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Abstract 

Mangrove complexity and cloud cover effects, among others, make it difficult to classify mangrove forests 

in tropical coastal zones using simply passive remote sensing techniques. The method described in this 

paper combines optical and radar data to overcome the difficulties of identifying mangrove stands in 

cloudy areas. Google Earth Engine geospatial processing platform was used to extract multiple scenes of 

Landsat surface reflectance Tier1 and synthetic aperture radar. The images were enhanced by creating a 

feature that removes clouds from the optical data and using speckle filters to remove noise from the radar 

data. The random forest algorithm was used for mangrove classification. Classification was evaluated 

using three scenarios: classification of optical data only, classification of radar data only, and 

combination of optical and radar data. The scenario that uses both optical and radar data fared better, 

according to our findings. For the classification of optical data only, radar data only, and a combination 

of optical and radar data, the overall accuracy for 2019 was 98.9 %, 84.6 %, and 99.1%, respectively. 

This research has shown that it is possible to map mangrove correctly, enabling on-site conservation 

practices in the climate change environment. 
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1. Introduction 

In a habitat that serves as a buffer between terrestrial and marine ecosystems, mangroves flourish and thrive. 

Mangroves are globally significant ecosystems that are only found in coastal regions with mean monthly 

air temperatures above 20 °C, with very few exceptions (Maurya et al., 2021). Although mangrove forests 

only cover 1% of the total land area in the tropics, they are thought to be the region's most carbon-rich 

ecosystems (Maurya et al., 2021). Mangrove ecosystems have lately been incorporated into the IPCC's 

strategy for combating climate change (Lucas et al., 2014). Mangrove forests occupy around 2,746,500 ha 

in Africa in 2010 and support vulnerable coastal populations (Bunting et al., 2018). These forests also 

provide significant ecological services, such as improving water quality, natural coastal protection, and 

alternative livelihoods (Mondal et al., 2018). These ecosystems offer numerous vital functions, but they 

have undergone severe degradation and are in danger of disappearing (Breithaupt et al., 2012).  

Mapping of mangrove ecosystem is crucial for an improved understanding of many coastal and sea 

processes. Remote sensing, a space-based technology, offers a tremendous ability to map and track changes 

in mangrove forests since data can be collected from an environment that is ordinarily difficult to access 

(Son et al., 2015). For more precise assessment of mangrove extent, several authors suggest combining 

Synthetic Aperture Radar with optical satellite data (Hu et al., 2020). The Google Earth Engine (GEE) 

offers a simple but effective mangrove assessment and monitoring framework with a high level of 

automation (Ghorbanian et al., 2021). GEE has a variety of machine learning classifiers such as Random 

Forest (RF), Naïve Bayes, and Support Vector Machine (SVM) which are suggested for the classification 

of multi-source data in complex environments (Maurya et al., 2021). Random forest (RF) algorithm has the 
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benefit of using a number of decision trees to vote the best classification for all pixel within the imagery to 

reduce the risk of overfitting, training time, sensitivity to outliers in training data and runs efficiently for 

huge dataset (Maurya et al., 2021).  

The coast of Ghana, like other coastal zones, faces the threat of flooding and erosion with rising sea levels. 

Mangroves in this area may be threatened by sea level rise. There is a need to understand where mangroves 

are currently found and how they have changed over time. Therefore, the main objective of this study is to 

assess the performance of different satellite imageries for mangrove mapping and monitoring. 

2. Materials and methods 

2.1. Study location 

This study area is located at Anlo Beach Wetland complex which is situated along the coastline of Ghana 

in Shama District, Western Region as shown in Figure (1). The area covers about 50.42km2, lying 

approximately within latitudes 5o1'30"N and 5o3'5"N, and longitudes 1°34'30"W and 1°37'30"W and it is 

covered by mangroves which have been comparatively disturbed (Friends of the Nation. 2014). 

Hydrologically, the area lies within the plains of Pra River, which opens directly into the ocean. 

 

Figure 1. Map of study location. 

2.2. Datasets and sources 

Table 1. Description of datasets used for Mangrove extent mapping and quantification. 

S/N 
Data Type & 

Date 
Description Source 

1 
Sentinel-1  

(2019) 

A synthetic aperture radar (C-Band) with interferometric wide 

swath mode (IW), having a descending pass, a resolution of 25 m, 

dual polarization of VV and VH. Image Collection ID: 

ee.ImageCollection("COPERNICUS/S1_GRD"), more details can 

Google Earth Engine 

Platform Database 
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S/N 
Data Type & 

Date 
Description Source 

be found at https://developers.google.com/earth-

engine/guides/sentinel1. 

 

2 

Landsat 8 

Surface 

Reflectance Tier 

1 

(2019) 

 

Has been atmospherically corrected and contain five visible and 

near-infrared bands, two short wave infrared bands and two 

thermal infrared bands.  Image Collection ID:   

ee.ImageCollection('LANDSAT/LC08/C01/T1_SR'). More 

details at  

https://www.usgs.gov/landsat-missions/landsat-surface-

reflectance 

Google Earth Engine 

platform database 

3 

Global 

Mangrove 

distribution 

vector (GMW) 

(2010) 

A baseline global distribution map of mangroves for year 2010. 

GMW was produced by Aberystwyth University in collaboration 

with solo earth observation (soloEO) It provides geospatial 

information about mangrove extent and changes. 

 

 

https://data.unep-

wcmc.org/datasets/45 

 

 

2.3. Mangrove extent mapping 

 

Figure 2. Flowchart of data extraction and iteration process for random forest model. 

For this study, Google Earth Engine (GEE) cloud-based platform and random forest classification algorithm 

were used. Mangrove extent maps were generated by classifying both optical and radar images separately 

and in combination. The maps were created for the year 2019, to examine the performance of different 

https://developers.google.com/earth-engine/guides/sentinel1
https://developers.google.com/earth-engine/guides/sentinel1
https://www.usgs.gov/landsat-missions/landsat-surface-reflectance
https://www.usgs.gov/landsat-missions/landsat-surface-reflectance
https://data.unep-wcmc.org/datasets/45
https://data.unep-wcmc.org/datasets/45


4 
 

satellite data. The Google Earth Engine database was filtered for Sentinel-1 imagery that is in Wide Swath 

(IW) interferometric mode, descending pass, 25 m resolution, VH and VV polarization and falls within the 

region of interest. 

The Sentinel-1 dataset was filtered by date to retrieve image from 2019. The corresponding Landsat 8 

images were also extracted from the Google Earth Engine database. The images were loaded into the 

Google Earth Engine code editor and visualized in the layer bar. A speckle filter was applied to the Sentinel-

1 image to minimize speckle noise (Ayman et al., 2017) and the speckle filtered image was also added to 

the layer bar (Figure 2). The optical image was improved by creating a function that masks cloud shadows 

(Giri et al., 2011). The normalized difference vegetation index (NDVI) was calculated from the optical 

image to obtain a composite image, which was used as an information layer to inform the classifier (Nathan 

et al., 2018).  

2.3.1. Construction of random forest model 

Supervised classification was conducted using Random Forest algorithm as shown in Figure 2. The 

approach used follows the method described by Erika et al., (2020), which involves collecting 

representative samples of backscatter values for each landcover class of interest. The random forest 

algorithm (RF) was run using 100 trees and 5 randomly selected predictors per split (Ghorbanian et al., 

2021). Training and validation data is based on field campaigns conducted between December 2020 and 

April 2021. The global mangrove distribution vector (Table 1) was needed as a reference data to guide the 

creation of training samples. 

2.3.2. Synthetic aperture radar (SAR) classification 

The speckle-filtered Sentinel-1 (VH) image was displayed in the map section of GEE and a polygon symbol 

was selected from the geometry imports box next to the geometry drawing tool to add training data. Each 

new layer created, for example ‘open water’ represents one class within the training data and it was saved 

as featureCollection called landcover. Training samples were selected for four different land cover classes: 

open water, mangroves, bare land/built-up, and other vegetation/wetlands. The defined classes were then 

merged into a single collection called ‘new FeatureCollection’. The ‘new FeatureCollection’ created was 

used to extract backscatter values for each landcover identified for the Sentinel-1 image. The Sentinel-1 

(SAR) image was defined with the code in bracket (var final = 

ee.Image.cat(SARVV_filtered,SARVH_filtered)) and the training data was created by overlaying the 

training points (new FeatureCollection) on the image. This created a ‘training point’ statistics based on the 

classes (new FeatureCollection) and was used to ‘train’ the random forest classifier. The classification was 

‘run’ and result displayed on the ‘layers’ bar.  

2.3.3. Landsat image classification 

The ‘new FeatureCollection’ created was used to extract reflectance values for each landcover class from 

the defined Landsat 8 image (var trainingl8 = composite.select(bandsl8).sampleRegions({). The ‘training’ 

data was created by overlaying the training points (new FeatureCollection) on the image and used 'B1', 'B2', 

'B3', 'B4', 'B5', 'B6', 'B7', 'NDVI' to generate the statistics. This was used to ‘train’ the random forest 

classifier. The classification was ‘run’ and result displayed on the ‘layers’ bar.  

2.3.4. Both Landsat and SAR classification 

Now, the ‘new FeatureCollection’ created was used to extract reflectance and backscatter values for each 

landcover classes from the Landsat 8 and Sentinel-1 images to be used in the classification. Both the Landsat 

8 and Sentinel-1 images were defined (var opt_sar = ee.Image.cat(composite, 

SARVV_filtered,SARVH_filtered)) and the ‘training’ data was created by overlaying the ‘training’ points 

on the defined image (Figure 2). This was used to ‘train’ the random forest classifier. The classification 

was ‘run’ and result displayed on the ‘layers’ bar.  
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2.3.5. Classification accuracy assessment 

A total of 2131 training sample points were created. The sample points were randomly split for ‘training’ 

and validation; 80% (1705 points) of the sampling points were used to ‘train’ the model while 20% (426 

points) was used for validation.  

This was done to remove any systematic error as a result of using the same pixels to train and validate 

classifiers (Pimple et al., 2018). The accuracy of the classification in GEE was assessed using confusion 

matrix based on the classifier. The overall accuracy and the kappa coefficient were calculated using the 

following formular: 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑐𝑜𝑟𝑟𝑒𝑐𝑡𝑙𝑦 𝑐𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠 (𝑠𝑢𝑚 𝑜𝑓 𝑑𝑖𝑎𝑔𝑜𝑛𝑎𝑙)

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑡𝑜𝑡𝑎𝑙 𝑠𝑎𝑚𝑝𝑙𝑒𝑑 𝑝𝑖𝑥𝑒𝑙𝑠
∗ 100  (1) 

𝐾𝑎𝑝𝑝𝑎 =
𝑃0 − 𝑃𝐶

1 − 𝑃𝐶
  (2) 

Where. 

𝑃0= Observed accuracy and 𝑃𝐶= Chance agreement. 

3. Results 

Several iterations were run using Sentinel-1, Landsat 8 separately and a combination of both (i.e., Sentinel-

1+ Landsat 8) which represents the three scenarios for 2019. The results of mangrove extent and other land 

cover changes are presented in Figure 3 and 4.  

 

Figure 3. LULC extent for different classification scenario. 
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Figure 4. Different scenarios of mangrove extent maps for the year 2019. (a) classification scenario using 

optical image only (Landsat 8); (B) Classification scenario using sentinel-1 image only; (C) Classification 

scenario using both optical (Landsat 8) and Sentinel-1. 

Three main classification scenarios were established to map the extent of mangroves and other land cover 

classes for the period under study: classification of optical data only, classification of SAR data only, and 

the third scenario combined both optical and SAR data (Figure 4 and 5). The result of Landsat 8 data only 

(2019) showed Mangrove extent of 1259 ha, water body extent of ‘1622 ha’, Bare land extent of 524 ha 

and other vegetation extent of 2617 ha (Figure 3). The overall classification accuracy for Landsat 8 was 

99.1% with Kappa Coefficient of 0.797. The second classification scenario showed Mangrove extent of 

933 ha, water body extent of ‘1115 ha’, Bare land extent of 144 ha and other vegetation extent of 1741 ha 

for Sentinel-1 (Figure 3). The overall classification accuracy for Sentinel-1 classification was 84.6% with 

Kappa Coefficient of 0.687. The third classification scenario showed Mangrove extent of 1340 ha, water 

body extent of ‘1891 ha’, Bare land extent of 549 ha and other vegetation extent of 2062 ha for Sentinel-

1and Landsat 8 combined. The overall classification accuracy for both Sentinel-1 and Landsat 8 when 

combined together was 98.9% with Kappa Coefficient of 0.828 (Table 2 - 4). 

Table 2. Confusion/error matrix of land cover classification using landsat 8 image. 

Classes Open 

Water 

Mangroves Bare 

Land 

Vegetation/ 

Wetland 

Row 

Total 

User’s 

Accuracy 

(%) 

Open Water 81 0 0 0 81 100 

Mangroves 0 642 1 4 647 99.2 

Bare Land 0 0 32 0 32 100 

Vegetation/Wetland 0 9 0 936 945 99 

Column Total 81 651 33 940 1705  

Producer’s 

Accuracy 

(%) 

100 98.6 96.9 99.5   
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Overall Accuracy = 99.18%; Kappa Coefficient = 0.797. 

Table 3. Confusion/error matrix of land cover classification using sentinel-1 data. 

Classes Open 
Water 

Mangroves Bare 
Land 

Vegetation/ 
Wetland 

Row 
Total 

User’s 
Accuracy 
(%) 

Open Water 79 0 2 0 81 97.5 
Mangroves 0 521 0 126 647 80.5 
Bare Land 2 0 23 7 32 71.9 
Vegetation/ 
Wetland 

0 119 6 820 945 86.8 

Column Total 81 640 31 953 1705  
Producer’s 
Accuracy 
(%) 

97.5 81.4 74.2 86   

Overall Accuracy = 84.6%; Kappa Coefficient = 0.687. 

Table 4. Confusion/error matrix of land cover classification using a combination of landsat 8 and 

sentinel-1 images. 

Classes Open 
Water 

Mangroves Bare 
Land 

Vegetation/ 
Wetland 

Row 
Total 

User’s 
Accuracy 
(%) 

Open Water 81 0 0 0 81 100 
Mangroves 0 635 0 12 647 99.2 
Bare Land 4 0 28 0 32 100 
Vegetation/Wetland 0 3 0 942 945 99 
Column Total 85 638 28 954 1705  
Producer’s Accuracy  
(%) 

95.3 99.5 100 98.7   

Overall Accuracy = 98.9%; Kappa Coefficient = 0.828. 

4. Discussion 

The results show that there are differences in all three classification scenarios (Figure 4). For example, 

classification using Synthetic Aperture Radar data showed that most structural aspects were captured but 

underestimated the vegetation cover and this is consistent with observations in other studies (Carreiras et 

al., 2013). In contrast, optical satellite image classification captured the tree canopy more (Erika et al., 

2020) but seems to overestimated (Mondal et al., 2019) the extent.  

We used confusion matrices to provide detailed statistical information for each classification scenario. The 

confusion matrix for Sentinel-1 image classification alone showed that out of 647 pixels which were 

identified as Mangrove, 521 pixels were correctly classified while the confusion matrix for the 

corresponding optical image alone showed that out of 647 pixels which were identified as Mangroves, 642 

pixels were correctly classified (Table 2 - 4). It was also revealed that the Sentinel-1 image alone tend to 

underestimate the mangrove vegetation canopy (Figure 4). On the other hand, Landsat 8 alone tend to 

overestimate the vegetation cover. The overall classification accuracy for the Sentinel-1 image was 84.6%, 

while the overall accuracy for the Landsat 8 alone was 99.1%. The overall accuracy when both images were 

combined was 98.9% (Table 2 - 4). The third classification scenario that combines optical and radar data 

yielded the best classification results for 2019 as the classes were relatively well distributed, capturing both 

clustered mangroves and mangrove patches near the water body (Figure 4). The visual interpretation 

showed that the third classification scenario achieved a better result, indicating the high potential of this 
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mangrove mapping method and agrees with the work of Ghorbanian et al. (2021). Despite the fact that the 

same ‘training sample’ was used to train the classifier, the accuracies differ depending on the scenario. The 

scenario that combined both optical and radar data showed better agreement and less confusion compared 

to when either optical or radar data was used.  

This study confirms that combining synthetic aperture radar data with optical satellite data improves the 

accuracy of mangrove mapping, as recommended by several authors (Attarchi and Gloaguen, 2014; Ayman 

et al., 2017). The resulting classification is consistent with other studies that used random forest algorithms 

for land cover classification (Ghorbanian et al., 2021; Beselly et al., 2021). 

5. Conclusion 

One of the most pressing environmental calamities of our time is the worldwide devastation of tropical and 

subtropical mangrove ecosystems. Without tackling deforestation and promoting increased restoration of 

mangroves and other forests, it's possible that the world won't be able to meet the Sustainable Development 

Goals. In order to produce more precise mangrove extent maps, we developed a method in this research for 

combining the pertinent database in a spatial framework using the Google Earth Engine platform and a 

random forest algorithm. In this study, it was shown that cloud computing methods and machine learning 

algorithms, such Google Earth Engine, have the ability to accurately quantify mangrove stands as well as a 

variety of other land uses, particularly in cloud-prone regions. This would enable more precise estimate of 

mangrove changes at local and regional levels. 
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