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ABSTRACT

Since the release of various large-scale natural language processing (NLP) pre-
trained models, parameter efficient transfer learning (PETL) has become a popu-
lar paradigm capable of achieving impressive performance on various downstream
tasks. PETL aims at making good use of the representation knowledge in the pre-
trained large models by fine-tuning a small number of parameters. Recently, it
has also attracted increasing attention to developing various PETL techniques for
vision tasks. Popular PETL techniques such as Prompt-tuning and Adapter have
been proposed for high-level visual downstream tasks such as image classifica-
tion and video recognition. However, Prefix-tuning remains under-explored for
vision tasks. In this work, we intend to adapt large video-based models to down-
stream tasks with a good parameter-accuracy trade-off. Towards this goal, we
propose a framework with a unified view of PETL called visual-PETL (V-PETL)
to investigate the effects of different PETL techniques, data scales of downstream
domains, positions of trainable parameters, and other aspects affecting the trade-
off. Specifically, we analyze the positional importance of trainable parameters
and differences between NLP and vision tasks in terms of data structures and pre-
training mechanisms while implementing various PETL techniques, especially for
the under-explored prefix-tuning technique. Based on a comprehensive under-
standing of differences between NLP and video data, we propose a new variation
of prefix-tuning module called parallel attention (PATT) for video-based down-
stream tasks. An extensive empirical analysis on two video datasets via different
frozen backbones has been carried and the findings show that the proposed PATT
can effectively contribute to other PETL techniques. An effective scheme Swin-
BAPAT derived from the proposed V-PETL framework achieves significantly bet-
ter performance than the state-of-the-art AdaptFormer-Swin with slightly more
parameters and outperforms full-tuning with far less parameters.

1 INTRODUCTION

Many vision tasks rely on fine-tuning pre-trained models to achieve good performance. One stan-
dard modus operandi of transfer learning consists of two steps: pre-train a model on a source domain
and fine-tune the entire model on a target domain (Zhuang et al., 2020). Despite that prior works
have achieved promising performance, such vanilla practice of fine-tuning is faced with challenges
for adopting large models to downstream tasks. This full-tuning strategy requires one to update and
store separate model parameters for different downstream tasks, which can be expensive and infea-
sible for the era of increasingly large models from EfficientNet-based (Pham et al., 2021) (480M
parameters) to Transformer-based (Yu et al., 2022) (2, 100M parameters) ones. For such large mod-
els, making good use of shared parameter weights deployed on the cloud can be beneficial for edge
devices such as autonomous vehicles, drones who are intensive in computing and battery resources
(Yuan et al., 2022). Second, the full fine-tuning strategy relies on high-quality downstream data and
can hardly adapt to unseen scenarios that have large distribution shift (Kumar et al., 2021), which is
unlike the learning process of humans who can learn from few samples and generalize well to new
circumstances. This issue has been researched in directions such as zero-shot learning, few-shot
learning, and continual learning (Li et al., 2021a). Another popular strategy is fine-tuning the down-
stream task head, i.e., the last fully connected (FC) layer, to avoid tuning the whole backbone model,
which usually leads to poor performance when the target domain is large in data scale (see Figure
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1). Given the paradigm of fine-tuning increasingly large models, how to transfer such large models
with parameter-accuracy trade-off is a hot topic in various domains (Gusak et al., 2022; Sung et al.,
2022; Lin et al., 2020; Houlsby et al., 2019).

Taking the video-based action recognition task as an example, it can be inconvenient for deploying
such large models to edge devices such as an autonomous driving (Liu et al., 2019) and unmanned
aerial vehicle (Li et al., 2021b) as they can heavily rely on the interaction with cloud services for
adapting to new environments via active learning (Wang et al., 2021) or continual learning (Li et al.,
2021a). Re-training large models on the cloud are usually not cost-effective due to the expensive
overheads of storage and computational resources. Furthermore, these resources are limited on edge
devices such as autonomous vehicles and unmanned aerial vehicles, making the sense for developing
effective fine-tuning methods with proper parameter-accuracy trade-off that can be fine-tuned on
edge devices and interacting with the large models deployed on the cloud.
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Figure 1: Parameter-accuracy trade-off. Adapting
backbone Swin-B (Liu et al., 2022) pre-trained on
Kinetics 400 via different fine-tuning methods on
the something-something v2 (Goyal et al., 2017)
dataset. Our methods perform significantly better
than the state-of-the-art AdaptFormer-Swin (Chen
et al., 2022) (our implementation with batch size
16) with slightly more tunable parameters, and
outperform full-tuning with increasing margins
when using larger values of dbottle.

There have been some pioneering works for the
PETL of visual models such as AdaptFormer
(Chen et al., 2022) and visual prompt tuning
(VPT) (Jia et al., 2022). AdaptFormer is pri-
marily proposed based on vision transformer
(Zhai et al., 2022), representing one of the state-
of-the-art large models for image-based tasks.
The proposed adapter module directly brings
from Houlsby et al. (2019) due to its conve-
nience of being inserted to any models. Im-
plementing with a large batch size of 1, 024
with 64 GPUs, Adaptformer shows promis-
ing parameter-accuracy trade-off on video data.
However, such powerful computing resource
is not realistic for the usage of edge devices.
Meanwhile, whether the good trade-off can
be maintained for small batch size remains
under-explored. Inspired by the Prompting in
NLP (Liu et al., 2021), VPT proposes visual-
prompt to fine-tune visual models for image-
based tasks. According to the empirical re-
sults in Chen et al. (2022), adapter modules
achieves superior performance over VPT in the
regimes of both self-supervised and supervised
pre-training. Another concern of VPT is its modification to the original model parameters might
affect the knowledge representation of backbone models. Hence, we do not continue to compare our
method with VPT but comparing with the adapter on video-based downstream tasks.

Taking the recent inspiration of the mix-and-match adapter (MAM adapter) (He et al., 2022a) in
NLP, we aim to propose a unified model for the vision domain, especially for video-based down-
stream tasks. He et al. (2022a) analyzed the unified view among PETL techniques such as prefix-
tuning, low-rank (LoRA) adaptation, and adapter, pointing out the similarity between prefix-tuning
and adapter in terms of calculating the attention. The difference is that the former performs weighted
addition while the latter ones is unweighted. Note that prefix-tuning has not ever been applied to
visual tasks in the form of pure visual models due to the intrinsic differences regarding pre-training
methods of NLP and vision models. Another obstacle of directly applying prefix-tuning to visual
tasks is the structural difference between text and vision data (we further discuss this in Section
2.3). Considering the video-based action recognition task, we propose a new variation of the prefix-
tuning module called parallel attention (PATT) to adapt video-based pre-trained large models to
downstream domains with varied data scales. The differences of our method comparing the original
prefix-tuning in NLP are twofold: prefix calculation and the manner of insertion (see Figure 2[b]
and Figure 3). Regarding the backbone model, we focus on Video Swin Transformer (Liu et al.,
2022), one of the state-of-the-art vision models that bring competitive performance on large-scale
action recognition datasets such as Kinetics 400 and 600 Kay et al. (2017).

Our main contributions can be threefold as follows:
1. We analyze different PETL techniques using the backbone model Swin Video Transformer for
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video-based tasks, providing a unified view via our V-PETL framework and investigating the impor-
tance of the fine-tuning position.
2. Based on the comprehensive understanding of intrinsic differences between NLP and video data
regarding data structures and pre-training mechanisms, we leverage prefix-tuning to our V-PETL
with a new variation called PATT.
3. Upon extensive ablation experiments regarding various effect factors, we empirically validate the
promising parameter-accuracy trade-off achieved by our adjustable and easy-to-use PATT module,
contributing to the existing literature of PETL techniques.

2 UNIFIED FRAMEWORK

2.1 RECAP OF VIDEO SWIN TRANSFORMER

Video Swin Transformer (Liu et al., 2022) is formed with Transformer layers (a.k.a. stages) that
are consisted with 3D Video Swin Transformer blocks. With varied layers, blocks, and channel
sizes, the model can be formed as Swin-T, Swin-S, Swin-B, and Swin-L. The basic architecture
of a 3D Swin Transformer block is shown in Figure 2, which is mainly composed of a 3D shifted
window-based multi-head self-attention (3DSW-MSA) module and a fully connected feed-forward
network (FFN) implemented with a 2-layer MLP. Layer normalization (LN) and residual connection
are respectively performed before and after both FFN and 3DSW-MSA modules. One such Video
Swin Transformer block can be represented as:

Ẑ
l
= 3DSW-MSA(LN(Zl−1)) +Zl−1,

Zl = FFN(LN(Ẑ
l
)) + Ẑ

l
,

(1)

where Ẑ
l

and Zl respectively indicate the output of 3DSW-MSA and FNN modules.

Given a video input sized t×w×h×3, containing t video frames with their heights and widths being
h and w, respectively. The 3D patch for video data sized 2 × 4 × 4 × 3 is treated as a token. Then
we will have t

2 × w
4 × h

4 3D tokens after a 3D patch partitioning layer. Given the 3D tokens sized
t
2 ×

w
4 × h

4 and a 3D window with the size of p×m×m, the self-attention module, using the regular
window partition strategy, will partition the 3D tokens to t

2p ×
w
4m × h

4m non-overlapping windows.
For shifted 3D window, the partition is shifted along the temporal, height, and width dimensions by
p
2 × m

2 × m
2 . For example, if we have an input video sized 8× 224× 224× 3 and a 8× 7× 7 3D

window, after the patch embedding, we will have 4 × 56 × 56 3D tokens with each of them sized
2 × 4 × 4 × 3. Without shifting, the non-overlapping window size will be 1 × 8 × 8 = 64.Then
through the 3D window shifted by (4, 3, 3) , the number of 3D windows becomes 1× 9× 9 = 81.

The 3DSW-MSA module is formed with a 3D relative position bias B ∈ Rp2×m2×m2

, each of which
can be represented as:

Attention(Q,K,V) = SoftMax(
QKT

√
d

+ B)V, (2)

where Q,K,V ∈ Rp×m×m×d are the query, key, and value matrices, p × m×m is the number of
tokens and d is the dimension of the tokens. MSA simultaneously performs the attention mechanism
for nhead heads, where the ith head can be parameterized by W (i)

q ,W
(i)
k ,W (i)

v ∈ Rd×3d, projecting
the input Zl−1 to queries, keys, and values. Given a matrix C ∈ Rm̃×d, m̃ = p × m×m, for
performing attention, the 3DSW-MSA can be calculated as:

3DSW-MSA(Zl−1,C) = Concat(head1, ..., headn)Wo,

headi = Attention(Zl−1W (i)
q ,CW

(i)
k ,CW (i)

v ),
(3)

where Wo is the parameters of a linear project layer. The FNN module is composed of two linear
layers with a GELU activation function in between, which can be computed as:

FFN(Ẑ
l
) = GELU(LN(Ẑ

l
)W1 + b1)W2 + b2, (4)

where W1 ∈ Rdhidden×d, W2 ∈ Rd×dhidden , b1 ∈ Rdhidden , and b2 ∈ Rd. The value of dhidden
usually takes a large value (e.g., dhidden = 4d).

3

bruce
Highlight



Under review as a conference paper at ICLR 2023

2.2 RECAP OF PETL TECHNIQUES
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Figure 2: V-PETL: A unified view of visual PETL techniques. They bring trainable parameters to
different positions of the backbone model with various manners. AdaptFormer and Prefix-tuning
respectively perform at the MLP and 3DSW-MSA modules that can adjust the number of trainable
parameters via the bottleneck size of down and up projections. While prompt-tuning performed at
the layer-level can adjust the length of prompts to control the tuned parameters.

Prefix-tuning (Li & Liang, 2021): The prefix-tuning approach prepends learnable prefix tokens to
the keys and values of the MSA module of the model (see Figure 2[b]). Specifically, two prefix
matrices Pk,Pv ∈ Rdtoken×d that are randomly initialized with dtoken tokens and transformed from
two linear layers (with parameters W (i)

pk ∈ Rd×dmiddle and W (i)
pv ∈ Rdmiddle×d) and a Tanh layer in

between are concatenated to the original key and value, leading the calculation of headi in Eq. 3 to:

headi = Attention(Zl−1W (i)
q , concat(P

(i)
k ,CW

(i)
k ), concat(P (i)

v ,CW (i)
v )), (5)

where the concat is the concatenation performed along the token dimension to mimic the prefix-
tuning in NLP tasks. Here, a question regarding whether this direct implementation will work for
the vision domain is raised (results are in Table 4). This direct implementation is empirically invalid
and we make further modification on it in Section2.3.

Adapter (Chen et al., 2022): Inspired by the works of Houlsby et al. (2019); He et al. (2022a) for
PETL in NLP tasks, adapter (Chen et al., 2022) has been directly used for vision tasks, showing
promising performance using far less tunable parameters. The number of parameters of adapter
is controlled by a parameter dbottle (dbottle ≪ d), adjusting the space size of a low-dimensional
representation. The adapter module first uses a down-projection with Wdown ∈ Rd×dbottle to project
the feature to the lower-dimensional representation, followed by a ReLU activation function, and a
up-projection with Wup ∈ Rdbottle×d.

Z̃
l
= ReLU(LN(Ẑ

l
)Wdown)Wup, (6)

then two positions implementing adapter (parallel and sequential) can be respectively computed as:

Zl = FFN(LN(Ẑ
l
)) + Ẑ

l
+ sZ̃

l
,

and sZl = ReLU(FFN(LN(Ẑ
l
))Wdown)Wup + Ẑ

l
,

(7)

where s is a scalar, controlling the effect of the adapter (will be ablated in experiments). According
to Chen et al. (2022), the parallel implementation (see Figure 2[a]) empirically performs better.

Prompt-tuning (Jia et al., 2022): Prompt-tuning (see Figure 2[c]) is inspired by the success of
prompt-tuning that adapts large scale models to varied downstream NLP tasks. The idea of VPT
(Jia et al., 2022) is to fine-tune a learnable matrix P l−1

prompt ∈ Rdprompt×d, dprompt < dtoken − 1 for
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the lth Transformer layer or all Transformer layers, which are known as shallow prompt and deep
prompt, respectively.

Ẑ
l
= 3DSW-MSA(LN([xl−1,P l−1

prompt,Z
l−1])) +Zl−1, (8)

where xl−1 ∈ Rd denotes the [CLS]’s embedding for the lth layer’s input space, P l−1
prompt is im-

plemented by overlapping the top dprompt tokens of Zl−1 (Jia et al., 2022). While it has also been
implemented in front of the xl−1 (Chen et al., 2022).

Others: Other PETL techniques include ST-Adapter Pan et al. (2022), LoRA (Hu et al., 2022), and
BitFit (Zaken et al., 2022). ST-Adapter mainly adapts image-text models pre-trained on large scale
datasets such as 400M image-text pair proposed by CLIP (Radford et al., 2021) and the IG-3.6B
used by SWAG (Singh et al., 2022) to video understanding downstream tasks, which matches and
even outperforms full-tuning. LoRA approximates the optimization process by injecting learnable
low-rank matrices into the attention module. This method does not show superior performance for
NLP tasks in terms of parameter efficiency. Hence, we do not prioritize this direction in this work.
BitFit only tunes the bias terms of the backbone models, making it very parameter-efficient.

2.3 REVISITING PREFIX-TUNING FOR VISUAL TASKS

The prefix implementation in NLP Li & Liang (2021); He et al. (2022a) can be regarded as prepend-
ing contextual information for downstream tasks, which is similar with the pre-training process
aiming to predict masked words in the process of an inner loop (Brown et al., 2020). Considering
the pre-training process of pure vision models, such direct implementation might not make sense for
visual tasks. Although such autoregressive pre-training has been conducted in visual domain (He
et al., 2022b; Tong et al., 2022), but adding prefix for a sentence input in NLP can be structurally dif-
ferent with the visual domain. Specifically, masked pixels in image or video data cannot be regarded
as some word level semantic information (e.g., a subject or an action) as in the NLP.

UP
Tanh
Down

SoftMax

K VQ

QKV

KP VP

KP VP

s s

Z l−1

Bruce

Figure 3: Structure of PATT. Red parts
are trainable parameters calculated by
the same input for preparing query, key,
and value (i.e., the output of the previ-
ous layer passing through a layer nor-
malization layer Zl−1).

Recall that the embedding state of prefix-tuning is ran-
domly initiated, which is known as learnable prefix but
can bring random noise that later turns out affecting the
convergence of the fine-tuning downstream tasks. Hence,
inspired by the connection between adapter and prefix
(He et al., 2022a), we avoid such learnable prefix design
with random initialization and propose a parallel atten-
tion (PATT) to the original attention module (see Figure
3). The adapter structure can effective control the num-
ber of trainable parameters via dbottle, which is similar
with the effect of the middle dimension dmiddle of W (i)

pk

and W (i)
pv for preparing the prefix. Specifically, for the

lth layer, we use output of its previous layer Zl−1 and
project it to a pair of matrices Kp,Vp ∈ Rm̃×d via a sim-
ilar mechanism of Eq. 6:

Kp,Vp = Tanh(Zl−1Wdown)Wup, (9)

where Tanh is the activation function used for preparing
the prefix, which can be replaced by other activation func-
tions such as RELU and GELU. Here, we follow the original prefix implementation as its value
ranges from −1 to 1. Given Kp and Vp, Eq. 5 can be rewritten as:

headi = Attention(Zl−1W (i)
q , sKp +CW

(i)
k , sVp +CW (i)

v ), (10)
where s is a scalar for adjusting the effect of PATT. Note that without considering the physical
meaning of such design, for PETL purpose, one can perform similar practise for any combinations
of Q, K, and V. This brings connection to the LoRA (Hu et al., 2022) method, which add parallel
trainable parameters to Q and V. Empirically, where to perform the PATT makes little difference,
but the amount of trainable parameters brings larger effect for large scale downstream domains.

2.4 V-PETL: UNIFIED VIEW ON VISUAL PETL
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Table 1: Comparison of independently
fine-tuning varied positions of the video
swin transformer block on SSv2.

Position # Params Top-1 (%)
Full-tuning 87.82M 50.99
Tune FC Layer 0.18M 24.13

LayerNorm 1 0.02M 14.35
Attn, Proj 6.99M 47.58
Attn, QKV 20.98M 50.02
Attn, SoftMax 0.95M 27.67
LayerNorm 2 0.02M 14.62
MLP, FC1 27.97M 47.10
MLP, FC2 27.93M 45.32
DownSample 2.76M 27.53

Given the PETL techniques at hand, there can be
many potential combinations leading to good parameter-
accuracy trade-off. However, it is unrealistic to exhaus-
tively test all the methods for a specific downstream task.
Other than probing such solution via evolutionary search
as in Zhang et al. (2022), we aim to propose more under-
standable models by empirically analyzing the effect of
different designs independently. According to the prelim-
inary results shwon in Figure 1, we argue that the position
and amount of parameters are important for PETL tech-
niques, especially when the target domain is not small.

To verify the importance of position and tuned parameter
amount, we independently tune different modules of the
backbone model. Table 1 shows the results. We can see
that the attention module’s QKV layer has 20.98M pa-
rameters while the MLP module has the most number of parameters of 55.90M. Tuning positions
with more parameters, will lead to better performance for SSv2. Thanks to the bottleneck mecha-
nism of adapter and prefix-tuning, one can effectively achieve a good parameter-accuracy trade-off.
As such, we derive a model called Swin-B-adapter-PATT (Swin-BAPAT) from the V-PETL frame-
work by using the parallel adapter and our PATT to leverage the adaption of pre-trained backbone
model at the positions of attention and MLP modules, respectively. In addition to adapter and PATT,
we also fine-tune the last fully connected layer as it has relatively smaller amount of tunable param-
eters (i.e, 0.18M) than adapter and PATT.

3 EXPERIMENTS

3.1 EXPERIMENTAL SETTINGS

Video Datasets: Something-something v2 (SSv2 (Goyal et al., 2017)) It has 108,499 short videos
for 174 human-object interaction categories with durations between 2 to 6 seconds. The challenge
of this dataset is that it contains 23, 137 distinct object names with an imbalanced distribution.
The original dataset is split into train, validation, and test sets with a ratio of 8:1:1. The extended
version (SSv2) of this dataset is consisted of 168, 913 training samples, 24, 777 validation samples,
and 27, 157 testing samples with the sample number of action labels. The training and testing
samples are used. HMDB51 (Kuehne et al., 2011) contains 6, 766 video samples for 51 action
categories including videos of varied visible body parts, camera motion, camera view, and clip
quality. All video samples have at least 101 clips and a minimum height of 60 pixels for actors.
The original dataset has three splits of training and evaluation. We follow existing work Chen et al.
(2022) by using the first training and evaluation split that has 3, 570 and 1, 530 samples, respectively.
Image Datasets: Following the experimental set ups in AdaptFormer, three datasets CIFAIR-100
Krizhevsky et al. (2009), Street View House Numbers (SVHN) Goodfellow et al. (2013), and Food-
101 Bossard et al. (2014) are used. CIFAIR-100 has 50, 000 and 10, 000 training and validation
images, respectively, with the resolution of 32×32 and 100 categories; SVHN is a digit classification
dataset that has 73, 257 training sample and 26, 032 testing samples; Food-101 includes 101k images
of 101 food categories with each of them has 750 training and 250 testing samples.

Implementation details: It is worth noting that big batch size (i.e., 1, 024) and the number of input
video frames (i.e., 32 frames) can greatly benefit good performance (Carreira & Zisserman, 2017;
Liu et al., 2022; Chen et al., 2022), which usually requires GPU clusters to enable the training.
AdaptFormer (Chen et al., 2022) uses such powerful GPU cluster to achieve good performance.
However, good performance might not hold when the batch size is small. Following the more
common hardware device setup, we use 4 GeForce 3090 GPUs for all experiments, leading to a
batch size of 64. All the experiments are fine-tuned for 70 epochs. We use the Swin-B1 model
pre-trained on Kinetics 400 and 600. For HMDB51, we report the results without tuning the FC
layer due to the significant effect of the FC layer on relatively small scale dataset. Following Chen
et al. (2022), we do not perform regularization strategies such as mixup, cutmix, color jittering,

1https://github.com/SwinTransformer/Video-Swin-Transformer
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Table 2: Comparison of Top-1 accuracy using varied amount of parameters adjusted by dbottle,
different pre-training domains, and the number of frames with other fine-tuning strategies.

Method dbottle Pre-training # Frames
SSv2 HMDB51

# Params Top-1 (%) # Params Top-1 (%)
Full-tuning - Kinetics 400 8 87.82M 50.99 87.69M 68.07
Tune FC Layer - Kinetics 400 8 0.18M 24.13 0.05M 71.28
BitFit (Zaken et al., 2022) - Kinetics 400 8 1.29M 45.94 1.11M 68.26
AdaptFormer-Swin (Chen et al., 2022) 64 Kinetics 400 8 1.73M 40.80 1.61M 68.66
Prefix-tuning (Li & Liang, 2021) 128 Kinetics 400 8 6.57M 39.46 6.40M 56.13
Our Swin-BAPAT (w/o Adapter) 32 Kinetics 400 8 1.35M 46.26 1.17M 69.51
Our Swin-BAPAT (w/o Adapter) 64 Kinetics 400 8 2.51M 49.23 2.34M 71.34
Our Swin-BAPAT (w/o Adapter) 128 Kinetics 400 8 4.83M 52.57 4.65M 70.56
Our Swin-BAPAT (w/o Adapter) 256 Kinetics 400 8 9.45M 52.71 9.27M 70.23
Our Swin-BAPAT 32 Kinetics 400 8 2.91M 49.63 2.74M 68.20
Our Swin-BAPAT 64 Kinetics 400 8 4.07M 51.80 3.89M 70.10
Our Swin-BAPAT 128 Kinetics 400 8 6.38M 53.36 6.20M 71.93
Our Swin-BAPAT 256 Kinetics 400 8 11.00M 53.98 10.83M 69.64
Our Swin-BAPAT 256 Kinetics 400 8 11.00M 53.98 10.83M 69.64
Our Swin-BAPAT 256 Kinetics 600 8 11.00M 54.06 10.83M 69.90
Our Swin-BAPAT 256 ImageNet-22K 8 11.00M 43.56 10.83M 59.89
Our Swin-BAPAT 128 Kinetics 400 8 6.38M 53.36 6.20M 71.93
Our Swin-BAPAT 128 Kinetics 400 16 6.38M 63.14 6.20M 75.67

etc. Our PATT module is convenient to be applied to other Transformer-based models. Hence, we
respectively adopt ViT-B models from MAE (He et al., 2022b) and VideoMAE (Tong et al., 2022)
to conduct further comparison on video and image datasets, which follows the self-supervised pre-
training setting2 in Chen et al. (2022) except that the batch size is set to 256 instead of 1, 024.

Baselines: We mainly compare our method Swin-BAPAT with three baselines as follows:
(1) Full-tuning: set all the parameters learnable and tune the whole model initiated with the pre-
trained weights. (2) Tune FC layer: tune the last fully connected layer and freeze pre-trained pa-
rameters of the whole backbone model. (3) AdaptFormer-Swin: method introduced by Chen et al.
(2022) that adds a parallel adapter to the MLP module in each block of the backbone model. (4)
Prefix-tuning: the direct implementation of prefix-tuning used in NLP as defined in Eq. 5. (5) BitFit:
by tuning the bias of the backbone model together with the FC layer.

3.2 THE EFFECT OF DIFFERENT PETL TECHNIQUES

Table 2 shows the results of different PETL techniques. From the results of four baseline methods,
full-tuning performs the best for the large-scale dataset SSv2, whereas tuning the FC layer achieves
superior performance over other PETL techniques on HMDB51. This is due to the fact that down-
stream tasks with relatively larger scale datasets are more parameter hungry for good convergence.
On the contrary, small datasets can make good use of the knowledge from the source domain with
slight effort of adaption via an FC layer. Here, a question regarding the effect of this FC layer when
using it together with other PETL techniques has not been investigated. As this FC layer having
small amount of tunable parameters can already make a big difference, performing better than full-
tuning and other PETL techniques and rendering them not effective for small-scale datasets. As
such, we further examine this question in Section A.1.

We test different amount of parameters adjusted by sbottle, taking its values to 32, 64, 128 and 256.
The second and third groups (without or with Adapter, respectively) of results in Table 2 shows
that larger values of sbottle can benefit the fine-tuning with slightly more overhead of parameters
on large-scale datasets such as SSv2. All results of our Swin-BAPAT outperform the state-of-
the-art AdaptFormer-Swin with a big margin (using the smallest value sbottle = 32 can improve
AdaptFormer-Swin by almost 25%). While without using Adapter, our method still outperforms
baselines AdaptFormer-Swin and BitFit with roughly similar amount of parameters. When sbottle
is larger than 64, our Swin-BAPAT starts to perform better than full-tuning on both datasets with
proper parameter-accuracy trade-off, validating the effectiveness of our Swin-BAPAT for PETL.

2https://github.com/ShoufaChen/AdaptFormer/blob/main/PRETRAIN.md
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Figure 4: Top-1 accuracy of different settings on
SSv2 throughout training process. F: frame, S:
scalar, B: dbottle, K: pre-training domain.

Table 3: Top-1 accuracy (%) using differ-
ent scalar values on two datasets: SSv2 and
HMDB51. The dbottle is set to 128; pre-
training is based on Kinetics 400.

Scalar s SSv2 HMDB51
Full-tuning 50.99 71.28
Tune FC Layer 24.13 68.07
AdaptFormer-Swin 40.80 68.66

s = 0.2 47.46 69.38
s = 0.5 52.84 71.87
s = 0.8 53.36 71.93
s = 1.0 53.29 70.89

3.3 THE EFFECT OF DIFFERENT PRE-TRAINING DOMAINS

The knowledge from the pre-trained model is learned from the source domain. We test two different
models pre-trained on large-scale datasets: Kinetics 400, Kinetics 600, and ImageNet-22K. Findings
show that both two models pre-trained on such large-scale datasets can benefit our proposed PETL
strategy with the latter being slightly more significant (see the third group of comparison in Table 2).
This is due to the fact that Kinectics 600 is larger than its 400 version and brings more knowledge
to the pre-trained model, benefiting more downstream tasks. However, image-based pre-training
cannot perform as good as video-based pre-training due to the larger domain gap.

3.4 THE EFFECT OF DIFFERENT VIDEO INPUT SIZE

We also test whether our method is robust to increased number of input video frames. It is worth
noting that larger number of input video frames usually can bring more spatial temporal information,
benefiting data-driven models to learn more distinguishable features while keeping the model size
remaining the same. The last group of comparisons in Table 2 shows that using double-sized video
input (i.e., 16 frames) can greatly improve the performance of action recognition on both small and
large-scale datasets. The improvements (increased 9.78% from 53.36% to 63.14% on SSv2, and
3.74% from 71.93% to 75.67% on HMDB51) are more significant than other factors such as dbottle
and pre-training domain (around 1% to 2%). The top line in Figure 4 visualizes the significant effect
of increasing the number of input video frames. These results suggest that our Swin-BAPAT can be
promising for increased frames of video input.

3.5 THE EFFECT OF DIFFERENT SCALE OF PATT

Table 4: Ablation of different implementation po-
sitions of PATT defined in Eq. 10, e.g., Ours (K,
V) indicates inserting PATT to the query and key
of 3DSW-MSA modules. Pre-training on Kinetics
600. dbottle is set to 128; Scalar s is set to 0.8.

Method
SSv2 HMDB51

# Params Top-1 # Params Top-1
Full-tuning 87.82M 50.99 87.69M 68.07
Concat (K, V) 6.38M 15.61 6.20M 20.98
No Zl−1 (K, V) 8.74M 51.06 8.56M 67.41
Ours (Q, K) 6.38M 45.49 6.20M 68.92
Ours (K, V) 6.38M 53.38 6.20M 71.41
Ours (Q, V) 6.38M 53.24 6.20M 71.74
Ours (Q, K, V) 7.93M 53.23 7.63M 69.57

Recall that the effect of our PATT on pre-
trained models can be adjusted by the variable
s in Eq. 10. Table 3 shows that adopting the
value of 0.8 can deliver consistent best perfor-
mances on both datasets SSv2 and HMDB51
under our experimental setting. Smaller val-
ues of s will quantitatively reduce the effect
of our PATT module on the knowledge trans-
fer while large values will increase the effect
of our PATT module. The good performance
achieved via taking an effective scale of 0.8 in-
dicates that our PATT module plays an impor-
tant role in the knowledge transfer. However,
even larger values over 0.8 can affect the im-
portance of original knowledge thereof the pre-
trained model. Hence, proper valued scalar s
is essential for balancing the role of PATT and
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pre-trained backbone model. Note this can be a learnable parameter upon specific implementation,
here we empirically verified the effect of the scalar.

3.6 THE EFFECT OF DIFFERENT METHODS YIELD FROM V-PETL

We have argued that, especially for relative large downstream datasets, the position and the amount
of trainable parameters are important for parameter-efficient transfer learning in Section 2.4. The
proposed Swin-BAPAT is one of instantiated models from the V-PETL framework regarding the in-
sert position of our PATT. Other instantiations can be inserted into different positions such as query,
key, and value of the attention module. We further instantiate other variations of our Swin-BAPAT
by inserting PATT to different positions. Table 4 shows the results. Findings show that inserting to
the value position of 3DSW-MSA can contribute more than inserting to other two positions. While
inserting to query of key makes little difference for the performance. This is due to the fact that
query and key make the calculation of the attention mask. Hence, inserting either one of them will
lead to a similar effect. On one hand, these results, to some extent, justify the original design of
prefix-tuning that bring learnable prefix to key and value of the attention module. On the other hand,
it indicates that our claim regarding the unified view of PETL for visual tasks is reasonable. In Table
4, we also ablate the designs of PATT regarding concatenating Kp and Vp (i.e., Concat [K, V]), and
using trainable parameters to generate Kp and Vp (i.e., No Zl−1 [K, V]).

3.7 COMPARISON ON VARIED TASKS VIA SELF-SUPERVISED PRE-TRAINED MODELS

Table 5 shows the comparison with AdaptFormer-64 (Chen et al., 2022) and VPT (Jia et al., 2022)
on both image- and video-based downstream tasks. Our method ViT-BAPAT still shows promising
parameter-accuracy trade-off via much smaller batch size, which is more convenient for reproduction
on the general single server with 8 GPUs. The underperformance on SSv2 (better than full-tuning)
can be due to the smaller batch size as SSv2 is much larger than other compared datasets and can be
more relying on larger batch size. In real-world application scenarios, small dataset can be the more
common case, which confirms our contributions.

Table 5: Comparison of Top-1 accuracy via ViT-B models from MAE and VideoMAE pre-trained
with self-supervised learning for image and video datasets, respectively.

Method
Avg. Image Video

Params (M) CIFAR-100 SVHN Food-101 SSv2 HMDB51
Full-tuning 86.04 (100%) 85.90 97.67 90.09 53.97 46.41
Tune FC Layer 0.07 (0.08%) 69.83 (-16.07) 66.91 (-30.76) 69.74 (-20.35) 29.23 (-24.74) 49.84 (+3.43)
VPT (Jia et al., 2022) 0.08 (0.09%) 82.44 (-3.46) 94.02 (-3.65) 82.98 (-7.11) 43.73 (-10.24) 52.67 (+6.26)
AdaptFormer-64 1.26 (1.46%) 85.90 (0.00) 96.89 (-0.78) 87.61 (-2.48) 59.02 (+5.05) 55.69 (+9.28)
Our ViT-BAPAT-32 2.13 (2.47%) 86.29 (+0.39) 97.18 (-0.49) 87.37 (-2.72) 57.78 (+3.81) 57.18 (+10.77)
Our ViT-BAPAT-64 3.02 (3.51%) 86.35 (+0.45) 97.18 (-0.49) 87.53 (-2.56) 57.55 (+3.58) 57.18 (+10.77)
Our ViT-BAPAT-128 4.79 (5.56%) 86.47 (+0.57) 97.28 (-0.39) 87.66 (-2.43) 56.97 (+3.00) 57.70 (+11.29)
Our ViT-BAPAT-256 8.33 (9.68%) 86.55 (+0.65) 97.24 (-0.43) 87.68 (-2.41) 56.53 (+2.56) 57.31 (+10.90)

4 CONCLUSION

In this paper, we introduced a V-PETL framework for exploiting good parameter-accuracy trade-
off around adapting video-based pre-trained large models to downstream tasks. Our Swin-BAPAT
method derived from the V-PETL with a variation of prefix-tuning known as PATT can effectively
bring good parameter-accuracy trade-off on downstream tasks. The proposed PATT can be eas-
ily plugged to the attention module of other transformer-like models. Meanwhile, the amount
of trainable parameter can be easily adjusted by the parameter dbottle. With small amount over-
head on trainable parameters, our method performs significantly better than state-of-the-art method
AdapFormer-Swin and full-tuning on the datasets SSv2 and HMDB51 via small batch size, vali-
dating our contribution to the literature of PETL. In the future we will test our proposed model on
more action recognition datasets surveyed in Sun et al. (2022) under more learning regimes such as
zero/few-shot learning, active learning and continual learning with other pre-training methods such
as visual-language models. We will also explore other backbone models, activation functions for
PATT, and PETL techniques such as LoRA for visual tasks.

9

bruce
Highlight

bruce
Highlight



Under review as a conference paper at ICLR 2023

REFERENCES

Lukas Bossard, Matthieu Guillaumin, and Luc Van Gool. Food-101–mining discriminative compo-
nents with random forests. In European conference on computer vision, pp. 446–461. Springer,
2014.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Joao Carreira and Andrew Zisserman. Quo vadis, action recognition? a new model and the kinetics
dataset. In proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, pp.
6299–6308, 2017.

Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
Adaptformer: Adapting vision transformers for scalable visual recognition. arXiv preprint
arXiv:2205.13535, 2022.

Ian J Goodfellow, Yaroslav Bulatov, Julian Ibarz, Sacha Arnoud, and Vinay Shet. Multi-digit number
recognition from street view imagery using deep convolutional neural networks. arXiv preprint
arXiv:1312.6082, 2013.

Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michalski, Joanna Materzynska, Susanne West-
phal, Heuna Kim, Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-Freitag, et al.
The” something something” video database for learning and evaluating visual common sense. In
Proceedings of the IEEE international conference on computer vision, pp. 5842–5850, 2017.

Julia Gusak, Daria Cherniuk, Alena Shilova, Alexandr Katrutsa, Daniel Bershatsky, Xunyi Zhao,
Lionel Eyraud-Dubois, Oleh Shliazhko, Denis Dimitrov, Ivan Oseledets, and Olivier Beaumont.
Survey on efficient training of large neural networks. In Lud De Raedt (ed.), Proceedings of the
Thirty-First International Joint Conference on Artificial Intelligence, IJCAI-22, pp. 5494–5501.
International Joint Conferences on Artificial Intelligence Organization, 7 2022. doi: 10.24963/
ijcai.2022/769. URL https://doi.org/10.24963/ijcai.2022/769. Survey Track.

Junxian He, Chunting Zhou, Xuezhe Ma, Taylor Berg-Kirkpatrick, and Graham Neubig. Towards
a unified view of parameter-efficient transfer learning. In International Conference on Learning
Representations, 2022a. URL https://openreview.net/forum?id=0RDcd5Axok.

Kaiming He, Xinlei Chen, Saining Xie, Yanghao Li, Piotr Dollár, and Ross Girshick. Masked au-
toencoders are scalable vision learners. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pp. 16000–16009, 2022b.

Neil Houlsby, Andrei Giurgiu, Stanislaw Jastrzebski, Bruna Morrone, Quentin De Laroussilhe, An-
drea Gesmundo, Mona Attariyan, and Sylvain Gelly. Parameter-efficient transfer learning for nlp.
In International Conference on Machine Learning, pp. 2790–2799. PMLR, 2019.

Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In International Con-
ference on Learning Representations, 2022. URL https://openreview.net/forum?
id=nZeVKeeFYf9.

Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
Ser-Nam Lim. Visual prompt tuning. arXiv preprint arXiv:2203.12119, 2022.

Will Kay, Joao Carreira, Karen Simonyan, Brian Zhang, Chloe Hillier, Sudheendra Vijaya-
narasimhan, Fabio Viola, Tim Green, Trevor Back, Paul Natsev, et al. The kinetics human action
video dataset. arXiv preprint arXiv:1705.06950, 2017.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

Hildegard Kuehne, Hueihan Jhuang, Estı́baliz Garrote, Tomaso Poggio, and Thomas Serre. Hmdb: a
large video database for human motion recognition. In 2011 International conference on computer
vision, pp. 2556–2563. IEEE, 2011.

10

https://doi.org/10.24963/ijcai.2022/769
https://openreview.net/forum?id=0RDcd5Axok
https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=nZeVKeeFYf9


Under review as a conference paper at ICLR 2023

Ananya Kumar, Aditi Raghunathan, Robbie Matthew Jones, Tengyu Ma, and Percy Liang. Fine-
tuning can distort pretrained features and underperform out-of-distribution. In International Con-
ference on Learning Representations, 2021.

Tianjiao Li, Qiuhong Ke, Hossein Rahmani, Rui En Ho, Henghui Ding, and Jun Liu. Else-net:
Elastic semantic network for continual action recognition from skeleton data. In Proceedings of
the IEEE/CVF International Conference on Computer Vision, pp. 13434–13443, 2021a.

Tianjiao Li, Jun Liu, Wei Zhang, Yun Ni, Wenqian Wang, and Zhiheng Li. Uav-human: A large
benchmark for human behavior understanding with unmanned aerial vehicles. In Proceedings of
the IEEE/CVF conference on computer vision and pattern recognition, pp. 16266–16275, 2021b.

Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation. In
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and the
11th International Joint Conference on Natural Language Processing (Volume 1: Long Papers),
pp. 4582–4597, 2021.

Zhaojiang Lin, Andrea Madotto, and Pascale Fung. Exploring versatile generative language model
via parameter-efficient transfer learning. In Findings of the Association for Computational Lin-
guistics: EMNLP 2020, pp. 441–459, 2020.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig. Pre-
train, prompt, and predict: A systematic survey of prompting methods in natural language pro-
cessing. arXiv preprint arXiv:2107.13586, 2021.

Shaoshan Liu, Liangkai Liu, Jie Tang, Bo Yu, Yifan Wang, and Weisong Shi. Edge computing for
autonomous driving: Opportunities and challenges. Proceedings of the IEEE, 107(8):1697–1716,
2019.

Ze Liu, Jia Ning, Yue Cao, Yixuan Wei, Zheng Zhang, Stephen Lin, and Han Hu. Video swin trans-
former. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recogni-
tion, pp. 3202–3211, 2022.

Junting Pan, Ziyi Lin, Xiatian Zhu, Jing Shao, and Hongsheng Li. St-adapter: Parameter-efficient
image-to-video transfer learning for action recognition. arXiv preprint arXiv:2206.13559, 2022.

Hieu Pham, Zihang Dai, Qizhe Xie, and Quoc V Le. Meta pseudo labels. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp. 11557–11568, 2021.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In International Conference on Machine Learning,
pp. 8748–8763. PMLR, 2021.

Mannat Singh, Laura Gustafson, Aaron Adcock, Vinicius de Freitas Reis, Bugra Gedik, Raj Prateek
Kosaraju, Dhruv Mahajan, Ross Girshick, Piotr Dollár, and Laurens van der Maaten. Revisiting
weakly supervised pre-training of visual perception models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 804–814, 2022.

Zehua Sun, Qiuhong Ke, Hossein Rahmani, Mohammed Bennamoun, Gang Wang, and Jun Liu.
Human action recognition from various data modalities: A review. IEEE transactions on pattern
analysis and machine intelligence, 2022.

Yi-Lin Sung, Jaemin Cho, and Mohit Bansal. Vl-adapter: Parameter-efficient transfer learning for
vision-and-language tasks. In Proceedings of the IEEE/CVF Conference on Computer Vision and
Pattern Recognition, pp. 5227–5237, 2022.

Zhan Tong, Yibing Song, Jue Wang, and Limin Wang. Videomae: Masked autoencoders are data-
efficient learners for self-supervised video pre-training. arXiv preprint arXiv:2203.12602, 2022.

Xiaohan Wang, Linchao Zhu, Heng Wang, and Yi Yang. Interactive prototype learning for egocen-
tric action recognition. In Proceedings of the IEEE/CVF International Conference on Computer
Vision, pp. 8168–8177, 2021.

11



Under review as a conference paper at ICLR 2023

Jiahui Yu, Zirui Wang, Vijay Vasudevan, Legg Yeung, Mojtaba Seyedhosseini, and Yonghui
Wu. Coca: Contrastive captioners are image-text foundation models. arXiv preprint
arXiv:2205.01917, 2022.

Sha Yuan, Hanyu Zhao, Shuai Zhao, Jiahong Leng, Yangxiao Liang, Xiaozhi Wang, Jifan Yu, Xin
Lv, Zhou Shao, Jiaao He, et al. A roadmap for big model. arXiv preprint arXiv:2203.14101,
2022.

Elad Ben Zaken, Yoav Goldberg, and Shauli Ravfogel. Bitfit: Simple parameter-efficient fine-tuning
for transformer-based masked language-models. In Proceedings of the 60th Annual Meeting of
the Association for Computational Linguistics (Volume 2: Short Papers), pp. 1–9, 2022.

Xiaohua Zhai, Alexander Kolesnikov, Neil Houlsby, and Lucas Beyer. Scaling vision transformers.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
12104–12113, 2022.

Yuanhan Zhang, Kaiyang Zhou, and Ziwei Liu. Neural prompt search. arXiv preprint
arXiv:2206.04673, 2022.

Fuzhen Zhuang, Zhiyuan Qi, Keyu Duan, Dongbo Xi, Yongchun Zhu, Hengshu Zhu, Hui Xiong,
and Qing He. A comprehensive survey on transfer learning. Proceedings of the IEEE, 109(1):
43–76, 2020.

A APPENDIX

A.1 THE EFFECT OF FC LAYER FOR SMALL SCALE DOWNSTREAM TASKS

Table 6: Results of with or without tuning the FC layer on the small scale dataset HMDB51.

Method dbottle Pre-training # Frames
with FC layer without FC layer

# Params Top-1 (%) # Params Top-1 (%)

Our Swin-BAPAT 32 Kinetics 400 8 2.79M 65.97 2.74M 68.20
Our Swin-BAPAT 64 Kinetics 400 8 3.94M 67.28 3.89M 70.10
Our Swin-BAPAT 128 Kinetics 400 8 6.25M 66.75 6.20M 71.93
Our Swin-BAPAT 256 Kinetics 400 8 10.88M 67.67 10.83M 69.64

Our Swin-BAPAT 256 Kinetics 400 8 10.88M 67.67 10.83M 69.64
Our Swin-BAPAT 256 Kinetics 600 8 10.88M 67.41 10.83M 69.90
Our Swin-BAPAT 128 Kinetics 400 8 6.25M 66.75 6.20M 71.93
Our Swin-BAPAT 128 Kinetics 400 16 6.25M 70.56 6.20M 75.67
Our Swin-BAPAT 128 Kinetics 400 32 6.25M 74.82 6.20M 76.46

For the small dataset HMDB51, due to the good parameter-accuracy trade-off achieved by fine-
tuning the FC layer only, adding the FC layer cannot bring extra improvement to our proposed
method. Without sufficient taining data, full-tuning also cannot perform well (see results in Table
2). As such, small datasets do not need to rely on large models but can make use of large models
with light transfer. Instead, without tuning the FC layer, our Swin-BAPAT can perform better than
fine-tuning the FC layer with small amount of extra trainable parameters (see results in Table 6),
validating the good parameter-accuracy trade-off of our method.
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