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ABSTRACT

Classifier-free guidance (CFG) is a fundamental technique for flow-based models,
significantly enhancing visual quality and prompt adherence. However, the guid-
ance scale is typically tuned empirically due to instability at higher values, which
often induces visual artifacts and mode collapse. This paper investigates the un-
derlying mechanisms driving this instability and proposes an effective solution.
Our analysis reveals that high CFG scales induce a detrimental distribution shift
in the velocity prediction, damaging the generation fidelity. To address this, we
introduce TCG, a novel plug-and-play method comprising two key components:
(1) Moment Matching (MM), which stabilizes the velocity distribution by align-
ing its first two moments (mean and variance), thereby preventing mode collapse;
and (2) Adaptive Clipping (AdapC), which dynamically constrains the guidance
update term from both temporal and spatial perspectives to ensure smooth and
stable sampling. As a result, our method enables robust and high-quality gener-
ation across a wide range of guidance scales. Extensive experiments on diverse
text-to-image and text-to-video benchmarks validate that our method outperforms
both standard CFG and its state-of-the-art variants.

1 INTRODUCTION

Flow matching models Lipman et al. (2022); Esser et al. (2024); Labs et al. (2025) have emerged
as the leading paradigm in generative modeling, setting new standards in image and video synthe-
sis Gao et al. (2025); Wu et al. (2025); Zhang et al. (2025). Their success stems not only from
architectural innovations but also from effective guidance methods that steer generation toward user
intent. Among these, classifier-free guidance (CFG) Ho & Salimans (2022) is widely used for its
effectiveness in improving visual fidelity and prompt alignment.

CFG amplifies the influence of conditioning signals (i.e., text prompts) during iterative denoising
through a single hyperparameter: the guidance scale w. Intuitively, higher values of w should
yield stronger semantic alignment and improved quality. In practice, however, increasing w leads
to diminishing returns and usually triggers severe instabilities such as visual artifacts and mode
collapse Saharia et al. (2022); Kynkäänniemi et al. (2024); Sadat et al. (2025). These issues limit
the upper bound and robustness of diffusion models, especially for strong prompt adherence.

This work investigates the underlying causes of high-CFG instability in flow-based models. We
reveal that large guidance scales lead to uncontrolled growth in the CFG update term, inducing a
significant distribution shift in the predicted velocity. This shift pushes the velocity prediction far
outside its expected stable distribution, resulting in degraded outputs. As shown in Figure 1, when
w = 15, CFG produces overly uniform and stylistically biased images, indicating mode collapse.

To mitigate this issue, we propose TCG, a training-free guidance module designed to stabilize the
sampling process. TCG comprises two core components. (1) Moment Matching (MM): A moment
recalibration scheme applied directly to the velocity prediction. By zero-centering and variance-
aligning the guidance term, MM ensures that the updated velocity remains within the expected data
manifold, effectively eliminating mode collapse at high guidance scales. (2) Adaptive Clipping
(AdapC): A dual-level clipping mechanism that regulates the magnitude of the guidance signal.
Temporal clipping enforces monotonic decay of the update norm over denoising timesteps, while
spatial clipping suppresses local outliers in feature space, collectively ensuring stable generation.
As shown in Figure 1, TCG improves the quality on both moderate and high guidance scales.
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Figure 1: Comparisons between CFG and TCG at different guidance scales. At high scales (w =
15), CFG tends to generate overly simplified and stylized (e.g., anime-like) images, indicative of
mode collapse. In contrast, TCG produces richer details while preserving output diversity. Results
are generated using SD3.5 Esser et al. (2024) with the same random seed.

Consequently, our method unlocks the potential of CFG across a wider range of scales, allowing for
better prompt alignment and generation quality. Our contributions can be summarized as follows:

• We provide an analysis that identifies the detrimental distribution shift in the predicted
velocity as the key cause of instability at high CFG scales.

• We propose an effective plug-and-play module (TCG) for flow-based models, combining
a Moment Matching (MM) scheme and an Adaptive Clipping (AdapC) mechanism, to
stabilize the guidance process. This enables robust performance across a wide range of
CFG scales and improves the performance upper bound.

• We apply TCG to different SOTA models Esser et al. (2024); Zhuo et al. (2024); Labs
(2024); Labs et al. (2025); Wan et al. (2025). Experimental results on diverse image and
video generation benchmarks demonstrate that our approach outperforms standard CFG
and recent state-of-the-art variants.

2 RELATED WORK

2.1 FLOW MATCHING DIFFUSION MODELS

Diffusion models have set a new benchmark for high-fidelity image and video synthesis. Early
advances Song & Ermon (2019); Song et al. (2020b); Sohl-Dickstein et al. (2015); Nichol et al.
(2021); Blattmann et al. (2023) are predominantly SDE-based, with methods such as DDPM Ho
et al. (2020), DDIM Song et al. (2020a), EDM Karras et al. (2022; 2024), Stable Diffusion Rom-
bach et al. (2022); Podell et al. (2023); Lin et al. (2024), and DiT Peebles & Xie (2023) modeling
stochastic diffusion dynamics via SDEs. More recently, flow-based approaches grounded in flow
matching Lipman et al. (2022) have emerged as the mainstream: they formulate generation as a de-
terministic ODE by learning a time-dependent velocity field that transports samples from a simple
prior to the data distribution, leading to more stable training and improved interpretability. Building
on this perspective, a series of text-to-image models, including Rectified Flow Liu et al. (2022),
SD3/SD3.5 Esser et al. (2024), Lumina-Next Zhuo et al. (2024), and Flux Labs (2024); Labs et al.
(2025), as well as text-to-video models Guo et al. (2023); Ma et al. (2025); Team (2024); HaCohen
et al. (2024) such as HunyuanVideo Kong et al. (2024) and Wan2.1/2.2 Wan et al. (2025) employ
velocity-based training and sampling. Accordingly, our study centers on flow-based models as the
primary vehicle for analysis and method design.
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2.2 CLASSIFIER-FREE GUIDANCE (CFG) FOR DIFFUSION MODELS

Aligning text prompts with image and video generations remains a central yet challenging prob-
lem. Early methods used classifier guidance Dhariwal & Nichol (2021), injecting gradients from an
external classifier. This approach induces training and compatibility overhead. Classifier-free guid-
ance (CFG) Ho & Salimans (2022) removes the external classifier by jointly training conditional
and unconditional models and blending their predictions at inference via a tunable guidance scale.
However, this scale is an empirical hyperparameter whose mis-specification can cause artifacts or
under-conditioning. To address these issues, some works Zheng & Lan (2023); Xia et al. (2025);
Wang et al. (2024); Yehezkel et al. (2025) introduce adaptive or time-varying schedules to improve
the guiding process. Some other works Sadat et al. (2023); Kynkäänniemi et al. (2024) focus on en-
hancing the diversity of generations. Other approaches like Kynkäänniemi et al. (2024) limit guid-
ance to specific sampling intervals. Further refinements to CFG include APG Sadat et al. (2025),
which decomposes the CFG update term into parallel and orthogonal components and removes the
parallel component to reduce oversaturation. CFG++ Chung et al. (2025) reformulates text-guidance
as an inverse problem with a text-conditioned score matching loss, thereby tackling the off-manifold
challenges inherent in traditional CFG. More recently, to improve flow-based models, CFG-Zero
Fan et al. (2025) optimizes the scale by velocity projections and proposes zero-initialization for the
first few steps. In summary, the evolution of text-guided generation techniques highlights a con-
tinuous effort to achieve more precise, efficient, and robust alignment between textual prompts and
visual outputs. While progress has been made, most methods still struggle with stability at high
guidance scales. Our work complements these efforts by targeting the statistical properties of the
velocity field, a perspective unexplored in prior studies.

3 METHOD

3.1 MOMENT MATCHING (MM) FOR VELOCITY STABILIZATION

We begin by analyzing classifier-free guidance (CFG) within the velocity prediction framework of
flow-based models. Let x1 denote the clean latent of an image or video, and let x0 ∼ N (0, I)
be a standard Gaussian noise. At timestep t, the conditional velocity prediction, guided by a text
prompt y, is given by vt(x|y) = x0 − xc

1, where xc
1 can be regarded as the model’s clean latent

prediction under prompt condition. The unconditional velocity prediction is similarly formulated as
vt(x) = x0 − xu

1 . The velocity vt is updated using the standard CFG formula:
vt = vt(x) + w · (vt(x|y)− vt(x)) (1)

where w is the guidance scale. The core guidance term, δv = vt(x|y)−vt(x), can be rewritten as:
δv = (x0 − xc

1)− (x0 − xu
1 ) = xu

1 − xc
1 (2)

Intuitively, since both xc
1 and xu

1 are underlying estimations of the target within the same clean
latent space, we expect their difference δv to have a relatively small magnitude. However, a large
guidance scale w can significantly amplify this term. Such amplification can induce a detrimental
distribution shift in the final velocity prediction vt, compromising its fidelity to the learned data
manifold and ultimately leading to visual artifacts and mode collapse. This observation raises a
crucial question: how can we preserve the effective directional guidance of δv while mitigating
the adverse statistical shifts it induces at high guidance scales?

We reveal that the instability at high CFG scales stems from a distributional mismatch of the pre-
dicted velocity. Specifically, while the directional information embedded in δv is crucial for guid-
ance, its statistical moments (mean and variance) can become misaligned with the expected distribu-
tion of velocities on the data manifold. Therefore, we introduce a Moment Matching (MM) scheme
that explicitly adjusts the first two moments (mean and variance) of the guidance term δv .

Zero-Centering the Guidance Term. We first hypothesize that the mean component of δv , µδ =
E[δv], contributes little to effective guidance while introducing an adverse mean shift in the final
velocity vt. To confirm this hypothesis, we perform zero-centering on the update term, setting
δzc
v = δv − µδ . Thus the velocity is vzc

t = vt(x) + w · δzc
v . Our experiments, as illustrated in

Figure 2 and Table 9, confirm that using δzc
v for guidance not only prevents degradation in generation

quality but can also lead to improvements. This suggests that the mean shift µδ is dispensable and
detrimental. We call this process zero-centering.
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Figure 2: Effect of zero-centering and moment matching. Re-
moving the mean leads to better results and full moment match-
ing avoids mode collapse. The right plot shows the velocity pre-
diction statistics across denoising steps. High guidance leads to a
distribution shift on the first two moments (mean and variance),
while moment matching rectifies this shift. Best viewed in color.

Moment Matching. Despite
the improvements from zero-
centering, we observe that for
large w, the variance of the final
velocity vt can still significantly
deviate from that of the uncon-
ditional velocity vt(x). This re-
maining variance mismatch can
still contribute to instability. To
further stabilize the velocity dis-
tribution, we propose to addi-
tionally align the variance of the
guidance term. Our full Moment
Matching (MM) approach com-
bines zero-centering with vari-
ance alignment. Therefore, we
have:

vmm
t =

vzc
t − µ

σ1
· σ2 + µ (3)

where µ = E[vzc
t ] = E[vt(x)], σ1 = std(vzc

t ), σ2 = std(vt(x)). This moment matching process
aims to preserve the essential guidance of CFG while explicitly controlling the mean and variance of
the updated velocity to better align with the learned in-domain distribution. In this way, we stabilize
the statistical properties of the guidance, enabling more robust generation at high CFG scales. As
shown in Figure 2, MM corrects the biased distribution of original CFG and works well across
different guidance scales.

3.2 ADAPTIVE CLIPPING

To further mitigate artifacts caused by excessive guidance, we introduce Adaptive Clipping
(AdapC), a method designed to dynamically regulate the CFG update term δv by clipping outliers
at both temporal and spatial levels.

First, we consider the temporal dynamics of the denoising process. We illustrate the denoising
process using CFG in Figure 3. At early stages (high noise levels), both the conditional and un-
conditional predictions, xc

1 and xu
1 , are noisy. As denoising proceeds, the signal-to-noise ratio of

the input latent increases, causing the conditional and unconditional predictions to converge. Con-
sequently, the magnitude of the guidance term, ||δv|| = ||xu

1 − xc
1||, is expected to monotonically

decrease. To enforce this behavior and prevent sudden spikes in guidance, we propose a temporal
clipping strategy. At timestep t, we clip the magnitude of the current guidance term, δtv , so that
it does not exceed the magnitude of the guidance term from the previous denoising step, δt+1

v , as
follows:

Figure 3: Temporal clipping. During the denoising process using CFG, the delta (the difference
between the unconditional and conditional outputs) becomes smaller as the prediction converges.
We penalize the outliers, which have a large L2 norm compared to the previous denoising step, to
maintain a smoother denoising process. Prompt: A cat in a house.
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δ̂tv = δtv · clip
(
||δt+1

v ||
||δtv||

, 0, 1

)
(4)

where clip(a, b, c) clamps value a between b and c. This formula suppresses the norm when δtv
spikes (||δtv|| > ||δt+1

v ||), and introduces no modification if ||δtv|| ≤ ||δt+1
v ||. We call this process

Temporal Clipping (TempC). We note that the initial denoising steps are unstable, and thus our
clipping strategy skips the first Tclip steps. We set Tclip = 1 for models using 28 denoising steps
(SD3.5) and Tclip = 3 for models using 50 denoising steps (Flux-dev).

Figure 4: Spatial clipping. Outlier responses of-
ten correspond to artifact-prone regions. Clipping
based on local regions suppresses these without
affecting valid features. Prompt: A painting de-
picting a black woman taking a selfie in Wal-Mart
while being followed by a man.

However, this temporal clipping may be insuf-
ficient to address localized artifacts. The guid-
ance term δv can exhibit high-magnitude values
at specific spatial locations (i.e., local outliers),
even when its overall norm is reasonable. To
address this, we introduce a Spatial Clipping
(SpaC) mechanism. This method limits the lo-
cal guidance strength relative to the magnitude
of the unconditional velocity prediction at the
same location. For an image latent at spatial
index (i, j), the clipped guidance term is com-
puted as:

δi,jv = δ̂i,jv · clip

(
||vi,j(x)||
γw · ||δ̂i,jv ||

, 0, 1

)
(5)

where w is the guidance scale, γ is a tunable
hyperparameter controlling the clipping thresh-
old, and we set it to 1.5 by default. As shown in
Figure 4, this spatial clipping approach effectively reins in local outliers without suppressing valid
guidance in other regions, thereby removing artifacts while enhancing stability.

4 EXPERIMENT

Table 1: Quantitative comparisons on HPD v2 benchmark. “G.S.” is guid-
ance scale; “P.S.” is PickScore; “Aes.” is aesthetic; “I.R.” is ImageReward;
“U.R.” is UnifiedReward.

Model G.S. P.S. Aes. CLIP HPS I.R. U.R.
CFG

5.0

22.78 5.984 37.03 29.66 1.0818 3.3988
CFG++ 20.93 5.814 32.75 23.98 -0.0159 2.5197
APG 21.82 5.985 35.06 24.81 0.4964 2.9532
CFG-Zero 22.84 6.014 36.89 30.31 1.0876 3.4190
TCG 22.95 6.022 37.26 30.22 1.1126 3.4230
CFG

10.0

22.44 5.866 36.57 29.21 1.0361 3.3662
CFG++ 22.26 6.020 36.37 28.23 0.8044 3.1727
APG 22.42 6.040 36.24 27.37 0.8606 3.2494
CFG-Zero 22.72 5.972 37.00 30.64 1.1558 3.4431
TCG 23.02 6.053 37.33 31.29 1.2216 3.4958
CFG

15.0

21.43 5.507 34.31 25.15 0.4922 2.9521
CFG++ 22.60 6.051 36.98 29.76 1.0092 3.3510
APG 22.67 6.065 36.67 28.68 0.9934 3.3685
CFG-Zero 22.25 5.824 36.60 29.27 1.0363 3.2907
TCG 22.98 6.067 37.31 31.60 1.2482 3.4812

Table 2: Ablation study on MM
(Moment Matching) and AdapC
(Adaptive Clipping). Both com-
ponents bring improvements.

Model P.S. Aes. CLIP
CFG 22.44 5.866 36.57
+MM 22.92 6.032 37.16
+AdapC 22.72 5.950 37.22
+Both 23.02 6.053 37.33

Table 3: Ablation study on clip-
ping strategies. “SpaC” is spatial
clipping and “TempC” is tem-
poral clipping. “AdapC” refers
SpaC+TempC.

Model P.S. Aes. CLIP
CFG 22.44 5.866 36.57
+SpaC 22.71 5.935 37.21
+TempC 22.61 5.929 36.94
+AdapC 22.72 5.950 37.22

4.1 EXPERIMENTAL SETUP

Implementation Details We use the official model and implementations for each baseline and base
model. Specific implementation details are provided in the appendix.
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Table 4: Quantitative comparisons on DPG benchmark Hu et al. (2024). TCG achieves state-of-the-
art results on the overall metric and most sub-metrics across different guidance scales.

Model G.S. Global Entity Attribute Relation Other Overall

CFG Ho & Salimans (2022)

5.0

84.50 90.27 88.38 93.65 82.80 84.36
CFG++ Chung et al. (2025) 79.79 82.89 80.39 90.35 70.40 74.70
APG Sadat et al. (2025) 82.98 86.89 85.11 92.22 75.60 80.03
CFG-Zero Fan et al. (2025) 84.50 90.48 88.28 93.60 81.90 84.97
TCG (Ours) 85.11 90.64 88.37 93.71 82.90 85.16

CFG Ho & Salimans (2022)

10.0

82.29 90.49 88.23 93.49 83.70 84.51
CFG++ Chung et al. (2025) 84.80 87.57 85.76 91.78 78.00 81.67
APG Sadat et al. (2025) 85.33 89.22 86.97 93.38 79.10 83.09
CFG-Zero Fan et al. (2025) 83.43 90.92 88.62 93.82 82.30 85.29
TCG (Ours) 84.19 91.41 88.64 94.13 85.20 85.87

CFG Ho & Salimans (2022)

15.0

78.34 87.44 84.52 91.59 80.10 79.93
CFG++ Chung et al. (2025) 85.94 88.37 86.60 92.28 79.50 82.96
APG Sadat et al. (2025) 85.26 90.01 87.70 93.55 80.50 84.31
CFG-Zero Fan et al. (2025) 81.00 89.85 87.51 93.16 82.00 83.40
TCG (Ours) 83.97 91.83 88.58 94.55 85.70 86.40

Table 5: Quantitative comparisons on GenEval benchmark Ghosh et al. (2023).

Methods G.S. Single Two Counting Colors Position Color OverallObject Object Attribution

CFG

5.0

99.38 83.08 65.00 81.12 23.75 47.15 66.58
CFG++ 76.25 39.65 25.31 45.48 8.75 13.21 34.78
APG 95.94 64.65 39.38 71.54 14.50 27.85 52.31
CFG-Zero 99.69 82.58 60.94 83.51 24.00 49.39 66.68
TCG 100.00 85.10 63.44 82.18 25.50 46.14 67.09

CFG

10.0

99.06 88.64 66.88 78.19 27.25 43.09 67.18
CFG++ 94.38 73.23 44.06 72.07 21.25 37.40 57.07
APG 99.38 73.99 50.94 78.72 19.25 38.21 60.08
CFG-Zero 99.38 85.61 64.38 82.71 25.25 46.54 67.31
TCG 100.00 87.12 62.81 80.32 27.64 52.44 68.39

CFG

15.0

95.31 81.06 54.69 71.01 22.25 30.69 59.17
CFG++ 97.81 80.56 54.37 80.59 25.00 41.46 63.30
APG 99.06 81.06 50.94 81.12 22.00 44.72 63.15
CFG-Zero 99.69 84.60 61.88 78.19 25.25 40.04 64.94
TCG 100.00 86.36 64.06 83.51 26.44 50.20 68.43

Baselines and Base models. We conduct a comparative analysis not only against the original
classifier-free guidance (CFG) but also against three prominent advanced guidance methods: APG
Sadat et al. (2025), CFG++ Chung et al. (2025), and CFG-Zero Fan et al. (2025), where CFG-Zero
is also designed for flow-based models. Please note that we map the guidance scale for CFG++
to its hyperparameter. For base models in the T2I task, we employ large-scale flow-based mod-
els including Stable Diffusion 3 medium (SD3) Esser et al. (2024), SD3.5 medium Esser et al.
(2024), Lumina-Next Zhuo et al. (2024), and Flux-dev Labs (2024); Labs et al. (2025). The main
experiments and ablations are based on the SD3.5 medium model. Please note that Flux-dev is a
CFG-distilled model. We employ different guidance scales to mimic its CFG mechanism, which

Table 6: Comparisons on SD3 base model.
Model G.S. P.S. Aes. CLIP HPS I.R. U.R.
CFG 5.0 22.64 5.956 36.41 29.64 1.0535 3.3728
TCG 22.73 5.998 36.34 29.84 1.0687 3.3757
CFG 10.0 22.35 5.845 36.53 29.53 1.0717 3.3385
TCG 22.69 5.988 36.86 30.68 1.1462 3.3884
CFG 15.0 21.73 5.606 35.80 27.54 0.8487 3.0708
TCG 22.59 5.971 36.88 30.65 1.1582 3.3464

Table 7: Comparisons on Lumina-Next base model.
Model G.S. P.S. Aes. CLIP HPS I.R. U.R.
CFG 5.0 22.28 6.175 34.18 27.44 0.7343 2.9659
TCG 22.50 6.255 34.40 28.13 0.7962 2.9634

CFG 10.0 21.65 5.972 33.41 26.08 0.5201 2.8252
TCG 22.52 6.231 34.88 28.74 0.8696 2.9970
CFG 15.0 21.15 5.822 32.60 24.97 0.3301 2.6609
TCG 22.47 6.212 35.01 28.86 0.8772 2.9742
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Table 8: Comparisons on Flux-dev base model. Please note that Flux-
dev is a CFG-distilled model. For a fair comparison, we mimic the
guidance mechanism.

Model G.S. P.S. Aes. CLIP HPS I.R. U.R.
CFG 5.0 22.87 6.009 36.88 28.90 1.1284 3.4244
TCG 23.07 6.092 37.01 29.76 1.1827 3.4476
CFG 10.0 22.22 5.661 35.63 26.87 0.8747 3.1173
TCG 23.03 6.071 37.29 30.25 1.2238 3.4506
CFG 15.0 21.36 5.244 33.06 23.32 0.3743 2.6609
TCG 22.98 6.062 37.35 30.42 1.2363 3.4340

Table 9: Ablation study on zero-
centering. “Z-C” refers to zero-
centering. It indicates that the mean
of CFG update term is not helpful
for the generation.

Model P.S. Aes. CLIP
CFG 22.44 5.866 36.57
+Z-C 22.58 5.903 36.91
+MM 22.92 6.032 37.16

Table 10: Comparisons on Vbench benchmark. We use the recent Wan2.2 models as our base model.
Compared to vanilla CFG, TCG improves both frame aesthetics and overall video quality.

Model Guidance Aesthetic Motion Overall Spatial Temporal Quality Semantic Total
Quality Smoothness Consistency Relationship Style Score Score Score

Wan2.2 5B
CFG 4.0 58.69 98.69 24.81 75.38 24.81 83.02 71.19 80.65
CFG 9.0 59.09 98.22 25.36 80.67 24.82 83.36 74.74 81.64
TCG 9.0 59.69 98.53 25.55 80.15 25.02 83.89 74.05 81.92

Wan2.2 A14B
CFG 4.0 62.69 98.20 26.14 79.86 23.92 83.93 75.81 82.30
CFG 9.0 62.64 97.73 26.23 80.95 24.26 83.63 76.66 82.24
TCG 9.0 62.82 98.23 26.24 80.54 24.13 84.07 76.76 82.61

may not be identical to standard CFG results. For T2V tasks, we utilize the latest state-of-the-art
Wan2.2 5B and Wan2.2 A14B models Wan et al. (2025).

Benchmarks. Our evaluation encompasses both text-to-image (T2I) and text-to-video (T2V) tasks,
conducted on different benchmarks. For T2I evaluation, we utilize three prominent benchmarks:
HPD v2 Wu et al. (2023), which comprises 3,200 prompts across four styles (animation, concept
art, paintings, and photos); GenEval Ghosh et al. (2023), which focuses on object-centric text-
to-image generation using compositional prompts to assess the model’s understanding of complex
relationships; and DPG Hu et al. (2024), which consists of 1K dense prompts, enabling fine-grained
assessment of different aspects of prompt adherence. These benchmarks are designed to assess
model performance in complex scenes. For T2V evaluation, we adopt the standard prompts and
evaluation metrics provided by VBench Huang et al. (2024), which contains around 1K prompts for
different dimensions.

Metrics. For the standard GenEval, DPG, and VBench benchmarks, we employ their official met-
rics. For HPD v2, we employ four types of overall human preference metrics: PickScore Kirstain
et al. (2023), HPSv2.1 Wu et al. (2023), ImageReward Xu et al. (2023), and UnifiedReward Wang
et al. (2025), where UnifiedReward is based on a state-of-the-art VLM model Bai et al. (2025). Fur-
thermore, we use the Aesthetic score Schuhmann (2022) and CLIP score Radford et al. (2021) to
measure the aesthetic quality and prompt-following ability, respectively.

4.2 QUANTITATIVE EVALUATION

Table 1 presents the quantitative results of our proposed TCG compared to CFG across various
methods on HPD v2 benchmark under different guidance scales (G.S.). TCG consistently achieves
superior performance. As evidenced by the table, TCG surpasses other methods in terms of Aes-
thetic Score (Aes.), PickScore (P.S.), HPS, Image Reward (I.R.), and Unified Reward (U.R.) across
all guidance scales. Specifically, for a guidance scale (G.S.) of 15.0, TCG significantly improves the
CLIP score to 37.31 and the Aesthetic score to 6.067, demonstrating its effectiveness in enhancing
both text-image alignment and visual appeal. It also outperforms other methods on human prefer-
ence metrics: PickScore, HPS, Image Reward (I.R.), and Unified Reward (U.R.). The consistent
improvement in Aesthetic Score suggests that TCG produces images with more coherent textures,
lighting, and structure, aligning better with human preferences. Moreover, the enhanced CLIP Score
confirms that generated images better capture the semantics of the given prompts. The performance
on other official benchmarks: GenEval (Table 5) and DPG (Table 4) further highlights the strength
of our approach, showing its effectiveness in handling complex generation tasks and refining subop-
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Figure 5: Qualitative comparisons on SD3.5 medium base model at guidance scale 10. TCG obtains
more visually appealing and better prompt-aligned results.

timal results produced by CFG. We also verify our method on different base models. As shown in
Tables 6, 7, and 8, TCG shows consistent improvements.

To further evaluate the effectiveness and versatility of TCG, we conduct experiments on the text-to-
video (T2V) generation task. This evaluation uses state-of-the-art models and standard benchmarks
to assess performance. The quantitative results for text-to-video generation are presented in Table
10. Specifically, when applied to the Wan2.2 model (which includes the 5B and A14B versions)
Wan et al. (2025), TCG demonstrates marked improvements across several key metrics. It enhances
both quality and semantic scores, indicating that TCG boosts video appeal and prompt alignment.

4.3 QUALITATIVE EVALUATION

The qualitative comparisons are presented in Figure 5 (and Figure 6 for video), offering a com-
prehensive visual demonstration of our method’s efficacy. TCG consistently produces high-quality
images, characterized by rich detail and strong semantic alignment with the given text descriptions.
Compared to conventional methods such as CFG and other contemporary approaches, TCG demon-
strates significant improvements in both visual fidelity and semantic coherence, findings that are
fully consistent with our quantitative experimental results. Furthermore, when applied to video gen-
eration, TCG yields more temporally consistent and coherent frames, mitigating artifacts often ob-
served in other methods. This compelling visual evidence not only reinforces the robust performance
of TCG but also highlights its potential across various generative tasks. Additional visualizations
and extensive qualitative results are provided in the appendix and supplementary material.

4.4 ABLATIONS

We provide detailed ablations on different components of TCG. We employ SD3.5 medium base
model and a guidance scale of 10 by default for these ablation studies. More ablations are provided
in the appendix.

Impact of Moment Matching (MM) and Adaptive Clipping (AdapC). Table 2 provides the
ablation results for our two main components: Moment Matching (MM) and Adaptive Clipping
(AdapC). Each component brings significant improvements. For example, MM improves Aesthetic
score from 5.866 to 6.032, and AdapC boosts CLIP score from 36.57 to 37.22. When using both
components, our method obtains the best performance across all metrics.

Impact of clipping strategies. We show the ablation results for temporal and spatial clipping meth-
ods in Table 3, which is denoted by TempC and SpaC, respectively. SpaC makes the velocity more

8
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Figure 6: Qualitative comparisons on Wan2.2 5B base model at guidance scale 9. TCG obtains more
consistent and coherent results.

stable and suppresses outliers in a fine-grained manner. It brings significant improvements. TempC
focuses on the overall norm of the current denoising step, facilitates better denoising dynamics,
which further boosts the results.

Impact of Zero-Centering. Table 9 provides the ablation study on removing the mean (zero-
centering) from the CFG update term. We observe that zero-centering alone does not harm per-
formance but contributes improvements over original CFG. This verifies our claim from Section 3.1
that the mean component is not helpful to the final results and even detrimental. The full Moment
Matching (MM) approach, which includes variance alignment, further enhances performance.

5 LIMITATION AND FUTURE WORK

While TCG is simple and consistently improves upon standard CFG across various models and
benchmarks, it has several limitations. First, our analysis and design are based on the velocity-
prediction framework used in flow-matching models. Although we demonstrate gains on popular
flow-based models (e.g., SD3, SD3.5, Lumina-Next, Flux, Wan2.2), TCG has not been exhaustively
evaluated on SDE-based models (e.g., DDPM/EDM). Extending TCG to such frameworks may re-
quire additional adaptations. Second, our argument for stabilizing velocity distributions is empirical
and intuitive; formal theoretical analysis of guidance-induced distribution shifts in deterministic
samplers remains an open direction for future work.

6 CONCLUSION

In this work, we introduce TCG, a novel training-free guidance method designed to enhance the per-
formance of flow-based models, by improving upon the traditional classifier-free guidance (CFG)
mechanism. Our approach addresses the limitations of CFG, which empirical analysis reveals that it
can often lead to suboptimal results and artifacts, especially at high guidance scales. TCG incorpo-
rates two primary technical innovations: (1) Moment Matching (MM) for distribution calibration of
the velocity prediction by using zero-centering and variance alignment, and (2) Adaptive Clipping
(AdapC) to stabilize the guidance update term throughout the denoising process at both temporal
and spatial perspectives. These components work in concert to guide the model away from potential
low-quality predictions, thereby improving overall fidelity. Through comprehensive analysis and
extensive experiments, we demonstrate the effectiveness of TCG across both text-to-image (T2I)
and text-to-video (T2V) generation tasks. Our evaluations utilize state-of-the-art models such as
SD3.5, Lumina-Next, Flux, and Wan2.2, alongside widely recognized benchmarks including HPD
v2, GenEval, DPG, and VBench. The results consistently show that TCG outperforms standard
CFG, achieving higher aesthetic scores, improved text alignment, and fewer generation artifacts.
Furthermore, TCG has been shown to surpass other advanced guidance strategies. The superior per-
formance and robustness of TCG highlight its potential to serve as a versatile and effective method
for enhancing the output quality of flow-based models.
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Appendix

Due to the space limitation, we provide details omitted in the main text in this appendix, which is
organized as follows:

• Section A : Algorithm overview.

• Section B : Ablations on hyperparameters.

• Section C : Detailed implementation for different base models and baselines.

• Section D : Robustness over wide guidance range.

• Section E : More visualization on T2I base models.

• Section F : LLM usage.

For better visualization of video results, please refer to Visualization webpage.html in the
supplementary materials.

A ALGORITHM OVERVIEW

We provide an overview of TCG in Algorithm 1. It is a plug-and-play module and can be easily
implemented for current flow-based diffusion models.

Algorithm 1 The Proposed Guidance Method: TCG.

1: Input: Velocity prediction vt(x),vt(x|y), guidance scale w, clipping factor γ, clipping start
step Tclip, sampling timesteps T .

2: Td ← 0
3: for t = T to 0 do
4: Compute original guidance: δtv = vt(x|y)− vt(x), Td ← Td + 1

5: # 1. Adaptive Clipping (AdapC)
6: if Td > Tclip then
7: δtemp clip

v ← δtv · clip
(

||δt+1
v ||

||δtv||
, 0, 1

)
# Temporal Clipping (TempC)

8: δi,jv ← δtemp clip,i,j
v · clip

(
||vi,j

t ||
γw·||δtemp clip,i,j

v ||
, 0, 1

)
# Spatial Clipping (SpaC)

9: end if
10: # 2. Moment Matching (MM)
11: vzc

t ← vt(x) + w · (δv − µδ), where µδ ← E[δv]
12: µ← E[vzc

t ], σ1 ← std(vzc
t ), σ2 ← std(vt(x)).

13: vmm
t ← vzc

t −µ
σ1
· σ2 + µ

14: # 3. Solving ODE
15: xt ← ODEStep(vmm

t ,xt+1)
16: end for
17: Return clean latent x1

B ABLATIONS ON HYPERPARAMETER

In this section, we investigate the impact of hyperparameters in TCG. For Tclip, it controls the
timesteps of applying the proposed adaptive clipping (AdapC) strategy. As shown in Table 11, we
can obtain the best aesthetic score when employing AdapC all the time, while it sacrifices the CLIP
score because the first several denoising steps are unstable. Thus we set Tclip to 1 by default for the
model of 28 sampling steps. For γ, it determines the clipping norm threshold in the spatial clipping
part. As shown in Table 12, higher value refers to lower norm, and it will more aggressively clip the
norm. We find it is beneficial for semantics, and we set γ = 1.5 to achieve performance balance.
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Table 11: Ablation study on Tclip.

Tclip PickScore Aesthetic CLIP HPS ImageReward UnifiedReward
0 23.01 6.056 37.32 31.30 1.2200 3.4915
1 23.02 6.053 37.33 31.29 1.2216 3.4958
2 22.99 6.043 37.27 31.30 1.2228 3.4801
3 22.99 6.037 37.24 31.35 1.2264 3.4670
4 22.98 6.039 37.21 31.38 1.2251 3.4726
5 22.98 6.038 37.20 31.40 1.2310 3.4679

Table 12: Ablation study on γ.

γ PickScore Aesthetic CLIP HPS ImageReward UnifiedReward
0.5 22.94 6.038 37.21 31.42 1.2299 3.4702
1.0 22.99 6.043 37.27 31.52 1.2321 3.4824
1.5 23.02 6.053 37.33 31.29 1.2216 3.4958
2.0 23.02 6.048 37.40 31.06 1.1982 3.4903
2.5 23.01 6.040 37.46 30.78 1.1718 3.4772
3.0 22.99 6.040 37.46 30.43 1.1450 3.4585

C IMPLEMENTATION DETAILS

C.1 BASE MODELS

For all base models, we generate 1024×1024 images, and we follow their official sampling settings,
and here we describe related details. For SD3/SD3.5, we employ the medium models and use the
same sampling setting, namely, denoising steps. For Lumina-Next, we employ the official model
and use denoising steps 30. For Flux-dev, We employ the officially released model. Note that
it is a CFG-distilled model, thus we modify its pipeline to mimic standard CFG. Specifically, we
set guidance scale as 1.0 and use the true cfg scale in the pipeline, to control its CFG
scale. For Wan2.2 5B base model, note that it uses a new highly-compressed VAE, we use the
recommended resolution of 121 × 704 × 1280 (f, h, w). For Wan2.2 A14B base model, it uses a
standard video VAE as Wan 2.1. Concerning its high computation cost, we use the recommended
resolution of 81 × 480 × 832 (f, h, w). We use the norm dimension 1 for temporal clipping and
norm dimensions 3 and 4 for spatial clipping. Namely, we suppress outliers in a more fine-grained
manner across subsequent denoising steps. We find that this manner is more stable for text-to-video
models.

C.2 BASELINES

For different baselines, we follow their official implementations. CFG++ does not require the guid-
ance scale w in the CFG. Instead, it employs a hyperparameter (0.0 − 1.0) to implement guidance.
To align other methods using standard CFG guidance, we map the 0−20 guidance scale to 0.0−1.0,
which is the parameter required for CFG++. Moreover, to fit flow-based methods, we follow the au-
thors’ instructions in their official implementations 1. For APG, we use the detailed implementation
in their paper, with hyperparameters employed for DiT-XL/2, namely, η = 0, r = 5, β = −0.5.
Please note that both CFG++ and APG are not designed for flow-based methods. For CFG-Zero,
we directly adopt its official implementation 2 and use the default settings in SD3 pipeline.

1https://github.com/CFGpp-diffusion/CFGpp/issues/12
2https://github.com/WeichenFan/CFG-Zero-star
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Figure 7: Results on the guidance scale from 2 to 20.

D ROBUSTNESS OVER WIDE GUIDANCE RANGE

Considering that TCG works well on high guidance scales, we investigate its robustness over a wide
guidance range. As shown in Figure 7, the performance of CFG rapidly decreases at high guidance
scales, while TCG works well across different guidance scales, demonstrating its robustness.

E VISUALIZATION ON MORE T2I BASE MODELS

In the main text, we provide visualization results for SD3.5 medium base model. Here we provide
results of other base models. For Flux-dev base model, we provide qualitative results in Figure 8.
For SD3 medium base model, we provide qualitative results in Figure 9. For Lumina-Next base
model, we provide qualitative results in Figure 10.

For the results in Figure 1 of SD3.5 medium base model, the prompts from top to bottom are:

There is a white toilet and a sink in this bathroom.

A brown cat crouches and arches its back in a white sink.

A vase with a flower growing very well.

Professional digital art of Godzilla with stunning detail.

Two colorful parrots perched together eating an egg tart.

A miniature anthropomorphic cat knight wearing pale blue armor and a crown.

A flat ink sketch of a hedgehog in the comic book style of Jim Lee.

Steve Buscemi portrays the Joker.
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F LLM USAGE

We used a large language model (LLM) solely for language editing (e.g., grammar checks and read-
ability improvements). It did not contribute to ideation, methodology, experimental design, or data
analysis. All scientific content was developed by the authors. The authors take full responsibility
for the manuscript and ensured that any LLM-edited text adheres to ethical guidelines and avoids
plagiarism or scientific misconduct.
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Figure 8: Qualitative results on Flux-dev base model.
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Figure 9: Qualitative results on SD3 medium base model.
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Figure 10: Qualitative results on Lumina-Next base model.
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