariance bound in Assumption C.3 holds.

Discussion. The theorem formalises the intuition that, between two distribution drifts, FEROMA behaves like a decentralised/local-SGD method on a fixed objective F , with a data-dependent mixing matrix induced by distribution profiles. Under mild connectivity and smoothness assumptions, FEROMA therefore inherits the convergence guarantees of decentralised local-SGD. When a new drift occurs (i.e., the distributions $P(X_t^{(k)}, Y_t^{(k)})$ change), the global objective F itself changes, and classical convergence guarantees no longer apply across the entire horizon. Instead, training is best viewed as tracking a sequence of piecewise-stationary objectives, for which Theorem C.1 gives guarantees on each stationary segment.

D TEST-TIME MODEL ASSOCIATION UNDER $P(Y|X)$ CONCEPT SHIFT

In practical settings, class-conditional distributions $P(X | Y = y)$ cannot be estimated at test time, as labels are typically unavailable. As a result, detecting $P(Y | X)$ concept shift during inference is a known impossibility: different label distributions can induce identical feature distributions, leaving no observable signal for detecting the shift based solely on input features. In real-world applications, $P(Y | X)$ shifts are often linked to evolving user preferences, and the only feasible solution is to query a small number of labeled examples at test time to infer the underlying preference.

To assess the feasibility of this approach, we evaluated FEROMA under varying amounts of labeled test samples. Specifically, we measured test-time model association accuracy on MNIST with $P(Y | X)$ shifts of increasing severity (low, medium, high non-IID), using between 1 and 50 labeled samples per class. Importantly, these labels were used solely for model selection and not for any model retraining. Results are reported in Figure 7. As expected, increasing the number of labeled samples improves the association quality, approaching the upper bound defined by the optimal association (shown as dashed lines). Moreover, stronger non-IID levels require more labeled examples to achieve a good association, reflecting the inherent difficulty of $P(Y | X)$ shift scenarios.

Practical instantiation. From these results, we conclude that using 20 labeled samples per class strikes a good trade-off between performance and labeling cost. Accordingly, we adopt this configuration in all our experiments involving test-time association with FEROMA. To ensure a fair comparison, baseline methods are evaluated under (optimal) known association, since they do not natively address $P(Y | X)$ shifts or propose alternative strategies.

Numerical experiments. For clarity and completeness, we additionally tracked the performance of FEROMA under the (optimal) *known association* condition across all experiments. This comparison

isolates the influence of test-time association errors from the effects of distribution drift and shift occurring during training. Tables 5–8 report the test accuracy of FEROMA when using either the known association or the automatically detected association (with 20 labeled test samples per class) across four datasets: MNIST, FMNIST, CIFAR-10, and CIFAR-100. As expected, the results show that under higher non-IID severity, the gap between known and detected association widens, reflecting the increasing difficulty of matching clients to appropriate models in the presence of stronger $P(Y|X)$ shifts. Nevertheless, FEROMA maintains strong performance even when relying on few labeled samples, demonstrating robustness to moderate test-time association errors.

In addition, these results confirm that when labels are available—as is the case during training—FEROMA consistently maintains high performance across all levels of non-IID severity and client drift rates. This stability highlights the robustness of the framework in handling both distribution shift and drift during training, demonstrating that FEROMA’s adaptive aggregation remains effective even under highly heterogeneous and dynamic conditions.

Non-IID Level	Low			Medium			High		
	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20
Known Association	89.58 \pm 0.50	89.48 \pm 0.45	89.80 \pm 0.75	88.90 \pm 0.53	88.87 \pm 0.68	89.01 \pm 0.64	88.15 \pm 0.66	88.06 \pm 0.51	88.41 \pm 0.68
Few labeled samples	83.44 \pm 3.24	85.04 \pm 2.44	84.76 \pm 1.47	78.15 \pm 3.40	80.09 \pm 2.14	80.33 \pm 3.14	78.65 \pm 2.45	78.38 \pm 2.62	79.65 \pm 1.26

Table 5: Test accuracy of FEROMA on MNIST under known test-time model association and automatic detection with few labeled samples (20 per class). Results are reported across low, medium, and high non-IID levels, with varying numbers of drifting clients.

Non-IID Level	Low			Medium			High		
	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20
Known Association	75.37 \pm 0.33	75.23 \pm 0.42	75.25 \pm 0.27	74.83 \pm 0.38	74.64 \pm 0.37	74.69 \pm 0.36	74.29 \pm 0.37	73.83 \pm 0.42	73.93 \pm 0.26
Few labeled samples	72.49 \pm 1.69	70.62 \pm 2.79	72.48 \pm 1.64	67.14 \pm 1.95	68.61 \pm 1.40	66.74 \pm 1.66	65.11 \pm 1.15	63.47 \pm 1.57	63.08 \pm 2.01

Table 6: Test accuracy of FEROMA on FMNIST under known test-time model association and automatic detection with few labeled samples (20 per class). Results are reported across low, medium, and high non-IID levels, with varying numbers of drifting clients.

Non-IID Level	Low			Medium			High		
	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20
Known Association	42.22 \pm 0.54	42.47 \pm 0.32	42.14 \pm 0.32	41.18 \pm 0.78	41.74 \pm 0.25	41.47 \pm 0.48	40.76 \pm 0.61	41.01 \pm 0.50	40.74 \pm 0.64
Few labeled samples	37.19 \pm 0.76	36.61 \pm 1.61	37.37 \pm 1.53	35.23 \pm 0.45	33.43 \pm 1.04	34.24 \pm 0.81	31.96 \pm 1.04	29.89 \pm 1.42	29.87 \pm 1.09

Table 7: Test accuracy of FEROMA on CIFAR-10 under known test-time model association and automatic detection with few labeled samples (20 per class). Results are reported across low, medium, and high non-IID levels, with varying numbers of drifting clients.

E PRIVACY IMPLICATIONS OF DISTRIBUTION PROFILE

Besides model parameters, FEROMA also transmits the client-side profiles $\{d_t^{(k)}\}_{k \in \mathcal{K}_t} \subset \mathbb{R}^d$. Because, by design, profile distances approximate distribution divergences (requirement R1 in 3.1), an adversary could leverage $d_t^{(k)}$ together with model updates to mount stronger data-reconstruction or membership-inference attacks (e.g. (Shokri et al., 2017; Zari et al., 2021; Li et al., 2022a; Hitaj et al., 2017; Zhang et al., 2020b; Ren et al., 2022; Zhu et al., 2019; Zhao et al., 2020; Yin et al., 2021)).

For this reason, it is necessary to satisfy requirement R4. Requirement R4 (see subsection 3.1) endows the Distribution-Profile Extractor $\phi_\psi : \mathbb{R}^{v^{(k)} \times z} \rightarrow \mathbb{R}^d$ with (ε, δ) -differential privacy at the sample level: for any neighbouring datasets (x, y) and (x', y') that differ in one example and every measurable $\mathcal{S} \subseteq \mathbb{R}^d$,

$$\Pr[\phi_\psi(x, y) \in \mathcal{S}] \leq e^\varepsilon \Pr[\phi_\psi(x', y') \in \mathcal{S}] + \delta.$$

1512 1513 1514 1515 1516	Non-IID Level # Drifting	Low			Medium			High		
		5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20
		Known Association	38.88 \pm 0.28	39.62 \pm 0.50	39.36 \pm 0.30	35.63 \pm 0.30	35.71 \pm 0.29	35.72 \pm 0.08	31.75 \pm 0.14	32.46 \pm 0.27
Few labeled samples		30.42 \pm 0.50	29.36 \pm 1.08	30.05 \pm 1.06	22.86 \pm 0.71	21.88 \pm 0.85	23.56 \pm 1.58	16.73 \pm 2.15	13.34 \pm 1.99	15.98 \pm 1.63

1517
1518
1519
Table 8: Test accuracy of FEROMA on CIFAR-100 under known test-time model association and
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
20100
20101
20102
20103
20104
20105
20106
20107
20108
20109
20110
20111
20112
20113
20114
20115
20116
20117
20118
20119
20120
20121
20122
20123
20124
20125
20126
20127
20128
20129
20130
20131
20132
20133
20134
20135
20136
20137
20138
20139
20140
20141
20142
20143
20144
20145
20146
20147
20148
20149
20150
20151
20152
20153
20154
20155
20156
20157
20158
20159
20160
20161
20162
20163
20164
20165
20166
20167
20168
20169
20170
20171
20172
20173
20174
20175
20176
20177
20178
20179
20180
20181
20182
20183
20184
20185
20186
20187
20188
20189
20190
20191
20192
20193
20194
20195
20196
20197
20198
20199
20200
20201
20202
20203
20204
20205
20206
20207
20208
20209
20210
20211
20212
20213
20214
20215
20216
20217
20218
20219
20220
20221
20222
20223
20224
20225
20226
20227
20228
20229
20230
20231
20232
20233
20234
20235
20236
20237
20238
20239
20240
20241
20242
20243
20244
20245
20246
20247
20248
20249
20250
20251
20252
20253
20254
20255
20256
20257
20258
20259
20260
20261
20262
20263
20264
20265
20266
20267
20268
20269
20270
20271
20272
20273
20274
20275
20276
20277
20278
20279
20280
20281
20282
20283
20284
20285
20286
20287
20288
20289
20290
20291
20292
20293
20294
20295
20296
20297
20298
20299
202100
202101
202102
202103
202104
202105
202106
202107
202108
202109
202110
202111
202112
202113
202114
202115
202116
202117
202118
202119
202120
202121
202122
202123
202124
202125
202126
202127
202128
202129
202130
202131
202132
202133
202134
202135
202136
202137
202138
202139
202140
202141
202142
202143
202144
202145
202146
202147
202148
202149
202150
202151
202152
202153
202154
202155
202156
202157
202158
202159
202160
202161
202162
202163
202164
202165
202166
202167
202168
202169
202170
202171
202172
202173
202174
202175
202176
202177
202178
202179
202180
202181
202182
202183
202184
202185
202186
202187
202188
202189
202190
202191
202192
202193
202194
202195
202196
202197
202198
202199
202200
202201
202202
202203
202204
202205
202206
202207
202208
202209
202210
202211
202212
202213
202214
202215
202216
202217
202218
202219
202220
202221
202222
202223
202224
202225
202226
202227
202228
202229
202230
202231
202232
202233
202234
202235
202236
202237
202238
202239
202240
202241
202242
202243
202244
202245
202246
202247
202248
202249
202250
202251
202252
202253
202254
202255
202256
202257
202258
202259
202260
202261
202262
202263
202264
202265
202266
202267
202268
202269
202270
202271
202272
202273
202274
202275
202276
202277
202278
202279
202280
202281
202282
202283
202284
202285
202286
202287
202288
202289
202290
202291
202292
202293
202294
202295
202296
202297
202298
202299
202300
202301
202302
202303
202304
202305
202306
202307
202308
202309
202310
202311
202312
202313
202314
202315
202316
202317
202318
202319
202320
202321
202322
202323
202324
202325
202326
202327
202328
202329
202330
202331
202332
202333
202334
202335
202336
202337
202338
202339
202340
202341
202342
202343
202344
202345
202346
202347
202348
202349
202350
202351
202352
202353
202354
202355
202356
202357
202358
202359
202360
202361
202362
202363
202364
202365
202366
202367
202368
202369
202370
202371
202372
202373
202374
202375
202376
202377
202378
202379
202380
202381
202382
202383
202384
202385
202386
202387
202388
202389
202390
202391
202392
202393
202394
202395
202396
202397
202398
202399
202400
202401
202402
202403
202404
202405
202406
202407
202408
202409
202410
202411
202412
202413
202414
202415
202416
202417
202418
202419
202420
202421
202422
202423
202424
202425
202426
202427
202428
202429
202430
202431
202432
202433
202434
202435
202436
202437
202438
202439
202440
202441
202442
202443
202444
202445
202446
202447
202448
202449
202450
202451
202452
202453
202454
202455
202456
202457
202458
202459
202460
202461
202462
202463
202464
202465
202466
202467
202468
202469
202470
202471
202472
202473
202474
202475
202476
202477
202478
202479
202480
202481
202482
202483
202484
202485
202486
202487
202488
202489
202490
202491
202492
202493
202494
202495
202496
202497
202498
202499
202500
202501
202502
202503
202504
202505
202506
202507
202508
202509
202510
202511
202512
202513
202514
202515
202516
202517
202518
202519
202520
202521
202522
202523
202524
202525
202526
202527
202528
202529
202530
202531
202532
202533
202534
202535
202536
202537
202538
202539
202540
202541
202542
202543
202544
202545
202546
202547
202548
202549
202550
202551
202552
202553
202554
202555
202556
202557
202558
202559
202560
202561
202562
202563
202564
202565
202566
202567
202568
202569
202570
202571
202572
202573
202574
202575
202576
202577
202578
202579
202580
202581
202582
202583
202584
202585
202586
202587
202588
202589
202590
202591
202592
202593
202594
202595
202596
202597
202598
202599
202600
202601
202602
202603
202604
202605
202606
202607
202608
202609
202610
202611
202612
202613
202614
202615
202616
202617
202618
202619
202620
202621
202622
202623
202624
202625
202626
202627
202628
202629
202630
202631
202632
202633
202634
202635
202636
202637
202638
202639
202640
202641
202642
202643
202644
202645
202646
202647
202648
202649
202650
202651
202652
202653
202654
202655
202656
202657
202658
202659
202660
202661
202662
202663
202664
202665
202666
202667
202668
202669
202670
202671
202672
202673
202674
202675
202676
202677
202678
202679
202680
202681
202682
202683
202684
202685
202686
202687
202688
202689
202690
202691
202692
202693
202694
202695
202696
202697
202698
202699
202700
202701
202702
202703
202704
202705
202706
202707
202708
202709
202710
202711
202712
202713
202714
202715
202716
202717
202718
202719
202720
202721
202722
202723
202724
202725
202726
202727
202728
202729
202730
202731
202732
202733
202734
202735
202736
202737
202738
202739
202740
202741
202742
202743
202744
202745
202746
202747
202748
202749
202750
202751
202752
202753
202754
202755
202756

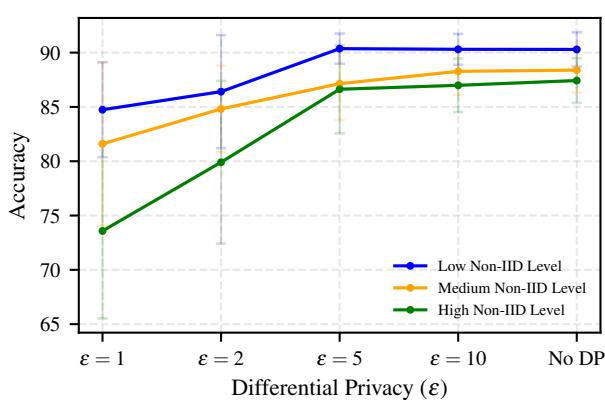


Figure 8: **Average test accuracy of FEROMA across different privacy budgets (ϵ) and non-IID types.** Results are aggregated over $P(X)$, $P(Y)$, $P(Y|X)$, and $P(X|Y)$ scenarios.

Non-IID Type	$P(Y X)$			$P(X Y)$		
	Non-IID Level	Low	Medium	High	Low	Medium
$\epsilon = 1$	79.15 \pm 3.25	74.23 \pm 3.20	71.63 \pm 4.94	83.95 \pm 5.14	77.45 \pm 9.22	67.14 \pm 7.73
$\epsilon = 2$	82.92 \pm 3.44	77.04 \pm 2.77	75.10 \pm 4.50	77.82 \pm 9.52	81.93 \pm 4.03	77.44 \pm 8.28
$\epsilon = 5$	84.50 \pm 2.22	78.23 \pm 3.43	78.32 \pm 2.08	89.28 \pm 1.59	87.75 \pm 1.99	86.28 \pm 7.10
$\epsilon = 10$	84.56 \pm 2.63	79.16 \pm 2.74	78.02 \pm 2.86	89.27 \pm 0.87	89.63 \pm 1.13	86.96 \pm 2.58
No DP	85.04 \pm 2.44	80.09 \pm 2.14	78.38 \pm 2.62	88.81 \pm 1.94	89.02 \pm 1.59	88.29 \pm 1.12

Table 10: Test accuracy of FEROMA under different privacy budgets ϵ for non-IID types based on concept shifts $P(Y|X)$ and $P(X|Y)$ on the MNIST dataset. Results are reported for low, medium, and high non-IID levels.

F ADDITIONAL EXPERIMENT RESULTS

F.1 GENERATING DRIFTING DATASETS WITH ANDA, CHEXPERT AND OFFICE-HOME

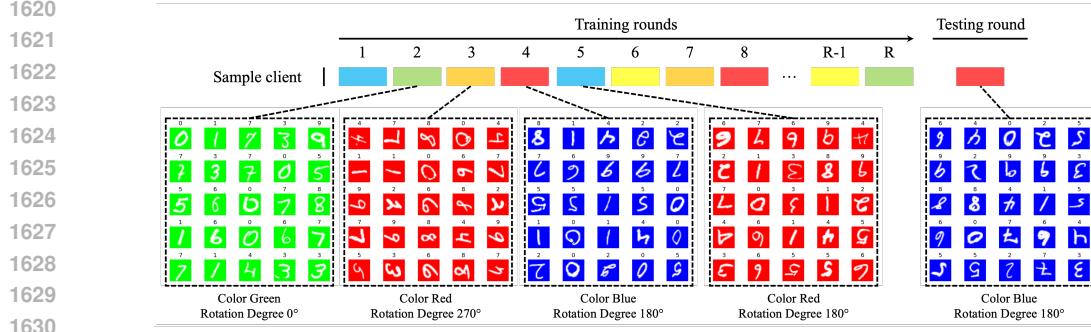
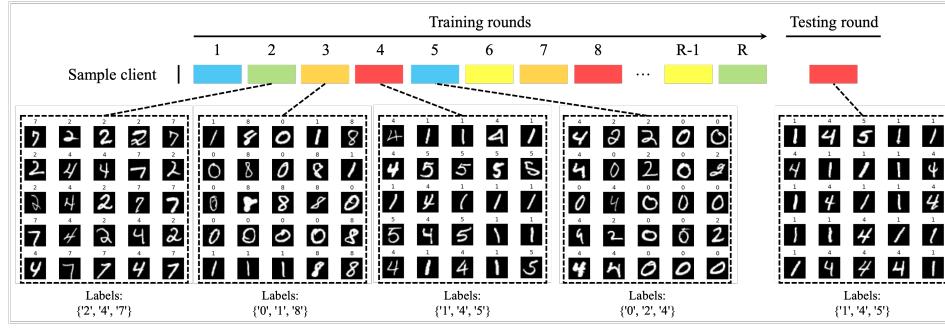
For datasets MNIST, FMNIST, CIFAR-10, and CIFAR-100, we generate drifting datasets across clients with four non-IID types using *ANDA*. *ANDA* (A Non-IID Data generator supporting Any kind) is a toolkit designed to create non-IID datasets for reproducible FL experiments. It supports datasets MNIST, EMNIST, FMNIST, CIFAR-10, and CIFAR-100, and facilitates five types of data distribution shifts:

- *Feature distribution skew (covariate shift)*: Marginal distributions $P(X)$ vary across clients.
- *Label distribution skew (prior probability shift)*: Marginal distributions $P(Y)$ vary across clients.
- *Concept shift (same X, different Y)*: Conditional distributions $P(Y|X)$ vary across clients.
- *Concept shift (same Y, different X)*: Conditional distributions $P(X|Y)$ vary across clients.
- *Quantity shift*: The amount of data vary across clients.

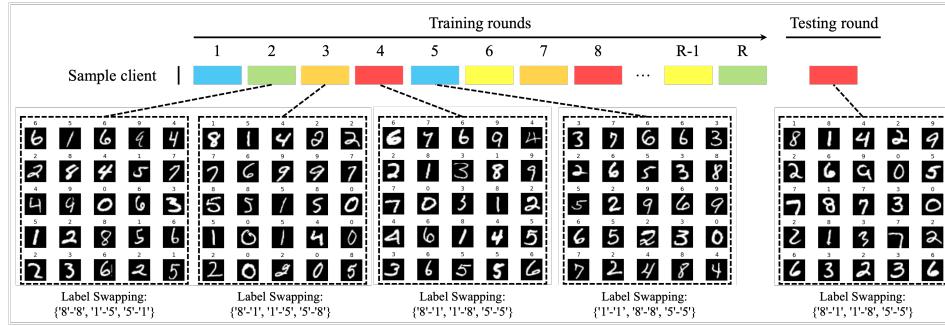
ANDA enables the generation of only shifting datasets or shifting with drifting datasets, allowing clients to possess datasets with varying distributions across training rounds or test round.

ANDA applies commonly used approaches (Sattler et al., 2021; Deng et al., 2020b; Guo et al., 2024; Jothimurugesan et al., 2023; Ghosh et al., 2020; Marfoq et al., 2021; Long et al., 2023; T. Dinh et al., 2020) to generate drifting heterogeneous datasets:

- $P(X)$ (Figure 9): Each image undergoes one of three color transformations (blue, green, or red) and one of four rotations (0° , 90° , 180° , or 270°), with distinct distributions applied to each subset.
- $P(Y)$ (Figure 10): Each client receives data only from certain classes. For example, in the MNIST dataset, the dataset in training round 2 only has digits 2, 4, and 7, while the dataset in training round 3 has images of digits 0, 1, and 8.

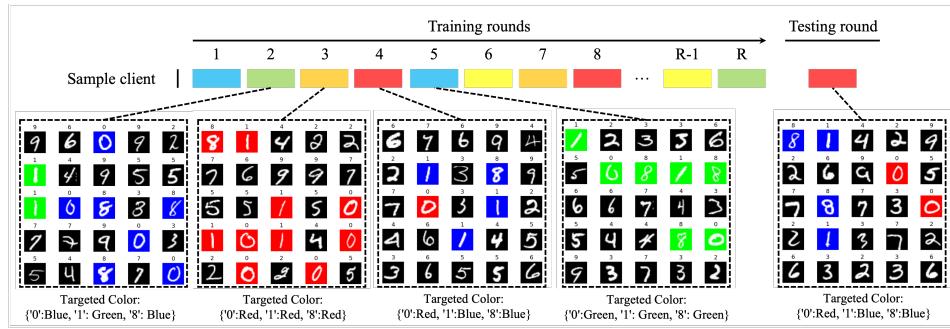
Figure 9: Distribution drifting in $P(X)$ with MNIST.Figure 10: Distribution drifting in $P(Y)$ with MNIST.

- $P(Y|X)$ (Figure 11): Given identical feature distributions (e.g., image pixels), labels differ between clients. For instance, in the MNIST dataset, the dataset in training round 2 labels the digit '8' as '8', '1' as '5', and '5' as '1', whereas the dataset in training round 3 labels '8' as '1', '1' as '5', and '5' as '8'.
- $P(X|Y)$ (Figure 12): For the same label, different features are applied. For example, in the MNIST dataset, the dataset in training round 2 applies a blue hue to images labeled '0', while the dataset in training round 3 applies a red hue to the same label.

Figure 11: Distribution drifting in $P(Y|X)$ with MNIST.

For the real-world dataset CheXpert, we do not apply any image augmentation or label modification in order to preserve the correctness and integrity of the data. To simulate different levels of data heterogeneity, we partition the dataset into multiple distributions based on three metadata attributes available in the dataset: *ViewPosition*, *Age*, and *Sex*. Specifically, the dataset is split according to the following criteria for each non-IID level used in our experiments:

- **Low Non-IID Level:** 2 distributions based on *ViewPosition* (Frontal / Lateral).

Figure 12: **Distribution drifting in $P(X|Y)$ with MNIST.**

- **Medium Non-IID Level:** 4 distributions based on *ViewPosition* (Frontal / Lateral) and *Age* (≥ 50 / < 50).
- **High Non-IID Level:** 8 distributions based on *ViewPosition* (Frontal / Lateral), *Age* (≥ 50 / < 50), and *Sex* (Male / Female).

For the real-world dataset Office-Home, we do not apply any image augmentation or label modification; instead, we directly use the dataset in its original form. For our experiments, we restrict the dataset to images with labels from 0 to 9. To model different levels of data heterogeneity, we leverage the four inherent domains of the dataset: *Art*, *Clipart*, *Product*, and *Real-World*. The domain shift across these categories naturally induces heterogeneity in the data distribution.

1698 F.2 SCALING THE DRIFTING FREQUENCY, NON-IID TYPES, AND NON-IID LEVELS

1700 We evaluate the effects of data heterogeneity using four non-IID dataset types across 20 clients,
 1701 generated with *ANDA* at three distinct levels of heterogeneity and three levels of drifting frequency.
 1702

1703 **Drifting frequency.** Client’s local data change every round, and we scale the local data distribution
 1704 drifting frequency. At level one, each client’s local training data distribution drifts every four rounds.
 1705 At level two, each client’s local training data distribution drifts every two rounds. At level three, each
 1706 client’s local training data distribution drifts every round. The test time distributions are always under
 1707 drift.

1708 **Non-IID Types and Levels.** We evaluate FEROMA under four common types of non-IID data
 1709 distributions and define three levels of heterogeneity (low, medium, and high). The full configurations
 1710 are summarized in [Table 11](#) and detailed as follows:

- **Feature distribution skew ($P(X)$):** Each client is assigned a unique combination of data augmentations (e.g., rotation and color transformation), applied consistently to all local samples. The non-IID level controls the number of available augmentation choices. For example, at the Level Medium, a client may apply one rotation from $\{0^\circ, 180^\circ\}$ and one color from $\{\text{Red, Green, Blue}\}$ to all images. At Level Low, the “Original” color indicates no color transformation.
- **Label distribution skew ($P(Y)$):** Each client retains samples from a subset of classes. For MNIST, FMNIST, and CIFAR-10, each client holds data from 2 classes; for CIFAR-100, from 20 classes. We define a bank of class subsets (e.g., 4 banks of $\{[0,4], [1,9], [3,5], [6,9]\}$ at Level Low), and clients randomly sample from these banks. Increasing the number of banks increases the heterogeneity level.
- **Conditional label skew ($P(Y|X)$):** Clients receive relabeled versions of a subset of classes via label permutation. For example, at the medium level, a class pool $\{2, 3, 5, 8\}$ may be randomly permuted to $\{5, 8, 3, 2\}$, mapping images originally labeled as ‘2’ to label ‘5’. The number of classes in the permutation pool increases with the non-IID level.
- **Conditional feature skew ($P(X|Y)$):** Clients apply different augmentations to the same class. For instance, Client A may apply a 0° rotation to class ‘5’, while Client B applies a 180° rotation. Augmentations are limited to rotations ($\{0^\circ, 90^\circ, 180^\circ, 270^\circ\}$) and colors ($\{\text{Red, Green, Blue}\}$). For MNIST, FMNIST, and CIFAR-10, this applies to 8 classes; for CIFAR-100, to 80 classes.

1728
1729 The level of heterogeneity is scaled in the same way as for $P(Y)$, using banks of class-specific
1730 transformations.

non-IID type	$P(X)$	$P(Y)$	$P(Y X)$	$P(X Y)$
Low	Rotation $\{0^\circ, 90^\circ, 180^\circ, 270^\circ\}$, Color {Original}	#Bank = 4	#Swapped Class = 3 (40)	#Bank = 4
Medium	Rotation $\{0^\circ, 180^\circ\}$, Color {Red, Blue, Green}	#Bank = 6	#Swapped Class = 4 (60)	#Bank = 6
High	Rotation $\{0^\circ, 90^\circ, 180^\circ, 270^\circ\}$, Color {Red, Blue, Green}	#Bank = 8	#Swapped Class = 5 (80)	#Bank = 8

1735
1736 Table 11: **Summary of non-IID data heterogeneity configurations across levels.** Each type of
1737 heterogeneity corresponds to a specific distribution shift. For $P(Y|X)$, the numbers of swapped class
1738 for CIFAR-100 are 40, 60, and 80, accordingly.

1739 We dynamically scale the size of training dataset based on the factor of drifting frequency and
1740 number of clients to ensure each subset preserves enough samples to train the local model. Tables 12
1741 to Table 27 present detailed results of FEROMA and all baseline methods across various drifting
1742 frequency, non-IID types and levels. For experiments on $P(Y|X)$ concept shift, we keep the test
1743 time distribution the same as the last training round (see Appendix D for more details).

Non-IID Level	Low			Medium			High		
	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20
FedAvg	66.55 \pm 1.23	67.92 \pm 1.51	72.12 \pm 3.45	73.19 \pm 4.03	73.66 \pm 2.29	73.25 \pm 1.84	54.77 \pm 1.81	54.32 \pm 2.68	58.54 \pm 5.87
FedRC	25.36 \pm 1.71	25.79 \pm 1.39	26.42 \pm 1.33	11.35 \pm 0.00					
FedEM	25.36 \pm 1.71	25.79 \pm 1.38	26.42 \pm 1.33	11.35 \pm 0.00					
FeSEM	60.88 \pm 4.47	67.26 \pm 3.33	70.39 \pm 4.80	67.78 \pm 6.39	72.97 \pm 4.69	71.52 \pm 4.04	47.95 \pm 3.42	49.26 \pm 0.99	49.89 \pm 2.91
CFL	74.28 \pm 1.51	75.65 \pm 1.31	78.69 \pm 2.55	82.95 \pm 1.32	80.94 \pm 2.30	80.23 \pm 3.33	68.03 \pm 2.18	68.78 \pm 1.94	70.65 \pm 4.20
IFCA	38.68 \pm 8.39	37.48 \pm 11.31	42.53 \pm 6.00	40.41 \pm 15.49	39.49 \pm 4.71	38.55 \pm 5.59	30.00 \pm 11.54	31.27 \pm 15.08	22.01 \pm 14.43
pFedMe	35.20 \pm 2.54	43.45 \pm 8.54	47.72 \pm 4.03	43.29 \pm 4.98	46.52 \pm 5.68	50.22 \pm 3.47	30.31 \pm 5.43	34.66 \pm 9.46	34.76 \pm 3.16
APFL	55.29 \pm 1.22	61.87 \pm 5.42	65.83 \pm 3.98	70.88 \pm 5.59	71.42 \pm 3.50	72.26 \pm 2.80	55.03 \pm 3.60	59.80 \pm 5.79	61.35 \pm 5.22
FedDrift	41.31 \pm 2.08	46.08 \pm 8.46	46.41 \pm 4.26	50.94 \pm 10.99	54.49 \pm 8.04	59.06 \pm 4.54	39.63 \pm 5.76	39.47 \pm 8.12	37.40 \pm 5.80
ATP	78.74 \pm 2.69	82.43 \pm 0.72	84.03 \pm 1.93	82.56 \pm 1.50	76.59 \pm 2.64	80.49 \pm 1.75	60.55 \pm 14.14	39.60 \pm 19.31	51.14 \pm 14.01
FEROMA	88.90 \pm 0.33	88.67 \pm 0.30	89.52 \pm 0.42	87.14 \pm 2.29	86.50 \pm 2.48	86.08 \pm 3.36	86.40 \pm 0.19	85.81 \pm 0.36	85.74 \pm 1.17

1756
1757 Table 12: Performance comparison across three different non-IID Levels of $P(X)$ and three distribution
1758 drifting levels on the MNIST dataset.

Non-IID Level	Low			Medium			High		
	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20
FedAvg	75.12 \pm 12.47	83.77 \pm 8.76	94.58 \pm 1.61	74.46 \pm 5.80	82.83 \pm 9.38	90.77 \pm 1.41	70.38 \pm 11.91	74.70 \pm 11.61	89.44 \pm 5.75
FedRC	68.72 \pm 12.82	76.24 \pm 7.75	81.37 \pm 8.20	56.44 \pm 6.80	68.54 \pm 12.47	72.72 \pm 6.83	47.94 \pm 13.45	56.24 \pm 14.30	79.22 \pm 3.89
FedEM	66.81 \pm 14.63	78.29 \pm 4.30	83.40 \pm 2.76	48.68 \pm 8.21	62.98 \pm 6.57	73.85 \pm 8.76	44.29 \pm 8.81	59.28 \pm 12.07	78.05 \pm 6.27
FeSEM	80.00 \pm 7.15	82.17 \pm 4.80	86.79 \pm 3.51	64.05 \pm 5.32	75.46 \pm 3.72	75.44 \pm 13.45	54.07 \pm 10.98	63.39 \pm 11.30	81.49 \pm 3.41
CFL	83.78 \pm 7.14	83.78 \pm 7.20	93.92 \pm 2.13	77.18 \pm 8.70	86.65 \pm 5.89	87.97 \pm 5.62	74.45 \pm 8.32	83.15 \pm 3.74	90.35 \pm 2.31
IFCA	42.53 \pm 12.68	47.09 \pm 12.40	47.52 \pm 22.21	39.16 \pm 15.13	34.78 \pm 9.81	23.50 \pm 5.16	33.89 \pm 9.71	22.06 \pm 2.74	27.45 \pm 5.85
pFedMe	45.59 \pm 11.11	47.25 \pm 8.41	42.03 \pm 17.83	38.94 \pm 13.87	37.17 \pm 11.39	25.50 \pm 5.17	30.80 \pm 5.23	28.72 \pm 7.36	29.50 \pm 8.40
APFL	61.16 \pm 11.47	63.98 \pm 7.13	69.99 \pm 10.55	51.64 \pm 9.55	56.67 \pm 6.98	54.33 \pm 6.76	49.12 \pm 6.00	47.60 \pm 8.29	58.95 \pm 9.33
FedDrift	54.08 \pm 12.62	58.21 \pm 8.00	48.36 \pm 19.20	43.86 \pm 12.37	47.16 \pm 11.85	33.75 \pm 5.75	36.44 \pm 6.01	36.60 \pm 9.05	42.36 \pm 6.93
ATP	42.75 \pm 25.29	76.00 \pm 20.47	95.62 \pm 2.20	38.30 \pm 26.19	87.20 \pm 8.07	84.64 \pm 13.35	36.22 \pm 21.01	83.91 \pm 6.24	90.27 \pm 6.21
FEROMA	96.50 \pm 3.23	98.66 \pm 0.44	99.36 \pm 0.29	97.12 \pm 1.75	97.94 \pm 2.01	98.67 \pm 1.08	96.91 \pm 1.89	97.24 \pm 2.96	99.32 \pm 0.30

1771
1772 Table 13: Performance comparison across three different non-IID Levels of $P(Y)$ and three distribution
1773 drifting levels on the MNIST dataset.

F.3 SCALING THE NUMBER OF CLIENTS

1777 We evaluate the scalability and efficiency of the proposed approach across varying numbers of
1778 clients on MNIST dataset, with the non-IID Level Medium (see subsection F.2 for more details).
1779 To ensure each client has sufficient local training data, we adjust the dataset size based on the total
1780 number of clients. For 10 clients, we reduce the dataset to half the size used in the main experiments
1781 (subsection F.2); for 20 clients, we retain the same dataset size. For larger scales, we increase the
dataset size via duplication: duplicating the dataset once for 50 clients, and twice for 100 clients.

1782	1783	1784	1785	1786	Non-IID Level									
					Low			Medium			High			
					# Drifting	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20
FedAvg	73.51 \pm 1.57	72.91 \pm 0.81	72.93 \pm 0.95	64.88 \pm 1.74	64.96 \pm 2.08	64.24 \pm 2.01	57.10 \pm 2.07	57.19 \pm 2.04	56.38 \pm 1.82					
FedRC	29.62 \pm 4.95	28.79 \pm 5.42	28.33 \pm 8.02	13.97 \pm 3.91	12.91 \pm 2.29	14.78 \pm 2.95	12.96 \pm 3.62	12.12 \pm 2.26	11.62 \pm 1.95					
FedEM	29.61 \pm 4.94	28.79 \pm 5.42	28.34 \pm 8.03	13.96 \pm 3.90	12.91 \pm 2.29	14.77 \pm 2.94	12.96 \pm 3.61	12.12 \pm 2.25	11.62 \pm 1.94					
FeSEM	78.69 \pm 1.37	78.98 \pm 0.74	79.27 \pm 0.41	78.58 \pm 1.34	75.47 \pm 1.41	77.39 \pm 1.88	75.80 \pm 1.58	73.68 \pm 1.93	73.66 \pm 3.38					
CFL	75.41 \pm 0.94	75.01 \pm 0.79	75.53 \pm 0.62	66.82 \pm 1.56	67.26 \pm 1.22	66.31 \pm 2.01	58.88 \pm 1.40	59.95 \pm 1.66	58.11 \pm 1.78					
IFCA	76.89 \pm 2.60	77.15 \pm 2.31	78.31 \pm 3.64	71.64 \pm 2.80	69.70 \pm 4.04	69.28 \pm 2.08	63.46 \pm 3.02	60.51 \pm 1.13	58.44 \pm 2.45					
pFedMe	91.42 \pm 0.38	91.55 \pm 0.42	91.28 \pm 0.77	91.28 \pm 0.37	91.01 \pm 0.41	90.37 \pm 0.68	90.99 \pm 0.35	90.56 \pm 0.41	89.32 \pm 0.66					
APFL	92.70 \pm 0.56	92.58 \pm 0.53	92.54 \pm 0.68	92.03 \pm 0.62	91.64 \pm 0.69	91.22 \pm 0.68	91.05 \pm 0.49	90.80 \pm 0.58	89.87 \pm 0.85					
FedDrift	91.20 \pm 2.60	92.55 \pm 0.42	92.50 \pm 0.27	89.71 \pm 3.43	89.71 \pm 2.82	90.54 \pm 1.03	87.51 \pm 2.09	84.43 \pm 2.29	83.87 \pm 3.09					
ATP	76.94 \pm 0.72	75.79 \pm 0.63	77.10 \pm 1.13	68.32 \pm 1.29	67.73 \pm 2.30	68.14 \pm 1.97	60.37 \pm 1.45	60.14 \pm 1.27	60.23 \pm 1.01					
FEROMA	89.58 \pm 0.50	89.48 \pm 0.45	89.80 \pm 0.75	88.90 \pm 0.53	88.87 \pm 0.68	89.01 \pm 0.64	88.15 \pm 0.66	88.06 \pm 0.51	88.41 \pm 0.68					

Table 14: Performance comparison across three different non-IID Levels of $P(Y|X)$ and three distribution drifting levels on the MNIST dataset.

1798	1799	1800	1801	1802	Non-IID Level									
					Low			Medium			High			
					# Drifting	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20
FedAvg	73.39 \pm 9.75	81.57 \pm 2.86	77.66 \pm 3.30	73.28 \pm 4.02	73.09 \pm 4.06	74.97 \pm 4.10	71.56 \pm 5.11	74.30 \pm 5.09	69.94 \pm 9.80					
FedRC	38.39 \pm 13.46	34.60 \pm 11.07	42.95 \pm 15.57	13.55 \pm 3.01	13.71 \pm 3.44	14.24 \pm 3.57	11.95 \pm 1.19	12.03 \pm 0.84	12.36 \pm 2.03					
FedEM	39.48 \pm 16.08	40.06 \pm 12.86	39.86 \pm 19.18	12.87 \pm 3.04	15.95 \pm 7.59	14.70 \pm 4.40	12.31 \pm 1.92	12.01 \pm 1.33	12.55 \pm 2.39					
FeSEM	70.07 \pm 7.57	74.58 \pm 5.34	74.80 \pm 4.84	67.89 \pm 8.47	62.18 \pm 3.89	63.74 \pm 10.06	62.85 \pm 4.13	59.89 \pm 7.05	56.57 \pm 6.46					
CFL	82.84 \pm 4.32	78.01 \pm 2.92	81.78 \pm 4.99	79.30 \pm 3.25	78.22 \pm 3.23	77.96 \pm 3.70	76.52 \pm 1.45	77.83 \pm 5.80	78.94 \pm 2.82					
IFCA	45.78 \pm 12.55	49.72 \pm 13.79	35.88 \pm 11.68	33.13 \pm 10.31	37.07 \pm 13.08	30.66 \pm 3.80	34.99 \pm 12.31	29.25 \pm 6.99	25.62 \pm 7.72					
pFedMe	47.31 \pm 9.19	54.89 \pm 7.12	53.18 \pm 7.55	39.63 \pm 10.46	42.60 \pm 6.62	48.26 \pm 7.80	36.97 \pm 7.00	37.18 \pm 3.43	45.86 \pm 14.27					
APFL	66.94 \pm 5.64	71.04 \pm 2.56	76.07 \pm 9.07	65.29 \pm 9.73	67.60 \pm 8.09	69.64 \pm 4.79	62.99 \pm 4.48	60.84 \pm 3.22	66.99 \pm 5.20					
FedDrift	48.43 \pm 12.31	55.56 \pm 5.44	46.14 \pm 10.31	47.79 \pm 6.16	51.62 \pm 5.61	43.21 \pm 9.51	45.44 \pm 8.37	50.35 \pm 5.78	46.22 \pm 5.39					
ATP	84.74 \pm 3.67	79.95 \pm 6.33	78.96 \pm 12.67	73.81 \pm 10.86	78.94 \pm 5.89	78.62 \pm 10.91	79.43 \pm 4.01	76.84 \pm 10.65	79.88 \pm 6.86					
FEROMA	87.26 \pm 4.80	88.81 \pm 1.94	89.87 \pm 2.09	86.99 \pm 4.52	89.02 \pm 1.59	90.11 \pm 0.79	89.44 \pm 1.17	88.29 \pm 1.12	89.71 \pm 0.60					

Table 15: Performance comparison across three different non-IID Levels of $P(X|Y)$ and three distribution drifting levels on the MNIST dataset.

1814	1815	1816	1817	1818	1819	1820	Non-IID Level									
							Low			Medium			High			
							# Drifting	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20
FedAvg	36.45 \pm 0.83	37.34 \pm 0.55	38.14 \pm 0.49	20.46 \pm 5.80	21.56 \pm 3.40	26.80 \pm 2.84	17.45 \pm 7.18	17.09 \pm 5.73	20.92 \pm 2.85							
FedRC	25.88 \pm 0.24	26.17 \pm 0.61	26.34 \pm 0.70	13.40 \pm 0.84	12.30 \pm 1.09	15.55 \pm 2.24	10.94 \pm 0.73	10.66 \pm 0.31	11.54 \pm 0.78							
FedEM	25.88 \pm 0.26	26.18 \pm 0.60	26.39 \pm 0.71	13.39 \pm 0.85	12.30 \pm 1.08	15.55 \pm 2.24	10.94 \pm 0.74	10.66 \pm 0.31	11.54 \pm 0.78							
FeSEM	35.03 \pm 0.66	35.38 \pm 1.03	34.87 \pm 0.96	21.44 \pm 1.93	20.73 \pm 0.95	22.76 \pm 4.76	19.28 \pm 2.32	19.26 \pm 1.55	18.99 \pm 1.43							
CFL	37.54 \pm 0.67	38.29 \pm 0.76	39.15 \pm 1.14	22.69 \pm 3.00	25.26 \pm 0.96	27.67 \pm 2.62	21.11 \pm 4.86	16.93 \pm 1.98	22.78 \pm 1.96							
IFCA	31.08 \pm 1.99	33.18 \pm 3.00	33.75 \pm 2.12	17.33 \pm 1.54	20.28 \pm 2.92	21.82 \pm 3.60	18.83 \pm 3.16	18.45 \pm 1.62	18.37 \pm 1.40							
pFedMe	23.54 \pm 0.48	26.43 \pm 2.35	27.51 \pm 0.63	16.94 \pm 0.47	18.12 \pm 0.98	18.66 \pm 1.59	16.55 \pm 1.77	17.41 \pm 1.72	15.25 \pm 0.35							
APFL	27.88 \pm 0.47	31.59 \pm 2.43	34.07 \pm 0.58	20.04 \pm 1.10	22.61 \pm 1.16	24.73 \pm 2.41	18.80 \pm 2.98	19.53 \pm 2.49	21.10 \pm 1.12							
FedDrift	31.10 \pm 3.38	32.12 \pm 4.98	32.25 \pm 4.15	17.31 \pm 1.42	20.50 \pm 1.97	21.10 \pm 1.15	17.86 \pm 1.98	18.65 \pm 1.86	17.92 \pm 1.92							
ATP	33.53 \pm 1.17	32.15 \pm 3.73	31.46 \pm 2.78	28.27 \pm 1.66	29.93 \pm 1.77	28.17 \pm 5.07	24.22 \pm 2.87	24.39 \pm 0.49	25.13 \pm 0.38							
FEROMA	40.38 \pm 0.26	39.11 \pm 2.14	40.30 \pm 0.51	31.81 \pm 0.60	31.71 \pm 2.98	33.67 \pm 0.63	28.78 \pm 2.95	28.84 \pm 1.06	29.96 \pm 1.72							

Table 16: Performance comparison across three different non-IID Levels of $P(X)$ and three distribution drifting levels on the CIFAR-10 dataset.

1836	1837	1838	1839	Non-IID Level								
				Low			Medium			High		
				# Drifting	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20
FedAvg	44.72 \pm 14.83	43.09 \pm 3.40	56.75 \pm 9.04	40.86 \pm 9.09	45.75 \pm 9.38	42.29 \pm 2.39	38.33 \pm 5.13	37.35 \pm 9.07	44.29 \pm 11.23			
FedRC	43.49 \pm 15.66	43.32 \pm 4.50	54.57 \pm 8.04	26.99 \pm 5.28	43.05 \pm 9.04	39.41 \pm 5.05	27.16 \pm 1.97	35.08 \pm 9.91	44.42 \pm 8.51			
FedEM	42.95 \pm 13.97	47.11 \pm 6.56	50.36 \pm 11.30	29.77 \pm 6.50	39.36 \pm 10.00	41.62 \pm 4.74	26.85 \pm 6.04	34.51 \pm 10.46	44.16 \pm 8.45			
FeSEM	38.80 \pm 7.70	40.48 \pm 8.70	49.92 \pm 8.95	31.75 \pm 10.34	34.09 \pm 10.76	31.37 \pm 9.11	27.47 \pm 7.95	33.42 \pm 7.81	34.03 \pm 6.70			
CFL	48.02 \pm 14.91	44.00 \pm 6.16	55.99 \pm 9.65	32.79 \pm 5.51	48.37 \pm 6.23	39.98 \pm 3.12	39.13 \pm 8.32	44.26 \pm 9.04	41.43 \pm 3.54			
IFCA	36.96 \pm 10.36	41.26 \pm 6.62	32.50 \pm 13.51	27.02 \pm 5.27	27.12 \pm 9.02	19.76 \pm 6.24	23.55 \pm 2.51	18.80 \pm 2.99	20.10 \pm 5.28			
pFedMe	30.75 \pm 8.65	29.95 \pm 9.66	26.51 \pm 11.54	27.57 \pm 7.48	23.00 \pm 8.06	16.86 \pm 5.77	20.37 \pm 4.17	20.03 \pm 3.64	18.92 \pm 6.83			
APFL	42.48 \pm 9.30	43.23 \pm 5.90	39.24 \pm 12.88	36.89 \pm 6.09	34.81 \pm 8.88	25.85 \pm 4.95	30.50 \pm 4.78	30.89 \pm 8.94	29.99 \pm 6.88			
FedDrift	38.37 \pm 10.39	41.35 \pm 8.44	43.44 \pm 12.65	33.52 \pm 9.61	31.56 \pm 9.90	26.85 \pm 4.69	27.19 \pm 5.98	27.96 \pm 4.74	32.92 \pm 4.20			
ATP	30.51 \pm 14.24	24.22 \pm 6.96	34.46 \pm 8.80	23.71 \pm 7.36	24.68 \pm 12.85	29.76 \pm 13.14	18.05 \pm 3.42	16.18 \pm 5.04	35.29 \pm 1.99			
FEROMA	73.04 \pm 8.46	73.15 \pm 3.82	68.69 \pm 5.26	58.31 \pm 5.08	62.88 \pm 6.31	58.60 \pm 10.85	55.11 \pm 3.82	67.47 \pm 8.17	58.99 \pm 6.57			

Table 17: Performance comparison across three different non-IID Levels of $P(Y)$ and three distribution drifting levels on the CIFAR-10 dataset.

1850	1851	1852	1853	1854	1855	1856	Non-IID Level								
							Low			Medium			High		
							# Drifting	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20
FedAvg	40.05 \pm 1.04	39.85 \pm 1.44	39.65 \pm 1.18	36.09 \pm 0.97	36.12 \pm 1.08	35.92 \pm 1.07	32.56 \pm 1.96	32.15 \pm 2.25	32.05 \pm 1.79						
FedRC	27.06 \pm 1.22	26.70 \pm 1.53	27.26 \pm 1.15	12.17 \pm 1.64	11.16 \pm 0.86	12.44 \pm 1.75	11.31 \pm 1.42	11.12 \pm 0.84	10.95 \pm 1.00						
FedEM	27.03 \pm 1.22	26.73 \pm 1.51	27.25 \pm 1.16	12.17 \pm 1.64	11.15 \pm 0.86	12.44 \pm 1.76	11.31 \pm 1.42	11.12 \pm 0.84	10.95 \pm 0.99						
FeSEM	40.62 \pm 0.65	40.94 \pm 0.59	40.78 \pm 0.84	38.36 \pm 0.63	37.51 \pm 1.02	38.51 \pm 0.59	35.78 \pm 1.17	36.26 \pm 0.63	37.15 \pm 0.66						
CFL	41.17 \pm 1.06	40.90 \pm 1.30	40.91 \pm 0.98	36.99 \pm 1.06	37.09 \pm 0.83	36.70 \pm 1.19	33.39 \pm 1.75	32.93 \pm 2.00	32.86 \pm 1.92						
IFCA	42.36 \pm 2.22	42.41 \pm 2.42	42.09 \pm 1.36	38.73 \pm 1.97	38.79 \pm 1.48	38.68 \pm 0.54	35.81 \pm 2.07	35.74 \pm 1.57	34.98 \pm 1.78						
pFedMe	36.54 \pm 0.51	36.83 \pm 0.51	37.19 \pm 0.47	36.26 \pm 0.44	36.83 \pm 0.51	37.57 \pm 0.36	36.57 \pm 0.65	37.27 \pm 0.35	37.82 \pm 0.44						
APFL	41.78 \pm 0.53	42.17 \pm 0.31	42.59 \pm 0.61	40.88 \pm 0.40	41.66 \pm 0.33	41.73 \pm 0.32	40.44 \pm 0.74	40.47 \pm 0.58	41.32 \pm 0.82						
FedDrift	40.79 \pm 0.29	41.04 \pm 0.89	40.66 \pm 0.58	37.13 \pm 0.33	37.09 \pm 0.23	37.13 \pm 0.22	33.47 \pm 1.77	34.07 \pm 1.56	33.28 \pm 1.48						
ATP	39.37 \pm 1.16	38.52 \pm 0.73	39.58 \pm 0.98	35.38 \pm 0.82	36.13 \pm 0.92	35.24 \pm 0.97	31.67 \pm 1.24	31.74 \pm 1.19	31.71 \pm 1.48						
FEROMA	42.22 \pm 0.54	42.47 \pm 0.32	42.14 \pm 0.32	41.18 \pm 0.78	41.74 \pm 0.25	41.47 \pm 0.48	40.76 \pm 0.61	41.01 \pm 0.50	40.74 \pm 0.64						

Table 18: Performance comparison across three different non-IID Levels of $P(Y|X)$ and three distribution drifting levels on the CIFAR-10 dataset.

1868	1869	1870	1871	1872	1873	1874	Non-IID Level								
							Low			Medium			High		
							# Drifting	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20
FedAvg	32.17 \pm 3.46	29.12 \pm 3.97	26.62 \pm 5.79	25.30 \pm 3.66	25.37 \pm 2.66	21.87 \pm 3.09	26.09 \pm 1.18	22.42 \pm 2.15	23.92 \pm 2.27						
FedRC	22.01 \pm 2.43	22.06 \pm 1.52	25.18 \pm 3.29	18.71 \pm 2.85	18.01 \pm 1.87	20.00 \pm 3.76	16.28 \pm 1.71	17.35 \pm 1.83	15.62 \pm 1.05						
FedEM	20.87 \pm 1.85	22.16 \pm 4.10	22.98 \pm 4.36	17.29 \pm 1.90	18.33 \pm 1.56	17.94 \pm 1.78	15.71 \pm 1.33	16.04 \pm 2.11	16.27 \pm 3.22						
FeSEM	28.27 \pm 2.44	29.70 \pm 4.41	29.65 \pm 4.45	25.57 \pm 1.75	23.16 \pm 3.36	22.54 \pm 3.93	23.41 \pm 2.41	21.74 \pm 1.32	19.97 \pm 2.78						
CFL	29.29 \pm 2.46	27.27 \pm 4.88	29.32 \pm 3.62	25.70 \pm 3.39	27.69 \pm 5.36	25.37 \pm 4.29	22.85 \pm 1.60	27.85 \pm 2.50	25.02 \pm 1.80						
IFCA	23.48 \pm 7.55	29.57 \pm 3.28	22.87 \pm 6.26	19.48 \pm 6.33	18.58 \pm 3.92	16.99 \pm 2.15	17.32 \pm 3.86	17.54 \pm 3.90	10.61 \pm 0.96						
pFedMe	18.60 \pm 3.04	22.47 \pm 4.39	16.79 \pm 3.10	16.65 \pm 1.25	15.09 \pm 2.31	12.75 \pm 1.96	15.59 \pm 1.87	14.09 \pm 1.25	13.01 \pm 0.94						
APFL	25.02 \pm 5.18	26.81 \pm 3.06	29.18 \pm 6.42	23.17 \pm 3.43	24.37 \pm 1.86	22.87 \pm 2.75	22.45 \pm 1.77	24.00 \pm 2.79	24.82 \pm 2.76						
FedDrift	25.17 \pm 7.09	28.72 \pm 1.31	25.30 \pm 5.45	19.48 \pm 0.59	23.20 \pm 3.84	20.53 \pm 4.66	20.11 \pm 3.67	22.37 \pm 1.30	20.99 \pm 2.88						
ATP	27.81 \pm 1.81	24.99 \pm 6.25	26.08 \pm 6.81	24.52 \pm 1.81	26.54 \pm 1.74	24.12 \pm 2.24	22.49 \pm 1.94	22.87 \pm 1.43	21.48 \pm 2.82						
FEROMA	40.29 \pm 3.29	38.32 \pm 3.00	39.89 \pm 2.23	38.54 \pm 2.42	38.12 \pm 2.48	36.96 \pm 3.85	35.36 \pm 1.86	35.83 \pm 1.02	31.87 \pm 1.76						

Table 19: Performance comparison across three different non-IID Levels of $P(X|Y)$ and three distribution drifting levels on the CIFAR-10 dataset.

1890	1891	1892	1893	1894	Non-IID Level														
					Low			Medium			High								
					# Drifting	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20					
FedAvg	61.86 \pm 2.02	63.82 \pm 1.54	64.19 \pm 2.15	69.66 \pm 1.31	69.87 \pm 1.28	70.10 \pm 0.46	55.85 \pm 1.90	54.46 \pm 2.30	55.94 \pm 3.49	FedRC	46.24 \pm 0.55	48.18 \pm 2.34	50.42 \pm 3.99	41.89 \pm 3.53	44.61 \pm 2.33	46.15 \pm 5.89	12.55 \pm 1.69	11.32 \pm 0.82	11.65 \pm 1.01
FedEM	46.08 \pm 0.67	48.66 \pm 2.49	50.10 \pm 3.85	42.06 \pm 3.52	44.80 \pm 2.20	46.06 \pm 5.96	12.56 \pm 1.70	11.33 \pm 0.84	11.64 \pm 1.00										
FeSEM	54.13 \pm 4.07	54.84 \pm 3.64	58.77 \pm 5.76	65.00 \pm 5.61	64.55 \pm 4.52	66.59 \pm 1.45	35.51 \pm 6.56	38.13 \pm 7.11	37.48 \pm 5.87										
CFL	65.82 \pm 1.37	66.51 \pm 0.99	67.89 \pm 1.85	72.15 \pm 1.41	71.89 \pm 1.47	71.92 \pm 0.39	59.43 \pm 1.67	59.64 \pm 1.10	58.13 \pm 1.97										
IFCA	27.72 \pm 4.23	29.86 \pm 7.74	33.61 \pm 8.65	33.60 \pm 7.54	35.74 \pm 8.13	36.89 \pm 7.38	19.16 \pm 5.33	23.13 \pm 12.49	10.32 \pm 1.63										
pFedMe	23.66 \pm 1.94	28.71 \pm 8.46	30.71 \pm 3.25	41.81 \pm 4.97	43.83 \pm 4.32	47.87 \pm 3.97	23.14 \pm 7.06	24.29 \pm 6.20	22.30 \pm 4.67										
APFL	41.28 \pm 1.82	46.68 \pm 5.77	49.51 \pm 2.94	62.39 \pm 3.02	64.52 \pm 2.27	65.16 \pm 2.21	38.03 \pm 6.09	40.97 \pm 5.78	41.25 \pm 4.07										
FedDrift	28.18 \pm 2.48	33.83 \pm 8.95	35.47 \pm 3.53	40.77 \pm 5.48	45.99 \pm 6.78	48.31 \pm 2.64	26.69 \pm 8.62	28.36 \pm 6.97	24.33 \pm 4.42										
ATP	60.87 \pm 3.38	63.19 \pm 2.03	62.96 \pm 5.33	74.32 \pm 0.48	72.71 \pm 2.86	74.41 \pm 0.98	54.80 \pm 2.33	55.41 \pm 1.17	59.67 \pm 2.37	FEROMA	73.79 \pm 0.41	73.83 \pm 0.68	73.45 \pm 0.76	74.84 \pm 0.49	75.12 \pm 0.60	75.03 \pm 0.51	72.26 \pm 0.37	71.62 \pm 0.34	71.99 \pm 0.65

Table 20: Performance comparison across three different non-IID Levels of $P(X)$ and three distribution drifting levels on the FMNIST dataset.

1903	1904	1905	1906	1907	1908	1909	Non-IID Level												
							Low			Medium			High						
							# Drifting	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20			
FedAvg	77.11 \pm 12.18	72.21 \pm 4.40	83.51 \pm 5.09	65.95 \pm 6.90	68.24 \pm 10.91	79.23 \pm 5.01	66.09 \pm 8.88	55.08 \pm 16.79	66.47 \pm 20.60	FedRC	73.33 \pm 13.70	68.69 \pm 6.19	73.02 \pm 12.34	64.14 \pm 3.60	65.21 \pm 9.05	62.11 \pm 12.16	56.67 \pm 5.41	53.72 \pm 5.36	66.30 \pm 11.81
FedEM	74.14 \pm 9.01	76.95 \pm 5.14	76.74 \pm 8.07	60.32 \pm 12.02	64.75 \pm 4.05	68.48 \pm 12.17	51.09 \pm 9.43	60.92 \pm 10.01	66.79 \pm 11.45										
FeSEM	73.41 \pm 11.73	69.42 \pm 9.37	69.29 \pm 8.17	62.55 \pm 5.86	60.59 \pm 9.05	67.36 \pm 8.50	50.85 \pm 6.67	44.75 \pm 8.58	64.80 \pm 6.96										
CFL	73.96 \pm 13.42	73.43 \pm 7.40	77.72 \pm 8.62	70.97 \pm 4.60	71.86 \pm 8.44	80.63 \pm 5.11	65.63 \pm 4.32	62.01 \pm 12.34	72.70 \pm 9.01	IFCA	39.34 \pm 12.56	42.07 \pm 11.56	37.18 \pm 13.17	37.72 \pm 15.67	37.57 \pm 7.43	27.73 \pm 9.95	25.37 \pm 7.80	21.58 \pm 3.61	24.19 \pm 6.23
pFedMe	43.05 \pm 12.37	44.31 \pm 8.35	38.76 \pm 17.94	38.08 \pm 13.36	33.00 \pm 11.55	22.77 \pm 6.17	31.35 \pm 5.91	24.93 \pm 7.18	22.75 \pm 5.67										
APFL	58.41 \pm 9.33	56.31 \pm 5.97	56.14 \pm 12.79	51.51 \pm 7.18	49.41 \pm 9.51	44.99 \pm 5.45	42.94 \pm 4.82	42.26 \pm 8.01	48.67 \pm 8.59										
FedDrift	45.09 \pm 12.05	44.59 \pm 11.60	41.92 \pm 17.64	34.30 \pm 6.98	44.59 \pm 11.60	29.84 \pm 6.98	55.02 \pm 10.12	34.61 \pm 4.94	35.46 \pm 6.49										
ATP	65.72 \pm 19.17	51.93 \pm 14.65	43.36 \pm 32.78	61.35 \pm 17.68	67.94 \pm 18.31	55.95 \pm 26.14	48.92 \pm 27.49	46.53 \pm 24.37	46.90 \pm 26.28										
FEROMA	96.58 \pm 1.81	97.82 \pm 1.46	97.82 \pm 2.50	93.48 \pm 4.75	96.09 \pm 2.78	97.30 \pm 1.88	93.26 \pm 5.43	95.04 \pm 4.29	95.50 \pm 2.87										

Table 21: Performance comparison across three different non-IID Levels of $P(Y)$ and three distribution drifting levels on the FMNIST dataset.

1924	1925	1926	1927	1928	Non-IID Level														
					Low			Medium			High								
					# Drifting	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20					
FedAvg	62.98 \pm 1.74	61.83 \pm 2.81	62.62 \pm 2.74	54.90 \pm 2.56	54.45 \pm 2.28	54.32 \pm 2.49	50.96 \pm 2.68	50.88 \pm 3.46	50.03 \pm 3.31	FedRC	58.95 \pm 3.00	58.25 \pm 3.15	58.66 \pm 2.79	26.85 \pm 11.47	30.44 \pm 9.46	28.24 \pm 7.44	20.77 \pm 4.16	20.39 \pm 4.02	19.06 \pm 4.58
FedEM	59.08 \pm 3.05	58.23 \pm 3.13	58.61 \pm 2.71	26.83 \pm 11.46	30.43 \pm 9.45	28.25 \pm 7.45	20.77 \pm 4.16	20.40 \pm 4.02	19.06 \pm 4.59										
FeSEM	66.49 \pm 2.08	66.50 \pm 2.45	67.38 \pm 2.03	64.98 \pm 1.60	66.24 \pm 1.46	64.84 \pm 1.59	63.65 \pm 2.65	65.37 \pm 1.68	64.42 \pm 3.99										
CFL	64.04 \pm 1.44	63.18 \pm 2.53	63.47 \pm 2.20	56.21 \pm 1.85	55.72 \pm 2.18	55.63 \pm 2.12	51.07 \pm 3.35	52.08 \pm 3.61	50.25 \pm 3.32										
IFCA	69.58 \pm 3.35	68.59 \pm 2.98	68.28 \pm 4.08	61.89 \pm 1.76	60.78 \pm 3.52	61.45 \pm 2.78	49.74 \pm 14.68	50.01 \pm 9.74	42.42 \pm 16.44										
pFedMe	76.73 \pm 0.34	76.42 \pm 0.30	76.30 \pm 0.35	76.43 \pm 0.68	75.74 \pm 0.15	75.71 \pm 0.38	75.91 \pm 0.38	75.33 \pm 0.24	74.70 \pm 0.36	APFL	78.63 \pm 0.54	78.06 \pm 0.59	77.90 \pm 0.68	77.12 \pm 0.82	76.94 \pm 0.69	75.82 \pm 1.03	76.31 \pm 0.52	75.21 \pm 0.64	74.31 \pm 0.78
FedDrift	77.56 \pm 0.74	76.93 \pm 1.55	77.77 \pm 0.30	75.52 \pm 1.28	76.00 \pm 0.60	75.12 \pm 0.83	74.75 \pm 0.94	73.22 \pm 0.50	71.89 \pm 0.97										
ATP	64.48 \pm 1.70	63.69 \pm 2.61	63.63 \pm 2.53	56.88 \pm 2.56	56.39 \pm 1.96	56.51 \pm 3.13	53.05 \pm 3.06	53.50 \pm 3.54	52.00 \pm 3.23										
FEROMA	75.37 \pm 0.33	75.23 \pm 0.42	75.25 \pm 0.27	74.83 \pm 0.38	74.64 \pm 0.37	74.69 \pm 0.36	74.29 \pm 0.37	73.83 \pm 0.42	73.93 \pm 0.26										

Table 22: Performance comparison across three different non-IID Levels of $P(Y|X)$ and three distribution drifting levels on the FMNIST dataset.

1944	1945	1946	1947	Non-IID Level															
				Low			Medium			High									
				# Drifting	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20						
FedAvg	65.15 \pm 10.19	69.65 \pm 3.73	67.79 \pm 3.94	64.46 \pm 1.14	66.62 \pm 2.34	66.23 \pm 4.61	64.09 \pm 1.64	61.99 \pm 5.29	64.42 \pm 2.26	FedRC	48.93 \pm 5.84	60.64 \pm 5.33	52.11 \pm 4.32	43.63 \pm 4.19	48.53 \pm 5.81	46.30 \pm 9.01	34.81 \pm 10.03	33.24 \pm 9.71	36.21 \pm 7.53
FedEM	56.66 \pm 5.44	59.05 \pm 2.30	62.28 \pm 3.88	44.11 \pm 5.97	43.58 \pm 4.64	42.91 \pm 11.92	44.28 \pm 9.71	37.80 \pm 10.92	34.75 \pm 8.75	FeSEM	63.18 \pm 2.08	63.19 \pm 3.29	65.68 \pm 1.07	55.72 \pm 5.48	54.20 \pm 4.28	54.19 \pm 4.57	47.71 \pm 4.15	44.83 \pm 5.24	48.73 \pm 7.02
CFL	71.20 \pm 1.69	69.80 \pm 2.05	72.93 \pm 2.53	65.72 \pm 4.45	66.24 \pm 2.24	68.24 \pm 1.58	63.27 \pm 4.00	66.18 \pm 4.57	65.05 \pm 2.33	IFCA	34.03 \pm 15.83	40.55 \pm 10.38	23.44 \pm 11.22	33.76 \pm 12.59	30.71 \pm 8.15	23.22 \pm 6.64	24.94 \pm 3.71	18.30 \pm 6.85	23.63 \pm 10.05
pFedMe	37.33 \pm 7.78	41.24 \pm 3.44	35.80 \pm 10.07	35.75 \pm 7.34	30.55 \pm 5.25	28.78 \pm 5.66	30.81 \pm 7.53	28.17 \pm 3.18	31.60 \pm 5.50	APFL	54.85 \pm 6.85	56.22 \pm 4.92	56.31 \pm 7.42	47.96 \pm 6.79	50.92 \pm 8.42	48.10 \pm 5.86	49.11 \pm 10.42	45.82 \pm 5.65	46.84 \pm 2.19
FedDrift	40.93 \pm 7.29	46.06 \pm 5.83	46.16 \pm 8.85	38.03 \pm 10.57	34.23 \pm 6.04	38.54 \pm 9.45	36.15 \pm 6.39	37.69 \pm 4.47	38.31 \pm 8.71	ATP	70.44 \pm 2.72	69.64 \pm 1.43	71.45 \pm 4.13	67.13 \pm 4.32	67.65 \pm 6.12	69.13 \pm 1.35	66.85 \pm 2.51	66.97 \pm 4.65	62.36 \pm 4.34
FEROMA	78.74 \pm 1.78	75.17 \pm 5.05	78.98 \pm 1.49	75.15 \pm 3.95	76.95 \pm 3.40	73.12 \pm 6.37	74.21 \pm 2.44	76.79 \pm 3.44	70.23 \pm 7.08										

Table 23: Performance comparison across three different non-IID Levels of $P(X|Y)$ and three distribution drifting levels on the FMNIST dataset.

1960	1961	1962	1963	1964	Non-IID Level														
					Low			Medium			High								
					# Drifting	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20					
FedAvg	43.85 \pm 0.80	45.13 \pm 0.68	44.87 \pm 0.87	7.47 \pm 5.13	13.74 \pm 4.59	12.84 \pm 2.75	10.52 \pm 8.51	8.58 \pm 4.26	8.30 \pm 3.61	FedRC	44.97 \pm 0.73	46.90 \pm 0.73	48.07 \pm 0.83	13.08 \pm 0.64	16.64 \pm 4.18	15.70 \pm 1.96	19.97 \pm 5.97	11.93 \pm 2.50	13.97 \pm 2.67
FedEM	44.97 \pm 0.73	46.89 \pm 0.72	48.07 \pm 0.83	13.08 \pm 0.64	16.63 \pm 4.19	15.69 \pm 1.95	19.97 \pm 5.98	11.93 \pm 2.51	13.97 \pm 2.68	FeSEM	37.76 \pm 1.27	40.33 \pm 1.92	43.35 \pm 2.04	11.57 \pm 0.56	18.50 \pm 4.07	15.92 \pm 0.40	15.91 \pm 3.34	10.62 \pm 2.23	12.31 \pm 1.79
CFL	43.73 \pm 0.59	45.90 \pm 0.55	46.98 \pm 0.68	13.04 \pm 1.82	15.91 \pm 4.00	14.72 \pm 1.56	18.95 \pm 5.76	11.94 \pm 2.42	11.45 \pm 2.66	IFCA	43.19 \pm 0.45	44.95 \pm 0.68	45.69 \pm 0.59	6.85 \pm 2.79	0.99 \pm 0.05	8.68 \pm 4.58	9.43 \pm 5.60	4.16 \pm 0.74	6.79 \pm 4.52
pFedMe	18.15 \pm 0.85	20.58 \pm 1.55	22.31 \pm 0.48	7.17 \pm 1.20	9.66 \pm 2.02	10.43 \pm 0.20	8.49 \pm 2.11	8.23 \pm 1.32	8.71 \pm 0.87	APFL	37.54 \pm 0.29	39.47 \pm 1.43	40.66 \pm 0.73	12.85 \pm 0.59	15.70 \pm 3.41	17.01 \pm 0.70	16.73 \pm 5.16	12.96 \pm 1.77	14.38 \pm 2.67
FedDrift	21.36 \pm 1.13	23.62 \pm 4.06	33.93 \pm 3.34	8.72 \pm 2.36	13.81 \pm 3.54	14.71 \pm 1.15	10.16 \pm 3.69	10.00 \pm 2.13	11.87 \pm 1.71	ATP	11.77 \pm 5.80	19.05 \pm 3.56	14.29 \pm 6.41	3.13 \pm 1.04	3.47 \pm 1.65	5.28 \pm 1.49	2.96 \pm 0.36	3.65 \pm 0.85	5.56 \pm 1.57
FEROMA	39.83 \pm 0.62	39.40 \pm 0.79	39.37 \pm 0.81	36.97 \pm 0.97	36.73 \pm 0.46	36.53 \pm 0.74	32.74 \pm 1.47	34.15 \pm 0.44	33.99 \pm 0.89										

Table 24: Performance comparison across three different non-IID Levels of $P(X)$ and three distribution drifting levels on the CIFAR-100 dataset.

1976	1977	1978	1979	1980	1981	1982	Non-IID Level												
							Low			Medium			High						
							# Drifting	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20			
FedAvg	35.10 \pm 7.62	35.82 \pm 5.54	41.28 \pm 5.48	36.65 \pm 3.67	40.69 \pm 1.77	41.53 \pm 3.70	33.17 \pm 5.28	35.96 \pm 3.40	37.42 \pm 2.93	FedRC	34.83 \pm 5.04	41.09 \pm 6.33	38.67 \pm 3.63	32.36 \pm 5.43	36.92 \pm 3.39	42.43 \pm 3.39	40.45 \pm 4.58	39.98 \pm 2.23	42.35 \pm 3.52
FedEM	36.03 \pm 5.49	41.05 \pm 6.33	38.40 \pm 3.46	32.33 \pm 5.33	36.80 \pm 3.50	42.12 \pm 3.38	40.32 \pm 4.17	41.86 \pm 3.48	42.17 \pm 3.29	FeSEM	34.43 \pm 7.45	35.61 \pm 4.14	36.29 \pm 3.80	29.09 \pm 6.25	32.54 \pm 3.23	30.65 \pm 3.77	31.02 \pm 4.26	32.24 \pm 1.76	35.33 \pm 2.50
CFL	33.89 \pm 6.66	37.97 \pm 5.32	33.51 \pm 4.11	29.53 \pm 3.35	37.14 \pm 4.07	39.35 \pm 4.70	35.67 \pm 5.18	35.24 \pm 2.77	38.48 \pm 2.87	IFCA	11.28 \pm 7.98	10.18 \pm 2.18	12.97 \pm 3.40	2.27 \pm 1.28	8.85 \pm 8.63	4.66 \pm 1.67	2.45 \pm 0.72	2.44 \pm 0.36	2.65 \pm 0.49
pFedMe	16.63 \pm 5.20	13.85 \pm 3.22	16.55 \pm 1.22	11.88 \pm 2.94	16.49 \pm 4.73	11.26 \pm 3.07	13.61 \pm 2.90	11.87 \pm 3.06	11.59 \pm 3.26	APFL	35.11 \pm 6.15	34.02 \pm 1.18	34.25 \pm 0.85	29.31 \pm 4.51	31.13 \pm 0.77	31.86 \pm 4.09	30.90 \pm 2.53	30.73 \pm 2.87	34.72 \pm 3.24
FedDrift	24.21 \pm 7.61	21.91 \pm 4.63	24.89 \pm 2.87	18.08 \pm 3.98	23.51 \pm 6.41	17.09 \pm 4.13	18.05 \pm 3.02	17.42 \pm 2.72	22.81 \pm 4.11	ATP	15.65 \pm 4.07	36.75 \pm 6.32	40.72 \pm 4.09	15.68 \pm 5.18	36.71 \pm 5.50	42.90 \pm 6.47	18.53 \pm 10.89	35.31 \pm 4.91	40.81 \pm 4.82
FEROMA	44.65 \pm 4.42	51.03 \pm 6.51	51.90 \pm 2.13	48.43 \pm 3.40	48.51 \pm 2.59	52.90 \pm 4.83	40.82 \pm 5.57	47.56 \pm 6.77	45.91 \pm 3.54										

Table 25: Performance comparison across three different non-IID Levels of $P(Y)$ and three distribution drifting levels on the CIFAR-100 dataset.

1998

1999

2000

2001

2002

2003

2004

2005

2006

2007

2008

2009

2010

2011

2012

2013

2014

2015

2016

2017

2018

2019

2020

2021

2022

2023

2024

2025

2026

2027

2028

2029

2030

2031

2032

2033

2034

2035

2036

2037

2038

2039

2040

2041

2042

2043

2044

2045

2046

2047

2048

2049

2050

2051

Non-IID Level	Low			Medium			High		
	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20
# Drifting									
FedAvg	37.69 \pm 0.81	37.84 \pm 0.79	38.16 \pm 0.98	27.39 \pm 1.10	27.44 \pm 1.26	27.44 \pm 1.20	15.83 \pm 0.49	15.75 \pm 0.31	15.90 \pm 0.40
FedRC	38.94 \pm 0.80	38.98 \pm 0.96	39.23 \pm 0.94	28.14 \pm 1.12	28.14 \pm 1.15	28.16 \pm 1.33	16.24 \pm 0.41	16.19 \pm 0.40	16.09 \pm 0.33
FedEM	38.94 \pm 0.80	38.98 \pm 0.96	39.23 \pm 0.94	28.14 \pm 1.12	28.14 \pm 1.15	28.16 \pm 1.33	16.24 \pm 0.41	16.19 \pm 0.40	16.09 \pm 0.33
FeSEM	35.99 \pm 0.89	34.00 \pm 1.04	33.39 \pm 1.35	26.45 \pm 1.11	26.23 \pm 1.16	25.84 \pm 1.30	16.00 \pm 0.58	16.61 \pm 0.55	16.47 \pm 0.51
CFL	38.28 \pm 0.69	38.61 \pm 0.84	38.57 \pm 0.68	27.78 \pm 1.13	27.69 \pm 1.21	27.63 \pm 1.31	16.03 \pm 0.42	15.92 \pm 0.39	15.90 \pm 0.41
IFCA	38.17 \pm 0.74	38.36 \pm 0.87	38.54 \pm 0.83	27.78 \pm 1.25	27.62 \pm 1.30	27.83 \pm 1.31	0.97 \pm 0.05	1.00 \pm 0.06	0.97 \pm 0.09
pFedMe	24.81 \pm 0.19	24.88 \pm 0.17	24.41 \pm 0.24	24.28 \pm 0.26	24.73 \pm 0.25	23.89 \pm 0.24	24.34 \pm 0.65	24.32 \pm 0.27	22.34 \pm 0.14
APFL	41.52 \pm 0.19	42.07 \pm 0.85	42.25 \pm 0.48	35.44 \pm 0.49	35.79 \pm 0.21	36.23 \pm 0.28	29.43 \pm 0.37	29.85 \pm 0.38	29.88 \pm 0.24
FedDrift	28.70 \pm 0.09	26.42 \pm 1.03	36.93 \pm 1.26	26.56 \pm 0.32	25.76 \pm 0.35	26.87 \pm 0.88	25.08 \pm 0.32	19.23 \pm 0.88	15.98 \pm 0.60
ATP	19.63 \pm 1.67	25.84 \pm 1.81	20.18 \pm 3.30	17.03 \pm 2.41	19.95 \pm 2.22	20.22 \pm 1.81	12.41 \pm 0.66	12.16 \pm 0.53	15.54 \pm 0.79
FEROMA	38.88 \pm 0.28	39.62 \pm 0.50	39.36 \pm 0.30	35.63 \pm 0.30	35.71 \pm 0.29	35.72 \pm 0.08	31.75 \pm 0.14	32.46 \pm 0.27	32.15 \pm 0.25

Table 26: Performance comparison across three different non-IID Levels of $P(Y|X)$ and three distribution drifting levels on the CIFAR-100 dataset.

Non-IID Level	Low			Medium			High		
	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20
# Drifting									
FedAvg	33.07 \pm 7.39	29.13 \pm 8.76	28.00 \pm 5.13	23.18 \pm 7.07	28.56 \pm 8.56	21.69 \pm 1.68	25.20 \pm 8.82	24.30 \pm 6.84	27.08 \pm 4.87
FedRC	25.46 \pm 2.53	35.48 \pm 11.24	29.95 \pm 5.14	26.94 \pm 2.37	32.09 \pm 3.38	30.88 \pm 9.80	31.46 \pm 7.76	27.68 \pm 0.91	30.58 \pm 7.60
FedEM	45.53 \pm 3.56	37.30 \pm 6.95	38.41 \pm 2.37	37.70 \pm 6.61	31.42 \pm 6.46	33.02 \pm 5.90	26.20 \pm 4.04	29.08 \pm 2.66	29.85 \pm 2.40
FeSEM	27.20 \pm 5.57	29.57 \pm 6.20	24.66 \pm 4.30	22.86 \pm 9.39	21.38 \pm 3.72	23.60 \pm 5.06	18.62 \pm 4.58	21.19 \pm 3.14	19.88 \pm 2.59
CFL	28.45 \pm 2.88	29.24 \pm 6.12	34.74 \pm 4.86	33.92 \pm 4.22	29.60 \pm 7.61	25.33 \pm 2.70	23.74 \pm 4.10	22.52 \pm 3.53	24.20 \pm 1.50
IFCA	10.90 \pm 7.53	23.22 \pm 13.20	22.02 \pm 2.80	22.78 \pm 8.67	14.63 \pm 6.90	17.00 \pm 7.77	7.53 \pm 6.56	7.76 \pm 4.82	7.68 \pm 6.20
pFedMe	17.02 \pm 2.99	11.58 \pm 3.07	12.74 \pm 0.32	10.83 \pm 0.79	14.38 \pm 4.82	10.37 \pm 1.07	11.87 \pm 1.52	10.72 \pm 1.21	14.19 \pm 0.71
APFL	27.51 \pm 7.08	29.31 \pm 6.17	27.94 \pm 3.97	30.56 \pm 5.32	29.41 \pm 2.92	30.33 \pm 3.73	20.23 \pm 2.38	25.26 \pm 5.16	26.20 \pm 2.74
FedDrift	22.58 \pm 3.57	19.13 \pm 6.14	24.14 \pm 0.75	15.26 \pm 6.22	19.76 \pm 3.65	12.51 \pm 3.63	13.61 \pm 2.02	14.84 \pm 4.35	19.21 \pm 4.50
ATP	6.38 \pm 1.63	11.15 \pm 1.96	12.95 \pm 2.72	7.01 \pm 0.73	9.56 \pm 0.81	12.39 \pm 1.99	5.55 \pm 2.03	8.40 \pm 2.85	13.70 \pm 4.16
FEROMA	40.24 \pm 1.79	40.64 \pm 1.00	40.41 \pm 2.24	39.53 \pm 1.31	38.26 \pm 1.94	39.73 \pm 1.34	37.92 \pm 0.86	39.25 \pm 1.08	37.99 \pm 0.87

Table 27: Performance comparison across three different non-IID Levels of $P(X|Y)$ and three distribution drifting levels on the CIFAR-100 dataset.

Tables 28 to Table 32 provide detailed results for FLUX and baseline methods, evaluated across increasing numbers of clients and various distribution shift types and levels. We could not evaluate the performance of FedDrift under 50 and 100 clients due to prohibitive memory and computational costs (see Appendix C.2 for details). For the baselines that do not provide a solution for test-only clients, we weight all models by the number of clients in the cluster, and use the expectation that weights all model outputs as an estimation of the predicted labels.

# Clients	10 Clients		20 Clients		50 Clients		100 Clients	
	Algorithm	Accuracy	Time	Accuracy	Time	Accuracy	Time	Accuracy
FedAvg	74.85 \pm 5.71	3.77	73.98 \pm 3.04	5.91	74.00 \pm 3.33	7.16	73.27 \pm 3.84	8.28
FedRC	29.84 \pm 7.47	8.63	29.44 \pm 5.35	9.83	25.02 \pm 3.94	11.36	24.06 \pm 3.44	12.38
FedEM	32.01 \pm 8.56	8.53	26.78 \pm 4.58	9.27	25.95 \pm 4.28	11.27	24.77 \pm 3.03	12.11
FeSEM	73.02 \pm 6.63	7.11	72.58 \pm 4.65	7.65	73.11 \pm 3.93	9.12	74.30 \pm 3.36	9.93
CFL	77.17 \pm 6.96	6.32	78.22 \pm 4.21	6.57	76.92 \pm 4.18	8.52	76.25 \pm 2.88	8.74
IFCA	37.16 \pm 10.44	6.77	45.99 \pm 9.90	8.14	48.40 \pm 6.12	9.66	43.15 \pm 5.22	10.66
pFedMe	55.20 \pm 12.16	5.65	55.36 \pm 8.79	6.60	54.40 \pm 3.48	7.71	49.77 \pm 5.08	9.01
APFL	71.43 \pm 8.02	7.40	72.24 \pm 5.31	8.38	72.99 \pm 4.18	10.05	68.39 \pm 4.96	10.23
FedDrift	63.34 \pm 11.52	8.74	57.88 \pm 9.40	9.56	N/A	N/A	N/A	N/A
ATP	71.39 \pm 8.95	4.95	74.83 \pm 4.37	6.51	72.46 \pm 4.55	7.74	71.21 \pm 5.45	8.68
FEROMA	91.27 \pm 0.67	4.84	90.17 \pm 1.96	6.43	90.16 \pm 1.98	7.67	87.06 \pm 2.70	8.61

Table 28: Performance comparison across the number of clients in 10, 20, 50, and 100, summarizing all four types of heterogeneity ($P(X)$, $P(Y)$, $P(Y|X)$, $P(X|Y)$) on the MNIST dataset. Time is reported in \log_2 seconds.

# Clients	10 Clients		20 Clients		50 Clients		100 Clients	
	Algorithm	Accuracy	Time	Accuracy	Time	Accuracy	Time	Accuracy
FedAvg	74.20 \pm 3.72	3.54	74.64 \pm 1.50	5.74	74.50 \pm 3.06	7.15	71.05 \pm 3.41	8.16
FedRC	11.44 \pm 0.18	8.34	11.35 \pm 0.00	9.60	11.35 \pm 0.00	10.95	11.35 \pm 0.00	11.43
FedEM	11.44 \pm 0.18	8.07	11.35 \pm 0.00	8.80	11.35 \pm 0.00	10.13	11.35 \pm 0.00	11.49
FeSEM	69.43 \pm 3.59	6.90	72.98 \pm 4.49	7.30	74.54 \pm 1.80	8.50	75.48 \pm 1.34	9.38
CFL	79.66 \pm 3.93	6.47	81.08 \pm 2.36	6.38	78.73 \pm 3.18	8.40	77.04 \pm 1.24	8.52
IFCA	22.70 \pm 6.75	6.51	39.79 \pm 4.79	7.56	47.86 \pm 9.25	9.43	42.23 \pm 3.40	10.15
pFedMe	52.90 \pm 1.71	5.57	46.24 \pm 6.37	6.66	50.62 \pm 3.74	7.63	47.22 \pm 1.47	9.06
APFL	72.89 \pm 2.14	7.01	71.85 \pm 3.77	7.94	74.07 \pm 0.96	9.97	72.40 \pm 1.04	10.12
FedDrift	60.13 \pm 5.80	8.74	46.86 \pm 8.80	9.55	N/A	N/A	N/A	N/A
ATP	71.08 \pm 7.72	3.95	75.81 \pm 2.38	6.43	76.44 \pm 0.56	7.79	74.96 \pm 1.54	8.81
FEROMA	87.51 \pm 1.19	4.00	86.45 \pm 1.22	6.32	87.69 \pm 0.91	7.88	83.09 \pm 1.29	8.87

Table 29: Performance comparison across heterogeneity type $P(X)$ on the MNIST dataset. Time is reported in \log_2 seconds.

F.4 RESULTS ON REAL-WORLD DATASETS

Following the setup in subsection F.1, we compare the performance of FEROMA against baseline methods on both the CheXpert and Office-Home datasets (baseline ATP cannot be adapted to the multi-label classification task of CheXpert dataset). As shown in Table 33 and Table 34, FEROMA consistently achieves top-tier performance across various settings of non-IID severity and degrees of distribution drift. Specifically, it either outperforms or closely matches the best-performing methods in nearly all configurations. While personalized methods such as ATP and APFL occasionally yield strong results—particularly in low-drift scenarios, their performance tends to degrade under increasing drift levels, indicating overfitting to local data. In contrast, FEROMA maintains stable and high performance even in highly drifted or non-IID environments, demonstrating strong robustness and generalization without relying on explicit personalization.

2106

2107

2108

2109

2110

2111

2112

2113

2114

2115

2116

2117

2118

2119

2120

2121

2122

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

Table 30: Performance comparison across heterogeneity type $P(Y)$ on the MNIST dataset. Time is reported in \log_2 seconds.

# Clients	10 Clients		20 Clients		50 Clients		100 Clients	
	Algorithm	Accuracy	Time	Accuracy	Time	Accuracy	Time	Accuracy
FedAvg	85.98 ± 6.45	4.34	84.82 ± 4.58	6.19	80.64 ± 3.01	7.30	84.38 ± 6.68	8.41
FedRC	68.89 ± 10.89	8.88	75.08 ± 5.67	10.32	63.79 ± 5.65	11.52	60.82 ± 6.26	12.25
FedEM	72.31 ± 9.84	8.85	66.08 ± 5.81	9.42	67.11 ± 5.95	11.19	62.14 ± 4.71	11.87
FeSEM	78.62 ± 6.58	7.44	72.37 ± 3.53	7.97	75.11 ± 7.31	9.19	77.53 ± 5.33	9.88
CFL	81.56 ± 12.51	6.89	85.21 ± 5.86	7.03	81.90 ± 6.52	8.96	82.39 ± 5.34	9.05
IFCA	36.77 ± 17.81	7.10	35.27 ± 10.01	8.20	37.22 ± 3.98	10.05	26.81 ± 6.73	10.74
pFedMe	38.59 ± 18.23	6.06	39.32 ± 13.26	7.00	34.31 ± 4.61	8.10	25.16 ± 7.59	9.53
APFL	53.90 ± 13.88	7.68	56.56 ± 8.56	8.70	55.12 ± 6.09	10.60	47.32 ± 8.51	10.60
FedDrift	45.60 ± 16.15	8.87	43.46 ± 14.96	9.69	N/A	N/A	N/A	N/A
ATP	80.42 ± 10.16	4.93	86.25 ± 7.72	6.62	81.29 ± 8.67	7.91	74.85 ± 8.51	8.79
FEROMA	99.12 ± 0.37	4.84	95.75 ± 3.62	6.54	94.77 ± 3.74	7.73	89.01 ± 5.03	8.71

2123

2124

2125

2126

2127

2128

2129

2130

2131

2132

2133

2134

2135

2136

2137

2138

Table 31: Performance comparison across heterogeneity type $P(Y|X)$ on the MNIST dataset. Time is reported in \log_2 seconds.

# Clients	10 Clients		20 Clients		50 Clients		100 Clients	
	Algorithm	Accuracy	Time	Accuracy	Time	Accuracy	Time	Accuracy
FedAvg	66.16 ± 1.87	3.45	65.75 ± 1.63	5.88	63.30 ± 0.91	7.20	62.92 ± 0.69	8.37
FedRC	13.84 ± 3.24	8.98	12.91 ± 2.29	9.87	10.50 ± 0.42	11.90	11.48 ± 1.49	13.45
FedEM	13.84 ± 3.24	8.85	12.91 ± 2.29	9.81	10.50 ± 0.42	12.22	11.49 ± 1.49	13.11
FeSEM	81.24 ± 2.17	7.17	75.43 ± 1.55	7.90	73.89 ± 1.31	9.84	70.97 ± 0.67	10.67
CFL	68.73 ± 1.90	5.35	67.26 ± 1.23	6.25	65.71 ± 0.75	8.14	64.87 ± 0.83	8.72
IFCA	69.66 ± 1.58	6.90	69.70 ± 4.02	8.84	70.14 ± 4.59	9.95	69.12 ± 5.36	11.32
pFedMe	91.31 ± 0.32	5.32	90.95 ± 0.47	6.17	90.01 ± 0.36	7.38	88.39 ± 0.46	8.32
APFL	91.85 ± 0.47	7.64	91.61 ± 0.68	8.36	91.05 ± 0.35	9.46	90.09 ± 0.62	9.99
FedDrift	95.56 ± 1.48	8.53	96.59 ± 0.26	9.41	N/A	N/A	N/A	N/A
ATP	66.40 ± 1.23	5.39	64.67 ± 2.82	6.28	63.24 ± 1.45	7.50	61.57 ± 1.53	8.56
FEROMA	88.81 ± 0.40	5.74	88.59 ± 0.62	6.24	88.40 ± 0.47	7.44	88.10 ± 0.57	8.44

2138

2139

2140

2141

2142

2143

2144

2145

2146

2147

2148

2149

2150

2151

2152

2153

2154

2155

2156

2157

2158

2159

# Clients	10 Clients		20 Clients		50 Clients		100 Clients	
	Algorithm	Accuracy	Time	Accuracy	Time	Accuracy	Time	Accuracy
FedAvg	73.04 ± 8.44	3.57	70.71 ± 3.32	5.76	77.57 ± 5.02	6.98	74.72 ± 1.54	8.13
FedRC	25.20 ± 9.70	8.13	18.43 ± 8.77	9.34	14.43 ± 5.46	10.80	12.57 ± 2.44	11.29
FedEM	30.45 ± 13.63	8.16	16.79 ± 6.72	8.77	14.85 ± 6.14	10.71	14.10 ± 3.52	11.10
FeSEM	62.78 ± 10.71	6.84	69.53 ± 7.16	7.26	68.90 ± 1.84	8.53	73.22 ± 3.80	9.39
CFL	78.74 ± 4.27	6.16	79.31 ± 5.43	6.49	81.35 ± 4.08	8.46	80.69 ± 1.53	8.64
IFCA	19.49 ± 8.37	6.47	39.20 ± 15.89	7.55	38.37 ± 5.22	8.98	34.44 ± 4.84	10.04
pFedMe	38.00 ± 16.00	5.57	44.92 ± 9.61	6.44	42.67 ± 3.61	7.64	38.31 ± 6.57	8.89
APFL	67.09 ± 7.75	7.16	68.95 ± 4.98	8.41	71.71 ± 5.63	9.94	63.73 ± 4.93	10.12
FedDrift	52.08 ± 15.30	8.79	44.62 ± 7.23	9.58	N/A	N/A	N/A	N/A
ATP	67.67 ± 12.49	5.17	72.62 ± 1.79	6.67	68.87 ± 2.28	7.73	73.47 ± 6.46	8.53
FEROMA	89.64 ± 0.29	4.05	89.90 ± 0.63	6.60	89.77 ± 0.82	7.60	88.04 ± 1.41	8.37

Table 32: Performance comparison across heterogeneity type $P(X|Y)$ on the MNIST dataset. Time is reported in \log_2 seconds.

2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171	Non-IID Level			Low			Medium			High		
	# Drifting	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20		
FedAvg	59.50 \pm 1.04	62.07 \pm 6.04	57.68 \pm 2.05	60.91 \pm 1.19	59.34 \pm 5.33	61.26 \pm 1.25	57.38 \pm 1.17	56.76 \pm 2.00	56.62 \pm 1.31			
FedRC	57.07 \pm 3.12	58.80 \pm 0.15	56.77 \pm 0.19	54.38 \pm 0.32	55.23 \pm 2.43	55.79 \pm 3.43	52.76 \pm 1.24	53.55 \pm 1.54	51.46 \pm 1.23			
FedEM	56.31 \pm 1.27	55.12 \pm 0.24	56.54 \pm 3.42	53.58 \pm 0.32	53.45 \pm 2.34	52.44 \pm 1.23	50.45 \pm 2.34	51.34 \pm 3.34	50.44 \pm 2.32			
FeSEM	64.09 \pm 3.63	63.76 \pm 0.05	64.45 \pm 0.18	59.33 \pm 0.29	60.76 \pm 0.18	61.32 \pm 0.14	59.23 \pm 2.43	58.55 \pm 1.35	57.54 \pm 3.44			
CFL	65.09 \pm 5.21	64.85 \pm 0.07	63.73 \pm 0.24	62.34 \pm 0.29	62.21 \pm 0.22	60.31 \pm 0.16	60.44 \pm 0.45	61.43 \pm 0.83	60.43 \pm 3.91			
IFCA	55.94 \pm 0.74	55.12 \pm 1.32	54.31 \pm 4.35	52.54 \pm 1.54	52.00 \pm 2.43	51.33 \pm 2.78	51.14 \pm 0.92	50.88 \pm 3.44	51.54 \pm 4.53			
pFedMe	61.70 \pm 0.64	61.12 \pm 2.78	58.68 \pm 1.46	59.92 \pm 0.31	57.56 \pm 0.14	57.88 \pm 0.11	55.54 \pm 0.04	55.48 \pm 0.03	56.07 \pm 0.28			
APFL	56.35 \pm 1.23	56.90 \pm 0.06	55.90 \pm 0.18	54.78 \pm 1.72	54.83 \pm 0.53	53.55 \pm 1.35	53.78 \pm 0.28	52.83 \pm 0.12	51.00 \pm 1.02			
FedDrift	75.79 \pm 0.24	74.86 \pm 0.20	74.03 \pm 0.60	71.70 \pm 0.64	72.02 \pm 0.48	71.91 \pm 0.20	70.47 \pm 0.94	70.48 \pm 1.59	69.11 \pm 1.31			
ATP	N/A											
FEROMA	76.32 \pm 0.05	75.99 \pm 0.14	76.64 \pm 0.72	72.16 \pm 0.67	71.96 \pm 0.15	71.82 \pm 0.69	69.35 \pm 0.85	68.90 \pm 0.70	68.59 \pm 0.75			

Table 33: Performance comparison across three different non-IID Levels and three distribution drifting levels on the CheXpert dataset.

	# Drifting	5 / 20	10 / 20	20 / 20
FedAvg	41.83 \pm 1.44	40.11 \pm 1.42	41.02 \pm 0.89	
FedRC	13.83 \pm 5.30	13.32 \pm 1.44	16.63 \pm 2.50	
FedEM	14.32 \pm 4.30	14.86 \pm 0.50	17.43 \pm 2.50	
FeSEM	35.47 \pm 0.17	33.60 \pm 0.86	32.40 \pm 1.31	
CFL	36.27 \pm 0.33	33.93 \pm 0.77	34.33 \pm 1.60	
IFCA	40.40 \pm 4.54	37.17 \pm 2.12	22.83 \pm 5.90	
pFedMe	37.70 \pm 1.04	34.53 \pm 2.05	31.70 \pm 1.53	
APFL	44.19 \pm 2.98	39.99 \pm 0.50	34.08 \pm 2.20	
FedDrift	42.08 \pm 3.94	42.34 \pm 0.43	41.94 \pm 1.12	
ATP	41.90 \pm 3.13	40.88 \pm 4.29	39.55 \pm 5.26	
FEROMA	43.43 \pm 0.86	42.75 \pm 1.21	41.11 \pm 1.95	

Table 34: Performance comparison across three distribution drifting levels on the Office-Home dataset.

F.5 ABLATION STUDY ON MONTE-CARLO SUBSAMPLING

The Distribution Profile Extractor (DPE) must satisfy Requirement (R3) on controlled stochasticity. As described in Section C.4.1, our implementation enforces this property via a Monte Carlo subsampling strategy. Specifically, for each client, we apply M independent Bernoulli masks with sampling probability $\gamma = 0.5$, and compute distribution profiles over the resulting subsets. The variance introduced by this process is governed by the number of subsamples M , the number of used data points $v^{(k)}$, and the proxy variance τ^2 of the latent coordinates, as derived in Appendix equation 2. Among these parameters, M and γ are design choices under our control. In this ablation, we study the impact of varying $M \in \{1, 2, 3\}$, keeping $\gamma = 0.5$ fixed, across all four types of distribution shifts ($P(X)$, $P(Y)$, $P(Y|X)$, $P(X|Y)$) and three heterogeneity levels (low, medium, high), on both MNIST and CIFAR-10.

The results, reported in Tables 35–38, show that FEROMA is robust to the choice of M , with only minor accuracy differences across values. Nevertheless, slightly better performance is observed with larger M , suggesting that reducing the variance of the extracted profiles improves model association and final accuracy. This supports the intuition that while stochasticity is essential for privacy and regularization, excessive noise may degrade the reliability of distribution similarity computations.

F.6 ABLATION STUDY ON THRESHOLD PROFILE ASSOCIATION

To prevent noisy or weakly related distributions from influencing model aggregation, we apply a thresholding mechanism to the profile similarity weights. Specifically, a threshold τ is introduced to discard low-similarity associations, thereby promoting aggregation only among clients with sufficiently aligned distributions. This design is motivated by clustered FL principles, where collaboration is restricted to similar clients, but implemented here in a soft and data-driven manner. The thresholding step is applied after computing the similarity-based weights $w_t^{(k,j)}$, as described in Equation 4. In

the ablation study, we set the threshold τ to the average value of the similarity weights (e.g., 0.05 in the case of 20 clients), providing a simple heuristic to evaluate the effect of thresholding.

From [Table 35](#) to [Table 38](#), the results show that accuracy remains largely stable with thresholding enabled or disabled. In future work, we expect that more principled or adaptive strategies for selecting the threshold τ could further enhance aggregation quality—particularly in highly imbalanced or noisy distribution settings.

Non-IID Type		$P(X)$			$P(Y)$		
Non-IID Level		Low	Medium	High	Low	Medium	High
# $M = 1$, threshold off		87.88 \pm 1.07	87.29 \pm 1.48	85.30 \pm 1.34	84.56 \pm 9.61	79.69 \pm 10.61	79.85 \pm 10.41
# $M = 2$, threshold off		88.10 \pm 0.88	87.55 \pm 1.61	85.89 \pm 0.30	87.61 \pm 6.53	83.81 \pm 8.62	78.91 \pm 10.86
# $M = 3$, threshold off		88.67 \pm 0.30	86.50 \pm 2.48	85.81 \pm 0.36	86.24 \pm 8.27	85.94 \pm 5.23	80.11 \pm 9.65
# $M = 1$, threshold on		87.62 \pm 0.98	87.21 \pm 1.40	85.71 \pm 0.52	86.05 \pm 8.60	76.37 \pm 10.30	73.26 \pm 11.61
# $M = 2$, threshold on		87.53 \pm 1.00	85.61 \pm 4.75	85.48 \pm 0.46	86.95 \pm 7.53	81.59 \pm 8.67	75.75 \pm 7.90
# $M = 3$, threshold on		88.20 \pm 0.42	85.98 \pm 2.10	85.43 \pm 0.27	86.80 \pm 9.44	79.89 \pm 8.26	68.67 \pm 12.67

[Table 35](#): Test accuracy on MNIST under varying numbers of Monte Carlo masks ($M = 1, 2, 3$) and with thresholding enabled or disabled, across different non-IID levels in $P(X)$ and $P(Y)$.

Non-IID Type		$P(Y X)$			$P(X Y)$		
Non-IID Level		Low	Medium	High	Low	Medium	High
# $M = 1$, threshold off		84.10 \pm 2.90	76.40 \pm 3.70	73.88 \pm 1.75	90.02 \pm 0.47	88.64 \pm 1.21	89.67 \pm 1.14
# $M = 2$, threshold off		84.40 \pm 3.36	78.71 \pm 3.78	77.12 \pm 3.07	88.70 \pm 2.12	90.06 \pm 0.23	88.53 \pm 0.96
# $M = 3$, threshold off		85.04 \pm 2.44	80.09 \pm 2.14	78.38 \pm 2.62	88.81 \pm 1.94	89.02 \pm 1.59	88.29 \pm 1.12
# $M = 1$, threshold on		84.09 \pm 2.87	76.54 \pm 3.68	73.76 \pm 1.75	89.38 \pm 0.87	88.24 \pm 2.52	88.88 \pm 0.93
# $M = 2$, threshold on		84.50 \pm 3.25	78.59 \pm 3.68	76.99 \pm 3.10	89.80 \pm 0.41	88.26 \pm 2.04	86.03 \pm 3.24
# $M = 3$, threshold on		85.02 \pm 2.43	79.90 \pm 2.03	78.05 \pm 2.57	90.05 \pm 0.69	89.47 \pm 1.35	88.86 \pm 1.23

[Table 36](#): Test accuracy on MNIST under varying numbers of Monte Carlo masks ($M = 1, 2, 3$) and with thresholding enabled or disabled, across different non-IID levels in $P(Y|X)$ and $P(X|Y)$.

Non-IID Type		$P(X)$			$P(Y)$		
Non-IID Level		Low	Medium	High	Low	Medium	High
# $M = 1$, threshold off		40.25 \pm 0.79	32.76 \pm 2.43	30.97 \pm 1.05	39.54 \pm 5.29	34.73 \pm 5.06	31.16 \pm 3.31
# $M = 2$, threshold off		40.11 \pm 0.57	32.41 \pm 2.78	31.05 \pm 1.73	38.73 \pm 6.90	35.62 \pm 5.37	32.24 \pm 9.06
# $M = 3$, threshold off		40.13 \pm 0.73	32.94 \pm 1.78	31.61 \pm 1.69	41.01 \pm 7.51	41.33 \pm 4.71	33.94 \pm 7.60
# $M = 1$, threshold on		39.98 \pm 0.58	31.48 \pm 2.45	30.62 \pm 1.00	38.81 \pm 5.73	38.91 \pm 1.38	30.24 \pm 3.50
# $M = 2$, threshold on		40.06 \pm 0.68	32.23 \pm 2.54	30.54 \pm 1.93	39.01 \pm 8.81	35.74 \pm 5.19	29.95 \pm 8.30
# $M = 3$, threshold on		40.19 \pm 0.60	32.10 \pm 1.57	30.76 \pm 1.28	39.98 \pm 8.64	41.48 \pm 3.04	31.64 \pm 5.89

[Table 37](#): Test accuracy on CIFAR-10 under varying numbers of Monte Carlo masks ($M = 1, 2, 3$) and with thresholding enabled or disabled, across different non-IID levels in $P(X)$ and $P(Y)$.

F.7 ABLATION STUDY ON DISTANCE FUNCTION

We analyze the impact of the distance function $\mathcal{D}(\cdot, \cdot)$, introduced in [Equation 3](#), on the overall performance of FEROMA. Specifically, we compare two commonly used similarity measures: Euclidean distance and cosine distance. To isolate their effects, we evaluate four combinations by varying the choice of \mathcal{D} during training and test-time profile matching.

The evaluated settings are as follows:

- **E.E.**: Euclidean distance used in both training and testing.
- **C.C.**: Cosine distance used in both training and testing.
- **E.C.**: Euclidean distance used during training; cosine distance during testing.
- **C.E.**: Cosine distance used during training; Euclidean distance during testing.

2268 2269 2270 2271 2272 2273 2274 2275 2276	Non-IID Type			$P(Y X)$			$P(X Y)$		
	Non-IID Level			Low	Medium	High	Low	Medium	High
	# $M = 1$, threshold off	36.83 \pm 1.91	34.16 \pm 1.30	29.47 \pm 0.50	41.56 \pm 1.72	39.77 \pm 1.30	38.94 \pm 2.85		
# $M = 2$, threshold off	36.24 \pm 0.36	34.20 \pm 1.47	30.01 \pm 0.99	43.91 \pm 1.36	37.93 \pm 1.41	37.59 \pm 3.65			
# $M = 3$, threshold off	36.78 \pm 1.74	34.48 \pm 1.85	29.91 \pm 1.00	41.25 \pm 3.77	42.38 \pm 1.82	38.91 \pm 1.89			
# $M = 1$, threshold on	36.83 \pm 1.53	34.23 \pm 1.22	29.64 \pm 0.55	40.22 \pm 3.31	40.30 \pm 0.99	37.93 \pm 1.56			
# $M = 2$, threshold on	36.32 \pm 0.67	34.49 \pm 1.51	30.07 \pm 1.22	41.62 \pm 3.37	38.71 \pm 2.85	34.21 \pm 2.71			
# $M = 3$, threshold on	36.94 \pm 1.42	34.55 \pm 1.72	29.94 \pm 0.93	38.17 \pm 2.85	39.04 \pm 2.68	37.25 \pm 1.51			

Table 38: Test accuracy on CIFAR-10 under varying numbers of Monte Carlo masks ($M = 1, 2, 3$) and with thresholding enabled or disabled, across different non-IID levels in $P(Y|X)$ and $P(X|Y)$.

These combinations allow us to assess whether consistency between training and testing distance functions is important, and whether certain metrics generalize better under mismatch. The ablation study is conducted on the FMNIST dataset using all four non-IID types described in the main experiments. For each type, we evaluate three non-IID levels (Low, Medium, High) and three distribution drift levels (5/20, 10/20, 20/20), following the same settings as detailed in [subsection F.2](#). [Table 39](#) summarizes the overall performance across all combinations, and the result shows FEROMA is robust despite the choices of \mathcal{D} . We adopt the **C.E.** configuration (cosine distance for training and Euclidean distance for testing) for the remainder of our experiments, as it consistently achieves slightly better performance. Detailed results for each non-IID type are provided in [Table 40](#) through [Table 43](#).

# Drifting	5 / 20	10 / 20	20 / 20
E.C.	75.911 \pm 3.12	76.419 \pm 3.94	75.930 \pm 5.75
E.E.	77.833 \pm 3.43	77.079 \pm 3.76	76.603 \pm 4.59
C.E.	77.904 \pm 3.42	77.357 \pm 3.93	76.891 \pm 4.73
C.C.	75.864 \pm 3.01	76.302 \pm 3.78	75.809 \pm 5.75

Table 39: Performance comparison among different distance functions across all non-IID types and levels on the FMNIST dataset.

Non-IID Level	Low			Medium			High		
	# Drifting	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20
E.C.	73.73 \pm 0.48	74.89 \pm 0.43	72.13 \pm 0.43	73.76 \pm 0.73	75.11 \pm 0.67	71.58 \pm 0.35	73.43 \pm 0.75	75.09 \pm 0.48	72.08 \pm 0.62
E.E.	73.63 \pm 0.53	74.87 \pm 0.57	71.98 \pm 0.25	73.69 \pm 0.70	75.01 \pm 0.63	71.30 \pm 0.52	73.65 \pm 0.69	75.01 \pm 0.50	71.56 \pm 0.77
C.E.	73.69 \pm 0.46	74.87 \pm 0.57	72.95 \pm 0.25	73.70 \pm 0.60	75.04 \pm 0.70	71.23 \pm 0.59	73.55 \pm 0.72	75.01 \pm 0.47	71.71 \pm 0.62
C.C.	73.79 \pm 0.41	74.84 \pm 0.49	72.26 \pm 0.37	73.83 \pm 0.68	75.12 \pm 0.60	71.62 \pm 0.34	73.45 \pm 0.76	75.03 \pm 0.51	71.99 \pm 0.65

Table 40: Performance comparison among different distance functions across non-IID type $P(X)$ on the FMNIST dataset.

Non-IID Level	Low			Medium			High		
	# Drifting	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20
E.C.	94.11 \pm 2.60	82.89 \pm 7.27	83.09 \pm 4.43	95.05 \pm 3.45	90.20 \pm 6.38	84.29 \pm 8.43	94.07 \pm 6.25	90.46 \pm 6.10	85.09 \pm 14.84
E.E.	94.49 \pm 2.70	88.30 \pm 6.23	86.22 \pm 9.08	94.44 \pm 3.67	90.22 \pm 6.84	78.27 \pm 9.74	93.99 \pm 6.29	90.00 \pm 5.63	81.07 \pm 12.77
C.E.	94.46 \pm 2.65	88.38 \pm 6.34	86.22 \pm 9.08	94.43 \pm 3.63	90.33 \pm 6.92	81.61 \pm 10.57	94.11 \pm 6.08	90.05 \pm 5.73	83.92 \pm 13.43
C.C.	93.82 \pm 2.98	82.93 \pm 7.32	82.98 \pm 3.56	95.01 \pm 3.48	90.10 \pm 6.27	83.51 \pm 7.60	93.88 \pm 6.57	90.34 \pm 5.91	83.97 \pm 14.66

Table 41: Performance comparison among different distance functions across non-IID type $P(Y)$ on the FMNIST dataset.

2322 2323 2324 2325 2326 2327	Non-IID Level	Low			Medium			High			
		# Drifting	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20
E.C.	72.52 \pm 1.69	66.83 \pm 2.61	65.28 \pm 1.21	71.00 \pm 2.71	69.14 \pm 1.41	63.29 \pm 1.54	72.41 \pm 1.63	67.01 \pm 2.00	63.03 \pm 1.81		
E.E.	73.68 \pm 0.57	72.26 \pm 1.37	71.24 \pm 1.31	71.62 \pm 1.63	72.10 \pm 1.01	70.21 \pm 2.00	72.55 \pm 1.72	66.59 \pm 1.82	62.99 \pm 2.07		
C.E.	73.68 \pm 0.80	72.44 \pm 1.18	71.54 \pm 0.85	71.83 \pm 1.70	72.38 \pm 1.03	70.63 \pm 1.45	72.46 \pm 1.72	66.87 \pm 2.14	64.00 \pm 1.92		
C.C.	72.49 \pm 1.69	67.14 \pm 1.95	65.11 \pm 1.15	70.62 \pm 2.79	68.61 \pm 1.40	63.47 \pm 1.57	72.48 \pm 1.64	66.74 \pm 1.66	63.08 \pm 2.01		

2328
2329 Table 42: Performance comparison among different distance functions across non-IID type $P(Y|X)$
2330 on the FMNIST dataset.

2331 2332 2333	Non-IID Level	Low			Medium			High			
		# Drifting	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20	5 / 20	10 / 20	20 / 20
E.C.	78.55 \pm 1.92	75.55 \pm 3.96	74.62 \pm 2.53	75.14 \pm 5.05	77.27 \pm 3.61	76.74 \pm 3.40	79.02 \pm 1.49	73.06 \pm 6.13	70.34 \pm 7.06		
E.E.	78.81 \pm 1.67	79.22 \pm 1.98	78.65 \pm 1.03	78.82 \pm 1.43	78.38 \pm 1.14	78.32 \pm 1.46	79.33 \pm 1.53	79.84 \pm 1.76	78.92 \pm 0.84		
C.E.	78.88 \pm 1.68	79.11 \pm 1.99	78.22 \pm 0.88	78.81 \pm 1.39	78.42 \pm 1.19	78.14 \pm 1.56	79.55 \pm 1.41	79.75 \pm 1.83	78.86 \pm 0.94		
C.C.	78.74 \pm 1.78	75.15 \pm 3.95	74.21 \pm 2.44	75.17 \pm 5.05	76.95 \pm 3.40	76.79 \pm 3.44	78.98 \pm 1.49	73.12 \pm 6.37	70.23 \pm 7.08		

2337
2338 Table 43: Performance comparison among different distance functions across non-IID type $P(X|Y)$
2339 on the FMNIST dataset.

2340 2341 G LARGE LANGUAGE MODEL USAGE DISCLOSURE

2343
2344 We disclose the use of Large Language Models (LLMs) in the preparation of this manuscript.
2345 Specifically, we used Claude (Anthropic) and GPT-4o solely for writing assistance and polishing.
2346 LLMs were used exclusively for:

- 2347 1. grammar correction and sentence structure improvement,
- 2348 2. clarity enhancement and readability optimization,
- 2349 3. consistency in technical terminology and notation, and
- 2350 4. general writing style refinement.

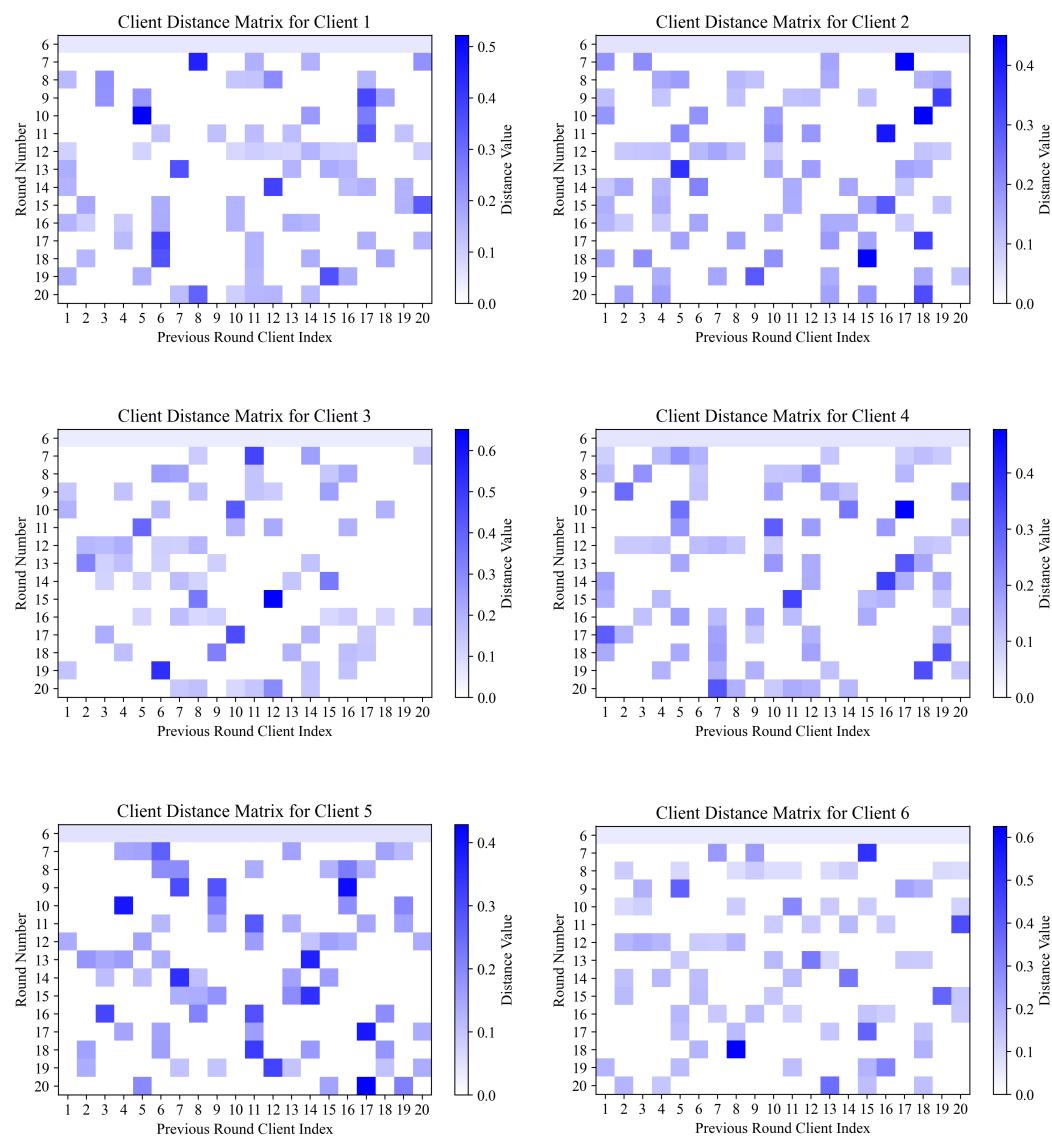
2352
2353 No content, ideas, analyses, or experimental results were generated by LLMs. All suggestions were
2354 carefully reviewed, edited, and approved by the authors before incorporation. The authors retain full
2355 responsibility for the entire content, including any errors or inaccuracies.

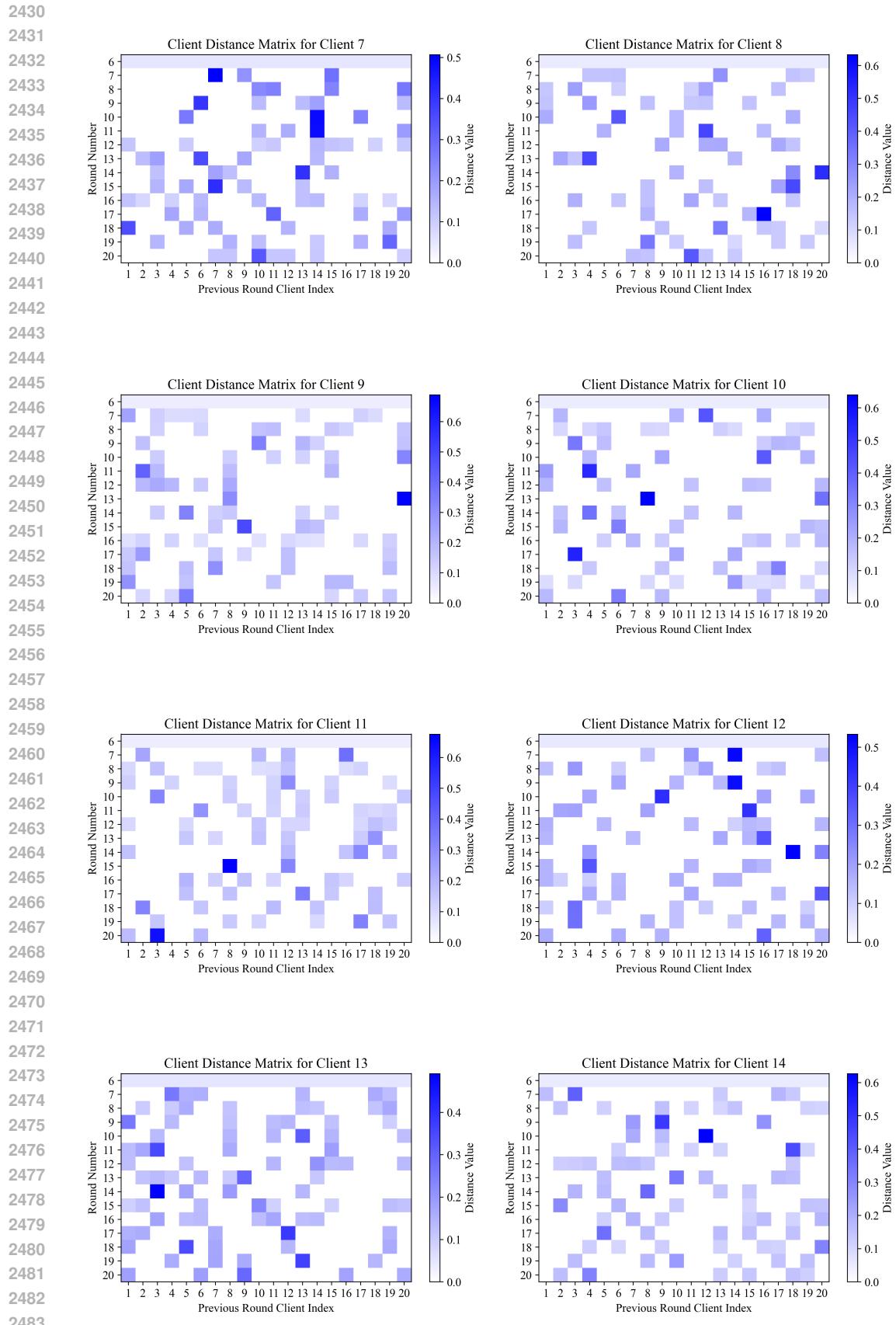
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375

2376 **H ILLUSTRATIONS OF THE DYNAMIC AGGREGATION STRATEGY**

2377

2378





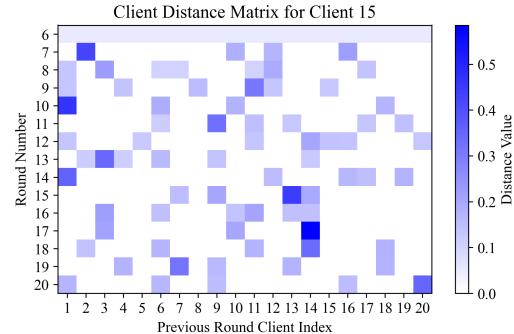
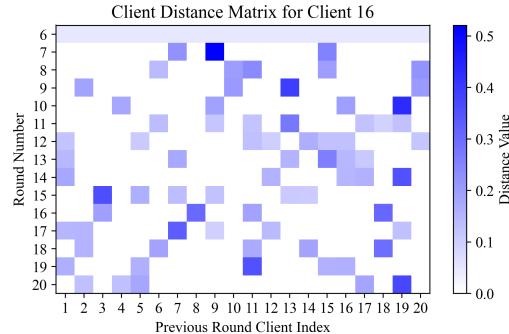
2484

2485

2486

2487

2488



2489

2490

2491

2492

2493

2494

2495

2496

2497

2498

2499

2500

2501

2502

2503

2504

2505

2506



2507

2508

2509

2510

2511

2512

2513

2514

2515

2516

2517

2518

2519

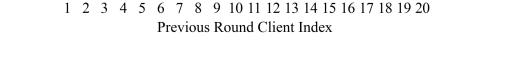
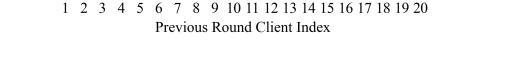
2520

2521

2522

2523

2524



2525

2526

2527

2528

2529

2530

2531

2532

2533

2534

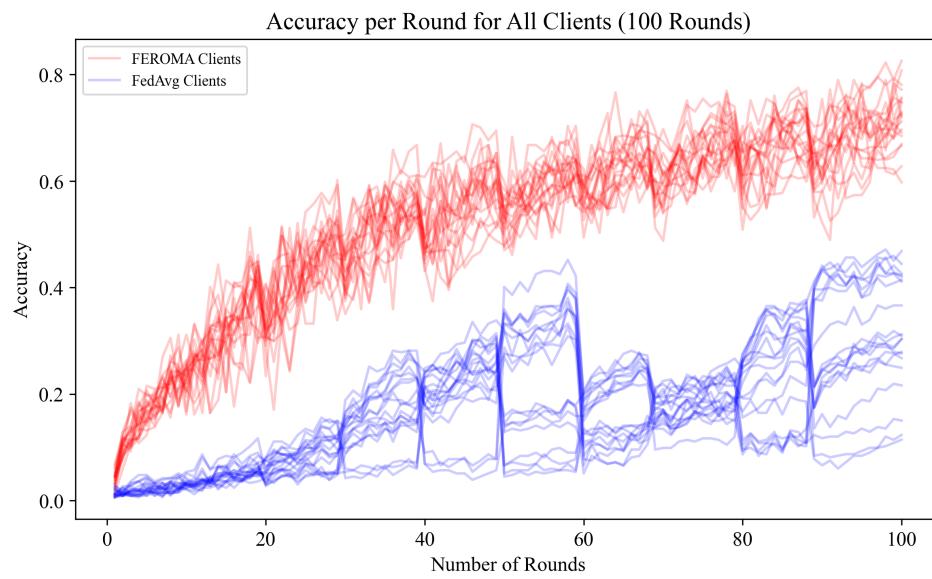
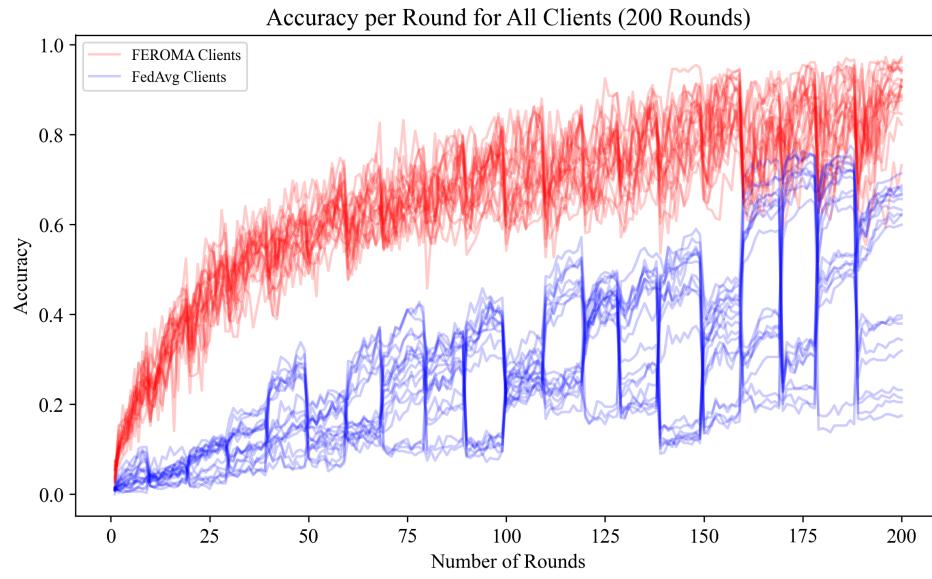
2535

2536

2537

2538
2539
2540

I EVALUATION WITH HIGHER NUMBER OF COMMUNICATION ROUNDS

2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
25562557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
25762577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591