LT-Soups: Bridging Head and Tail Classes via
Subsampled Model Soups

Masih Aminbeidokhti* Subhankar Roy?

4 Marco Pedersolil

Eric Granger! Elisa Ricci®
"Ecole de technologie supérieure, 2University of Bergamo
3University of Trento, *Fondazione Bruno Kessler (FBK)

Abstract

Real-world datasets typically exhibit long-tailed (LT) distributions, where a few
head classes dominate, and many tail classes are severely underrepresented. While
recent work shows that parameter-efficient fine-tuning (PEFT) methods like LoRA
and AdaptFormer preserve tail-class performance on foundation models such as
CLIP, we find that they do so at the cost of head-class accuracy. We identify the
head-tail ratio, the proportion of head to tail classes, as a crucial but overlooked
factor influencing this trade-off. Through controlled experiments on CIFAR100
with varying imbalance ratio (p) and head-tail ratio (1), we show that PEFT excels
in tail-heavy scenarios but degrades in more balanced and head-heavy distributions.
To overcome these limitations, we propose LT-Soups, a two-stage model soups
framework designed to generalize across diverse LT regimes. In the first stage,
LT-Soups averages models fine-tuned on balanced subsets to reduce head-class bias;
in the second, it fine-tunes only the classifier on the full dataset to restore head-class
accuracy. Experiments across six benchmark datasets show that LT-Soups achieves
superior trade-offs compared to both PEFT and traditional model soups across a
wide range of imbalance regimes.

1 Introduction

In machine learning, balanced class distributions are often assumed in both theory and prac-
tice [12, 73} 128]]. However, real-world datasets frequently deviate from this assumption, exhibiting
severe class imbalance where a few head classes dominate and tail classes remain significantly
underrepresented [56} (19} 34]. This imbalance poses a fundamental challenge: models must learn
effectively from limited tail-class data while preserving overall robustness [9].

Recent advances in vision-language foundation models, particularly CLIP [43], have introduced
promising tools for addressing class imbalance. Trained on large-scale, diverse datasets, CLIP
demonstrates strong robustness to distributional shifts and has become a popular backbone for
long-tailed recognition [59} 158}, 137,155 135]]. Building on this, Shi et al. [S0] achieve state-of-the-art
results by applying parameter-efficient fine-tuning (PEFT) methods such as Low-Rank Adaptation
(LoRA) [20] and AdaptFormer [8]], in combination with logit adjustment (LA) loss [40, 46], which
incorporates class priors by adding a class-dependent offset to the logits. While this PEFT-based
approach improves overall and tail-class accuracy, they observe that it still underperforms full
fine-tuning in certain regimes.

*Correspondence to: masih.aminbeidokhti.1 @ens.etsmtl.ca. Code at https://github.com/Masseeh/LT-Soups.

39th Conference on Neural Information Processing Systems (NeurIPS 2025).

https://github.com/Masseeh/LT-Soups

All Head Tail
85.04 \ 90.0+ \/___/\/\ 80.0 \/\/\,_§

- \ 8504 ‘—\/\/—/\ 70.0 1 p=50
_\—/"\ 60.0

80.0

85.01 9009 w—/\ 8001 \"/k
o 85.0 - w\ 70.0 \W’_' p =100

Accuracy
1]
o
o

_ 60.0
75.0 8001,
85.01 90.01 M 80.01
=250
80.0 85.04 W‘/_\ 70.04 \/_,_ P
| tool W
5.0 80.0

19.0 40 1.5 0.67 0.25 0.05 19.0 40 15 0.67 0.25 0.05 19.0 4.0 15 0.67 0.25 0.05
Head-Tail ratios (n)

I Full-FT [Model Soups I PEFT [LT-Soups (Qurs)

Figure 1: Performance of baselines and LT-Soups on the CIFAR100 benchmark varying p and 7.
While full fine-tuning generally outperforms PEFT on head classes, PEFT demonstrates superior
performance on tail classes. In contrast, our approach maintains robust accuracy across all imbalance
settings, showing resilience to shifts in both the sample distribution and class structure.

These observations motivate a deeper investigation into when and why PEFT is effective. To this
end, we construct a controllable long-tailed benchmark based on CIFAR100 that allows systematic
variation in both the sample counts across classes, quantified by the imbalance ratio (p), and the
number of classes above or below a sample threshold, defined as the head-tail ratio (). This setup
enables a more fine-grained analysis of imbalance structures. Within this framework, we compare
two full fine-tuning strategies against a PEFT baseline: full fine-tuning with logit adjustment (LA)
and model soups [60], which averages the weights of multiple LA-trained models initialized with
different seeds and hyperparameters. Results from this benchmark confirm previous findings: on
average, PEFT improves overall accuracy (80.8 vs. 81.2) and tail-class accuracy (76.4 vs. 70.2)
compared to full fine-tuning, but at the cost of degraded head-class performance (87.0 vs. 84.3). A
detailed breakdown in Figure [I]shows that PEFT is especially effective in tail-heavy scenarios, where
rare classes dominate () < 1), but its performance declines as the class structure becomes more
balanced or head-heavy, highlighting its limited robustness to shifts in class structure.

This highlights a key trade-off: PEFT helps prevent overfitting and supports tail classes, but lacks
adaptability in more balanced and head-heavy settings. Conversely, full fine-tuning offers stronger
adaptation but requires careful regularization. Model soups offer a middle ground by averaging
models trained with different seeds and hyperparameters [29, 27]], but our experiments show that
traditional soups, built from models trained on the same imbalanced dataset, still underperform in
tail-heavy cases, as they tend to overemphasize head-class performance due to the dominance of high
imbalance ratios.

To address these limitations, we introduce LT-Soups, a two-stage model soups framework designed to
deliver robust performance across diverse imbalance scenarios, jointly characterized by the imbalance
ratio (p) and the head-tail ratio (). Unlike PEFT, which performs well primarily in tail-heavy
settings, LT-Soups consistently achieves strong results across tail-heavy, balanced, and head-heavy
class structures (Figure[T). In the first stage, LT-Soups constructs a weight ensemble by averaging
multiple fully fine-tuned models, each trained on a subset exhibiting a distinct imbalance ratio,
collectively spanning a spectrum of imbalance ratios. The aim is to create models that “specialize” for
each of these imbalance ratios, when averaged, promote a balanced representation that performs well
on both the head and the tail classes. To recover any head-class information lost during subsampling,
the second stage fine-tunes only the classifier on the full dataset using class-balancing techniques. By
seamlessly combining the adaptability of full-rank optimization, favouring the head-classes, and the
robustness of weight ensembling for the tail-classes, LT-Soups strikes a better trade-off than PEFT
and model soups, and thus bridges the head and the tail classes.

Our contributions are threefold: (1) We introduce a dual-axis framework for characterizing class
imbalance using both the imbalance ratio (p) and head-tail ratio (n), and show how they jointly affect
performance. (2) We propose LT-Soups, a novel two-stage approach that mitigates representation

bias and adapts effectively across a broad range of imbalance structures. (3) We conduct extensive
experiments on five benchmark datasets and show that while existing LT methods perform well
only under specific imbalance configurations, our approach consistently delivers robust, all-around
performance across a wide range of imbalance scenarios.

2 Related Work

Imbalanced Learning. Class imbalance has traditionally been tackled through oversampling
minority classes, undersampling majority classes, or applying reweighted loss functions such as focal
loss or logit adjustment (LA) [7, (17, 140]]. While effective in certain settings, these techniques often
struggle under overparameterized models [66]. Decoupled training frameworks further refine this
process by separating representation learning and classifier training [25} [67]], assuming biases lie
primarily in the classifier layer. However, this assumption breaks down when adapting foundation
models, as full fine-tuning can lead to catastrophic forgetting and degraded generalization for both
head and tail classes [41} 50]].

Ensemble-based methods address class imbalance by combining experts trained on diverse data
distributions [4,53]]. Examples include BBN [74]] and RIDE [57], which use architectural branching
or dynamic routing, and LFME [62]], which employs group-wise distillation. Mixture-of-Experts
approaches such as SADE [68]], Mdcs [69], and DirMixE [65]] merge experts trained with different
logit adjustments (e.g., uniform, long-tail, inverse long-tail). Unlike these methods that require
all experts at inference, LT-Soups collapses multiple fine-tuned models into a single network via
weight averaging, offering an inference-efficient alternative. While prior works rely on specialized
architectures and heuristic expert definitions, our approach retains architectural simplicity by using
parallel fine-tuning on controlled subsamples and model averaging to preserve both the generalization
and efficiency of the foundation model.

CLIP and other vision-language models exhibit inherent robustness to class imbalance, largely due
to the diversity of their pretraining data [59]. This robustness has been further extended through
techniques such as prompt tuning [[13]], retrieval-based augmentation [35]], and joint vision-language
training paradigms [37,158]]. While these methods improve adaptation to long-tailed distributions,
Shi et al. [50] show that PEFT combined with logit adjustment (LA) loss achieves state-of-the-art
performance by selectively adapting CLIP’s pretrained features. However, they also observe that this
comes at the cost of reduced head-class accuracy.

In this work, we demonstrate that PEFT is particularly effective in tail-heavy scenarios, but its
performance diminishes as the class structure becomes more balanced or skews toward head-class
dominance. To overcome this limitation, we propose a method designed to maintain robust perfor-
mance across the entire long-tail distribution spectrum. Our approach merges models trained on a
subset exhibiting a distinct imbalance ratio, collectively spanning a spectrum of imbalance ratios,
enabling the final model to achieve balanced accuracy across both head and tail classes.

Model Merging. Methods based on model merging, or weight averaging, has emerged as a prac-
tical strategy for reducing communication overhead in federated and distributed settings [39, [15]],
improving robustness to distribution shifts [60]], and enhancing generalization through techniques
like SWA and EMA [23|54]. Recent efforts also apply merging for continual learning and RLHF
fine-tuning [1} 145]]. Yet, to our knowledge, model merging has not been explored for imbalanced
classification.

3 A Closer Look at Imbalanced Learning with Foundation Models

3.1 Preliminaries

Given training data D = {(z;,v:)}}Y,, where x; denotes an input sample and y; € C is its
corresponding class label from a set of K = |C| classes. Let n; denote the number of training

samples for class j, and let the total number of training samples be N = Z]K:1 n;. Without loss
of generality, we assume that classes are sorted in decreasing order of frequency, i.e., if ¢ < j, then
n; > n;. In the imbalanced setting considered here, the most frequent class is significantly larger
than the rarest one, such that n; > ng. To quantify this imbalance, we define the imbalance ratio as

p = nx /n1. Following [34], we categorize classes with more than 100 training samples (r; > 100)

as head classes, and the rest as rail classesE] Since we aim to achieve balanced performance across
all classes, we report BalAcc = ﬁ > ¢ Accuracy(c) which equally weights performance on each

class.

ceC

Our model is composed of two main components: a feature extractor and a classification head. For
feature extraction, we adopt the CLIP vision encoder, implemented using a Vision Transformer
(ViT) [14] and parameterized by 6. The representation for input x is given by f;(x;6) = z where z
is the extracted feature vector. The final class prediction is computed as §j = arg max g(z;w) where
g denotes the prototypical classification head with parameters w constructed from the CLIP text
encoder. (see Appendix [D]for the full details).

Previous work suggests that training with standard Cross-Entropy loss with instance-balanced sam-
pling often leads to head-class bias due to class imbalance [, [17]. Logit Adjustment (LA) [40]
addresses this by adding a class-dependent offset to the logits, thereby correcting for prior class
frequencies as follows:

exp(gy (2) + log) 0

=1
lra(y, 9(2)) o8 Zy’GC exp(gy (2) + logmy)

where g, denotes the predictive logit of model on class y and 7 € A, are estimates of the class
priors P(y) based on the empirical class frequencies on the training data D. However, Shi et al.
[S0] observed that when fine-tuning CLIP models from pretrained weights using LA (referred to
as Full-FT), the resulting class-conditional distributions can become inconsistent, particularly for
tail classes. To mitigate this, they advocate for methods that preserve proximity to the pretrained
initialization, leveraging PEFT strategies such as LoRA and AdaptFormer.

3.2 Characterizing Imbalanced Distribution with Head-Tail Ratio

In practice, class imbalance can manifest in diverse structural forms. While the imbalance ratio (p) is
a standard metric for quantifying distributional skew, we show that it is insufficient to fully capture
the complexity of long-tailed distributions. As a complementary measure, we introduce the head-tail
ratio (1), which reflects the relative number of head versus tail classes and emphasizes the underlying
class structure.

Definition 1. Let X = {c | n. > 7} and T = {c | n. < 7} denote the sets of head and tail classes,
respectively, based on a sample threshold 7. Let H = |H| and T = |T| be the number of head and

tail classes. The head-tail ratio is then defined as n = %

To investigate the joint effect of p and 1 on model performance, we construct a synthetic benchmark
based on CIFAR100, where both parameters are systematically varied. For a fixed 7, classes are
partitioned into head and tail groups, and within each group, sample sizes are assigned following
an exponential decay distribution. This procedure is repeated across 11 values of 7, ranging from
19 (head-heavy) to 0.05 (tail-heavy), and for p € {50,100, 250}. In these configurations, head-class
sample sizes range from 500 to 101, and tail-class sizes from 100 to 2 (see Figure[7a)in the Appendix
for visualization).

Figure [2] presents performance trends marginalized over varying p, 7, and their joint effects. The
results reveal that no single method consistently dominates; instead, the best-performing approach
shifts depending on the imbalance configuration. In tail-heavy regimes (low 1), PEFT methods
excel due to their ability to retain generalizable pretrained features for underrepresented classes.
Conversely, in head-heavy settings (high), full fine-tuning becomes more advantageous, leveraging
its flexibility to fit the dominant head-class structure. These trends underscore the need for methods
that can adapt effectively across the full spectrum of imbalance scenarios.

=50 p=100 p=250 Average across p and n

88 87.51 1 87.54
= 861 85.0 1 85 85.01
& 84+ 82.51 82.5+
g 821 80.01 80.01
5 801 77.5 77.54
(9] -
é 781 75.0 75.0

76+ 725 72.54

741 70.04 70.04

All Head Tail All Head Tail All Head Tail All Head Tail

I Full-FT I Model Soups I PEFT 3 LT-Soups (Ours)

Figure 2: Marginalized performance of baselines, including LT-Soups, on CIFAR100 across varying
p and 7. The first three columns average over 7 for each p; the last column averages over all
configurations. Refer to FigureEl for the detailed results.

— T~ >~
@ {6, = o —{6,w
—H [T g W—H \ ;
— >~ T~
HH . {6, w} T, —{6:w}
= — L—
— > >~
1 I-j —1{6, w} e w {6, w}
=1 R ANRRENEN, |
(a) Each model within Model Soups fine-tunes the full (b) Each model within LT-Soups fine-tunes a subset
training set. of less imbalanced data from the full training set.

Figure 3: Comparison between Model Soups and LT-Soups. (a) Model Soups merges models fine-
tuned on full, severely imbalanced training data. (b) LT-Soups merges models fine-tuned on subsets
with increasingly higher imbalance ratios to preserve pretrained features while adapting to class
distribution shifts.

4 LT-Soups: Imbalanced Learning by Subsampled Model Averaging

The preceding toy experiment illustrates that the optimal method depends on the underlying class
structure. In head-heavy distributions, full fine-tuning is particularly effective, as it adjusts all model
parameters to capture the rich structure of frequent classes. In contrast, when tail classes dominate,
PEFT approaches like LoRA and AdaptFormer (as used in LIFT [50]]) perform better by preserving
pretrained representations that generalize well under limited supervision. Motivated by this trade-off,
our goal is to design a method that maintains balanced performance across both extremes, regardless
of the imbalance pattern.

Ensemble methods such as model soups [60] (Figure[3a) have demonstrated effectiveness in improving
both overall and minority-class performance [29,27]. However, as shown in the previous section,
traditional soups, while outperforming single-model fine-tuning, remain suboptimal for the full
spectrum of long-tailed distributions. This is especially true in tail-heavy scenarios, where they
tend to overemphasize head-class performance due to the dominance of high imbalance ratios in
the training data. We address this limitation with LT-Soups, a soups-based framework specifically
designed for long-tailed distributions. Each model in LT-Soups is fine-tuned on a subset of the
training data with a distinct, reduced imbalance ratio (Figure 3b). While such subsampling enhances
tail-class learning [6]], it may omit valuable head-class information [26]. To balance this, we train
models on subsets with gradually increasing imbalance levels, allowing each model to specialize in
different regions of the long-tail spectrum. The final model is obtained by averaging these specialized
models. To further recover any lost head-class information, we introduce a second stage where only
the classifier head is fine-tuned on the full dataset using a class-balanced objective (e.g., LA loss).

2For simplicity, we initially group all low-resource classes into a single tail category. In the experimental
section, we further subdivide the tail into medium-shot and few-shot groups for consistency with prior work.

Algorithm 1 LT-Soups (Parallelizable Pseudocode)

1: Input: 6, pre-trained weights, full training data D, {D,,, }»?Y subsets with N imbalance ratios
pn and M bootstrapping per p,,, A merging interpolation.
Training: for all n = 1 to M N in parallel do
6., < FineTune(6y, D,,,)
Prepare models: Sort models in an increasing order of p,,
Weight Averaging: Yn = 1to N, 0, = (1 — X)0,, + \0p,—1
Re-train final classifier on full D

AN AN

Pseudocode for LT-Soups is provided in Algorithm[I} and the remainder of this section details the
full procedure.

Balanced representation. Subsampling is a common strategy for addressing class imbalance by re-
ducing overrepresented head-class samples [[17,6]]. However, aggressive subsampling can discard use-
ful head-class information, degrading overall performance [26}[7,149]]. To address this, we propose pro-
gressive subsampling, which incrementally increases the imbalance ratio across subsets. Each model
is fine-tuned on a subset with a specific ratio, preserving tail-class data while managing head-class
underutilization. We construct the subset sequence as { D, | p; =27, i € {0,1,2,..., [logy(p)]}}
where D,, is a dataset with imbalance ratio p;. This yields a sparse sequence of subsets with expo-
nentially increasing imbalance ratios, ensuring broad coverage while limiting the number of models
in the soups procedure. In practice, we retain only the first NV subsets, as extremely high imbalance
ratios tend to overly favor head classes and degrade tail-class performance.

The resulting /N models, each trained on a different subset, are merged using a recursive interpolation
strategy. Given weights {6,,}V_,, where 6, is the pretrained model, LT-Soups recursively combines
models via 8,, = (1—X)0,,4+\0,,—1. The interpolation coefficient A controls knowledge retention from
previous stages. This procedure ensures (1) proximity to the pretrained model 6, preserving CLIP’s
zero-shot capabilities [61], and (2) smooth integration of head and tail class representations [74]. As
shown in Section LT-Soups exhibits partial insensitivity to the choice of loss function, owing to
the balance introduced by subsampling and model averaging. However, since each subset remains
mildly imbalanced, albeit less so than the full training set, applying LA loss during fine-tuning further
mitigates the effects of label distribution shifts.

Variance reduction. While weight averaging and subsampling help mitigate head-class dominance,
fine-tuning large pretrained models can still lead to degradation in tail-class performance [59]]. To
address this, we maintain an exponential moving average (EMA) of model weights via 0., =
(1 —) Oema + - 0, with a momentum coefficient © = 0.99. EMA acts as a regularizer during
training [21], promoting convergence to flatter minima [23]], which has been shown to enhance
generalization, particularly for underrepresented classes.

Since subsampling reduces data per subset and introduces variance, we adopt a bootstrapping strategy
inspired by bagging [2]]: for each subset, we train M models on different bootstrap samples and
uniformly average their weights. This stabilizes learning and yields more robust representations.

Classifier re-training. To further recover head-class information lost during subsampling, we
perform a final fine-tuning stage on the classifier head using the full training set. The backbone is
frozen to preserve merged representations, and LA loss is applied to adjust decision boundaries based
on label frequencies. This step improves head-class accuracy without harming tail-class performance,
similar to calibration in two-stage LT methods [25].

5 Experiments

5.1 Datasets and evaluation protocol.

We evaluate our method on both synthetically constructed and naturally occurring long-tailed (LT)
datasets. For synthetic benchmarks, we use CIFAR-100-LT, ImageNet-LT, and Places-LT—Ilong-
tailed variants derived from their balanced counterparts by sampling class instances according

to Pareto or exponential decay distributions [34]]. These datasets exhibit sample counts ranging
from 1,280 to as few as 5 images per class. For real-world evaluation, we include iNaturalist
2018 (8,142 classes, 437.5K images) and NIH-CXR-LT (20 classes, 88.5K images), which reflect
different imbalance structures, with approximately 10% and 90% head classes, respectively. To assess
performance across the long-tail spectrum, we also report the average accuracy across all five datasets.
Following [34]], we evaluate separately on many-shot (>100 samples), medium-shot (20-100), and
few-shot (<20) class subsets. For ablation analysis, we use TinylmageNet-LT, which contains 200
classes with sample counts ranging from 500 in head classes to 5 in tail classes. To conserve space,
we present only CLIP-based results in the main text; additional implementation details and extended
results are included in Appendix D]

Table 1: Comparison with state-of-the-art methods on synthetic LT distributions.
CIFAR100-LT Places-LT ImageNet-LT

Methods p=100 n=0.54 p=996 n=0.55 p=256 n=0.62

All Many Med. Few | Al Many Med. Few | Al Many Med. Few
BALLAD [37] - - - - 49.5 493 50.2 48.4 | 75.7 79.1 74.5 69.8
Decoder [58] - - - - 46.8 - - - 73.2 - - -
LPT [13] - - - - 50.1 493 52.3 46.9 - - - -
Linear Probing 70.0 77.2 71.1 60.4 | 48.8 48.8 49.7 47.1 | 742 77.8 73.3 67.4
Full-FT 79.6 88.1 79.9 69.3 | 46.6 499 46.3 414 | 739 79.8 71.9 63.9
cRT [25] 78.8 89.7 79.7 65.1 | 44.4 51.0 43.1 354 | 72.6 81.1 70.6 56.1
PEFT [50] 81.3 85.2 80.9 77.1 | 51.5 513 522 50.5 | 770 80.2 76.1 71.5
Model Soups [60] | 82.1 89.9 82.2 73.0 | 494 51.7 50.0 43.7 | 76.0 81.5 74.5 65.5
LT-Soups (Ours) 83.5 88.2 83.5 78.0 | 51.7 51.2 52.8 503|774 812 76.1 70.7

Table 2: Comparison with state-of-the-art methods on real-world LT distributions.

NIH-CXR-LT iNaturalist 2018
Methods p=6491 n=5.66 p=500 n=0.11
All Many Med. Few | All Many Med. Few
BALLAD [37] 34.5 36.7 38.9 20.8 | 49.5 493 50.2 484
Decoder [58] - - - - 59.2 - - -
LPT [12] - - - - 76.1 - - 79.3
Linear Probing 17.5 13.3 21.1 16.7 | 60.4 48.9 60.0 63.9
Full-FT 38.0 43.8 41.5 20.0 | 76.1 75.7 76.9 75.3
cRT [25] 37.7 429 39.3 25.0 | 444 510 43.1 35.4
PEFT [50] 38.5 433 404 255|791 724 79.0 81.1
Model Soups [60] | 38.0 45.6 40.2 20.0 | 764 771 76.8 75.6
LT-Soups (Ours) 39.3 42.4 40.7 309 | 782 76.7 785 782

5.2 Main results

Synthetic LT datasets. Table[I|presents the accuracy of LT-Soups on three benchmark datasets with
synthetically induced long-tail distributions: CIFAR100-LT, Places-LT, and ImageNet-LT. Our method
outperforms all state-of-the-art baselines in overall accuracy on every dataset. Notably, LT-Soups
surpasses Model Soups and PEFT, the most competitive baselines. While PEFT achieves competitive
performance on tail classes through low-rank adaptation, it often does so at the cost of many-shot
accuracy, especially in CIFAR100-LT, where LT-Soups maintains strong tail accuracy (78.0) without
sacrificing performance on many-shot (88.2) or medium-shot (83.5) categories. Model Soups, on the
other hand, tends to overfit many-shot categories (e.g., 89.9 on CIFAR100-LT) but underperforms
on few-shot classes due to averaging independently fine-tuned models without accounting for class
imbalance.

Real-world LT datasets. In Table we evaluate LT-Soups on two naturally imbalanced
datasets—NIH-CXR-LT and iNaturalist 2018—which present distinct challenges. (1) NIH-CXR-LT
consists primarily of head-class (many-shot) samples but diverges significantly from CLIP’s pretrain-
ing domain, as it comprises medical X-ray images. (2) iNaturalist 2018 is heavily skewed toward
medium- and few-shot categories and is more closely aligned with CLIP’s natural image priors.
On NIH-CXR-LT, LT-Soups achieves the highest overall accuracy (39.3%), outperforming PEFT
(38.5%) and delivering substantial gains in the few-shot regime (+5 points over PEFT and +10 over

Model Soups). On iNaturalist, where PEFT performs strongly (79.1% overall), LT-Soups remains
competitive (78.2%) while offering more balanced accuracy across many-, medium-, and few-shot
subsets.

Full spectrum results. The datasets in our benchmark 70.0
exhibit diverse long-tail characteristics, with imbalance 675
ratios ranging from 100 to 6,491 and head-tail ratios span- ?\;65-0
ning 0.11 to 5.66. To abstract away the effects of individ- & Zé‘z
ual dataset characteristics, Figure [reports the average ;(8) 575
accuracy of Full-FT, Model Soups, PEFT, and LT-Soups 55.0
across all five benchmarks. While PEFT performs well 52.5

. . All Many Med Few
on medium-shot and few-shot SplltS, and Model Soups ex- B FUllFT EEW Model Soups EEEN PEFT =31 LT-Soups (Ours)
cels on many-shot classes, LT-Soups consistently achieves
strong performance across all splits, demonstrating its ro- Figure 4: Average performance across 5
bustness across the long-tail spectrum. LT benchmarks.

5.3 Empirical analysis of LT-Soups

In this section, we provide a comprehensive analysis of LT-Soups from multiple perspectives (due to
space constraints, some of the analysis is provided in the Appendix [A).

Effect of subsampling. LT-Soups averages the weights of N M models, where NV is the number of
subsets used during each fine-tuning and M is the number of bootstraps per subset. For TinyImageNet-
LT (imbalance ratio 100 and head-tail ratio 0.3), we use N=8 and M =2. To show the impact of our
proposed weight averaging scheme, we compare this with Soups-p,, baselines that follow the same
two-stage framework as LT-Soups, except in the first stage, they average 16 models, all trained on
subsets with the same imbalance ratio p,,. Notably, Soups-100 aligns with the traditional model soup
approach [60], where the weights of 16 fully fine-tuned models on the entire dataset are averaged. As
shown in Table 3] all of the soups baselines consistently outperform full fine-tuning, regardless of the
subset choice. However, results show that different imbalance ratios yield varying outcomes across
head and tail categories. For example, Soups-8 achieves the highest tail accuracy of 75.0, whereas
Soups-100 reaches the highest head accuracy of 85.9. Rather than optimizing for a single imbalance
ratio, LT-Soups applies weight averaging across the full spectrum, effectively merging the advantages
of both approaches to achieve a more balanced overall trade-off. (See Table[I0]in the Appendix for a
similar analysis on PEFT.)

Table 3: Comparison of LT-Soups and Soups-p each with a total of 16 models across All, Head, and
Tail accuracy.
\ Full-FT PEFT Soups-1 Soups-2 Soups-4 Soups-8 Soups-16 Soups-32 Soups-64 Soups-100 LT-Soups

All 732 77.1 71.7 759 76.0 772 77.2 77.3 77.9 77.6 78.6
Head 83.4 83.0 74.6 78.6 78.7 81.0 82.8 84.7 85.5 85.9 85.0
Tail 67.7 73.9 70.1 74.4 74.6 75.0 74.1 733 73.7 73.0 75.2

Effect of classifier re-training (CR). We found that additional final-layer tuning with logit ad-
justment on PEFT and Model Soups has little to no effect. Table] summarizes the results on
TinyImageNet-LT. We hypothesize that, unlike these baselines, LT-Soups does not fully exploit
the entire training set, due to the downweighting effect introduced by weight averaging. Conse-
quently, fine-tuning the final layer helps LT-Soups recover head-class sharpness and improves overall
performance.

Component analysis. LT-Soups is designed to balance effective task adaptation with minimal
deviation from pretrained weights. Figure [5] shows the cumulative effect of its components on
accuracy and weight change. Starting from Full Fine-Tuning, which causes the largest deviation
from the CLIP zero-shot model (35.4), each component incrementally improves performance while
reducing or controlling weight deviation. EMA offers a modest accuracy boost with minimal impact
on weight shift. Subsampling and model merging significantly improve tail accuracy (+6.3) and
reduce weight change to 12.7, highlighting the benefit of balanced training. Bootstrapping stabilizes
training further, slightly improving head accuracy. Classifier re-training refines decision boundaries,

Table 4: Comparison of baseline methods in- Table 5: Comparison of our merging strategy

cluding LT-Soups with and without classifier with uniform merging across two datasets ex-
re-training (CR). hibiting distinct long-tailed distributions.
Method | Al Head Tail TinyImageNet-LT | iNaturalist 2018
PEET 771 830 739 Ours Unifrom | Ours Unifrom
PEFT + CR 770 830 738 All 78.6 78.5 78.2 74.7
Model Soups 776 859 730 Many | 85.0 834 767 674
Model Soups + CR | 77.6 855 734 Med. | 78.3 78.4 78.5 75.8
LT-Soups Stage 1 78.1 849 745 Few 715 72.9 78.2 75.3
LT-Soups 78.6 85.0 75.2
Tail / All / Head law|
84{ —— Al
Full-FT 7.7 [83.4 35.4 g2 | o tend
+EMA es.s AT 84.0 35.1 >80
+Sub. 74.4 |86 846 127 g ;2
+Bootst. 74.5 [Jie] 849 119 74
. 72
+Classifer. 75.2 [JiE%] 85.0 121 o 12t N N O
PEFT 73.0 [l 83.0 103 1 2 3 4 5 6 1 8
Subests
Figure 5: Performance and weight change Figure 6: Performance across number of sub-
comparison across different stages of LT- sets, N, each with increasing imbalance ratios
Soups. on TinyImageNet-LT.

yielding the highest overall and head accuracy. Compared to PEFT, LT-Soups shows a slightly higher
weight change (12.1 vs. 10.3) but delivers better accuracy across all class groups. This reflects its
ability to adapt meaningfully while preserving pretrained knowledge.

Number of subsets. Figure [f] illustrates the impact of the number of subsets IV, each with in-
creasing imbalance ratios, used in LT-Soups during fine-tuning. In this experiment, the interpolation
weight A and M are fixed at 0.7 and 2, respectively. As N increases, head-class accuracy steadily
improves—ifrom 74.6 at N=1 to 85.0 at N=8—while tail-class accuracy peaks at 76.1 when N=3.
The best overall trade-off is observed at N=8, indicating it as the most balanced configuration.

Merging strategies. LT-Soups recursively merges models trained on subsets with progressively
higher imbalance ratios. One intuitive way to think about this merging procedure is to interpret it
as an exponential moving average (EMA) over fine-tuned models sorted by increasing imbalance
severity, with a tunable parameter that adjusts the influence of more balanced (but smaller) versus less
balanced (but larger) subsets. In this section, we compare this strategy against uniform WA, which
applies a simple arithmetic mean, giving equal weight to all models regardless of their imbalance
level.

Table 5] confirms our hypotheses. In particular, we compare recursive WA and uniform WA across two
datasets with different similarities compared to CLIP-pretrained weights (according to the zero-shot
performance). On TinylmageNet-LT, which is already well-aligned with CLIP-pretrained features,
there is little to no difference between the two averaging schemes. However, for datasets that require
significant adaptation, such as iNaturalist2018, recursive WA yields clear benefits by leveraging
information from more data-rich subsets.

Following this intuition, in all of our experiments in the paper, we use only two values for A: 0.3 and
0.7, corresponding to high and low adaptation needs, respectively. Intuitively, when the target dataset
is close to the pre-training weights, the value of the A becomes less important as even small datasets
are enough for adaptations. However, when the shift becomes larger, subsets with more data (albeit
biased towards head classes) become crucial.

Effect of class-balance strategies. By default, LT-Soups exhibits partial insensitivity to the choice
of loss function, due to the balance introduced through subsampling and model averaging. However,
in the first stage, each subset remains mildly imbalanced, though significantly less so than the
full training set. Table [f]reports the impact of different class-balancing strategies used during this

Table 6: Comparison of PEFT and LT-Soups under different loss functions (CE, CB, LA).

Methods CE CB LA

ethodS | Al Head Tail | All Head Tail | Al Head Tail
PEFT 726 851 659|753 810 722|771 830 739
LT-Soups | 76.3 845 719 | 782 845 784|786 850 752

stage, including logit adjustment loss (LA), cross-entropy loss (CE), and class-balanced sampling
(CB) [25]. Unlike PEFT, which heavily depends on LA loss for optimal performance, LT-Soups
is only moderately affected by the choice of class-balancing strategies, owing to the structural
regularization introduced by training on multiple, complementary subsets.

Computational analysis. LT-Soups involves a total of NM + 1 training runs: M models are
trained at each of the N subsampling levels in the first stage, followed by a single classifier trained
on the full dataset in the second stage. Two key factors mitigate the computational burden of this
procedure. First, each Stage 1 model is trained on a heavily subsampled dataset, significantly smaller
than the full training set. For instance, under a maximum imbalance ratio of 64, each model sees
only about 65% of the full dataset (see Table|l 1|in the Appendix for precise values), which leads
to substantially faster training times compared to full-data training. Second, all models in the first
stage are trained independently, enabling full parallelization. As a result, the overall wall-clock time
is bounded by the longest individual training job, typically the one using the most imbalanced subset
(e.g., imbalance ratio 64). This parallel-friendly design allows LT-Soups to scale efficiently and
deliver competitive performance with minimal overhead. Appendix [B]provides a full breakdown of
computational cost.

6 Limitations and Future Work

While we define the head-tail ratio using a fixed sample threshold, this binary split may oversimplify
the class distribution structure. A more nuanced approach could leverage the generalized Pareto
distribution [47] to model imbalance with controllable location, scale, and shape parameters. We
leave exploration of such parameterized formulations for future work.

7 Conclusion

This work introduces LT-Soups, a novel two-stage model merging framework tailored for long-tailed
distributions. We identify the head-tail ratio (1) as a critical yet underexplored factor influencing
model performance alongside the commonly studied imbalance ratio (p). Through comprehensive
experiments, we demonstrate that existing approaches, particularly PEFT and traditional model soups,
fail to generalize across the full spectrum of imbalance scenarios. In contrast, LT-Soups builds a
weight ensemble by averaging fully fine-tuned models trained on subsets with varying imbalance
ratios, enabling specialization across the imbalance spectrum while preserving robust representations.
Extensive experiments on five benchmarks and ablations on Tiny-ImageNet-LT confirm its consistent
performance across long-tailed scenarios.

Acknowledgements. This work was supported by Distech Controls Inc., the Natural Sciences and
Engineering Research Council of Canada, the Digital Research Alliance of Canada, and MITACS.
This work was also supported in part by the project SERICS (PE00000014) under the NRRP MUR
program funded by the EU - NGEU.

References

[1] Anton Alexandrov, Veselin Raychev, Mark Niklas Mueller, Ce Zhang, Martin Vechev, and
Kristina Toutanova. Mitigating catastrophic forgetting in language transfer via model merg-
ing. In Yaser Al-Onaizan, Mohit Bansal, and Yun-Nung Chen, editors, EMNLP, pages
17167-17186, Miami, Florida, USA, November 2024. Association for Computational Lin-
guistics. doi: 10.18653/v1/2024.findings-emnlp.1000. URL https://aclanthology.org/
2024 .findings-emnlp.1000/.

10

https://aclanthology.org/2024.findings-emnlp.1000/
https://aclanthology.org/2024.findings-emnlp.1000/

[2] Leo Breiman. Bagging predictors. Machine learning, 24:123—-140, 1996.

[3] Glenn W Brier. Verification of forecasts expressed in terms of probability. Monthly weather
review, 78(1):1-3, 1950.

[4] Jiarui Cai, Yizhou Wang, and Jenq-Neng Hwang. Ace: Ally complementary experts for solving
long-tailed recognition in one-shot. In ICCV, pages 112-121, 2021.

[5] Kaidi Cao, Colin Wei, Adrien Gaidon, Nikos Arechiga, and Tengyu Ma. Learning imbalanced
datasets with label-distribution-aware margin loss. NeurIPS, 32, 2019.

[6] Kamalika Chaudhuri, Kartik Ahuja, Martin Arjovsky, and David Lopez-Paz. Why does throwing
away data improve worst-group error? In ICML, pages 4144-4188. PMLR, 2023.

[7] Nitesh V Chawla, Kevin W Bowyer, Lawrence O Hall, and W Philip Kegelmeyer. Smote:
synthetic minority over-sampling technique. Journal of artificial intelligence research, 16:
321-357, 2002.

[8] Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping
Luo. Adaptformer: Adapting vision transformers for scalable visual recognition. NeurIPS, 35:
16664-16678, 2022.

[9] Wuxing Chen, Kaixiang Yang, Zhiwen Yu, Yifan Shi, and CL Chen. A survey on imbalanced
learning: latest research, applications and future directions. Artificial Intelligence Review, 57
(6):1-51, 2024.

[10] Jiequan Cui, Zhisheng Zhong, Shu Liu, Bei Yu, and Jiaya Jia. Parametric contrastive learning.
In Proceedings of the IEEE/CVF international conference on computer vision, pages 715-724,
2021.

[11] Yin Cui, Menglin Jia, Tsung-Yi Lin, Yang Song, and Serge Belongie. Class-balanced loss based
on effective number of samples. In CVPR, pages 9268-9277, 2019.

[12] Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In CVPR, pages 248-255. leee, 2009.

[13] Bowen Dong, Pan Zhou, Shuicheng Yan, and Wangmeng Zuo. Lpt: Long-tailed prompt tuning
for image classification. In /CLR, 2022.

[14] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai,
Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly,
Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for
image recognition at scale. In /ICLR, 2021. URL https://openreview.net/forum?id=
YicbFdNTTy.

[15] Arthur Douillard, Qixuan Feng, Andrei A Rusu, Rachita Chhaparia, Yani Donchev, Adhiguna
Kuncoro, Marc’ Aurelio Ranzato, Arthur Szlam, and Jiajun Shen. Diloco: Distributed low-
communication training of language models. arXiv preprint arXiv:2311.08105, 2023.

[16] Jintong Gao, He Zhao, Zhuo Li, and Dandan Guo. Enhancing minority classes by mixing:
An adaptative optimal transport approach for long-tailed classification. Advances in neural
information processing systems, 36:60329—60348, 2023.

[17] Haibo He and Edwardo A Garcia. Learning from imbalanced data. IEEE Transactions on
knowledge and data engineering, 21(9):1263-1284, 2009.

[18] Yin-Yin He, Jianxin Wu, and Xiu-Shen Wei. Distilling virtual examples for long-tailed recog-
nition. In Proceedings of the IEEE/CVF international conference on computer vision, pages
235-244, 2021.

[19] Gregory Holste, Song Wang, Ziyu Jiang, Thomas C. Shen, George L. Shih, Ronald M. Summers,
Yifan Peng, and Zhangyang Wang. Long-tailed classification of thorax diseases on chest x-ray:
A new benchmark study. MICCAI workshop, DALI (Workshop), 13567:22-32, 2022. URL
https://api.semanticscholar.org/CorpusID:251903892,

11

https://openreview.net/forum?id=YicbFdNTTy
https://openreview.net/forum?id=YicbFdNTTy
https://api.semanticscholar.org/CorpusID:251903892

[20] Edward J Hu, yelong shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang,
Lu Wang, and Weizhu Chen. LoRA: Low-rank adaptation of large language models. In
ICLR, 2022. URL https://openreview.net/forum?id=nZeVKeeFYf9.

[21] Gao Huang, Yixuan Li, Geoff Pleiss, Zhuang Liu, John E. Hopcroft, and Kilian Q. Weinberger.
Snapshot ensembles: Train 1, get m for free. In ICLR, 2017. URL https://openreview,
net/forum?id=BJYwwY911l

[22] Gabriel Ilharco, Marco Tulio Ribeiro, Mitchell Wortsman, Ludwig Schmidt, Hannaneh Ha-
jishirzi, and Ali Farhadi. Editing models with task arithmetic. In ICLR, 2023. URL
https://openreview.net/forum?id=6t0Kwf8- jrjl

[23] Pavel Izmailov, Dmitrii Podoprikhin, T. Garipov, Dmitry P. Vetrov, and Andrew Gordon
Wilson. Averaging weights leads to wider optima and better generalization. In Conference
on Uncertainty in Artificial Intelligence, 2018. URL https://api.semanticscholar.org/
CorpusID:3833416.

[24] Pavel Izmailov, Polina Kirichenko, Nate Gruver, and Andrew G Wilson. On feature learning in
the presence of spurious correlations. NeurIPS, 35:38516-38532, 2022.

[25] Bingyi Kang, Saining Xie, Marcus Rohrbach, Zhicheng Yan, Albert Gordo, Jiashi Feng, and
Yannis Kalantidis. Decoupling representation and classifier for long-tailed recognition. In ICLR,
2020. URL https://openreview.net/forum?id=r1gRTCVFvB.

[26] Jaehyung Kim, Jongheon Jeong, and Jinwoo Shin. M2m: Imbalanced classification via major-
to-minor translation. In CVPR, pages 13896-13905, 2020.

[27] Wei-Yin Ko, Daniel D’souza, Karina Nguyen, Randall Balestriero, and Sara Hooker.
Fair-ensemble: When fairness naturally emerges from deep ensembling. arXiv preprint
arXiv:2303.00586, 2023.

[28] Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images.
2009.

[29] Balaji Lakshminarayanan, Alexander Pritzel, and Charles Blundell. Simple and scalable
predictive uncertainty estimation using deep ensembles. NeurIPS, 30, 2017.

[30] Ya Le and Xuan S. Yang. Tiny imagenet visual recognition challenge. 2015. URL https
//api.semanticscholar.org/CorpusID: 16664790.

[31] Jun Li, Zichang Tan, Jun Wan, Zhen Lei, and Guodong Guo. Nested collaborative learning for
long-tailed visual recognition. In CVPR, pages 6949-6958, 2022.

[32] Weishi Li, Yong Peng, Miao Zhang, Liang Ding, Han Hu, and Li Shen. Deep model fusion: A
survey. arXiv preprint arXiv:2309.15698, 2023.

[33] Xu-Ying Liu, Jianxin Wu, and Zhi-Hua Zhou. Exploratory undersampling for class-imbalance
learning. IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), 39(2):
539-550, 2008.

[34] Ziwei Liu, Zhongqi Miao, Xiaohang Zhan, Jiayun Wang, Boqing Gong, and Stella X Yu.
Large-scale long-tailed recognition in an open world. In CVPR, pages 2537-2546, 2019.

[35] Alexander Long, Wei Yin, Thalaiyasingam Ajanthan, Vu Nguyen, Pulak Purkait, Ravi Garg,
Alan Blair, Chunhua Shen, and Anton van den Hengel. Retrieval augmented classification for
long-tail visual recognition. In CVPR, pages 6959-6969, 2022.

[36] Tlya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In ICLR, 2019. URL
https://openreview.net/forum?id=Bkg6RiCqY7.

[37] Teli Ma, Shijie Geng, Mengmeng Wang, Jing Shao, Jiasen Lu, Hongsheng Li, Peng Gao, and
Yu Qiao. A simple long-tailed recognition baseline via vision-language model. arXiv preprint
arXiv:2111.14745,2021.

12

https://openreview.net/forum?id=nZeVKeeFYf9
https://openreview.net/forum?id=BJYwwY9ll
https://openreview.net/forum?id=BJYwwY9ll
https://openreview.net/forum?id=6t0Kwf8-jrj
https://api.semanticscholar.org/CorpusID:3833416
https://api.semanticscholar.org/CorpusID:3833416
https://openreview.net/forum?id=r1gRTCVFvB
https://api.semanticscholar.org/CorpusID:16664790
https://api.semanticscholar.org/CorpusID:16664790
https://openreview.net/forum?id=Bkg6RiCqY7

[38] Yanbiao Ma, Licheng Jiao, Fang Liu, Shuyuan Yang, Xu Liu, and Lingling Li. Curvature-
balanced feature manifold learning for long-tailed classification. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pages 15824—15835, 2023.

[39] Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial
intelligence and statistics, pages 1273—1282. PMLR, 2017.

[40] Aditya Krishna Menon, Sadeep Jayasumana, Ankit Singh Rawat, Himanshu Jain, Andreas
Veit, and Sanjiv Kumar. Long-tail learning via logit adjustment. In ICLR, 2021. URL
https://openreview.net/forum?id=37nvvqgkCob!

[41] Jishnu Mukhoti, Yarin Gal, Philip HS Torr, and Puneet K Dokania. Fine-tuning can cripple your
foundation model; preserving features may be the solution. arXiv preprint arXiv:2308.13320,
2023.

[42] Mahdi Pakdaman Naeini, Gregory Cooper, and Milos Hauskrecht. Obtaining well calibrated
probabilities using bayesian binning. In AAAI, volume 29, 2015.

[43] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
models from natural language supervision. In ICML, pages 8§748-8763. PMLR, 2021.

[44] Alexandre Rame, Matthieu Kirchmeyer, Thibaud Rahier, Alain Rakotomamonjy, Patrick Gal-
linari, and Matthieu Cord. Diverse weight averaging for out-of-distribution generalization.
NeurlIPS, 35:10821-10836, 2022.

[45] Alexandre Ramé, Johan Ferret, Nino Vieillard, Robert Dadashi, Léonard Hussenot, Pierre-Louis
Cedoz, Pier Giuseppe Sessa, Sertan Girgin, Arthur Douillard, and Olivier Bachem. Warp: On
the benefits of weight averaged rewarded policies. arXiv preprint arXiv:2406.16768, 2024.

[46] Jiawei Ren, Cunjun Yu, Xiao Ma, Haiyu Zhao, Shuai Yi, et al. Balanced meta-softmax for
long-tailed visual recognition. NeurIPS, 33:4175-4186, 2020.

[47] Holger Rootzén and Nader Tajvidi. Multivariate generalized pareto distributions. Bernoulli, 12
(5):917-930, 2006.

[48] Jie Shao, Ke Zhu, Hanxiao Zhang, and Jianxin Wu. Diffult: Diffusion for long-tail recognition
without external knowledge. Advances in Neural Information Processing Systems, 37:123007—
123031, 2024.

[49] Jiang-Xin Shi, Tong Wei, Yuke Xiang, and Yu-Feng Li. How re-sampling helps for long-tail
learning? NeurIPS, 36, 2023.

[50] Jiang-Xin Shi, Tong Wei, Zhi Zhou, Jie-Jing Shao, Xin-Yan Han, and Yu-Feng Li. Long-tail
learning with foundation model: Heavy fine-tuning hurts. In /ICML, 2024.

[51] Reece Shuttleworth, Jacob Andreas, Antonio Torralba, and Pratyusha Sharma. Lora vs full
fine-tuning: An illusion of equivalence. arXiv preprint arXiv:2410.21228, 2024.

[52] Min-Kook Suh and Seung-Woo Seo. Long-tailed recognition by mutual information maximiza-
tion between latent features and ground-truth labels. In International conference on machine
learning, pages 32770-32782. PMLR, 2023.

[53] Yingfan Tao, Jingna Sun, Hao Yang, Li Chen, Xu Wang, Wenming Yang, Daniel Du, and
Min Zheng. Local and global logit adjustments for long-tailed learning. In ICCV, pages
11783-11792, 2023.

[54] Antti Tarvainen and Harri Valpola. Mean teachers are better role models: Weight-averaged
consistency targets improve semi-supervised deep learning results. NeurIPS, 30, 2017.

[55] Changyao Tian, Wenhai Wang, Xizhou Zhu, Jifeng Dai, and Yu Qiao. VI-1tr: Learning class-
wise visual-linguistic representation for long-tailed visual recognition. In ECCV, pages 73-91.
Springer, 2022.

13

https://openreview.net/forum?id=37nvvqkCo5

[56] Grant Van Horn, Oisin Mac Aodha, Yang Song, Yin Cui, Chen Sun, Alex Shepard, Hartwig
Adam, Pietro Perona, and Serge Belongie. The inaturalist species classification and detection
dataset. In CVPR, pages 8769-8778, 2018.

[57] Xudong Wang, Long Lian, Zhongqi Miao, Ziwei Liu, and Stella Yu. Long-tailed recognition by
routing diverse distribution-aware experts. In /CLR, 2021. URL https://openreview.net/
forum?id=D913drBz4UC.

[58] Yidong Wang, Zhuohao Yu, Jindong Wang, Qiang Heng, Hao Chen, Wei Ye, Rui Xie, Xing
Xie, and Shikun Zhang. Exploring vision-language models for imbalanced learning. 1JCV,
132(1):224-237, August 2023. ISSN 0920-5691. doi: 10.1007/s11263-023-01868-w. URL
https://doi.org/10.1007/511263-023-01868-w.

[59] Xin Wen, Bingchen Zhao, Yilun Chen, Jiangmiao Pang, and XIAOJUAN QI. What makes
CLIP more robust to long-tailed pre-training data? a controlled study for transferable insights.
In NeurlIPS, 2024. URL https://openreview.net/forum?id=PcyioHOmjq.

[60] Mitchell Wortsman, Gabriel Ilharco, Samir Ya Gadre, Rebecca Roelofs, Raphael Gontijo-Lopes,
Ari S Morcos, Hongseok Namkoong, Ali Farhadi, Yair Carmon, Simon Kornblith, et al. Model
soups: averaging weights of multiple fine-tuned models improves accuracy without increasing
inference time. In ICML, pages 23965-23998. PMLR, 2022.

[61] Mitchell Wortsman, Gabriel Ilharco, Jong Wook Kim, Mike Li, Simon Kornblith, Rebecca
Roelofs, Raphael Gontijo Lopes, Hannaneh Hajishirzi, Ali Farhadi, Hongseok Namkoong, et al.
Robust fine-tuning of zero-shot models. In CVPR, pages 7959-7971, 2022.

[62] Liuyu Xiang, Guiguang Ding, and Jungong Han. Learning from multiple experts: Self-paced
knowledge distillation for long-tailed classification. In ECCV, pages 247-263. Springer, 2020.

[63] Zhengzhuo Xu, Ruikang Liu, Shuo Yang, Zenghao Chai, and Chun Yuan. Learning imbalanced
data with vision transformers. In Proceedings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 15793—-15803, 2023.

[64] Yuzhe Yang, Haoran Zhang, Dina Katabi, and Marzyeh Ghassemi. Change is hard: A closer
look at subpopulation shift. In ICML, 2023.

[65] Zhiyong Yang, Qiangian Xu, Zitai Wang, Sicong Li, Boyu Han, Shilong Bao, Xiaochun Cao, and
Qingming Huang. Harnessing hierarchical label distribution variations in test agnostic long-tail
recognition. In ICML, 2024. URL https://openreview.net/forum?id=ebt5BfRHcW,

[66] Runtian Zhai, Chen Dan, J Zico Kolter, and Pradeep Kumar Ravikumar. Understanding
why generalized reweighting does not improve over ERM. In ICLR, 2023. URL https:
//openreview.net/forum?id=ashPce_W8F-.

[67] Songyang Zhang, Zeming Li, Shipeng Yan, Xuming He, and Jian Sun. Distribution alignment:
A unified framework for long-tail visual recognition. In CVPR, pages 2361-2370, 2021.

[68] Yifan Zhang, Bryan Hooi, Lanqing Hong, and Jiashi Feng. Self-supervised aggregation of
diverse experts for test-agnostic long-tailed recognition. Advances in neural information
processing systems, 35:34077-34090, 2022.

[69] Qihao Zhao, Chen Jiang, Wei Hu, Fan Zhang, and Jun Liu. Mdcs: More diverse experts
with consistency self-distillation for long-tailed recognition. In Proceedings of the IEEE/CVF
International Conference on Computer Vision, pages 11597-11608, 2023.

[70] Qihao Zhao, Yalun Dai, Shen Lin, Wei Hu, Fan Zhang, and Jun Liu. Ltrl: Boosting long-tail
recognition via reflective learning. In European Conference on Computer Vision, pages 1-18.
Springer, 2024.

[71] Yan Zhao, Weicong Chen, Xu Tan, Kai Huang, and Jihong Zhu. Adaptive logit adjustment

loss for long-tailed visual recognition. In Proceedings of the AAAI conference on artificial
intelligence, volume 36, pages 3472-3480, 2022.

14

https://openreview.net/forum?id=D9I3drBz4UC
https://openreview.net/forum?id=D9I3drBz4UC
https://doi.org/10.1007/s11263-023-01868-w
https://openreview.net/forum?id=PcyioHOmjq
https://openreview.net/forum?id=ebt5BfRHcW
https://openreview.net/forum?id=ashPce_W8F-
https://openreview.net/forum?id=ashPce_W8F-

[72] Zhisheng Zhong, Jiequan Cui, Shu Liu, and Jiaya Jia. Improving calibration for long-tailed
recognition. In Proceedings of the IEEE/CVF conference on computer vision and pattern
recognition, pages 16489—-16498, 2021.

[73] Bolei Zhou, Agata Lapedriza, Aditya Khosla, Aude Oliva, and Antonio Torralba. Places:
A 10 million image database for scene recognition. PAMI, 40(6):1452—-1464, 2018. doi:
10.1109/TPAMI.2017.2723009.

[74] Boyan Zhou, Quan Cui, Xiu-Shen Wei, and Zhao-Min Chen. Bbn: Bilateral-branch network
with cumulative learning for long-tailed visual recognition. In CVPR, pages 9719-9728, 2020.

[75] Jianggang Zhu, Zheng Wang, Jingjing Chen, Yi-Ping Phoebe Chen, and Yu-Gang Jiang. Bal-
anced contrastive learning for long-tailed visual recognition. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 6908-6917, 2022.

Broader Impact

Our work advances the field of long-tailed recognition by improving model performance across
imbalanced datasets, which are prevalent in real-world applications such as medical imaging, wildlife
monitoring, and autonomous driving. By enhancing accuracy for both head and tail classes, our
method promotes fairness and inclusivity in Al systems, reducing biases toward dominant categories.

15

NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: Empirical validation on the synthetic CIFAR100 benchmark is partially pre-
sented in the Introduction and Section[3] The remaining experimental results are detailed in
Section

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: Section [6]
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

 The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

16

Answer: [NA]
Justification: No theoretical results.
Guidelines:

» The answer NA means that the paper does not include theoretical results.

 All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

* Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental result reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: Section[5]and Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

17

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: All of the datasets are publicly available. And the implementation details are
provide in Appendix D]

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: Appendix [D]and Appendix [A]
Guidelines:

» The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer:

Justification: Due to resource constraints, all experiments were conducted using a single
random seed. For model soups, however, multiple seeds were used during training, as
required by the method, but only the averaged results are reported.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

18

https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy
https://nips.cc/public/guides/CodeSubmissionPolicy

8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

¢ It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: Appendix
Guidelines:

* The answer NA means that the paper does not include experiments.

 The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines]?

Answer: [Yes]
Justification: Our work is based on public data.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]
Justification: Section[7]
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

19

https://neurips.cc/public/EthicsGuidelines

11.

12.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

* The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

« If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: We only use public datasets.
Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [NA]
Justification: The paper does not use existing assets.
Guidelines:

* The answer NA means that the paper does not use existing assets.

* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

* If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

20

paperswithcode.com/datasets

13.

14.

15.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

« If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]
Justification: The paper does not release new assets.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: The paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

21

16. Declaration of LLLM usage

Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer: [NA]
Justification: We used LLM only for writing, editing, or formatting purposes.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

* Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.

22

https://neurips.cc/Conferences/2025/LLM

A Additional ablations

Model calibration analysis. An inherent advantage of model merging methods is their ability
to improve prediction calibration metrics. We evaluate LT-Soups against PEFT and Full-FT by
measuring Negative Log-Likelihood (NLL), Expected Calibration Error (ECE) [42], and Brier score
[3]]. For NLL and Brier scores, we also provide category-wise results. All metrics are computed after
temperature tuning on the validation set. As shown in[7] LT-Soups consistently outperforms the other
methods on TinyIlmageNet-LT in terms of calibration.

Table 7: Calibration metrics on TinyImageNet for Full-FT, PEFT, and our LT-Soup.

Method | Metric | Overall Head Tail
ECE 1.97 - -
Full-FT Brier Score 0.36 0.21 040
NLL 1.03 0.63 1.25
ECE 1.95 - -
PEFT Brier Score 0.32 0.23 0.35
NLL 0.89 0.68 0.99
ECE 1.36 - -
LT-Soups | Brier Score | 0.30 0.20 0.33
NLL 0.83 0.59 0.97
Table 8: Performance across different values Table 9: Performance across different values
of A with a fixed M=2, on TinylmageNet-LT. of M with a fixed A=0.7, on TinyImageNet-
| A=0.3 | A=0.7 LT
Acc | 783 | 786 | M=1 | M=2 | M=12
Head 84.6 85.0 Acc 782 | 78.6 78.8
Tail 75.0 75.2 Head | 84.8 85.0 85.5
Tail 746 | 75.2 75.2

PEFT compatibility. A natural question is whether PEFT methods can replace the full fine-tuning
process in LT-Soups. To investigate this, we use LoRA as a representative approach. In the first
stage, we freeze the CLIP pre-trained weights and tune LoRA parameters using the same subsets
as LT-Soups. The LoRA parameters are combined with the pre-trained weights before applying
our merging schema. Finally, we retrain the classifier using the LA loss. The performance on
TinyImagenet-LT dataset (77.1 vs 77.2) matches that of end-to-end LoRA training. We hypothesize
this outcome is due to a phenomenon observed in LLM literature [51], where LoRA introduces
high-ranking singular vectors (intruder dimensions) that are absent in full fine-tuning. While these
models achieve comparable task performance, they adapt less robustly to sequential tasks and diverge
from the pre-training distribution.

Table 10: Effect of subsampling and classifier re-training in conjunction with the PEFT method. Each
column reports PEFT fine-tuning performance on a given subsample ratio p after classifier re-training
on TinyImageNet-LT.

p | 1 2 4 8 16 32 64 100

All 739 743 748 762 764 771 77.0 71.0
Head | 759 758 77.0 782 804 81.8 819 83.0
Tail | 72.8 735 73.6 751 742 745 744 738

Hyperparameter sensitivity. In addition to the number of subsets used during LT-Soups fine-
tuning, two other hyperparameters impact performance: (1) M: the number of models trained per
subset D,,, with each model bootstrapped from the same imbalance ratio p. (2) A: the interpolation
coefficient used during recursive weight averaging.

23

Table[9]shows that increasing A/ on TinyImageNet-LT improves overall, head-, and tail-class accuracy,
highlighting the benefits of ensembling across bootstrapped models. To ensure computational
feasibility across all five datasets, we fix M = 2 in the main experiments.

Table [8] compares performance for A = 0.3 and A\ = 0.7. We observe that datasets closely aligned
with CLIP’s pretraining domain benefit from a larger A\, which retains more pretrained knowledge.
In contrast, datasets with significant domain shifts—such as NIH-CXR-LT—perform better with
smaller), allowing greater adaptation during model merging.

Table 11: Number of subsampling rounds (IV), size of the largest subset relative to the full training
set and \ used for each dataset.

Dataset N Relative size of largest subset A
CIFARI00-LT 5 67 0.7
Places-LT 5 63 0.7
ImageNet-LT 7 79 0.7
iNaturalist 8 90 0.3
NIH-CXR-LT 8 24 0.3

B Full Computational analysis

Table 12: Comparison of methods across ImageNet-LT and CXR-LT in terms of training time,
iterations, model size, memory, and accuracy.

Method Wal}—l—cl{(l)vcﬁis’fime Training Iterations Parzzﬁe):ters Me(rcr}l;)ry
ImageNet-LT
Full-FT 1:37:56 9060 87.0 14.5
Model Soups 1:37:56 9060 87.0 14.5
LoRA (rank = 64) 1:25:33 9060 9.0 13.3
LT-Soups Stage 1 1:15:38 8050 87.0 14.5
LT-Soups Stage 2 0:30:00 9060 0.7 2.6
Full LT-Soups 1:48:38 - - -
NIH-CXR-LT
Full-FT 0:53:43 5320 87.0 14.5
Model Soups 0:53:43 5320 87.0 14.5
LoRA (rank = 64) 2:14:32 13300 9.0 13.3
LT-Soups Stage 1 0:12:51 1300 87.0 14.5
LT-Soups Stage 2 0:19:26 5320 0.7 2.6
Full LT-Soups 0:32:17 - - -

Table[I2] compares the computational costs of Full Fine-Tuning (Full-FT), LIFT (which employs a
LoRA adapter with rank 64 applied to all MLP layers), Model Soups, and LT-Soups on the ImageNet-
LT and NIH-CXR-LT datasets. All models were trained to convergence using a batch size of 128
and mixed-precision training with NVIDIA RTX 3090 GPUs (24GB VRAM), using Python 3.9.15,
PyTorch 2.4.0, and CUDA 11.8. For LT-Soups, we break down the computational cost into two stages.
Stage 1 involves training models independently and in parallel on subsets with different imbalance
ratios. Since the subset with the highest imbalance ratio contains the most training samples, it
dominates the overall wall-clock time. Stage 2 retrains only the linear classifier on the full dataset—a
highly efficient step, as it updates just a single linear layer. In our experiments, we used the same
number of epochs for both stages of LT-Soups.

The computational overhead of LT-Soups compared to existing methods depends heavily on dataset
characteristics, particularly the original imbalance ratio. For example, in ImageNet-LT, which has
an imbalance ratio of 256, the largest subset used in Stage 1 accounts for 89% of the full training
data, resulting in relatively higher wall-clock time. In contrast, on NIH-CXR-LT, with a much more
extreme imbalance ratio of 6401, the largest Stage 1 subset represents only 24% of the dataset, leading
to a 4.4x reduction in training time compared to Full-FT (Table[TT). Additionally, while full-rank

24

methods like Full-FT and LT-Soups typically converge within 10 epochs on CXR-LT, LIFT required
50 epochs—substantially increasing its wall-clock time despite its parameter-efficient design.

—-=- p:100 p:2 — p:8
Head-Tail Ratio (n) — p1 — pa — 016
— 19.00 — 233 —— 0.67 0.11
400 — 100 —— 025 —— 0.05 AN
N\
5001) RN

7 © So

(B} U ~

o 400+ o 1071 S

1S e)

? 300 =

Y [}

c o

& 200 A

3 3

£ 1007 S== £ o

2 N

O A T T T T - T T
0 20 40 60 80 100 0 20 40 60 80 100
Class index Class Index

(a) Visualization of imbalance distributions in (b) Example of subsampled distributions used in
CIFAR100-LT with varying values of 7. LT-Soups, with the x-axis shown on a logarithmic

scale.

C Extended Related Work

C.1 Imbalanced Classification

We can roughly divide progress on imbalanced classification into three groups.

Re-sampling/Re-weighting. Class imbalance mitigation strategies broadly involve oversampling
minority classes [7]], subsampling majority classes [33]], or reweighting losses [[17]. Generative
approaches such as Difful'T [48]] train a diffusion model on a long-tailed distribution and then
uses it to generate a balanced proxy dataset for training the final classifier. Subsampling risks
losing majority-class discriminative patterns, oversampling may overfit minority classes [[74]], and
reweighting struggles in overparameterized networks [66]. Recent advances like balanced softmax
[46] and its generalization, logit adjustment loss (LA) [40] address these issues by enforcing larger
margins for tail classes, bridging data imbalance with geometric regularization.

Decoupled learning. Decoupled learning frameworks address class imbalance through sequential
training phases: representation learning via instance-balanced sampling followed by classifier re-
finement using class-balanced strategies [25}167]]. This paradigm assumes model biases primarily
reside in the classifier layer, positing that head-tail performance gaps can be resolved through post-
hoc classifier calibration [24} 64]]. However, [50] show empirically that this assumption becomes
invalid when fine-tuning foundation models, neglecting a tailored strategy for representation learning,
degrades both head and tail class performance due to catastrophic forgetting of pre-trained features
[41].

Ensemble learning. Ensemble methods address data imbalance by combining specialized experts
trained on complementary distributions [4}|31]]. Notable approaches include: BBN’s dual-branch archi-
tecture balancing original and re-sampled distributions [[74]; RIDE’s dynamic routing of instances to
distribution-aware experts [57]; and LFME’s multi-teacher distillation across many/medium/few-shot
groups [62]]; Reflective Learning [70] promotes consistency across training iterations by minimizing
KL divergence between predictions and soft labels induced from feature similarity. While effec-
tive, these methods rely on heuristic expert specialization rules and often result in cumbersome
architectures that hinder adaptation to foundation models, increase training complexity, and limit
inference speed. Our work circumvents these limitations through two key innovations: (1) replacing
specialized expert design with parallel fine-tuning of foundation models on controlled subsamples,
and (2) employing model averaging and EMA instead of complex aggregation mechanisms. This pre-

25

serves the ensemble’s variance-reduction benefits while maintaining the original foundation model’s
architectural simplicity and computational efficiency.

C.2 Model Merging

Model merging, also sometimes referred to to weight averaging, has gained significant attention in
recent years as a promising research direction [32], focusing on reducing communication costs in
federated learning [39] and distributed training [15]], enabling the efficient combination of multi-
ple models without additional training [22]], and enhancing model robustness in out-of-distribution
scenarios [60, 44]. Early approaches like Exponential Moving Average (EMA) [54] and Stochastic
Weight Averaging (SWA) [23] have been widely adopted to accelerate training convergence, stability,
and enhance the generalization capabilities of deep neural networks. Recent work extends merging to
sequential adaptation: Alexandrov et al. [1]] mitigates catastrophic forgetting in continual pretraining
via iterative merging, while Ramé et al. [45]] align LLMs through multi-stage averaging during RLHF.
To our knowledge, no prior work applies model merging to imbalanced recognition. Unlike existing
sequential merging approaches, our framework trains multiple models in parallel on complementary
subsampled distributions, a critical design choice for handling long-tailed data. We propose the first
schema specifically tailored for imbalance, integrating subsampling (to retain tail-class discriminabil-
ity) and bootstrapping (to stabilize head-class representations). This parallelized merging strategy
directly addresses feature-space asymmetry in long-tailed distributions while maintaining compu-
tational efficiency, enabling foundation models to adapt to extreme imbalance without sacrificing
pre-trained generalization.

D Baselines and implementation details.

We use CLIP with the ViT-B/16 backbone. Following [43]], we adopt a prototypical classification
head for g, where both features and classifier weights are [5-normalized, and a temperature is applied
to the logits. The parameters w are initialized by generating text. We use descriptive prompts such as
“a photo of a cat” or “a photo of a dog” to represent each class [43]]. for the classes and extracting
corresponding textual features using the CLIP text encoder.

We optimize the model using the AdamW optimizer [36]. The batch size is set to 128, with learning
rates of 3e — 4 for both the representation and the classification stage. A cosine decay learning rate
scheduler is employed, gradually reducing the learning rate to 0.1 - max_Ir after a warmup period
spanning max (100, 0.01 - total_steps) steps. The validation set of each dataset is used to select the
best checkpoint. Table[TT|shows the hyperparameters we used for each dataset. We select N and A
based on the validation set of each dataset and fix M=2 across all experiments. We report all baseline
results without test-time augmentation, which offers orthogonal gains.

Table 13: Dataset details used in our work.

Dataset Classes Total samples Max samples Min samples p n

CIFAR100-LT [5] 100 10.8k 500 5 100 0.54
TinyImageNet-LT [30] 200 21.5k 500 5 100 0.53
Places-LT [34] 365 62.5k 4980 5 996 0.55
ImageNet-LT [34] 1000 115.8k 1280 5 256 0.62
iNaturalist [56] 8,142 437.5k 1000 2 500 0.11
NIH-CXR-LT [19] 20 88,637 53260 12 6491 5.66

D.1 Full results

26

Table 14: Comparison of methods for training on CIFAR100-LT.

Methods | Backbone Overall Many Medium Few
Training from scratch

LDAM [5]] ResNet-32 42.0 - - -
BBN [74] ResNet-32 42.6 - - -
DiVE [18]] ResNet-32 454 - - -
MiSLAS [72] ResNet-32 47.0 - - -
BS [46] ResNet-32 50.8 - - -
PaCo [10] ResNet-32 52.0 - - -
BCL [75] ResNet-32 51.9 - - -
Fine-tuning CLIP

Linear Prob (LA) | ViT-B/16 70.0 77.2 71.1 60.4
Full-FT (LA) ViT-B/16 79.6 88.1 79.9 69.3
cRT [25] ViT-B/16 78.8 89.7 79.7 65.1
PEFT [50] ViT-B/16 81.3 85.2 80.9 77.1
Model Soups [60] | ViT-B/16 82.1 89.9 82.2 73.0
LT-Soups (Ours) ViT-B/16 83.5 88.2 83.5 78.0

Table 15: Comparison of methods for training on Places-LT.

Methods | Backbone Overall Many Medium Few
Training from ImageNet-1K pre-trained backbone

OLTR [34] ResNet-152 35.9 44.7 37.0 25.3
cRT [25] ResNet-152 36.7 42.0 37.6 26.4
LWS [25] ResNet-152 37.6 40.6 39.1 28.6
MiSLAS [72] ResNet-152 40.4 39.6 433 36.1
DisAlign [67]] ResNet-152 39.3 40.4 394 329
ALA [71]] ResNet-152 41.2 36.1 47.9 353
PaCo [10] ResNet-152 40.5 33.7 44 4 353
LiVT [63] ViT-B/16 40.8 48.1 40.6 27.5
Fine-tuning CLIP

Linear Prob (LA) ViT-B/16 48.8 48.8 49.7 47.1
cRT [25] ViT-B/16 44 .4 51.0 43.1 354
BALLAD [37]] ViT-B/16 49.5 49.3 50.2 48.4
Decoder [58]] ViT-B/16 46.8 - - -
LPT [13] ViT-B/16 50.1 49.3 523 46.9
Full-FT (LA) ViT-B/16 46.6 49.9 46.3 414
cRT [25] ViT-B/16 44 .4 51.0 43.1 354
LIFT [50] ViT-B/16 51.5 51.3 52.2 50.5
Model Soups [60] ViT-B/16 494 51.7 50.0 43.7
LT-Soups (Ours) ViT-B/16 51.7 51.2 52.8 50.3

27

Table 16: Comparison of methods for training on ImageNet-LT.

Methods | Backbone Overall Many Medium Few
Training from scratch

cRT [25] ResNet-50 47.3 58.8 44.0 26.1
LWS [25] ResNet-50 47.7 57.1 452 29.3
MiSLAS [72]] ResNet-50 52.7 62.9 50.7 31.0
LA [40] ResNet-50 51.1 - - -
DisAlign [67] ResNet-50 52.9 61.3 52.2 314
BCL [75] ResNet-50 56.0 - - -
PaCo [10] ResNet-50 57.0 - - -
NCL [31] ResNet-50 57.4 - - -
LiVT [63] ViT-B/16 60.9 73.6 56.4 41.0
Fine-tuning CLIP

Linear Prob (LA) ViT-B/16 74.2 77.8 73.3 67.4
BALLAD [37] ViT-B/16 75.7 79.1 74.5 69.8
Decoder [58]] ViT-B/16 73.2 - - -
Full-FT (LA) ViT-B/16 73.9 79.8 71.9 63.9
cRT [25] ViT-B/16 72.6 81.1 70.6 56.1
LIFT [50] ViT-B/16 77.0 80.2 76.1 71.5
Model Soups [60] | ViT-B/16 76.0 81.5 74.5 65.5
LT-Soups (Ours) ViT-B/16 77.4 81.2 76.1 70.7

Table 17: Comparison of methods for training on NIH-CXR-LT.

Methods | Backbone Overall Many Medium Few
Training from ImageNet-1K pre-trained backbone

cRT [25] ResNet-50 38.0 43.3 37.4 30.0
LWS [25] ResNet-50 28.0 45.7 23.0 08.3
CB LDAM-DRW [5] | ResNet-50 37.7 47.6 35.6 25.0
CB Softmax [[L1]] ResNet-50 333 29.5 41.5 21.7
Fine-tuning CLIP

Linear Prob (LA) ViT-B/16 17.5 13.3 21.1 16.7
BALLAD [37] ViT-B/16 34.5 36.7 38.9 20.8
Full-FT (LA) ViT-B/16 38.0 43.8 41.5 20.0
cRT [25] ViT-B/16 37.7 42.9 39.3 25.0
LIFT [50] ViT-B/16 38.5 433 40.4 25.5
Model Soups [60] ViT-B/16 38.0 45.6 40.2 20.0
LT-Soups (Ours) ViT-B/16 39.3 424 40.7 30.8

28

Table 18: Comparison of methods for training on iNaturalist 2018.

Methods | Backbone Overall Many Medium Few
Training from scratch

cRT [25] ResNet-50 65.2 69.0 66.0 63.2
LWS [25] ResNet-50 65.9 65.0 66.3 65.5
MiSLAS [72] ResNet-50 71.6 73.2 72.4 70.4
DiVE [18]] ResNet-50 69.1 70.6 70.0 67.7
DisAlign [67] ResNet-50 69.5 69.1 69.9 69.4
ALA [71] ResNet-50 69.6 69.5 70.2 69.0
RIDE [57]] ResNet-50 71.5 724 73.1 70.4
RIDE+CR [38]] ResNet-50 73.5 74.0 74.3 73.1
RIDE+OTmix [16] | ResNet-50 73.7 74.1 75.2 72.8
BCL [75]] ResNet-50 71.8 - - -
PaCo [10]] ResNet-50 73.2 70.4 72.8 75.8
NCL [31] ResNet-50 74.2 72.0 74.9 73.8
GML [52]] ResNet-50 74.5 - - -
LiVT [63] ViT-B/16 76.1 78.9 76.5 74.8
Fine-tuning CLIP

Linear Prob (LA) ViT-B/16 60.4 48.9 60.0 63.9
Decoder [58]] ViT-B/16 59.2 - - -
LPT [13]] ViT-B/16 76.1 - - 79.3
Full-FT (LA) ViT-B/16 76.1 75.7 76.9 75.3
LIFT [50] ViT-B/16 79.1 72.4 79.0 81.1
Model Soups [60] ViT-B/16 76.4 77.1 76.8 75.6
LT-Soups (Ours) ViT-B/16 78.2 76.7 78.5 78.2

29

	Introduction
	Related Work
	A Closer Look at Imbalanced Learning with Foundation Models
	Preliminaries
	Characterizing Imbalanced Distribution with Head-Tail Ratio

	LT-Soups: Imbalanced Learning by Subsampled Model Averaging
	Experiments
	Datasets and evaluation protocol.
	Main results
	Empirical analysis of LT-Soups

	Limitations and Future Work
	Conclusion
	Additional ablations
	Full Computational analysis
	Extended Related Work
	Imbalanced Classification
	Model Merging

	Baselines and implementation details.
	Full results

