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ABSTRACT

Language models (LMs) are pre-trained on large-scale corpora from diverse data
sources, encapsulating knowledge across various domains, with their feature spaces
often displaying clustering structures. The mixture of experts (MoE) approach is
commonly used to scale up model learning capabilities to handle such complexities;
however, the fine-grained learning dynamics at the expert level remain largely
unexplored. This work analyzes the spatial and temporal characteristics of these
clustering structures and examines their impact on the fine-grained trainability of
individual experts. Our analysis builds on the singular spectrum of the feature and
Jacobian spaces leading to two key observations. First, a few top singular vectors
from the feature matrix are sufficient to capture the layer-wise feature cluster
patterns. More interestingly, the maximum singular value of the Jacobian matrix
reveals conflicts between different feature clusters, and experts exhibit varying
levels of trainability, completing their learning asynchronously during training.
Inspired by these insights, we proposed Mixture of Cluster-guided, Trainability-
aware Experts (MO-CTE), with an efficient routing method to mitigate inter-cluster
conflicts to improve expert trainability and a simple yet effective criterion for early
stopping low-trainability experts, thus reducing total training costs. We evaluate
the proposed MO-CTE across extensive datasets and tasks. Experimental results
indicate that MO-CTE accelerates convergence by approximately 37% in test
perplexity and 30% in downstream tasks, and improves performance by 3.68%
over baselines when consuming similar computation resources.

1 INTRODUCTION

It is a prevalent practice to pre-train language models (LMs) on massive-scale, real-world corpora
collected from different sources with knowledge across diverse domains (Paeedeh et al., 2024; Wu
et al., 2021; Man et al., 2023; Xi et al., 2024). Existing research (Aharoni & Goldberg, 2020)
has already shown that such data can lead to the spontaneous emergence of clusters in the feature
space. The mixture of experts (MoE) (Fedus et al., 2021) is, therefore, a widely adopted structure
that converts dense layers into sparse mixtures of experts to attain better performance in LMs.
However, the fine-grained, expert-level learning dynamics, or trainability more precisely, remain a
less-investigated research topic (Cai et al., 2024). In this work, we investigate the detailed training
behaviors of LMs in the feature and Jacobian space to improve the expert-level trainability related to
the spatial-temporal characteristics of the cluster structure.

Without loss of generality, we start with pre-training a Transformer model (Radford et al., 2019)
on mixed datasets (McAuley et al., 2015; Komatsuzaki, 2019; Bird et al., 2008) and portray its
learning dynamics of the feature space in Figure 1. Observable clustering structures emerge a few
steps after the initial step, a phenomenon more pronounced in deep layers with better distinguishable
clustering patterns. We discover that the spatial patterns of clusters can be effectively captured in
the low-dimensional space fabricated by a few top singular vectors of the feature matrices, allowing
performing feature clustering with negligible computational overheads in this space, as is illustrated
in Figure 2(a).
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Figure 1: Visualization of feature space in layers 1, 7, and 12 at training steps 0, 4, 8, and 24
respectively. At the start of the training, there is no cluster structure, while features form distinct
cluster structures soon. Deep layers show more fine-grained clusters where smaller clusters can be
observed.

(a) (b) (c)

Figure 2: a) A small number of leading singular vectors from feature space are sufficient to fabricate
a low-dimensional space maintaining clear cluster structures. b) Evolution of layer-wise Jacobian
σ2
max. c) Variation of Jacobian σ2

max of each cluster in layer 10.

Another insight is that the temporal pattern of the maximum singular value of a sample-wise Jacobian
matrix, σ2

max, is synchronized with the changes in cluster structure and the trainability of experts.
As is discussed in Jacot et al. (2018b), Fort et al. (2020) and Shi et al. (2024), a high σ2

max
generally indicates a high level of gradient consistencies of a component, e.g., expert, and thus, its
trainability lies in an “informative” space with high learning potentials. Figure 2(b) illustrates the
variation of σ2

max in all layers, where different experts complete their learning at different times.
The cluster structures in shallow layers stabilize soon after they emerge, with a lower σ2

max and
lower trainability, while deeper layers continue to refine, with a higher σ2

max but decreases slowly.
Moreover, Figure 2(c) demonstrates that when data from different clusters is mixed during training,
these inter-cluster conflicts will lead to poorer overall trainability of experts and inefficient training.

Based on these observations, we propose the Mixture of Cluster-oriented, Trainability-aware Experts
(MO-CTE), with an efficient low-dimensional routing method that mitigates inter-cluster feature con-
flict to improve expert-level trainability and performs early-stopping on experts with low trainability
to save computation. Experimental results show that MO-CTE requires about 37% less computation
when reaching similar test loss as baseline, and 30% less computation when achieving, and even
exceeding the downstream tasks performance as baseline method, with an average improvement up to
3.68% when consuming similar computation resources. Our contributions are summarized as follows:
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• We discover that a few top singular vectors in the feature space are sufficient to capture the
spatial cluster structures in the feature space.

• We discover the Jacobian σ2
max indicates the trainability of different experts, and different

experts complete their learning at different times, and mixing cluster data leads to lower
trainability of the experts.

• Inspired by the two insights, we propose an MoE variant, namely MO-CTE, with efficient
data routing to mitigate inter-cluster conflicts to accelerate intra-cluster learning, and freeze
experts at different moments to safeguard expert-level trainability.

2 ANALYSIS

In this section, we first formalize the definition of the feature space and feature singular spectrum, to
highlight that a few singular vectors of the feature space that interpret the top-k variance are sufficient
to capture the different cluster structures. Next, we analyze the Jacobian space and Jacobian singular
spectrum, to demonstrate that the largest singular value of Jacobian space, σmax, can be regarded as
an indicator of expert trainability and cluster structure stabilization, while mixed cluster will lead to
lower overall trainability.

2.1 FEATURE SINGULAR SPECTRUM

The pre-training data for language models are often collected from various sources, containing diverse
domain corpora (Man et al., 2023; Paeedeh et al., 2024; Wu et al., 2021), and feature spaces of such
data can exhibit cluster structures (Aharoni & Goldberg, 2020). An intuitive example is shown in
Figure 1, where in the early stage of training, the cluster structure in the feature space forms quickly,
and becomes more pronounced in deeper layers. Visualization of BERT feature space is presented in
Appendix B. We aim to describe the characteristics of clusters in the feature space both spatially and
temporally, to enhance our understanding of how models learn. We first formally define the feature
space and feature singular spectrum.

Definition 1 (Feature Space) Let F(X ; Θ) denotes a model F with its parameters Θ, where X ∈
Rn×dx denotes training data and dx is the data dimension. Assume its function can be decomposed
into {f1, f2, ..., fk, ..., fL}, and parameters can be decomposed into L consecutive exclusive subsets,
namely Θ = {θ1, θ2, . . . , θL}, and zk+1 = fk(zk; θk). We thus define zl ∈ Rn×dz as feature spaces
where dz is the model’s inner dimension. the model can be represented by F(X ; Θ) = fL(zL; θL) =
fL(f...(f2(f1(x; θ1); θ2); θ...; θl).

Definition 2 (Feature Singular Spectrum) For a feature space zl, we perform Singular Value
Decomposition on the feature matrix containing features of data to get its singular values
{σzl,i}

min(n,dz)
i=1 , left singular vectors {uzl,i}ni=1, and right singular vectors {vzl,i}

dz
i=1, such that

zl =
∑min(n,dz)

i=1 σzl,iuzl,iv
⊤
zl,i

. We assume all singular values are sorted in descending order,
namely σzl,1 ≥ σzl,2 ≥ . . . σzl,k > 0. In the following paper, we use singular vectors to refer to the
right singular vectors of zl.

For Transformer-based architectures, we take a layer as the unit of parameter subset. We found that
a few leading singular vectors in the Feature Singular Spectrum can form a low-dimensional space
where clear cluster structures emerge. Specifically, we select the singular vectors that account for the
top 80% of the variance in our study, following the empirical setting in (Abdi & Williams, 2010), and
project the feature space onto this low-dimensional space. Representative results from layers 2, 9,
and 11 are shown in Figure 3, where the cluster structures are preserved.

This presents an opportunity for efficient cluster-guided MoE learning. Specifically, for different
feature clusters, we can introduce the MoE structure and assign features within the same cluster to
the same expert. This helps to mitigate inter-cluster feature conflicts and accelerates intra-cluster
feature learning, thus improving the trainability of each expert, which will be demonstrated in the next
subsection through Jacobian analysis. Recent studies on MoE models also support the idea that their
strong performance is due to their ability to assign each cluster of data to a dedicated expert (Chen
et al., 2022).
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(a) (b) (c)

Figure 3: Visualization of the feature space reprojected with the singular vectors corresponding to
top-80% variance in a) layer 2, b) layer 9, and c) layer 11. Clear cluster structure is preserved.

Moreover, since we have identified that a low-dimensional space constructed from the top singular
vectors of the feature space exhibits clear cluster structures, efficient low-dimensional computations
can be sufficient to distinguish different clusters. As a result, we can compute the cluster structures
at a negligible low cost and route them to the appropriate experts, further improving the model’s
learning efficiency and effectiveness.

2.2 JACOBIAN SINGULAR SPECTRUM

As shown in the previous section, cluster structures emerge quickly after training begins and stabilize
during the mid-to-late stages. This suggests that the model has already captured the cluster features,
at which point a strategy is needed to assess parameter trainability and halt training to conserve
computational resources.

The Jacobian is defined as the derivative of the model output concerning the model parameters,
reflecting the model’s learning directions. Following discussions in NTK-related literature (Jacot
et al., 2018b; Fort et al., 2020), we adopt the Jacobian matrix and its singular spectrum as indicators of
the parameters’ trainability. (Khrulkov & Oseledets, 2017). We formally define the Jacobian Matrix
and Jacobian Singular Spectrum as follows:

Definition 3 (Jacobian Matrix) Follow the notations in Definition 1, the j-th row in Jacobian matrix,
or Jl,i, for a specific parameter group θl is defined as:

Jl,j =
∂F(xj ; Θ)

∂θl
(1)

and Jl is the stack of flattened ∂F(xj ;Θ)
∂θl

for all xj in X .

Definition 4 (Jacobian Singular Spectrum) For a Jacobian Matrix Jl, we perform Singular Value
Decomposition on it to get its singular values {σJl,i}

min(n,dθ)
i=1 , left singular vectors {uJl,i}ni=1,

and right singular vectors {vJl,i}
dθ
i=1, such that Jl =

∑min(n,dθ)
i=1 σJl,iuJl,iv

⊤
Jl,i

, where dθ is the
dimension of the parameters. We assume all singular values are sorted in descending order, namely

σJl,1 ≥ σJl,2 ≥ . . . σJl,k > 0. We normalize the singular values as
σ2
Jl,i∑min(n,dθ)

j=1 σ2
Jl,j

.

For simplicity and clarity in the subsequent analysis, we will omit the subscript Jl, which denotes
the Jacobian matrix of parameter module l, and use σ2

max to represent the largest normalized singular
value. A larger Jacobian σ2

max indicates a more dominant learning direction for the parameters across
the data, implying they are still in an “informative” space with higher trainability. Conversely, a
smaller σ2

max suggests that no consistent or dominant learning direction is present, therefore the
module is in a “nuisance” space with low trainability.

Figures 4(a) and 4(b) show the variation of the Jacobian σ2
max in both GPT and BERT models.

According to the figures, the temporal variation of σ2
max exhibits a synchronized pattern with the

evolution of the cluster structures. Initially, σ2
max starts at a relatively high value, indicating that

all layers are in an “informative” space with high training potential, and no cluster structures are
observed. As training progresses, σ2

max drops rapidly, coinciding with the emergence of clusters.
In the subsequent stages, the cluster structures in the shallow layers stabilize, and their maximum
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(a) (b) (c)

Figure 4: a), b): Evolution of layer-wise σ2
max across training steps on a) GPT and b) BERT. Both

figures share the same legend. c) Variation of Jacobian σ2
max of each cluster in layer 10. We use the

cluster label in the late stage to calculate the cluster-wise σmax in the early stage.

singular values decrease to a low level and remain constant, suggesting that these layers have entered
a “nuisance” space and completed learning the cluster structure, indicating low trainability. However,
in deeper layers, the cluster structures continue to refine after their initial emergence, with sub-clusters
forming. Their σ2

max values show a slow downward trend, indicating that these layers remain in the
“informative” space and continue refining and specializing the cluster structure.

Further analysis of cluster-wise σ2
max supports our previous assertion that using an MoE approach

on cluster-structured feature space can enhance efficiency. Figure 4(c) illustrates the Jacobian σ2
max

values calculated for each cluster using the parameters of layer 10, where cluster labels from the later
stages are applied throughout the entire training process. This result for all layers can be referred to
in Appendix C. It is evident that the σ2

max values for each cluster drop rapidly, similar to the overall
data, but stabilize at a significantly higher level. The cluster structures for these three clusters emerge
during this stage but show little further refinement. This suggests that there is still potential for further
learning within each cluster to reveal finer sub-cluster structures. However, since these clusters are
learned using the same set of parameters, the Jacobians calculated for different clusters conflict with
one another, resulting in a smaller overall σ2

max. Although the parameters remain in the “informative”
space, it becomes difficult for them to capture fine-grained cluster features. By assigning different
experts to learn different clusters, we can mitigate these conflicts in the Jacobians and allow each
expert to focus on the specific characteristics of its assigned cluster. Moreover, our low-dimensional
clustering method can improve the efficiency of the MoE by routing data to the appropriate experts
with minimal computational cost, thereby enhancing the model’s overall efficiency.

3 MIXTURE OF CLUSTER-ORIENTED, TRAINABILITY-AWARE EXPERTS

Building on our findings, we propose the Mixture of Cluster-oriented, Trainability-aware Experts
(MO-CTE). This approach aims to achieve efficient MoE training with improved expert-level train-
ability by leveraging the singular spectra of the feature and Jacobian spaces. The MO-CTE strategy
consists of two core components: low-dimensional singularity-based routing and safeguarding
expert trainability. With efficient routing for the Mixture of Experts (MoE), changes in trainability
determine whether specific experts should be trained or frozen. The real-time behavior of the cluster
structure and the Jacobian Singular Spectrum informs these dynamic adjustments. This section details
these policies, and the proposed algorithm is outlined in Algorithm 1.

Low-dimensional Singularity-based Routing The discussion in Section 2 suggests that the feature
space exhibits cluster structures, and features from different clusters may cause conflicts in the
Jacobian when learned by the same set of parameters, leading to poorer overall trainability. To
address this, we introduce the MoE structure to mitigate inter-cluster feature conflicts and enhance
intra-cluster consistency in the features learned by each parameter group, thereby improving the
learning efficiency of language models.

Furthermore, with observations in Section 2, we distinguish such cluster structures in a low-
dimensional space fabricated by the leading singular vectors in the feature space. With this low-
dimensional space, we can achieve efficient feature clustering using very low-dimensional representa-
tion to guide the routing for MoE.
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In practice, we monitor the cluster structure in this low-dimensional space, taking DBSCAN (Ester
et al., 1996) as a clustering algorithm since it does not require an explicit number of clusters as its
parameter. Other clustering algorithms like k-Means (MacQueen, 1967) have also been effective in
our experiments. The feature matrix is transformed into a low-dimensional space with its singular
vectors that interpret 80% variances, and a clustering algorithm is conducted to discover the cluster
structure. Suppose the clustering algorithm indicates there exist k clusters. In that case, we introduce
the MoE structure with k experts and assign data points with the same cluster to the same expert. To
make the learning efficient and optimization landscape smoother, we adopt LoRA-like (Hu et al.,
2021) experts with a smaller intermediate dimension and initiate the second matrix with zeros.

Algorithm 1 Mixture of Cluster-oriented, Trainability-aware Experts

Require: t: Interval for monitoring Jacobian.
Require: α, β: Hyper-parameters for judging low trainability.

1: Initialize the Σk for each expert with its maximal Jacobian Singularity Spectrum σ2
max.

2: for every t steps do
3: for each layer in the model do
4: if cluster structure is detected in a low-dimensional space then
5: Introduce the MoE structure with a singularity-based routing for each cluster.
6: end if
7: if σ2

max,t < αΣk and
∣∣σ2

max,t − σ2
max,t−1

∣∣ < βΣk then
8: Freeze the parameters of a specific expert k.
9: end if

10: end for
11: end for

Safeguarding Expert Trainability To ensure only the high trainability experts are updating their
parameters to minimize training costs, we apply early-stop according to its Jacobian Singular
Spectrum σ2

max variation. As discussed in Section 2, a low σ2
max indicates a low level of trainability

in a “nuisance” space of possible noises and conflicts. Since the σ2
max may increase during the early

training stage, we record the maximum σ2
max of expert k observed in this period as auxiliary criteria,

denoted as Σk.

At step t during the following training phase, we continue to monitor the σ2
max,t of each given expert

k and halt parametric updates when its σ2
max,t falls below a specific threshold

σ2
max,t

Σk < α, and change

between σ2
max,t and σ2

max,t−1 falls below a certain threshold relative to Σk: |σ2
max,t−σ2

max,t−1|
Σk < β.

Where α and β are empirically defined hyper-parameters. Through experiments, we found that setting
α between 0.10 and 0.20 while β between 0.01 and 0.05 typically means a low trainability for an
expert, and the cluster structure is also stabilized.

Also, we do not perform Singular Value Decomposition on the Jacobian matrix at every single training
step to make the method efficient. Instead, we record the Jacobian Singular Spectrum σ2

max over a
preset interval. It is proven to work well in our experiments to calculate the cluster structure at every
0.5% ∼ 1.0% training step.

4 EXPERIMENTS

In this section, we present the experimental results of applying the Mixture of Cluster-oriented,
Trainability-aware Experts (MO-CTE) to models with 140M and 750M parameters. We focus on the
GPT architecture (Radford et al., 2019), using data collected from multiple sources for pre-training
and evaluating model performance on downstream tasks across various domains. Additionally, we
compare the efficacy of MO-CTE with prominent MoE methods, such as Switch Transformers (Fedus
et al., 2021).
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4.1 EXPERIMENTAL SETTINGS

Datasets We collected pre-training data from several sources, following general practices in Large
Language Model (LLM) training (Zhao et al., 2023). These sources include legal cases (Cas,
2024), medical papers (Cohan et al., 2018), computer science papers (Bird et al., 2008), Amazon
reviews (McAuley et al., 2015) and Reddit forums (Komatsuzaki, 2019), simulating a realistic training
scenario for LLMs. To evaluate model performance, we also utilize various downstream tasks. A
more detailed description of the datasets can be found in Appendix A.

Evaluation Metrics Model performance is evaluated based on two key aspects: training efficiency
and downstream task performance. For training efficiency, we compute the percentage of floating-
point operations (FLOPs) consumed by each model, which serves as a lower bound for execution
time (Justus et al., 2018). FLOPs are estimated using the approach described in (Brown et al., 2020)
and are reported as a percentage, with the baseline method set to 100%. For downstream performance,
we evaluate the models on a range of tasks, using accuracy as the primary metric.

Calculation of Feature and Jacobian Singular Spectrum Although defined on the whole dataset,
computing the feature and Jacobian singular spectrum on all data can be impractical. So, we estimate
the σ2

max by randomly sampling a small batch of data and back-propagating on the sum of the logits
rather than individual outputs. The batch size is chosen to balance computational feasibility on
different hardware, ensuring that the computed σ2

max provides a reliable approximation without
introducing significant overhead. Also, the σ2

max isn’t calculated at every single training step. To find
a balance between efficiency and evaluation precision, we calculate it at around every 0.8% data.

Implementation Details We conduct experiments with GPT-based models at two scales: 140M and
750M parameters (Radford et al., 2019). The 140M model consists of 12 decoder layers with 768
embedding dimensions, 3072 feed-forward network (FFN) dimensions, and 12 attention heads. The
750M model contains 24 decoder layers and 1536 embedding dimensions. Both our method and
the Switch Transformer (Fedus et al., 2021) have the same number of experts. The training was
performed on NVIDIA GeForce RTX 3090 GPUs for the 140M models and NVIDIA GeForce RTX
A100 GPUs for the 750M models, with batch sizes determined by model size and available memory.
We used the AdamW optimizer with peak learning rates of 4 × 10−4 for the smaller model and
1.5× 10−4 for the larger model. In both models, the intermediate dimension of added LoRA-like
experts was set to 1/4 of the original expert. For MO-CTE hyperparameters, we chose α = 0.20 and
β = 0.05. More detailed implementation details can be found in Appendix A.

task Baseline MO-CTE(sim. perf.) MO-CTE(sim. comp.) Switch
test ppl 130.56 120.87 90.68 107.33
computation 100.00% 73.27% 102.80% 100.00%
CASEHOLD 48.80 50.20 50.20 50.00
CLIM.SENT. 62.50 66.25 68.44 66.56
NETZERO 78.12 75.85 80.68 77.84
SCI-REL 54.72 54.72 54.83 54.72
RCT-20K 67.50 63.70 69.50 68.00
SCI-CITE 75.50 71.50 75.10 70.80
EUADR 76.92 78.63 76.64 75.50
GAD 62.80 65.20 63.00 63.70
MRPC 69.20 70.40 71.00 70.80
QQP 69.50 70.30 70.80 69.50
Average 66.56 66.68 68.02 66.74

• "sim. perf.": The model employed MO-CTE and achieved a similar performance to the baseline.
• "sim. comp.": The model employed MO-CTE and uses the same computational resources as the baseline.

Table 1: Results for 140M models
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4.2 RESULTS

Results of 140M Models Table 1 presents our experimental results on 140M-scale models trained
on the dataset mentioned earlier. Notably, the MO-CTE achieves a comparable test perplexity while
using only 73.27% of the computational resources compared to the baseline which reaches a test
perplexity of 130.56 with 100% of the computational resources. Both models exhibit similar perfor-
mance on downstream tasks. When further trained using approximately 100% of the computational
resources, MO-CTE surpasses the baseline in downstream task performance. Additionally, MO-CTE
outperforms the Switch Transformer with the same number of experts. These results demonstrate that
MO-CTE not only enables efficient learning from multi-source heterogeneous data but also leads to
improved learning outcomes.

Results of 750M Models Table 2 presents the results of the 750M-scale models. For the 750M-
parameter model, MO-CTE demonstrates consistent findings with those observed in the 140M
model. We achieve comparable downstream task performance while using only about 67.53% of
the computational resources, resulting in a reduction of 30% in resource usage. Notably, MO-CTE
achieves a comparable test perplexity using just 62.72% of the computational resources compared
to the baseline, resulting in a 37% reduction in resource usage. We also recorded the test loss when
models used the same computational resources, as shown in Figure 5(a). When fully trained using
the same computational resources as the baseline, MO-CTE achieves a lower test perplexity and
further improves performance on downstream tasks, with an average improvement of around 3.68%.
These experimental results indicate that MO-CTE generalizes well across both model and data scales,
demonstrating its effectiveness.

Task Baseline MO-CTE(sim. perf.) MO-CTE(sim. comp.) Switch
test ppl 70.10 65.17 44.81 50.21
computation 100.00% 67.53% 100.80% 100.00%
CASEHOLD 50.20 50.00 52.50 49.80
CLIM.SENT. 60.62 60.31 64.06 63.13
NETZERO 84.38 84.94 87.78 85.23
SCI-REL 54.72 54.72 59.03 58.32
RCT-20K 68.50 69.80 72.90 72.10
SCI-CITE 69.10 71.80 76.80 75.30
EUADR 76.35 78.06 83.19 82.91
GAD 64.30 65.00 68.50 66.10
MRPC 71.10 71.20 71.00 71.60
QQP 72.30 72.30 72.60 72.80
Average 67.16 67.81 70.84 69.73

Test PPL Baseline MO-CTE Switch (PFLOPS)
100.00 63.71 39.82 59.16
75.00 93.30 60.68 86.64
50.00 211.63 132.74 205.93

• "sim. perf.": The model employed MO-CTE and achieved a similar performance compared to the baseline.
• "sim. comp.": The model employed MO-CTE and uses the same computational resources as the baseline.

Table 2: Results for 750M models
Results of expert-level trainability We also recorded the proposed Jacobian σ2

max metric. After
introducing new experts via the expansion strategy, we tracked the changes in each expert’s σ2

max
from the moment of introduction through subsequent training steps, as shown in Figure 5(b). Since
experts are introduced at different moments and may be added to different layers, the 0 on the x-axis
represents the moment an expert is introduced, rather than implying that all experts are introduced
simultaneously. The experiments show that after the introduction of new experts, the Jacobian
σ2
max for each expert starts at a higher level, indicating better trainability compared to the baseline.

Subsequently, it quickly decreases to below the baseline, suggesting that the experts effectively
mitigate inter-cluster feature conflict and accelerate intra-cluster feature learning, thus improving the
model’s overall performance.
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(a) (b)

Figure 5: a) We recorded the test loss when models used the same computational resources. The
intervention of MO-CTE begins at an early training stage. b) The σ2

max of some experts in the
model after MO-CTE introduced them, compared with baseline. It shows that the experts show better
trainability with each cluster.

5 RELATED WORKS

Mixture of Experts The Mixture of Experts (MoE) is a key model in machine learning Jacobs et al.
(1991); Jordan & Jacobs (1994), where different experts handle distinct regions of the input space.
To enhance capacity for complex data, Eigen et al. (2013) extended MoE to deep neural networks,
proposing a deep MoE model with multiple layers of routers and experts. Shazeer et al. (2017)
improved MoE by making the gating function output sparse, significantly improving training stability
and reducing computational cost. Since then, various MoE layers Shazeer et al. (2017); Dauphin
et al. (2017); Vaswani et al. (2017) have achieved success in language tasks. MoE has also been
used to improve the training efficiency of Large Language Models (LLMs), with routing strategies
ranging from token-based selection of experts Lepikhin et al. (2021); Fedus et al. (2022); Zuo et al.
(2022); Chi et al. (2022); Dai et al. (2022); Chen et al. (2023), expert-based token selection Zhou
et al. (2022), to global expert assignment Lewis et al. (2021); Clark et al. (2022). Inspired by MoE,
we propose it can effectively address long-tail knowledge learning.

Optimization Analysis using Jacobian Spectrum. Neural Tangent Kernel (NTK) (Jacot et al.,
2018a), which calculates the kernel matrix of Jacobian, is known as a powerful tool to analyze
convergence and generalization properties (Arora et al., 2019). Many papers (Xiao et al., 2020)
study the spectrum of the NTK and find in particular the largest eigenvalue dominates the training
regime (Jacot et al., 2018a; Bowman & Montufar, 2022). Multirate training (Vlaar & Leimkuhler,
2022) is a promising technique that partitions neural network parameters into different groups, where
the "slow" group is updated less frequently. The mNTK (Shi et al., 2024) further examines fine-
grained, module-specific training dynamics and introduces a theoretically motivated method for
dynamically adjusting parameter updates based on modular NTK analysis. Additionally, techniques
aimed at reducing computational costs, such as network pruning (Lee et al., 2018; Rachwan et al.,
2022) and dynamic sparse training (Liu et al., 2020; Jiang et al., 2022), often involve disabling
parameters during both forward and backward passes.

6 CONCLUSION

In this paper, we studied the layer-wise singular spectrum in both feature space and Jacobian space of
language models to achieve a Mixture of Experts (MoE) with improved expert-level trainability. We
observed that a few singular vectors in the feature space can capture distinct spatial cluster structures,
and the temporal variation pattern of the largest singular value in the Jacobian is synchronized with
changes in cluster structure and expert trainability. Based on these observations, we proposed Mixture
of Cluster-oriented, Trainability-aware Experts (MO-CTE), which incorporates low-dimensional
cluster routing to enhance efficiency and expert-level early stopping to conserve computational
resources. Experimental results demonstrate that our approach not only improves the efficiency of
MoE learning but also surpasses the performance of baseline methods.
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A EXPERIMENT DETAILS

A.1 DATASETS

We collected pretrain data from sources of legal (Cas, 2024), medical (Cohan et al., 2018), aca-
demical (Bird et al., 2008), web reviews (McAuley et al., 2015) and general fields like Red-
dit(Openwebtext) (Komatsuzaki, 2019), to simulate the scenario in actual training where data from
different sources is gathered and randomly combined into a training dataset. Also, downstream tasks
from various domains are used to test the performance of different methods.

Table 3: Datasets used for pretraining

Pretraining dataset Description

Legal( Cas (2024)) In collaboration with Ravel Law, Harvard Law Library digi-
tized over 40 million U.S. court decisions consisting of 6.7
million cases from the last 360 years into a dataset that is
widely accessible to use.

PubMed( Cohan et al. (2018)) PubMed comprises more than 36 million citations for
biomedical literature from MEDLINE, life science journals,
and online books.

Reddit( Komatsuzaki (2019)) the OpenWebText dataset is an open-source alternative to
the WebText dataset, which was used to train OpenAI’s GPT
models. It consists of web pages curated to exclude content
that is difficult to crawl or low-quality, focusing on content
similar to that found in Reddit discussions. It is commonly
used for training large-scale language models.

ACL papers( Bird et al.
(2008))

The ACL Papers dataset contains research papers from the
proceedings of the Association for Computational Linguis-
tics (ACL). This dataset provides a wide range of natural
language processing (NLP) research papers, including their
titles, abstracts, authors, and full-text content. It is useful for
tasks such as document classification, citation analysis, and
text summarization.

Amazon Review( McAuley
et al. (2015))

The Amazon Review dataset consists of millions of product
reviews collected from Amazon. The dataset includes infor-
mation about the reviewer, review text, product ratings, and
metadata about the products. It is widely used in research on
sentiment analysis, recommendation systems, and opinion
mining.

A.2 IMPLEMENTATION DETAILS

Table 5 shows the hyperparameters used in our implementations. We use a machine with 8 NVIDIA
GeForce RTX 3090 GPUs with 24GB GPU memory and 2 NVIDIA GeForce RTX A100 GPUS
with 80GB GPU memory as our experiment platform. Pretraining costs about 30 hours on NVIDIA
GeForce RTX 3090 GPUs on and 200 hours on NVIDIA GeForce RTX A100 GPUs.
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Table 4: Datasets used for experiments

Downstream task Description

Casehold( Zheng et al.
(2021))

Case Holdings On Legal Decisions, comprising over 53,000+
multiple choice questions to identify the relevant holding of a
cited case.

GAD( Bravo et al.
(2015))

A relation extraction dataset, to decide if a gene is related to a
specific disease.

EUADR( van Mulligen
et al. (2012))

Another relation extraction dataset, to decide if a gene is related
to a specific disease.

Climate Sentiment( Bin-
gler et al. (2023))

An expert-annotated dataset in environmental fields for classifying
climate-related sentiment of climate-related paragraphs in corpo-
rate disclosures.

Netzero-reduction( Schi-
manski et al. (2023))

A dataset for detecting sentences that are either related to emission
net zero or reduction targets.

QQP( Wang et al. (2019)) The Quora Question Pairs2 dataset is a collection of question pairs
from the community question-answering website Quora.

Science-Relation( Belt-
agy et al. (2019))

A collection of 500 scientific abstracts annotated with scientific
entities, their relations, and coreference clusters.

MRPC( Wang et al.
(2019))

The Microsoft Research Paraphrase Corpus (Dolan & Brockett,
2005) is a corpus of sentence pairs automatically extracted from
online news sources, with human annotations for whether the
sentences in the pair are semantically equivalent.

Pubmed-RCT
20k(‘Dernoncourt &
Lee (2017))

The small 20K version of the Pubmed-RCT dataset by Dernon-
court et al

Science Citation( Beltagy
et al. (2019))

A dataset for classifying citation intents in academic papers.

Table 5: Hyperparameters of Models

Hyperparameters 140M GPTs 750M GPTs

attention heads 12 16
COP layers 6 24
transformer layers 12 24
Hidden dimension size 768 1536
Droupt 0.1 0.1
Attention dropout 0.1 0.1
Sequence length 256 512
Batch size 320 48
Max steps 10k 60k
Learning rate decay Cosine Cosine
α 0.20 0.20
β 0.05 0.05
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B CLUSTER STRUCTURES IN BERT

Figure 6: Visualization of feature space in layers 2, 6, and 11 at training steps 0, 6, 13 respectively.
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C CLUSTE-WISE JACOBIAN σmax IN ALL LAYERS

Figure 7: Evolution of Jacobian σmax in all layers.
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D COMPLEMENTARY ANALYSIS EXPERIMENT

(a) (b)

Figure 8: Jacobian cosine similarity(inner product) of all data points in a) layer 10, b) layer 11 at step
18.

(a) (b)

Figure 9: Fine-grained components analysis of σ2
max variation in a) attention Wk matrix and b)

FFN(MLP).

(a) (b)

Figure 10: Fine-grained components analysis of σ2
max variation in a MoE model, a) attention Wk

matrix and b) expert.
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E DATA SIMILARITY AND JACOBIAN SIMILARITY

(a) (b) (c)

(d) (e) (f)

Figure 11: Scatter figures for data’s embedding cosine-similarities to their Jacobian cosine-similarities
of layers a) 6 to f)11.
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