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Abstract
In an era of model and data proliferation in
machine learning/AI especially marked by the
rapid advancement of open-sourced technolo-
gies, there arises a critical need for standard-
ized consistent documentation. Our work ad-
dresses the information incompleteness in cur-
rent human-generated model and data cards.
We propose an automated generation approach
using Large Language Models (LLMs). Our
key contributions include the establishment of
CARDBENCH, a comprehensive dataset aggre-
gated from over 4.8k model cards and 1.4k
data cards, coupled with the development of
the CARDGEN pipeline comprising a two-step
retrieval process. Our approach exhibits en-
hanced completeness, objectivity, and faithful-
ness in generated model and data cards, a sig-
nificant step in responsible AI documentation
practices ensuring better accountability and
traceability.1

1 Introduction

The landscape of artificial intelligence (AI) has un-
dergone a profound transformation with the recent
surge in open-sourced models (Villalobos et al.,
2022; Sevilla et al., 2022) and datasets (Northcutt
et al., 2021; Sevilla et al., 2022). The trend has
been significantly accelerated by the advent of dis-
ruptive technologies such as transformers (Gruet-
zemacher and Whittlestone, 2022; Vaswani et al.,
2017). Since this proliferation of accessible mod-
els and datasets can have their applications signif-
icantly influence various aspects of society, it be-
comes increasingly important to underscore the ne-
cessity for standardized consistent documentation
to communicate their performance characteristics
accurately (Liang et al., 2022).

In this context, model cards proposed by Mitchell
et al. (2019) and data cards proposed by Pushkarna

1Our code and data is available at https://github.com/
jiarui-liu/AutomatedModelCardGeneration.
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Figure 1: Common problems with manually generated
model cards and data cards.

et al. (2022), emerge as necessary documenta-
tion tools. These cards bridge the communica-
tion gap between model/data creators and prod-
uct developers, thereby ensuring a comprehensive
understanding of the model’s/data’s capabilities
and limitations in both academic and industrial ap-
plications (Pushkarna et al., 2022; Sevilla et al.,
2022; Vaswani et al., 2017; Sevilla et al., 2022).
Model/data cards are instrumental in research, of-
fering detailed insights such as data characteristics,
sources, etc, as well as model architecture, training
procedures, and potential biases and limitations,
which accelerates development and reduces error
propagation in subsequent models (Swayamdipta
et al., 2020).

Inspired by these concepts, HuggingFace (HF) de-
veloped card specifications for models and datasets
hosted on its website. Despite the release of some
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Figure 2: Overview of the CARDGEN pipeline to generate a full model card or a full data card.

available tools to assist model card writing2, HF
leaves the decision of what to report up to devel-
opers. This raises several problems: First, this
approach relies heavily on the developers’ under-
standing and interpretation of what should be re-
ported, leading to inconsistencies and potential
omissions of critical information (Shukla et al.,
2021). Second, there is a tendency among card cre-
ators to use existing cards as templates rather than
starting from the standardized template provided
(Pushkarna et al., 2022). Such variability compro-
mises the comprehensiveness and reliability of the
cards.

With the power of state-of-the-art LLMs (Touvron
et al., 2023; Brown et al., 2020; Ouyang et al., 2022;
Jiang et al., 2023; Touvron et al., 2023), the auto-
matic generation of model and data cards presents
a method to ensure uniformity, consistency, and
thoroughness across various model/dataset docu-
mentation. To this end, we contribute the follow-
ing: (1) A novel pioneering initiative to system-
atically utilize LLMs for automatically generat-
ing model/data cards; (2) CARDBENCH, a curated
dataset that encompasses all the associated papers
and GitHub READMEs referenced in 4.8k model
cards and 1.4k data cards; (3) A novel approach
that decomposes the card generation task into mul-
tiple sub-tasks, proposing a CARDGEN pipeline
including a two-step retrieval process; (4) A novel
set of quantitative and qualitative evaluation met-
rics. We demonstrate that using our pipeline with
GPT3.5, we achieve higher scores than human gen-
erated cards on completeness, objectivity, and un-
derstandability, demonstrating the effectiveness of
the CARDGEN pipeline.

2https://huggingface.co/spaces/huggingface/
Model_Cards_Writing_Tool

2 Related Work

2.1 Accountability and Traceability for AI
Systems Through Documentation

The increasing complexity of AI systems has raised
significant concerns regarding their potential biases
and lack of transparency, which in turn poses nega-
tive implications for users and society (Jacovi et al.,
2021; Barocas and Selbst, 2016; Panch et al., 2019;
Daneshjou et al., 2021; Huang et al., 2023). This
has motivated the emergence of various documen-
tation frameworks for ML models and datasets:

Model Cards Mitchell et al. (2019) introduced
the concept of model cards as a framework for
the transparent documentation of machine learn-
ing (ML) models and provided detailed evalua-
tions across diverse demographic groups and con-
ditions. Subsequent advancements in model card
design have included advocating for the generation
of consumer labels for ML models (Seifert et al.,
2019), introducing principles for explainable mod-
els (Phillips et al., 2020), suggesting other cards as
complements to model cards (Adkins et al., 2022;
Shen et al., 2021), environmental and financial im-
pact considerations (Strubell et al., 2019), and some
toolkits that help to track and report specific infor-
mation in ML models (Arya et al., 2019; Shukla
et al., 2021).

Data Cards In the domain of ML dataset docu-
mentation, Gebru et al. (2021) pioneered the con-
cept of datasheets for datasets, followed by the
introduction of data statements for NLP data (Ben-
der and Friedman, 2018; Bender et al., 2021),
and the concept of data nutrition labels to aid
in better decision-making (Holland et al., 2020).

https://huggingface.co/spaces/huggingface/Model_Cards_Writing_Tool
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McMillan-Major et al. (2021); Hutchinson et al.
(2021) provided comprehensive data card tem-
plates. Pushkarna et al. (2022) proposed data cards
for responsible AI development. Díaz et al. (2022)
introduced CrowdWorkSheets for the transparent
documentation of crowdsourced data. Our work
builds upon the existing model and data card docu-
mentation templates released by HF.

2.2 Knowledge-Enhanced Text Generation

LLMs can be augmented with external knowledge
sources to improve their reasoning capabilities
(Lewis et al., 2020; Li et al., 2022). Retriever,
generator, and evaluator are the key components
in a standard RAG system. With the advancement
of powerful pretrained seq2seq models as gener-
ators, numerous studies have concentrated on the
evaluation performance:

RAG Text Generation Evaluation Due to vari-
ations in retrieved content, customized generation
pipelines, and user intentions, evaluating the ef-
fectiveness of LLM generated texts in a Retrieval-
Augmented Generation (RAG) system becomes
challenging (Huang et al., 2023; Mialon et al.,
2023). Traditional n-gram based metrics like
BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),
and PARENT-T (Wang et al., 2020b) are used
for assessing the overlap between generated texts
and references, but cannot fully grasp the quality
nuances of human expectations (Honovich et al.,
2021; Maynez et al., 2020). Some model-based
metrics have later been invented to better align with
human judgments without requiring supervision,
such as BERTScore (Zhang et al., 2019), Mover-
Score (Zhao et al., 2019), and BARTScore (Yuan
et al., 2021). Research has primarily focused on
factuality (Gou et al., 2023; Chen et al., 2023; Gal-
itsky, 2023; Min et al., 2023), and faithfulness (Bar-
rantes et al., 2020; Fabbri et al., 2022; Santhanam
et al., 2021; Laban et al., 2023; Durmus et al., 2020)
of generatd content. Some frameworks have been
designed to automate the assessment pipeline uti-
lizing the capabilities of LLMs (Es et al., 2023;
Pietsch et al., 2020; Liu et al., 2023; Fu et al., 2023;
Manakul et al., 2023). In this work, we present a
comprehensive evaluation of our approach using
both traditional metrics and LLM-based automatic
metrics. Additionally, we offer a detailed human
evaluation of multiple performance aspects, includ-
ing faithfulness.

3 Defining the Model/Data Card
Generation Task

3.1 Task Formulation
Denote our test set as D := {(mi,pi, gi)}Ni=1 con-
sisting of N triples, each with a human-generated
model card mi, a direct paper document pi, and
a direct GitHub README document gi. For
each question qj from the question template set
Q := {qj}Mj=1, we define a two-stage retrieve-and-
generate task f1 and f2.

The retrieval task f1 : P × G × Q → R maps
source paper and GitHub documents according to
the question to a set of retrieved chunks R.

The generation task f2 : R × Q → A maps the
retrieved chunk set and questions to a space A that
contains generated answers for all questions.

3.2 Structured Generation
Inspired by the model card design from Mitchell
et al. (2019), HF provides its guidelines about how
to fully fill out a model card.3 It suggests a detailed
disclosure of the model features and limitations
in a published model card. Following the guide-
lines, we define seven sections including 31 indi-
vidual questions for generating a complete model
card. These sections are model summary, model
details, uses, bias and risks, training details, evalua-
tion, and additional information about the proposed
model. We have made our full question template
for both model cards and data cards accessible in
Appendix A. Table 1 highlights the most important
questions for each section of the full template.

4 CARDBENCH Dataset

CARDBENCH contains 4,829 human-generated
model cards and 328 data cards with paper and
GitHub references.

4.1 Dataset Collection
Data Source and Preprocessing We identify
the model page4 and the dataset page5 on HF
as data sources. We crawl the model cards and
data cards (READMEs) associated with the 10,000
most downloaded models and datasets, respectively,
from the HF page as of October 1, 2023. For each
collected model card, we use regular expressions

3https://huggingface.co/docs/hub/
model-card-annotated

4https://huggingface.co/models
5https://huggingface.co/datasets
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https://huggingface.co/docs/hub/model-card-annotated
https://huggingface.co/models
https://huggingface.co/datasets


Question Role Prompt
Summary Project organizer Provide a 1-2 sentence summary of what the model is.
Description Project organizer Provide basic details about the model. This includes the model architecture,

training procedures, parameters, and important disclaimers.
Direct use Project organizer Explain how the model can be used without fine-tuning, post-processing, or

plugging into a pipeline. Provide a code snippet if necessary.
Bias, risks, limitations Practical Ethicist What are the known or foreseeable issues stemming from this model? These

include foreseeable harms, misunderstandings, and technical and sociotechni-
cal limitations.

Results summary Developer Summarize the model evaluation results.

Table 1: Template of the most important questions for each section. “Roles” are provided as role specifications in
Appendix Figure 8 for LLMs, and “prompts” are provided as queries.

to find all valid paper URLs and GitHub reposi-
tory URLs. We leverage the SciPDF Parser6 to
parse downloaded paper PDFs into a JSON for-
matted data structure, capturing the paper sections.
We further use the GitHub REST API7 to obtain
README files from each repository. For each col-
lected data card, we devise regular expressions to
locate all data cards with the ”Dataset Description”
section, which should contain information such
as the dataset homepage, paper link, and GitHub
repository. Then, based on the information ob-
tained from the data card, we retrieve and process
paper documents and GitHub READMEs as done
for model cards.

Evaluation Set Construction In the absence of
standardized and strict content requirements by HF,
collected model cards are mostly incomplete, and
some examples are even minimally modified copies
of existing ones. This variability undermines the
reliability of our comparative evaluation against
human-generated model cards as a reference met-
ric. In an attempt to mitigate this shortcoming, we
curate the highest quality human generated model
cards to serve as our evaluation data set. This set
comprised a select 350 examples that are rewritten
by the HF team with their unique disclaimers. Also,
for data cards, the majority of those collected are
incomplete and lack content readability. In order to
have a sufficient number of evaluation sets, we first
selected all the data cards with a “Dataset Descrip-
tion” section. We then wrote markdown matching
logic to obtain 300 examples as our evaluation set
based on the word count and the number of sec-
tions in the data cards. See Appendix B for more
details on data collection.

6https://github.com/titipata/scipdf_parser
7https://docs.github.com/en/rest?api

Split
Paper GitHub

# Sections # Words # Sections # Words

ModelCard
all 29 6810 22 2495
test 30 6674 17 1855

DataCard
all 25 5741 9 975
test 25 5784 8 816

Table 2: Statistics for direct paper documents and reposi-
tory READMEs for crawled model cards and data cards,
in terms of the average number of sections and the aver-
age number of words of documents.

4.2 Data Annotation

In our methodology for generating model cards, we
predominantly focus on the model’s design detail
itself rather than referencing external methodolo-
gies cited in human-generated model cards. It ne-
cessitates the identification of the primary paper
proposing the model, along with the direct repos-
itory reflecting model implementation. The eval-
uation set is annotated by two ML Master’s stu-
dent researchers who know HF models well and
are proficient in English. The process resulted in
294 evaluation examples having both direct paper
and repository links. Additionally, to annotate the
whole dataset, we prompt GPT-3.5-Turbo (Brown
et al., 2020) to validate direct source document
links, given the context wherein each URL is situ-
ated in the model card. We finally obtained 4,829
non-empty ones with either direct paper links or
repository links. GPT’s annotation reached 98.01%
accuracy according to human validation results on
the test set. For data cards, their primary paper link
and direct repository responsible for the dataset
is within the ’Dataset Description’ section. We
finally obtained 865 data cards with either direct
paper links or repository links. This gain resulted in
99.7% accuracy according to human validation re-
sults on the 300 data cards test set. See Appendix C
for human annotation guidelines and prompts for
GPT validation.

https://github.com/titipata/scipdf_parser
https://docs.github.com/en/rest?api


4.3 Data Statistics

We show the overall statistics in Table 2 and Ap-
pendix Table 13. We can observe that our test set,
the set of model cards rewritten by the HF team,
are more concise than other developer-written ones.
Their corresponding source documents have sim-
ilar sizes in terms of the number of sections and
words.

To explore whether our test set represents the whole
dataset well, we look into some model card fea-
tures obtained with the HF API. Appendix Figure 6
shows that test set examples are nearly uniformly
distributed compared to the overall dataset in terms
of the number of downloads, and task distributions
of models/datasets. A comparison of the test set to
the whole set is shown in Appendix Figure 5. See
Appendix D for additional dataset analyses.

5 Method: the CARDGEN Pipeline

5.1 Overview

Figure 2 shows our CARDGEN pipeline. For each
qj in Q, we first prompt LLMs to split qj into a sub-
question set. Next, we use LLMs to infer relevant
sections as potential knowledge sources, and gener-
ate pseudo answers for each sub-question leverag-
ing LLM’s own knowledge (Gao et al., 2023). The
pseudo answer is used as a query to get the set R
of relevant document chunks. We use an LLM to
generate answers for the question prepended with
highest-ranked document chunks.

5.2 Designing the Retriever

As the process of supervised retrieval necessitates
the acquisition of additional crowd-sourced anno-
tations for establishing ground truth sentences for
each query, it constitutes a substantial amount of
labor. Consequently, we choose to modify the stan-
dard RAG retrieval baselines (Lewis et al., 2020),
where source documents are ranked based on the
inner product similarity with a query question. We
develop a two-step retrieval method to improve the
retrieval precision: (1) Given all section names
of a model’s paper and README documents, we
prompt the LLM to infer the top-k most plausibly
relevant sections. (2) We query the pseudo answer
from chunks in the inferred section contents after
feeding it into an embedding model. We use the em-
bedding model jina-embeddings-v2-base-en
developed by Günther et al. (2023). This choice is
further verified in Sections 8.2 and 8.3.

5.3 Designing the Generator

For our CARDGEN pipeline, we test Claude
3 Opus (Anthropic, 2024), GPT-4-Turbo (Ope-
nAI, 2023), GPT-3.5-Turbo (Brown et al., 2020),
Llama2 70B Chat (Touvron et al., 2023), Vicuna
13B V1.5 (Zheng et al., 2024), Llama2 7B Chat
(Touvron et al., 2023), Mistral 7B Instruct
(Jiang et al., 2023) as backbone LLMs. We gener-
ate an answer tj for each question qj based on R,
and concatenate all answers in sequence to form the
final model card. To leverage the LLM’s strengths
in effectively responding to varied questions, we
assign specific roles to the LLM tailored to dif-
ferent questions, and outline its expected areas of
expertise. The pre-defined roles, such as project
organizer, sociotechnical practical ethicist, and de-
veloper, are outlined in Table 1 and Appendix A,
as noted by Raw et al. (2022). See Appendix F for
LLM inference details.

6 Baselines

We evaluate our two-step retrieval and generation
processes in CARDGEN against two baselines:

(1) One-step retrieval: By keeping all other com-
ponents of our pipeline unchanged, we reduce the
current two-step retrieval method to a one-step
pipeline by directly retrieving the top-12 chunks
from the entire paper and GitHub documents with-
out first inferring relevant paragraphs. Although
intuitively the nature of our question template set
correlates closely with the sectional structure of
papers and GitHub repositories, this baseline could
provide further support of using a paragraph-level
retriever.

(2) Retrieval only: Upon completing the two-step
retrieval and obtaining relevant chunks, the method
directly use the retrieved chunk as the final out-
put. This is used to assess the advantages of the
summary generation step over merely using the
author’s original text.

We compare our CARDGEN pipeline with these
two baselines in Section 8.2.

7 Evaluation Setup

We evaluate CARDGEN on various standard as well
as state-of-the-art metrics to measure the faithful-
ness, relevance, and other aspects of the generation
quality. Additionally, we incorporate human eval-
uation for the pipeline to address three key chal-



Metric Input Description
Factual consistency R,A How much the generated answer is supported by retrieved contexts.
Faithfulness Q,R,A How much the statements created from the question-answer pair are supported by the

retrieved context.
Answer relevance Q,A relevance score of the answer according to the given question.
Context precision Q,R How much the given context is useful in answering the question.
Context relevance Q,R Whether the question can be answered by relevant sentences extracted from the given

context.

Table 3: Illustration of the input, along with a description of standard metrics and GPT-based metrics being used.
Here Q,R,A represent the questions, retrieved texts, and generated texts, respectively.

Metric Human Claude3 Opus GPT4 GPT3.5 Llama2 70B Vicuna 13B Llama2 7B Mistral 7B
Completeness 1.92 7.28 5.99 5.24 4.76 4.24 2.50 4.07
Accuracy 6.66 6.56 6.04 4.51 3.61 3.11 1.84 3.67
Objectivity 2.03 7.16 6.33 5.23 4.72 4.25 2.12 4.16
Understandability 2.49 7.11 6.21 4.99 4.80 3.80 2.09 4.51
Reference quality 6.13 6.75 5.40 4.28 4.15 3.73 1.63 3.93

Table 4: Human evaluation results on LLM generated and human-generated model cards.

lenges that can’t be solved by automatic metrics
alone: First, there is an absence of ground truth
labels of generated model cards by CARDGEN. To
mitigate this, we have to develop specific manual
evaluations to assess performance. Second, current
model cards created by human developers are of-
ten incomplete and deviate from the recommended
template provided by HF. Third, the LLM gener-
ated model card is typically long with over 4000
words, and brings challenges to both open-source
standard evaluations with limited context size and
costly GPT-based metrics.

Standard Metrics We follow Honovich et al.
(2022) and use ROUGE (Lin, 2004), BERTScore
(Zhang et al., 2019), BARTScore (Yuan et al.,
2021), and NLI-finetuned models (Williams et al.,
2018; MacCartney and Manning, 2008) to mea-
sure the factual consistency of retrieved chunks set
R and the generated answer A. Due to the large
size of retrieved texts, we use deberta-v3-base
as the base model for BERTScore, and use
nli-deberta-v3-large as the NLI-finetuned
model scorer (Reimers and Gurevych, 2019a; He
et al., 2021). More details in Appendix H.

GPT Metrics Following Es et al. (2023), we con-
sider the measurement of faithfulness, answer rele-
vance, context precision, and context relevance us-
ing GPT4. Table 3 provides a description of these
metrics. As different combinations of inputs are
taken into consideration, these metrics are neces-
sary supplements to standard metrics. Full prompt
details are explained in Appendix H.

Human Evaluation Metrics Putting together
LLM generated cards with the human-generated
cards as a sample, we devise the following manual
evaluation metrics: completeness, accuracy, objec-
tivity, understandability, and reference quality. We
design a simple Gradio annotation interface (Abid
et al., 2019), and more details are in Appendix I.

8 Results

8.1 Performance Summary
Our human evaluation results are shown in Table 4
and automatic evaluation results are shown in Ta-
bles 5 and 6 for model cards. The only difference
for the data card generation pipeline is the substi-
tution with data card question templates. In this
subsection, we mainly answer two questions below:

Are our generated model cards better than
human-generated ones? We conduct a random
sampling of 50 model cards from the test set and
compute the average metric scores across all the
annotated samples, as shown in Table 4. GPT3.5,
GPT4, and Claude3 Opus demonstrates superior
performance over other open-sourced LLMs and
human-generated content in terms of completeness,
objectivity, and understandability. This finding
aligns with the observations presented below for
Tables 5 and 6.

Conversely, the human-generated model cards of-
ten received higher scores in accuracy and refer-
ence quality. This disparity suggests that all LLMs
exhibit some degree of hallucination for factual
content and reference links in their generation. It is



Metric Model Summary Model details Uses Bias Training details Evaluation More info All

ROUGE-L

Claude3 Opus 8.91 11.26 14.39 14.21 14.11 14.99 12.78 13.04
GPT4 8.80 9.35 15.38 18.20 17.59 19.40 9.73 13.27
GPT3.5 9.90 10.70 16.51 20.21 14.46 15.75 10.73 13.16
Llama2 70b chat 12.71 14.35 12.85 17.20 18.74 18.03 16.21 15.98
Vicuna 13b v1.5 10.78 11.35 13.54 17.10 16.06 16.75 10.29 13.12
Llama2 7b chat 11.91 12.84 13.89 15.85 14.63 16.21 13.61 14.08
Mistral 7b inst 12.19 11.01 13.02 15.07 16.79 16.23 9.47 12.70

BERTScore

Claude3 Opus 54.78 53.73 58.42 56.32 57.83 58.80 55.17 56.10
GPT4 54.06 50.44 57.81 58.81 59.50 61.24 47.48 53.96
GPT3.5 54.86 53.17 58.62 59.29 56.61 57.42 52.47 55.09
Llama2 70b chat 57.21 56.15 53.97 56.55 59.69 59.46 56.99 57.21
Vicuna 13b v1.5 55.15 52.97 54.99 57.24 57.61 58.83 52.10 54.83
Llama2 7b chat 55.76 54.51 53.93 55.48 56.30 57.13 54.72 55.26
Mistral 7b inst 55.69 52.80 54.12 53.76 57.10 57.63 49.12 53.47

BARTScore

Claude3 Opus 13.92 5.60 2.56 1.59 4.10 2.87 4.33 4.36
GPT4 9.69 7.63 1.43 1.98 4.02 4.29 6.11 5.34
GPT3.5 17.09 9.58 2.04 3.52 5.75 6.65 9.10 7.61
Llama2 70b chat 14.17 5.41 1.45 3.10 5.30 4.60 5.91 5.15
Vicuna 13b v1.5 13.53 5.67 1.90 3.76 5.63 6.81 6.77 5.90
Llama2 7b chat 14.04 3.49 2.11 3.61 4.70 3.68 4.01 4.03
Mistral 7b inst 16.52 9.65 2.00 3.55 7.00 8.75 8.31 7.90

NLI

Claude3 Opus 58.00 54.62 56.33 59.00 62.25 61.40 60.12 58.68
GPT4 61.00 52.88 53.00 56.00 64.50 65.60 62.62 59.42
GPT3.5 65.14 49.83 57.54 62.41 59.14 60.14 56.80 56.54
Llama2 70b chat 56.46 51.70 55.22 58.42 57.70 62.04 59.74 57.14
Vicuna 13b v1.5 60.20 51.40 58.05 55.10 58.29 63.33 55.00 56.31
Llama2 7b chat 56.46 50.19 54.31 57.23 57.82 62.11 56.44 55.77
Mistral 7b inst 58.67 50.36 54.25 54.59 59.06 58.91 55.17 55.02

Table 5: Factual consistency evaluation results per section on our retrieve-and-generate pipeline using ROUGE-L,
BERTScore, BARTScore, and NLI pretrained scorers.

important to note that the human-generated model
cards’ incompleteness precludes a direct compari-
son of human evaluation metrics with the metrics
used in Tables 5 and 6. Moreover, the insights
derived from Table 4 are not obtainable through
automatic metrics. We thus conclude that human
evaluation metrics are indispensable components
of our overall evaluation framework.

How does GPT3.5 perform compared with open
sourced LLMs? From Table 5, we can’t ob-
serve a uniform trend for factual consistency across
all sub-tasks. GPT3.5 outperforms open-sourced
LLMs on “Uses” and “Bias” question sets in 3 over
4 standard metrics, while Llama2 70b generates
more factual consistent answers on other sub-tasks
according to ROUGE-L and BERTScore.

According to Table 6, GPT3.5 beats other LLMs
on faithfulness and answer relevance across nearly
all sub-tasks, and shows its strong instruction-
following capabilities for question-answering.
However, we have an interesting observation that
though GPT3.5 has higher context relevance scores,
it is outperformed by Mistral 7B on context pre-
cision. A higher context relevance indicates that

the question can be better answered from the given
context, while a lower context precision means that
the context may contain other unnecessary informa-
tion for answering the question. The discrepancy
between results by these two metrics suggests that
retrieved texts from the GPT CARDGEN pipeline
are more informative but less concise. Addition-
ally, since we use LLM generated pseudo answers
as queries for similar paragraphs, pseudo answers
with more possibly unrelated contents will lead to
more irrelevant chunks from retrieval. Along with
the illustration in Appendix Figure 7, we draw the
conclusion that GPT3.5 generates pseudo answers
with potentially more unrelated details.

8.2 Baseline Results

To assess the effectiveness of CARDGEN’s retriever
and generator, we first compare it to the baseline
methods outlined in Section 6. To manage the
expenses associated with OpenAI AI calling, we
employ GPT3.5 for subsequent studies. We obtain
Krippendorff’s α (mean=0.83, std=0.14, min=0.56,
max=0.99) for the agreements on Table 6 by GPT4
and GPT3.5 to validate our evaluation model sub-
stitution (Castro, 2017).



Metric Model Summary Description Direct use Bias, risks, limitation Results summary

Faithfulness

Claude3 Opus 74.97 49.77 78.23 71.28 84.89
GPT4 68.87 85.58 62.99 64.20 86.44
GPT3.5 71.23 83.21 48.71 55.17 82.99
Llama2 70b chat 70.03 76.39 43.20 32.14 63.87
Vicuna 13b v1.5 78.46 81.74 45.94 46.64 78.22
Llama2 7b chat 72.41 71.35 48.43 44.23 65.56
Mistral 7b inst 76.75 75.03 38.28 41.77 73.61

Answer relevance

Claude3 Opus 90.42 91.10 89.12 91.39 93.15
GPT4 90.83 93.12 89.69 92.03 91.36
GPT3.5 91.18 93.26 90.70 93.75 93.24
Llama2 70b chat 90.76 92.27 91.25 92.23 91.63
Vicuna 13b v1.5 89.00 91.22 90.17 92.99 90.38
Llama2 7b chat 90.44 90.95 92.55 92.69 92.81
Mistral 7b inst 90.46 91.77 90.36 91.56 90.43

Context precision

Claude3 Opus 33.25 51.73 26.17 20.99 42.58
GPT4 35.01 51.25 29.29 22.76 40.23
GPT3.5 29.07 51.80 25.71 18.77 37.88
Llama2 70b chat 21.05 50.00 25.35 20.03 40.82
Vicuna 13b v1.5 24.91 51.22 24.00 8.93 39.00
Llama2 7b chat 32.46 50.79 25.52 14.27 40.04
Mistral 7b inst 31.10 52.22 28.45 21.36 44.45

Context relevance

Claude3 Opus 13.32 48.82 28.90 21.32 23.01
GPT4 12.86 52.39 26.63 18.89 23.47
GPT3.5 13.27 51.03 29.82 18.97 26.44
Llama2 70b chat 13.32 49.62 27.22 18.37 24.31
Vicuna 13b v1.5 13.83 51.32 27.00 14.03 23.08
Llama2 7b chat 13.87 50.78 28.07 17.57 26.23
Mistral 7b inst 13.22 47.05 28.40 18.75 23.52

Table 6: GPT4 evaluation results on five most important questions based on faithfulness (Faith), answer relevance
(AR), context precision (CP), and context relevance (CR).

Model Method CP CR

GPT3.5
One-step retrieval 44.03 27.82
CARDGEN 44.67(+0.64) 28.24+0.42)

Llama2 70B
One-step retrieval 42.94 28.10
CARDGEN 44.03(+1.09) 28.83(+0.73)

Llama2 7B
One-step retrieval 43.47 27.35
CARDGEN 41.91(-1.56) 28.00(+0.65)

Mistral 7B
One-step retrieval 43.75 27.80
CARDGEN 45.24(+1.49) 27.97(+0.17)

Table 7: GPT3.5 evaluation results of the one-step re-
trieval baseline and CARDGEN in terms of context pre-
cision and context relevance.

One-step retrieval Since the change is only in
the retrieval process in comparison to CARDGEN,
we focus exclusively on context precision and con-
text relevance as metrics. These metrics evaluate
the quality of the retrieved text ri in response to a
given question qi. We evaluate across four LLMs,
and report results based on the averaged score of
the most important questions. According to Table 7,
the two-step retrieval process achieves marginally
yet consistently higher scores than the one-step re-
trieval across nearly all models. These findings
indicate that a paragraph-level retrieval model con-
stitutes a more appropriate method for this study.

Model Method AR Understandability

GPT3.5
Retrieval only 81.28 5.60%
CARDGEN 90.84(+9.56) 94.40%

Llama2 70B
Retrieval only 81.61 1.60%
CARDGEN 90.32(+8.71) 98.40%

Llama2 7B
Retrieval only 81.32 4.40%
CARDGEN 90.78(+9.46) 95.60%

Mistral 7B
Retrieval only 81.49 2.40%
CARDGEN 89.83(+8.34) 97.60%

Table 8: GPT3.5 evaluation results of the retrieval-only
baseline and CARDGEN in terms of answer relevance
and understandability. Full results including assess-
ments of brevity can be found in Appendix Table 15.

Retrieval only Following the same evaluation
setup as above, we consider answer relevance of
generated text gi according to a given question qi.
To further compare which method produces more
understandable and concise outputs, we also in-
corporate understandability and brevity into our
evaluation as GPT metrics for pairwise comparison
(Liusie et al., 2024; Fu et al., 2023). As illustrated
in Table 8, CARDGEN significantly outperforms
the retrieval-only baseline across all metrics, high-
lighting the importance of the generation step in
summarizing and restating sentences from source



Metric Model Summary Description Direct use Bias, risks, limitation Results summary

NLI GPT3.5 65.14(+2.14) 51.53(+0.53) 50.51(+0.51) 64.12(+1.12) 58.50(+0.50)
w/o pseudo 63.00 51.00 50.00 63.00 58.00

Faith GPT3.5 81.93(+6.75) 79.30(+4.30) 41.23(+0.62) 46.42(-2.53) 72.66(+1.21)
w/o pseudo 75.18 75.00 40.61 48.95 71.45

AR GPT3.5 86.94(+0.06) 89.56(-0.65) 88.95(+0.78) 93.55(+0.40) 95.20(+0.02)
w/o pseudo 86.88 90.21 88.17 93.15 95.18

CP GPT3.5 47.53(+7.49) 19.61(+1.01) 13.44(+3.20) 13.03(-0.26) 64.15(+0.24)
w/o pseudo 40.04 18.60 10.24 13.29 63.91

CR GPT3.5 11.85(+2.32) 23.24(-2.21) 8.70(+1.19) 4.35(+0.69) 24.04(+5.79)
w/o pseudo 9.53 25.45 7.51 3.66 18.25

Faith GPT3.5 81.93(+8.09) 79.30(+15.31) 41.23(+26.62) 46.42(+22.14) 72.66(+25.16)
Llama2 70B 73.84 63.99 14.61 24.28 47.50

AR GPT3.5 86.94(-1.56) 89.56(+0.63) 88.95(+6.58) 93.55(+9.53) 95.20(+7.21)
Llama2 70B 88.50 88.93 82.37 84.02 87.99

Table 9: GPT3.5 evaluation results on five most important questions for pseudo answer chain ablation in top five
rows and generation chain ablation in bottom two rows. For the generation chain ablation, we keep all previous
chains unchanged with GPT-3.5-turbo as the backbone, and only vary the choice of LLMs for the final generation
chain, including GPT-3.5-turbo and Llama2-70B-Chat-HF.

documents to enhance their understandability and
conciseness. Further details are in Appendix J.

8.3 Ablation Study

We also conducted the following ablation studies
and explored model architecture variations to fur-
ther validate CARDGEN’s components: (1) Re-
move the pseudo answer chain and use original
questions for embedding similarity matching. (2)
Vary the final generation chain only with different
LLMs, and maintain all preceding reasoning chains
as generated by GPT3.5. (3) Employ different em-
bedding models for dense retrieval.

Pseudo Answer Chain We compare the GPT
evaluation scores and factual consistency using
NLI of CARDGEN + GPT3.5 pipeline with or with-
out the pseudo answer chain, as illustrated in Ta-
ble 9. CARDGEN with the pseudo answer chain
outperforms the other across nearly all important
questions and metrics being tested. Our results
demonstrate the necessity of the pseudo answer
chain in our pipeline. Some lower scores may be
because of more unrelated texts from the generated
pseudo answers for specific questions.

Generation Chain In bottom two rows of Ta-
ble 9, we show the comparison results by only
substituting GPT3.5 in the generation chain with
Llama2 70B based on faithfulness and answer rele-
vance. Context precision and context relevance are
the same since retrieved texts remain unchanged.
We observe a large drop for the faithfulness score

and a moderate drop for the answer relevance score,
indicating the stronger instruction following capa-
bility of GPT3.5 in the generation stage compared
to Llama2 70B.

Embedding Models We compare the embed-
ding model jina-embeddings-v2-base-en that
we use with two other commonly used sen-
tence transformer models: all-MiniLM-L6-v2
and all-mpnet-base-v2 (Günther et al., 2023;
Wang et al., 2020a; Reimers and Gurevych, 2019b,
2020). We justify our choice of embedding models
in Appendix Figure 12, where CARDGEN with
jina-embeddings-v2-base-en performs better
than others according to all three metrics related to
the retrieved texts.

8.4 LLM Generated Model Card Statistics

Appendix G provides related statistics. Compared
with statistics in Table 13, LLM generates longer
and more informative than human.

9 Conclusion

In this study, we introduce a novel task focused
on the automatic generation of model cards and
data cards. This task is facilitated by the creation
of the CARDBENCH dataset, and the development
of the CARDGEN pipeline leveraging state-of-the-
art LLMs. The system is designed to assist in the
generation of understandable, comprehensive, and
consistent models and data cards, thereby providing
a valuable contribution to the field of responsible
AI.



Limitations

One limitation of our method is that, despite the
adoption of the RAG pipeline and explicit instruc-
tions for LLMs to adhere closely to the retrieved
text, there remains the potential for hallucinations
in the generated text. To mitigate this, future work
may integrate specific strategies into our CARD-
GEN pipeline for hallucination reduction by care-
fully balancing generation speed with quality.

Our current approach employs a single-step gen-
eration process and a two-step retrieval process
that first infers relevant section contents. Future
work could incorporate more advanced chain-of-
thought prompting techniques and compare with
our CARDGEN pipeline. For complex questions re-
quiring multistep reasoning, after decomposed into
manageable sub-questions, we can address each
sub-question through multiple reasoning steps, as
suggested by recent research (Yao et al., 2022; Khot
et al., 2022; Press et al., 2022; He et al., 2022).
Additionally, an iterative retrieval-generation col-
laborative framework can also be used to refine re-
sponses in each iteration based on newly retrieved
contexts, following recent advancements in itera-
tive retrieval and generation frameworks for com-
plex tasks (Shao et al., 2023; Feng et al., 2023).

Ethical Considerations

This work aims to provide insights about the au-
tomatic generation of model cards and data cards.
Such an endeavor is instrumental in promoting ac-
countability and traceability among developers as
they document their models. The dataset for this re-
search was collected using public REST APIs from
HF Hub, Arxiv, and GitHub. We ensured that only
open-source model cards, data cards, and their as-
sociated source documents were collected, strictly
adhering to the stipulations of their respective li-
censes for research purposes, so there were no user
privacy concerns in the dataset. Our dataset and
method should only be used for research purpose.

On the other hand, while the questions we pose to
LLMs are technical and specific, there remains a
risk of receiving biased responses, particularly for
certain queries. For instance, the question about
model limitations might yield biased answers, as
source papers and GitHub READMEs could con-
tain overstated claims about their models. Conse-
quently, our generated model cards could contain
these statements as well if the source texts contain-

ing them are retrieved.

To mitigate this, one reasonable approach is to in-
sert a step after retrieval to filter out or neutralize
overstatements. Additionally, we can explicitly
prompt LLMs to account for such biases during
the generation stage. Another concern is the po-
tential for content homogeneity when using LLMs
for model card generation. Excessive reliance on
templates could limit model card creators’ potential
to discuss new issues not covered in the original
papers or GitHub repositories (Nakadai et al., 2023;
Acion et al., 2023).

Moreover, one aspect of our approach is that we
use direct prompts to LLMs rather than fine-tuning
them on human-generated model cards, which can
also exhibit biases from the internal of LLMs, such
as overstatements on well-known models or omis-
sions of potential risks. In our analysis of 2495
human-written model cards in our dataset, only
30.54% mention “weakness(es)” or “limitation(s)”,
and 15.23% mention “bias(es)”. If future study can
collect more fairly-written human-generated model
cards, they can also be used to finetune LLMs for
better performance on this task.
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A Question Templates

Tables 10 and 11 shows full question templates of
model cards and data cards. We have 31 questions
in total for generating model cards, and 21 ques-
tions for generating data cards. We create these
questions based on the template provided by HF,8

and include necessary requirements.

B Dataset Collection Details

For the model card evaluation set selection, we
select all 350 examples that are rewritten by the
HF team with their unique disclaimers, as shown
in Figure 3.

Figure 3: bert-base-uncased (Devlin et al., 2018) as
a current model card example with a unique disclaimer
sentence, indicating a modification by the HF team.

C Dataset Annotation Details

Human Annotation Guidelines To evaluate pa-
per links and direct GitHub links on the model
card evaluation set, we require the annotators to go
through each current model card and provide all
possible paper links and GitHub links to annotators.
They are asked to select the direct paper link and
GitHub link from all candidate links, by looking
at their positions of occurrences in the model card
example. If no direct links of either sources can be
determined, they need to label this model card as
“Invalid”.

GPT Annotation Details We show our two-shot
prompts for asking GPT-3.5-turbo to select di-
rect paper links in Figure 4. Direct GitHub link
selection is prompted similarly.

8https://github.com/huggingface/huggingface_
hub/tree/main/src/huggingface_hub/templates

You are a helpful assistant.

Descriptions about the model {model} that might contain its paper links are 
enclosed by ``` below:
```
<contexts_including_link1>\n<contexts_including_link2>\n…
```

Here are candidate paper link references from the passage above: <link1>, 
<link2>, …
Which paper should be the direct one that introduces the model? If none of 
the papers are the direct reference to the model, please answer "None".

The direct paper link is <direct_link>.

Figure 4: Prompts for calling GPT3.5 to select direct
paper links. We prepend one positive example and one
negative example to the message list to improve its in-
ference quality.

LLM # words # sentences # links
GPT3.5 4023.88 215.17 4.18
Llama2 70B Chat 6210.32 323.56 4.55
Llama2 7B Chat 5548.50 302.73 1.44
Mistral 7B Inst 4126.07 202.16 2.65

Table 12: Statistics about whole generated model cards

D Dataset Analysis

We provide the number of card examples with di-
rect paper links in their human-generated cards,
with direct GitHub repository links, and with both
links in Table 13. We also provide additional fig-
ures about the dataset task taxonomy in ????. The
taxonomy is obtained using the REST API of HF
Hub.

Split Measure # w/ papers # w/ repos # w/ both

ModelCard
all

# samples 5689 4829 2485
# words 1064 948 1134

test
# samples 344 299 294
# words 668 710 711

DataCard
all

# samples 660 533 328
# words 1394 1104 1416

test
# samples 86 71 50
# words 1003 1290 1155

Table 13: Statistics for crawled model cards and data
cards, including the number of examples with direct
paper links or direct github links or both, and the average
number of words in each category.

E Retriever Details

We use FAISS as our embedding store database
(Johnson et al., 2019). We fix the chunk size as
512 and the chunk overlap as 64. After retrieving
relevant sections, we choose to obtain 8 chunks
from these sections, together with 4 other chunks
from other sections to reduce the bias propagation.

https://github.com/huggingface/huggingface_hub/tree/main/src/huggingface_hub/templates
https://github.com/huggingface/huggingface_hub/tree/main/src/huggingface_hub/templates


Question Role Prompt
Summary Project organizer Provide a 1-2 sentence summary of what the model is.
Description Project organizer Provide basic details about the model. This includes the model architecture,

training procedures, parameters, and important disclaimers.
Funded by Project organizer List the people or organizations that fund this project of the model.
Shared by Developer Who are the contributors that made the model available online as a GitHub

repo?
Model type Project organizer Summarize the type of the model in terms of the training method, machine

learning type, and modality in one sentence.
Language Project organizer Summarize what natural human language the model uses or processes in one

sentence.
License Project organizer Provide the name and link to the license being used for the model.
Finetuned from Project organizer If the model is fine-tuned from another model, provide the name and link to

that base model.
Demo sources Project organizer Provide the link to the demo of the model.
Direct use Project organizer Explain how the model can be used without fine-tuning, post-processing, or

plugging into a pipeline. Provide a code snippet if necessary
Downstream use Project organizer Explain how this model can be used when fine-tuned for a task or when

plugged into a larger ecosystem or app. Provide a code snippet if necessary
Out of scope use Sociotechnic How the model may foreseeably be misused and address what users ought

not do with the model.
Bias risks limitations Sociotechnic What are the known or foreseeable issues stemming from this model? These

include foreseeable harms, misunderstandings, and technical and sociotechni-
cal limitations.

Bias recommendations Sociotechnic What are recommendations with respect to the foreseeable issues about the
model?

Training data Developer Write 1-2 sentences on what the training data of the model is. Links to
documentation related to data pre-processing or additional filtering may go
here as well as in More Information.

Preprocessing Developer Provide detail tokenization, resizing/rewriting (depending on the modality),
etc. about the preprocessing for the data of the model.

Training regime Developer Provide detail training hyperparameters when training the model.
Speeds sizes times Developer Provide detail throughput, start or end time, checkpoint sizes, etc. about the

model.
Testing data Developer Provide benchmarks or datasets that the model evaluates on.
Testing factors Sociotechnic What are the foreseeable characteristics that will influence how the model

behaves? This includes domain and context, as well as population subgroups.
Evaluation should ideally be disaggregated across factors in order to uncover
disparities in performance.

Testing metrics Developer What metrics will be used for evaluation in light of tradeoffs between different
errors about the model?

Results Developer Provide evaluation results of the model based on the Factors and Metrics.
Results summary Developer Summarize the evaluation results about the model.
Model examination Developer This is an experimental section some developers are beginning to add, where

work on explainability/interpretability may go about the model.
Hardware Developer Provide the hardware type that the model is trained on.
Software Developer Provide the software type that the model is trained on.
Hours used Developer Provide the amount of time used to train the model.
Cloud provider Developer Provide the cloud provider that the model is trained on.
Co2 emitted Developer Provide the amount of carbon emitted when training the model.
Model specs Developer Provide the model architecture and objective about the model.
Compute infrastructure Developer Provide the compute infrastructure about the model.

Table 10: Template of the all questions necessary for generating a whole model card.

F Generator Details

Open-sourced LLMs are inferenced through vllm
Kwon et al. (2023). Llama2-70B-Chat-HF is run
on 4 A6000s. Two 7B models are run on 1 A6000.
We fix temperature to 0 to ensure a stable gener-
ation quality. We show our prompt description
of different roles in Table 14, and the generation
prompt in Figure 8.

G LLM Generated Model Card Statistics

Statistics about LLM generated model cards are
shown in Tables 12 and 16 to 18.

H Metric Details

For standard metrics, we use the list of re-
trieved texts together with the generated answer
as inputs. We normalize all these scores to
be in the [0,1] range. Since the output of



Task taxonomy for models in model cards
text-generation
text-to-image
None
image-classification
text-classification
fill-mask
text2text-generation
feature-extraction
token-classification
translation
sentence-similarity
automatic-speech-recognition
question-answering
object-detection
conversational
summarization
image-segmentation
image-to-text
zero-shot-image-classification
...

Task taxonomy for datasets in dataset cards
text-classification
text-generation
None
token-classification
translation
fill-mask
summarization
text2text-generation
automatic-speech-recognition
text-retrieval
other
conversational
tabular-classification
image-classification
object-detection
multiple-choice
image-to-text
text-to-image
audio-classification
...

Figure 5: The task taxonomy of models in the model cards dataset (left), and the task taxonomy of datasets in the
dataset cards dataset (right), with the inner circle as the test set, and the outer circle as the whole set.
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Figure 6: Distribution of the amount of downloads for
the whole dataset and the test set. Test set examples
distribute quite uniformly.

nli-deberta-v3-large is in {“contradiction”,
“entailment”, “neutral”}, we map these outputs
to {0, 0.5, 1}, respectively to maintain a percent-
age scale. We use the implementation of ROUGE
score by HF. We use official implementations for
BERTScore and BARTScore.

For GPT metrics, we use GPT-4-1106-preview
as evaluators for the main results, and use
GPT-3.5-turbo for ablation studies.

I Human Annotation Details

We give two annotators the same set of examples
each with seven model cards generated by LLMs
and one written by human. For each model ex-
ample for which LLMs generate model cards, we
provide annotators with the model name, the corre-
sponding paper link, GitHub link, and a collection
of model cards created by humans or LLMs, as il-
lustrated in Figure 9. We also provide the question
template set in Table 10, along with the following
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Figure 7: Distribution comparison of pseudo answer
length generated by GPT3.5 and Mistral 7B Instruct.

instructions:

Annotators are asked to rank the model cards based
on five criteria: completeness, accuracy, objectiv-
ity, understandability, and reference quality. The
ranking is asked to consider the summation of the
binary classification score of whether each question
from the model card’s question template is satis-
factorily answered according to the specific metric.
The final score reported in Table 4 is calculated
by simply subtracting the rank from (1 + the total
number of candidates). Further, we define each
metric as follows:

• Completeness: Does the model card com-
prehensively cover essential aspects such as
model summary, description, intended uses,
evaluation results, and information about bi-
ases or limitations?

• Accuracy: Are answers to all the questions in
the model card consistent and accurate com-



You are a helpful assistant.

{role_specification}Below is the reference to refer to and the question you need to answer for the dataset {model} that 
you have worked on:
References:
```
{reference}
```

Question:
```
{query}
```

Please refer to the above contents of "References" as the knowledge source to answer the question about your dataset 
{model}. If you don't know the answer for a specific part, you should just say "[More Information Needed]". You can write 
code only if you find a direct code block reference from above, otherwise just output "[More Information Needed]". Your 
answer should be easy to read and succinct.

<answer>

Figure 8: Our generation prompt templates.

pared to the details provided in the model’s
official paper and GitHub READMEs?

• Objectivity: Does the model card present a
balanced perspective of the model, recogniz-
ing both its strengths and weaknesses?

• Understandability: Is the information in the
model card clear and easily understandable for
both technical and non-technical audiences?
Are complex technical concepts explained in
a manner that can be easily grasped by users
without in-depth technical knowledge?

• Reference Quality: Does the model card in-
clude necessary citations and references to re-
lated papers and links? Do all provided links
redirect correctly to their intended URLs?

In cases where the summation scores for a question
are tied for multiple models, we allow annotators
the discretion to rank based on the quality of an-
swers to the most important questions, including
model summary, description, intended uses, evalu-
ation results, and information about biases or limi-
tations.

We calculate the Krippendorff’s α among the re-
sults of two annotators, and got mean=0.68 and
std=0.29 for the agreement level. We report av-
eraged ranking scores in Table 4. Note that we
don’t have direct comparison across human eval-
uation metrics vs. automatic metrics, since our
human metrics evaluate on a whole model card,

while automatic metrics take each (Q,R,A) tuple
for evaluation and they have different scales. We
need to implement human metrics in this way to
supplement the limited scope of automatic metrics’
focus.

J Retrieval Only Baseline Details

Following Fu et al. (2023), we prompt GPT3.5 to
assess the understandability and brevity of gener-
ated texts according to input questions. Since there
are only two methods to evaluate: retrieval-only
and CARDGEN, we use the comparative assess-
ment proposed by Liusie et al. (2024), to compare
these two candidates in a pairwise manner. The
definition of understandability is the same as in the
human annotation. Figures 10 and 11 shows the
prompt templates we use to generate comparative
results. The order of two candidates in the prompt
is randomly shuffled to avoid positional bias. We
report the ratio of one method better than another
for understandability in Table 8. Full results includ-
ing brevity are reported in Table 15.

K Pseudo Answer Ablation Study
Analyses

We show the distribution of pseudo answer length
generated by GPT3.5 and Mistral 7B Instruct in
Figure 7.



Figure 9: The human annotation interface built by gradio with an example of model
bert-large-cased-whole-word-masking (Abid et al., 2019; Devlin et al., 2018). The information that
a model card is written by whom is hidden, and orders of five model cards shown at each time are randomly shuffled
to avoid positional bias.

L Generation Only Ablation Study
Analyses



Figure 10: Prompt template to compare CARDGEN’s understandability to the retrieval-only baseline.

Figure 11: Prompt template to compare CARDGEN’s understandability to the retrieval-only baseline.



Question Role Prompt
Description Data manager Provide the homepage link for the dataset, just give me a link please.
Leaderboard Data manager Provide the Leaderboard link for the dataset.
Pointofcontact Data manager Provide the Point of Contact for the dataset.
Summary Data manager Provide basic details about the dataset. Briefly summarize the dataset,

its intended use and the supported tasks. Give an overview of how
and why the dataset was created. The summary should explicitly
describe the domain, topic, or genre covered.

Supported tasks and leaderboards Data analyst Describe the tasks and leaderboards supported by the dataset. Include
task description, metrics, suggested models, and leaderboard details.

Languages Data analyst Provide an overview of the languages represented in the dataset,
including details like language type, script, and region. Include BCP-
47 codes if available.

Data instances Data scientist Provide a JSON-formatted example of a typical instance in the dataset
with a brief description. Include a link to more examples if available.
Describe any relationships between data points.

Data fields Data architect List and describe the fields in the dataset, including their data type,
usage in tasks, and attributes like span indices. Mention if the dataset
contains example IDs and their inherent meaning.

Data splits Data manager Describe the data splits in the dataset. Include details such as the
number of splits, any criteria used for splitting the data, differences
between the splits, and the sizes of each split. Provide descriptive
statistics for the features where appropriate, for example, average
sentence length for each split.

Curation rationale Data manager What need or purpose motivated the creation of this dataset? Describe
the underlying reasons and major choices involved in its assembly.
Explain the significance of the dataset in its field and any specific
gaps or demands it aims to address.

Source data Data manager Describe the source data used for this dataset. Describe the data
collection process. Describe any criteria for data selection or filtering.
List any key words or search terms used. If possible, include runtime
information for the collection process.

Source language producers Data manager Clarifying the human or machine origin of the dataset. Avoiding
assumptions about the identity or demographics of the data creators.
Providing information about the people represented in the data, with
references where applicable.

Annotations Data manager Describe the annotation process to the dataset. Detail the annotation
process and tools used, or note if none were applied. Specify the
volume of data annotated.

Annotators Data manager Describe the annotator of the dataset. For annotations in the dataset,
state their human or machine-generated nature. Describe the creators
of the annotations, their selection process, and any self-reported
demographic information.

Personal and sensitive information Data manager Categorize how identity data, such as gender referencing Larson
(2017), is sourced and used in the dataset. Indicate if the data in-
cludes sensitive information or can identify individuals. Describe any
anonymization methods applied.

Social impact of dataset Data manager Explore the dataset’s social impacts: its role in advancing technol-
ogy and enhancing quality of life. Consider negative effects like
decision-making opacity and reinforcing biases. Check if it includes
low-resource or under-represented languages. Assess its impact on
underserved communities.

Discussion of biases Data manager When constructing datasets, especially those including text-based
content like Wikipedia articles, biases may be present. If there have
been analyses to quantify these biases, it’s important to summarize
these studies and note any measures taken to mitigate the biases.

Other known limitation Data analyst Outline and cite any known limitations of the dataset, such as annota-
tion artifacts, in your studies.

Dataset curators Data manager List the people involved in collecting the dataset and their affiliations.
If known, include information about funding sources for the dataset.
This should encompass individuals, organizations, and any collabora-
tive efforts involved in the dataset creation.

Licensing information Legal advisor Provide the license and link to the license webpage if available for
the dataset.

Contributions Data manager Write in 1-2 sentence about the contributers for the dataset.
Mention the GitHub username and provide their GitHub pro-
file link. You should follows the format: Thanks to [@github-
username](https://github.com/<github-username>) for adding this
dataset.

Table 11: Template of the all questions necessary for generating a whole data card.



Card Role Description

ModelCard
Developer who writes the code and runs training
Sociotechnic who is skilled at analyzing the interaction of technology and society long-term (this

includes lawyers, ethicists, sociologists, or rights advocates)
Project organizer who understands the overall scope and reach of the model and can roughly fill out each

part of the card, and who serves as a contact person for model card updates

DataCard
Data curator who collects and organizes the data
Data analyst who is skilled at understanding and documenting dataset characteristics and biases
Data manager who oversees dataset versioning, availability, and usage guidelines

Table 14: Our prompts for different roles in answering specific questions.

Model Method # Words AR Understandability Brevity

GPT3.5
Retrieval only 613.95 81.28 5.60% 1.60%
CARDGEN 200.74 90.84(+9.56) 94.40% 98.40%

Llama2 70B
Retrieval only 645.91 81.61 1.60% 3.20%
CARDGEN 230.42 90.32(+8.71) 98.40% 96.80%

Llama2 7B
Retrieval only 603.45 81.32 4.40% 2.80%
CARDGEN 203.70 90.78(+9.46) 95.60% 97.20%

Mistral 7B
Retrieval only 590.35 81.49 2.40% 2.40%
CARDGEN 189.11 89.83(+8.34) 97.60% 97.60%

Table 15: GPT3.5 evaluation results of the retrieval-only baseline and CARDGEN on word numbers, answer
relevance, understandability, brevity.
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Figure 12: Comparison of three embedding models on
context precision, context relevance, and faithfulness.

Question GPT3.5 Llama2 70B Llama2 7B Mistral 7B
Summary 53.91 89.40 71.93 63.61
Description 275.47 276.50 187.40 264.11
Funded by 78.29 96.10 91.97 31.15
Shared by 33.41 108.62 57.94 43.69
Model type 46.11 115.77 67.69 56.07
Language 30.24 100.23 57.52 21.67
License 47.56 94.86 43.05 42.63
Finetuned from 93.95 137.65 115.16 65.91
Demo sources 76.70 150.54 228.09 141.35
Direct use 227.26 247.95 260.14 211.97
Downstream use 287.05 256.03 301.56 254.17
Out of scope use 305.64 341.98 339.81 225.52
Bias risks limitations 305.09 330.94 317.83 274.26
Bias recommendations 298.46 333.96 336.44 309.82
Training data 61.17 103.41 72.18 85.98
Preprocessing 169.67 285.66 228.65 222.67
Training regime 110.71 208.14 162.46 179.76
Speeds sizes times 170.33 250.69 211.52 192.81
Testing data 112.20 144.15 87.29 87.16
Testing factors 230.03 293.02 344.08 245.14
Testing metrics 64.45 267.89 226.08 137.77
Results 137.94 276.72 263.82 210.40
Results summary 154.57 230.82 215.33 136.51
Model examination 214.29 317.01 264.26 169.52
Hardware 24.87 81.48 72.26 21.44
Software 64.71 91.29 49.32 23.53
Hours used 27.95 172.74 164.28 58.86
Cloud provider 26.13 82.82 56.88 18.55
Co2 emitted 36.01 220.29 243.23 33.65
Model specs 207.91 276.66 204.47 161.47
Compute infrastructure 51.80 227.01 205.86 134.92

Table 16: Number of words in generated model cards
per question averaged by all samples in the test set.

Question GPT3.5 Llama2 70B Llama2 7B Mistral 7B
Summary 1.95 3.23 2.61 2.39
Description 14.51 13.87 8.93 12.87
Funded by 4.25 4.96 6.40 1.89
Shared by 1.86 4.53 3.18 2.41
Model type 1.51 3.47 2.68 1.70
Language 1.10 4.30 1.84 1.09
License 2.78 4.74 2.79 2.49
Finetuned from 4.81 5.96 5.98 3.47
Demo sources 3.83 7.42 12.81 6.48
Direct use 8.78 7.45 12.20 6.29
Downstream use 10.23 8.11 16.29 7.30
Out of scope use 16.50 21.69 20.71 10.20
Bias risks limitations 19.07 22.76 19.05 16.36
Bias recommendations 18.04 22.13 19.88 18.44
Training data 3.14 4.54 3.31 4.01
Preprocessing 11.06 18.20 13.34 12.46
Training regime 4.82 12.66 7.19 11.08
Speeds sizes times 8.41 12.74 10.62 9.40
Testing data 7.98 9.00 5.55 4.96
Testing factors 13.26 17.23 21.64 11.60
Testing metrics 3.67 14.11 14.20 7.12
Results 7.69 16.85 16.22 10.50
Results summary 9.01 10.94 9.79 6.21
Model examination 11.32 17.74 15.67 8.47
Hardware 1.73 4.29 3.43 1.39
Software 3.50 4.54 2.45 1.47
Hours used 2.06 7.52 8.29 2.86
Cloud provider 1.82 4.38 2.92 1.32
Co2 emitted 2.40 9.14 10.27 2.13
Model specs 10.52 12.12 9.90 7.17
Compute infrastructure 3.59 12.94 12.61 6.61

Table 17: Number of sentences in generated model cards
per question averaged by all samples in the test set.

Question GPT3.5 Llama2 70B Llama2 7B Mistral 7B
Summary 0.02 0.05 0.00 0.01
Description 0.17 0.04 0.01 0.04
Funded by 0.37 0.06 0.05 0.06
Shared by 0.36 0.58 0.04 0.12
Model type 0.00 0.00 0.00 0.00
Language 0.01 0.00 0.00 0.01
License 0.53 0.82 0.17 0.36
Finetuned from 0.26 1.06 0.30 0.49
Demo sources 0.66 0.82 0.51 0.94
Direct use 0.34 0.05 0.01 0.09
Downstream use 0.17 0.03 0.02 0.04
Out of scope use 0.20 0.00 0.00 0.00
Bias risks limitations 0.01 0.00 0.00 0.00
Bias recommendations 0.04 0.01 0.00 0.00
Training data 0.29 0.24 0.00 0.02
Preprocessing 0.04 0.03 0.00 0.01
Training regime 0.00 0.03 0.01 0.01
Speeds sizes times 0.21 0.10 0.02 0.05
Testing data 0.01 0.01 0.03 0.02
Testing factors 0.01 0.00 0.00 0.01
Testing metrics 0.01 0.02 0.00 0.01
Results 0.03 0.05 0.03 0.04
Results summary 0.04 0.03 0.04 0.09
Model examination 0.19 0.04 0.02 0.02
Hardware 0.00 0.02 0.04 0.01
Software 0.03 0.12 0.00 0.04
Hours used 0.01 0.02 0.00 0.01
Cloud provider 0.03 0.11 0.04 0.02
Co2 emitted 0.01 0.11 0.00 0.00
Model specs 0.11 0.04 0.01 0.03
Compute infrastructure 0.02 0.05 0.05 0.10

Table 18: Number of links in generated model cards per
question averaged by all samples in the test set.
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