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SAINT: SPATIAL GUIDANCE FOR INPAINTING
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Figure 1: We present Saint, a method that fine-tunes large-scale latent Diffusion Transformers as
Spatial Reasoning Models tailored for image inpainting. By performing masking via noising, it
achieves high-quality inpainting for binary as well as continuous masks (shown in red). We further
introduce Spatial Classifier-Free Guidance to boost fidelity and alignment with the input image.

ABSTRACT

We introduce Saint, a framework for image inpainting with large-scale diffusion
and flow-based transformers in a latent multi-variable setup. Existing methods
for latent image inpainting rely on RePaint-like sampling or mask concatenation,
which either does not make use of the masked image as strong conditioning at all
or neglects the fact that the denoising model has been already trained for masking
via noising. In contrast, Saint fine-tunes pre-trained Diffusion Transformers (DiTs)
as Spatial Reasoning Models (SRMs) with varying noise levels across masked and
unmasked regions, allowing to condition the model directly via the partially noised
latent. This more effective conditioning scheme improves inpainting performance
on binary masks and further extends to continuous masks. Moreover, the multi-
variable formulation of SRMs allows us to formulate a Spatial Classifier-Free
Guidance strategy tailored for inpainting as well as a token-caching scheme for
efficient local edits. We evaluate Saint on ImageNet1k and JourneyDB datasets for
a variety of inpainting scenarios and show that it consistently improves on the state
of the art in generative and reconstruction metrics. Our codebase and the models
will be released publicly upon acceptance of the paper.

1 INTRODUCTION

Inpainting masked regions in images is a challenging and relevant task that requires strong prior
knowledge about complex image distributions. Given the evidence in a partial image and optionally
a text prompt, our task is to fill in a region indicated by a binary mask such that the resulting complete
image is plausible, of high-quality, and follows the given text prompt. An extension of the simple
setting is to allow continuous masks, which provide additional guidance about how strong certain
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image regions are allowed to be altered in the inpainting process. Continuous masks enable more
sophisticated edits like image mixing and gradual changes over regions (Levin & Fried, 2023). In
this work, we introduce a novel framework for conditional binary and continuous mask inpainting,
achieving state-of-the-art quality.
Image inpainting has recently benefited from advances in large-scale diffusion and flow-based text-to-
image (T2I) models (Chen et al., 2024; Esser et al., 2024; Black Forest Labs, 2024). However, models
for high-resolution and high-quality image synthesis generate images in latent space (Rombach et al.,
2022) and fine-tuning such models effectively for latent image inpainting remains a key challenge.
Current approaches typically follow one of two paths: 1) specialized sampling strategies such as
RePaint (Lugmayr et al., 2022), which completely neglect the masked image as strong conditioning
and therefore require many steps and resampling, or 2) fine-tuning with mask concatenation (Rombach
et al., 2022), which requires architecture changes and often yields suboptimal results due to a weak
condition injection. These limitations become especially apparent in more challenging settings such
as fast inpainting with a low number of sampling steps.
We propose Saint, inpainting with the recently introduced Spatial Reasoning Model (SRM) frame-
work (Wewer et al., 2025), which allows considering multiple variables with varying noise levels
across masked and unmasked regions during training. Using this formulation, we obtain a principled
way to finetune pre-trained diffusion and rectified flow transformers (Peebles & Xie, 2023) for binary
and continuous mask inpainting in latent space. Unlike previous works with two noise levels, like
TD-Paint (Mayet et al., 2025), which uses a UNet trained from scratch in pixel space with a fixed
noise scheme, Saint brings this concept to high-capacity transformers for latent generation and
generalizes naturally to continuous mask settings. We further leverage the principle of masking via
noising by introducing Spatial Classifier-Free Guidance and show that it effectively enhances quality
and consistency with the input image. By denoising only masked regions with a transformer-based
architecture, Saint enables Clean Token Caching to accelerate fine-grained inpainting.
We present extensive experiments and ablations, showing that our approach outperforms existing
works on the standard ImageNet1k benchmark, but more importantly in text-conditional inpainting
on JourneyDB (Sun et al., 2023). In summary, our contributions are as follows:

• We demonstrate how to fine-tune pre-trained latent diffusion and rectified flow transformers
as SRMs, leveraging masking via noising with inpainting-specific spatial t-sampling.

• We propose a novel Spatial Classifier-Free Guidance formulation tailored for inpainting
with SRMs, which boosts quality by enforcing alignment with the masked input.

• We introduce Clean Token Caching for transformer-based SRMs to speed up small-scale
edits by denoising masked tokens only.

• In a fair comparison using the same pre-trained models, we show that Saint outperforms
previous training-free and fine-tuning approaches w.r.t. visual fidelity and input alignment
in class-, text-, and unconditional inpainting with binary as well as continuous masks.

2 RELATED WORK

We revisit existing diffusion-based methods for inpainting (Sec. 2.1), summarize general Classifier-
Free Guidance (Sec. 2.2), and briefly describe Spatial Reasoning Models (Sec. 2.3).

2.1 DIFFUSION-BASED IMAGE INPAINTING

Image inpainting is the task of region-constrained contextual image generation given an input image
and mask pair. It is one of the cornerstones of image editing with important applications like object
removal or background replacement (Huang et al., 2025). While inpainting is a well-established
task with a long history of approaches (Criminisi et al., 2004; Barnes et al., 2011; Yang et al., 2017;
Yu et al., 2018; 2019; Suvorov et al., 2022), denoising generative models (DMs) (Ho et al., 2020;
Lipman et al., 2023) are the state-of-the-art nowadays. With their exceptional ability to fit complex
distributions, they enabled today’s text-to-image generators (Rombach et al., 2022; Nichol et al.,
2022; Esser et al., 2024; Podell et al., 2024; Black Forest Labs, 2024) that are often used as a basis
for inpainting methods. We review diffusion-based inpainting methods, categorizing them into
training-free and mask-conditional methods.
Training-Free Approaches. Adapting pre-trained large generative models for inpainting without
retraining has received a lot of attention in the last years (Chung et al., 2022; Couairon et al., 2023;
Kawar et al., 2022; Wang et al., 2025). Notably, Blended Diffusion (Avrahami et al., 2022; 2023)
showed that a DM trained without mask conditioning can still inpaint by repeatedly replacing the
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unmasked region of the current sample with the noised conditioning image after each step. A parallel
work – RePaint (Lugmayr et al., 2022) – proposes a similar method, which introduces resampling, i.e.,
repeatedly noising and denoising at each step to improve global coherence at the cost of significant
computational overhead. Differential Diffusion (Levin & Fried, 2023) extends this idea to continuous
masks. They are utilized as edit strength, realized by mixing the denoised sample with a re-noised
copy of the input via a time-dependent, per-pixel gate.
Note that for all of those methods, at high noise levels, the model has no information about the
details of the given image – resulting in a very poor coherence to computation tradeoff. Our method
fine-tunes the model to explicitly reason on the given regions according to the continuous mask,
making it easy to preserve global consistency.
Mask-Conditional Methods. With the rise of large-scale image diffusion models, image-to-image
conditioning via channel-wise concatenation was introduced and implemented in Palette (Saharia
et al., 2022) and later for higher resolutions in Latent Diffusion Models (Rombach et al., 2022).
While this method requires fine-tuning, it is widely used due to its effectiveness (Nichol et al., 2022;
Hugging Face Diffusers team; Wang et al., 2023; Yang et al., 2023). To avoid retraining, BrushNet (Ju
et al., 2025) introduces a ControlNet-like method that trains a second branch which inputs the masked
features and injects its features into the frozen pre-trained model, making the training non-destructive.
TD-Paint (Mayet et al., 2025) improves results by explicitly training a U-Net for binary masks
encoded as per-pixel noise level t = 0. Due to architecture modifications, they train a model from
scratch. A parallel work RAD (Kim et al., 2025), also trains with two noise levels within a sample,
and suggests LoRA (Hu et al., 2022) for fine-tuning pixl-space DMs. Additionally, they explore the
use of Perlin noise for better alignment with arbitrary masks during inference. Both approaches are
pixel-space diffusion models, and are based on a U-Net architecture, which limits their ability to make
use of the state-of-the-art, high-resolution, text-to-image diffusion and rectified flow transformers,
such as Flux.1 (Black Forest Labs, 2024), SD3 (Esser et al., 2024) or PixArt-α (Chen et al., 2024).
Saint shifts this idea to a latent-space DiT setup, for easy fine-tuning of such models, and also can
operate on continuous masks, making the method more versatile.

2.2 CLASSIFIER-FREE GUIDANCE

Classifier-Free Guidance (CFG) (Ho & Salimans, 2021) is a method used to trade off diversity for
fidelity. During training of a conditional denoising model, the condition is dropped with a certain
probability to enable unconditional inference. At sampling time, both conditional and unconditional
flow (or noise) estimates ucond and uunc are obtained and then combined as

ucfg = w · ucond − (w − 1) · uunc, (1)

where w is the CFG scale. For w > 1, ucfg is pushed towards conditional inference, enforcing
stronger alignment with the condition and often better quality at the cost of lower diversity. Follow-
ups investigated alternatives for uunc such as predictions of a weaker model (Karras et al., 2024) or
negative prompts (Ban et al., 2024), and applied CFG for timestep intervals (Kynkäänniemi et al.,
2024). We propose a new CFG formulation which improves the consistency of the inpainted region
with the observed context.

2.3 SPATIAL REASONING MODELS

Spatial Reasoning Models (SRMs) (Wewer et al., 2025) describe a recently proposed framework for
learning joint distributions of general variables in arbitrary spatial domains with denoising generative
models. Unlike standard diffusion models, SRMs consider image patches as variables with individual
noise levels both during training and inference.
SRMs Wewer et al. (2025) were introduced on small-scale toy problems only, such as synthetic images
of Sudoku in pixel space. Saint extends SRMs to latent image inpainting, advances task-specific
noise level sampling, introduces a new Spatial CFG formulation for improved image consistency, and
significantly increases the inference speed using our Clean Token Caching.

3 SAINT

In this section, we describe our method in detail, starting with the steps required to turn large-scale,
pre-trained diffusion / flow transformers into SRMs tailored for inpainting in Sec. 3.1. Our novel
conditioning on masked images natively enables a new Classifier-Free Guidance mechanism that we
explain in Sec. 3.2. Lastly, by denoising only what actually needs to be inpainted, Saint opens up the
opportunity for caching of already clean tokens, which we introduce in Sec. 3.3.
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(a) Inpainting with SRMs (b) Spatial Classifier-Free Guidance

Figure 2: Method Overview. (a) Saint fine-tunes latent Denoising Transformers as SRMs (Wewer
et al., 2025) tailored for inpainting by converting (continuous) masks M into variable-wise noise
levels T during both training and inference. (b) The novel inpainting procedure allows to formulate a
Spatial Classifier-Free Guidance formulation, controlling the conditioning from clean variables.

3.1 SRMS FOR INPAINTING

While standard flow/diffusion transformers for class- or text-conditional image generation like
LightningDiT (Yao et al., 2025) or PixArt-α (Chen et al., 2024) are trained for sampling an entire
image as a single random variable, SRMs (Wewer et al., 2025) aim for modeling the joint distribution
of multiple partially observed variables. With Saint, we propose to fine-tune pre-trained DiTs as
SRMs for inpainting, leveraging two natural connections: (1) DiTs tokenize the image into patches,
which represent an intuitive choice for variables in the SRM framework. (2) Generative image
inpainting is the task of stochastic completion of a partially observed image, which requires spatial
reasoning over observed and unobserved patches. Therefore, SRMs are a perfect fit for this problem.

3.1.1 MASKING VIA NOISING

To convert a pre-trained latent image DiT into a SRM, we follow the principle of masking via noising,
as shown in Fig. 2a. Notably, this allows us to consider binary as well as continuous masks.
Tokenization. Given an image I ∈ R3×H×W and a mask MI ∈ [0, 1]H×W , where 1 denotes a full
masking, we first encode I to a compressed latent image X ∈ Rd×h×w using the VAE encoder for
latent diffusion. To match the spatial resolution, we bilinearly downsample MI to obtain MX.
Continuous Masking. Next, instead of encoding the mask in the input to the denoising network
via concatenation, we employ it directly as the noise level (also known as timestep) T = MX.
Leveraging the noise schedule, i.e., data and noise weighting functions a, b of the diffusion/flow
formulation used by the pre-trained model, the masked latent image patches XT are then sampled as

XT = a(T)⊙X+ b(T)⊙ ϵ, (2)

with Gaussian noise ϵ ∼ N (0, 1). For the popular rectified flow schedule, e.g., used by LightningDiT,
this boils down to linear interpolation between the image and noise with the mask as weighting. In
the case of discrete time diffusion models like PixArt-α, we scale and discretize T accordingly.
Mask Conditioning. To condition the DiT on the mask, we utilize the trained t-embedding network
and adaptive layer norm Peebles & Xie (2023). Both components can be adapted for token-wise noise
levels T instead of a single shared timestep per image without introducing any additional weights.

3.1.2 TRAINING

We design a training mask sampling procedure tailored for the task of inpainting. Adapting the mask
sampling from TD-Paint (Mayet et al., 2025), we first sample a binary mask, which involves sampling
a patch size, a fraction of latent pixels to be masked, and finally the position of patches. This binary
mask splits the latent image into conditioning variables and ones to denoise. Next, we introduce two
different t-sampling strategies for these two sets.
For conditioning variables, we set t = 0 (i.e., keep them clean) with 90% probability, and t = 1 for the
remaining 10% to train the denoiser for the unconditional case of Spatial CFG, which we explain in
detail in Sec. 3.2. For variables to be denoised, we adapt the Uniform t̄ strategy introduced by Wewer
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et al. (2025). The strategy first samples a mean t̄ from a uniform distribution followed by sampling a
vector t of individual noise levels with the particular mean. Depending on the parameterization of the
pre-trained model and the used SNR sampler, we replace the uniform distribution for t̄ with, e.g., a
logit normal distribution as introduced by Esser et al. (2024) for rectified flow transformers.

3.1.3 INFERENCE

Algorithm 1 Saint Inference

Require: Image I, Mask M, Steps n, CFG scale w
1: X,T← encode(I),bilinear(M)
2: ϵ ∼ N (0,1)
3: X← a(T)⊙X+ b(T)⊙ ϵ
4: for i = 1 to n do
5: C← T == 0 ▷ Clean Token Mask
6: T′ ← max(T,C) ▷ Unconditional T
7: ε ∼ N (0,1)
8: X′ ← (1−C)⊙X+C⊙ ε
9: Ucond,Uunc ← DiT(X,T),DiT(X′,T′)

10: Ucfg ← w ·Ucond − (w − 1) ·Uunc
11: X← Euler(X,Ucfg, n)
12: T← max(0,T− 1/n)

13: return decode(X)

Our inference algorithm is given in Alg. 1.
After encoding the image to a latent image
and the mask as noise levels (line 1) as de-
scribed in Sec. 3.1.1, we start the sampling
process from correspondingly noised latents
in line 3. Crucially, this means that partially
noised tokens in the case of a continuous mask
are ahead in t compared to others. During sam-
pling, we perform equal-sized steps for every
token until reaching t = 0. Note that while
we have chosen the flow parameterization and
an Euler sampler for the pseudocode, our ap-
proach is independent of this choice and can
be used as well with discrete-time diffusion
models. Lines 5-10 formalize our novel Spa-
tial Classifier-Free Guidance formulation that
we explain in the next Sec. 3.2.

3.2 SPATIAL CLASSIFIER-FREE GUIDANCE

By performing masking via noising with spatially varying t, Saint natively enables a novel classifier-
free guidance formulation w.r.t. the partially given image for inpainting. Our Spatial CFG imple-
mentation is visualized in Fig. 2b and formalized in lines 5-10 of Alg. 1. Besides the conditional
flow (or noise) Ucond prediction path that effectively leverages the partially given latent image as
strong condition, we introduce an unconditional path Uunc for which we replace every clean input
token (t = 0) with Gaussian noise and set the respective noise level to t = 1. Following the general
CFG Eq. 1, we combine both paths using a specific spatial guidance scale in line 10. Notably, the set
of clean tokens can grow throughout inference due to different initial t determined by the possibly
continuous input mask. In this case, Spatial CFG can be seen as a form of self-guidance, enforcing
consistency with the history of already generated tokens.

3.3 CLEAN TOKEN CACHING

Figure 3: Clean Token Caching.
Caching tokens for conditioning vari-
ables can speed up inpainting.

To speed up the iterative generation with denoising models,
existing works (Wimbauer et al., 2024; Ma et al., 2024) ex-
plore caching strategies to avoid recomputing intermediate
features that barely change between consecutive sampling
steps. Saint offers the opportunity for a caching strategy
tailored for inpainting. In particular, unlike previous meth-
ods like RePaint Lugmayr et al. (2022) or LDM Rombach
et al. (2022), Saint only denoises tokens that need to be in-
painted. For all conditioning variables, inference starts al-
ready at t = 0. Assuming that these tokens do not change
significantly between consecutive sampling steps, we propose
Clean Token Caching in each block of the transformer for a
certain update interval, as visualized in Fig. 3. During a cache
update step, we save keys and values for conditioning vari-
ables. Then, for every other (cache readout) step, the DiT only
processes tokens that need to be denoised and extends the
keys and values for self-attention with the current cache. This
can be understood as merged self-attention between noisy
tokens and cross-attention to clean tokens. As a result, the
number of cached tokens and with that the potential speed-up
scales inversely proportional with the inpainting mask size,
especially improving the efficiency of small edits.
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ImageNet1k JourneyDB
10 Steps 50 Steps 10 Steps 50 Steps

Mask Method FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓ SSIM↑

RePaint [1] 37.397 0.735 0.223 16.615 0.700 0.204 34.207 0.611 0.319 22.042 0.590 0.276
LDM [3] 19.167 0.586 0.288 10.769 0.552 0.271 32.313 0.617 0.330 17.803 0.594 0.285

TD-Paint [4] 18.780 0.575 0.294 10.620 0.540 0.277 22.955 0.556 0.357 13.266 0.539 0.316

E
xp

an
d

Ours 15.783 0.526 0.304 10.120 0.503 0.296 21.188 0.538 0.369 12.867 0.524 0.330
RePaint [1] 13.917 0.382 0.469 10.008 0.365 0.465 19.343 0.346 0.537 15.218 0.335 0.519
LDM [3] 8.290 0.265 0.535 6.288 0.250 0.527 19.226 0.351 0.541 15.060 0.342 0.520

TD-Paint [4] 8.053 0.259 0.539 6.052 0.243 0.532 11.408 0.269 0.591 9.038 0.262 0.574H
al

f

Ours 7.248 0.237 0.546 5.869 0.227 0.543 9.827 0.246 0.593 8.690 0.247 0.586
RePaint [1] 8.778 0.209 0.603 7.707 0.206 0.602 15.287 0.271 0.606 10.911 0.242 0.613
LDM [3] 4.834 0.126 0.663 4.186 0.123 0.657 18.250 0.235 0.641 16.872 0.234 0.630

TD-Paint [4] 4.704 0.122 0.666 4.052 0.119 0.660 8.360 0.156 0.696 7.511 0.155 0.689

B
in

ar
y

T
hi

ck

Ours 4.437 0.114 0.669 3.974 0.113 0.666 7.734 0.144 0.702 7.237 0.145 0.698

Diff. Diff. [2] 29.609 0.683 0.246 13.158 0.622 0.236 34.335 0.624 0.311 21.235 0.595 0.269
LDM [3] 27.427 0.658 0.256 12.382 0.598 0.246 30.695 0.628 0.322 15.943 0.598 0.280

TD-Paint [4] 18.551 0.571 0.293 11.317 0.533 0.279 59.273 0.655 0.333 26.885 0.599 0.305B
lo

b

Ours 14.097 0.525 0.298 10.221 0.496 0.293 21.118 0.591 0.306 13.845 0.568 0.295
Diff. Diff. [2] 17.627 0.352 0.428 7.658 0.273 0.452 30.408 0.481 0.431 17.481 0.433 0.419

LDM [3] 17.477 0.339 0.437 7.484 0.265 0.457 27.743 0.486 0.431 15.025 0.435 0.421
TD-Paint [4] 8.687 0.259 0.477 7.131 0.246 0.473 36.335 0.462 0.472 19.714 0.412 0.466

G
ra

di
en

t

Ours 8.323 0.253 0.480 6.651 0.240 0.472 18.869 0.402 0.456 12.327 0.378 0.460
Diff. Diff. [2] 10.787 0.241 0.547 9.152 0.182 0.589 15.287 0.271 0.606 10.911 0.242 0.613

LDM [3] 10.291 0.223 0.561 5.534 0.171 0.595 16.460 0.289 0.592 11.459 0.250 0.606
TD-Paint [4] 5.660 0.152 0.622 4.889 0.146 0.619 18.440 0.258 0.637 12.152 0.222 0.643

C
on

tin
uo

us
So

ft

Ours 5.283 0.147 0.624 4.632 0.142 0.620 10.885 0.211 0.637 8.496 0.196 0.644

Table 1: Quantitative Class-/Text-Conditional Inpainting Comparison. Saint consistently achieves
higher fidelity and alignment with the input image. The largest advantage over baselines is obtained
for low number of sampling steps (10) and / or continuous masks.

4 EXPERIMENTS

In this section, we describe our extensive experimental evaluation of Saint. After an introduction of
the experimental setup in Sec. 4.1, we provide qualitative and quantitative evidence for the following
claims: Saint (Sec. 4.2) outperforms previous methods for class- and text-conditional inpainting in
terms of visual quality as well as consistency with the original image, (Sec. 4.3) enables editing with
continuous masks, a setting in which baselines severely lack quality, and (Sec. 4.4) maintains strong
performance even in the unconditional case. Finally, Sec. 4.5 demonstrates the effect of the proposed
Spatial Classifier-Free Guidance and Sec. 4.6 shows that Clean Token Caching significantly speeds
up sampling with minimal to no loss of quality.

4.1 EXPERIMENTAL SETUP

We defined an experimental setup for fair comparison with baselines by starting from the same
pre-trained models and fine-tuning on the same datasets. Appendix A provides additional details.
Pre-Trained Models. Our experiments are performed using two pre-trained DiTs. LightningDiT
(XL) (Yao et al., 2025) is a recently proposed, improved DiT architecture trained as a rectified flow
model for class-conditional generation on ImageNet1k. PixArt-α (Chen et al., 2024) is an original
DiT trained as a classical discrete-time diffusion model for open-vocabulary text-to-image generation.
Datasets. As we fine-tune for a new task, but not for a new domain, we choose ImageNet1k (Rus-
sakovsky et al., 2015) as the training dataset for LightningDit and JourneyDB (Sun et al., 2023)
for PixArt-α, both in 256× 256 resolution. The latter is a dataset of 4 million image-prompt pairs
generated with Midjourney and has been also used in the original training of PixArt-α. We use the
same test set of 5k images as TD-Paint (Mayet et al., 2025) for ImageNet1k and create an equally
sized subset of JourneyDB’s test split ensuring no prompt duplicates.
Masks. We adopt the binary masks Expand, Half, and Thick (aka Wide) from Mayet et al. (2025).
Furthermore, we introduce continuous mask equivalents Blob, Gradient, and Soft. Please see Fig. 1
for visualizations and the Appendix A for details about their creation.
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Input RePaint LDM TD-Paint Ours Input RePaint LDM TD-Paint Ours

(a) Conditional Inpainting (b) Unconditional Inpainting

Figure 4: Qualitative Comparison. (a) Class-/Text-Conditional inpainting with Saint achieves
higher quality and consistency with the masked input image. From first to last row: It successfully
generates a correct head pose fitting observed lips, matching Christmas stockings, more accurate tiger
bodies, and artistic face completions adhering to the original style. (b) Our approach is more robust
than baselines in the unconditional setting. For example, it correctly outpaints a monkey (instead of
giving in to the dog bias in ImageNet) and inpaints more plausible faces.

Sampling. Image inpainting is usually used in interactive editing scenarios Huang et al. (2025).
Therefore, we focus on fast sampling settings with a low number of 10 or 50 denoising steps. For
class- and text-conditional inpainting, we use a corresponding CFG scale of 1.5 for all methods.
Baselines. We use the same pre-trained models for Saint and all baselines. RePaint (Lugmayr
et al., 2022) and Differential Diffusion (Levin & Fried, 2023) use the original models without
fine-tuning, as those have been already trained to convergence. LDM (Rombach et al., 2022) with
mask concatenation and a latent-diffusion adaptation of TD-Paint (Mayet et al., 2025) are fine-tuned
for 100k iterations, matching Saint. Since (to the best of our knowledge) no method other than
Differential Diffusion focuses on the task of inpainting with continuous masks, we adapt TD-Paint
and LDM for this setting. For LDM, we threshold continuous masks at t=0, as it requires binary
removal of masked regions. As a result, some information is lost, but the input is guaranteed to
be in the training distribution. While trained for binary masks only, latent TD-Paint directly uses
continuous masks via noising similar to Saint.
Metrics. For quantitative comparison, we employ FID (Heusel et al., 2017) to measure visual quality.
Furthermore, the established reconstruction metrics LPIPS (Zhang et al., 2018) and SSIM (Wang
et al., 2004) are used to evaluate consistency with the original image.

4.2 HIGH-QUALITY CONDITIONAL INPAINTING

We provide quantitative comparisons for class-/text-conditional inpainting in Tab. 1. Saint consistently
outperforms all baselines in visual quality and reconstruction, for both 10 and 50 sampling steps.
Notably, for the binary mask setting and 10 steps, we improve on the best baseline – our latent
TD-Paint – by 10.54% / 9.68% in FID and 7.86% / 6.49% in LPIPS on ImageNet1k and JourneyDB,
respectively. Fig. 4a shows qualitative comparisons. Our approach achieves significantly improved
consistency with the partially given image, visible in the form of the correct head pose fitting the
observed lips in the first row, or matching Christmas stockings in the second. The same holds for the
lower three examples of text-conditional inpainting, for which Saint delivers high-quality samples,
while baselines lack visual fidelity or coherence with the given image regions.
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ImageNet1k JourneyDB
10 Steps 50 Steps 10 Steps 50 Steps

Mask Method FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓ SSIM↑ FID↓ LPIPS↓ SSIM↑

RePaint [1] 100.822 0.781 0.212 56.404 0.741 0.188 73.066 0.697 0.266 44.473 0.670 0.214
LDM [3] 31.182 0.599 0.288 18.317 0.561 0.269 66.021 0.700 0.274 38.355 0.670 0.220

TD-Paint [4] 29.677 0.590 0.294 17.284 0.551 0.275 41.180 0.636 0.307 23.735 0.611 0.256

E
xp

an
d

Ours 21.227 0.535 0.295 14.096 0.509 0.293 26.182 0.587 0.351 16.185 0.574 0.307
RePaint [1] 30.821 0.407 0.459 27.144 0.389 0.454 39.144 0.388 0.513 30.742 0.374 0.491
LDM [3] 10.119 0.267 0.537 7.577 0.250 0.529 35.013 0.380 0.537 30.414 0.370 0.511

TD-Paint [4] 9.727 0.261 0.540 7.207 0.244 0.533 13.128 0.284 0.582 10.294 0.276 0.565H
al

f

Ours 8.205 0.238 0.542 6.814 0.226 0.543 10.165 0.251 0.588 9.274 0.251 0.584
RePaint [1] 15.651 0.220 0.598 15.015 0.217 0.597 20.074 0.230 0.648 16.690 0.228 0.640
LDM [3] 5.444 0.126 0.664 4.668 0.123 0.658 27.278 0.246 0.639 25.147 0.244 0.626

TD-Paint [4] 5.279 0.123 0.667 4.496 0.120 0.661 9.107 0.162 0.693 8.096 0.161 0.686

B
in

ar
y

T
hi

ck

Ours 4.797 0.114 0.669 4.344 0.111 0.669 7.896 0.148 0.699 7.497 0.148 0.696

Diff. Diff. [2] 72.589 0.725 0.238 44.328 0.658 0.225 73.832 0.711 0.264 38.399 0.673 0.211
LDM [3] 50.033 0.684 0.259 26.779 0.618 0.245 65.442 0.717 0.264 34.029 0.678 0.214

TD-Paint [4] 30.794 0.592 0.294 18.732 0.548 0.278 99.294 0.752 0.296 55.114 0.683 0.258B
lo

b

Ours 21.109 0.537 0.296 14.827 0.506 0.291 29.234 0.655 0.256 20.827 0.640 0.240
Diff. Diff. [2] 22.883 0.359 0.429 9.629 0.277 0.452 62.001 0.538 0.413 32.520 0.479 0.395

LDM [3] 21.863 0.343 0.439 9.220 0.267 0.457 60.865 0.547 0.409 32.985 0.484 0.394
TD-Paint [4] 10.648 0.261 0.479 8.526 0.247 0.474 59.169 0.512 0.457 29.624 0.451 0.450

G
ra

di
en

t

Ours 10.006 0.255 0.480 7.809 0.241 0.472 21.283 0.427 0.441 15.107 0.405 0.447
Diff. Diff. [2] 15.134 0.248 0.546 7.961 0.187 0.588 23.529 0.294 0.597 15.980 0.261 0.603

LDM [3] 13.111 0.226 0.562 6.770 0.173 0.595 28.647 0.316 0.584 18.947 0.270 0.597
TD-Paint [4] 6.620 0.154 0.622 5.637 0.147 0.619 22.033 0.275 0.632 14.059 0.235 0.639

C
on

tin
uo

us
So

ft

Ours 6.061 0.146 0.624 5.233 0.142 0.622 11.266 0.217 0.633 9.271 0.202 0.643

Table 2: Quantitative Unconditional Inpainting Comparison. Our method attains more robust
performance in the unconditional setting than baselines. Even though Saint fine-tunes pre-trained
DiTs that heavily rely on class or text conditions, our effective masking via noising together with
Spatial CFG result in a smaller gap to conditional inpainting.

4.3 FLEXIBLE CONTINUOUS MASKING

While previous methods like Diff. Diff. (Levin & Fried, 2023) either do not leverage the input image
as conditioning at all or assume only binary masks (TD-Paint (Mayet et al., 2025)), Saint enables
flexible inpainting with continuous masks. As a result, our method significantly outperforms all
baselines in this setting as shown in Tab. 1. We found the fine-tuning with spatially varying noise
levels to be essential for the text-conditional PixArt-α, which fails entirely when tuned for binary
masks only as for our latent TD-Paint baseline. On JourneyDB, Saint improves FID compared to
existing works by 30.66% with 10 steps, even outperforming all baselines with five times as many
steps for soft masks. Similar observations can be made for unconditional inpainting. Qualitatively,
we observe that higher mask values (higher noise) leads to significant structural changes, while lower
mask values only allow changes in high frequency, textural content.

4.4 ROBUST UNCONDITIONAL INPAINTING

Real-world inpainting applications like object removal or occlusion recovery usually lack a class or
text conditioning as input. To evaluate robustness for this use case, we leverage the same fine-tuned
models, which have seen the unconditional case for 10% of all training samples. The quantitative
comparison is given in Tab. 2. Saint is more robust than all baselines. By dropping the extra
conditioning, the average FID over all mask settings and for 10 steps increases by only 23.42% on
ImageNet1k and 13.93% on JourneyDB for our approach, compared to 32.76% / 42.21% for the
best baseline TD-Paint. Even in the unfair comparison of Saint with only 10 steps versus baselines
with 50 steps, Saint wins for almost all masks on JourneyDB. Looking at qualitative comparisons in
Fig. 4b, our method produces high-fidelity samples coherent with the masked input, without the need
for any extra conditioning. In contrast, RePaint / Diff. Diff. fails for almost all input masks due to the
low number of sampling steps, which does not allow the model to correct the initially uninformed
predictions. Overall, our method leverages the partially given image much more effectively and with
that maintains strong performance in the unconditional setting.

4.5 BOOSTED QUALITY WITH SPATIAL CFG
Fig. 5 visualizes the relative performance gain in terms of FID and LPIPS for different Spatial CFG
scales. Note that scale 1 is equivalent to no Spatial CFG. Across all datasets, conditioning settings,
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Figure 5: Spatial CFG Scale Ablation. We visualize the relative improvements in FID and LPIPS
for 10 steps, when we increase the Spatial CFG weight. While it boosts metrics in almost all settings,
it is especially beneficial for high mask ratios (Expand, Half, Blob) and / or unconditional inpainting.
In these cases of weak conditioning, it pushes inference to better leverage the masked input image.

and inpainting masks, Spatial CFG consistently improves performance. It proves to be especially
effective for large masking ratios like Expand and Blob, reducing FID by up to 15.52% / 26.85% for
class-/text-conditional inpainting on ImageNet1k and JourneyDB, respectively. Furthermore, it can
compensate, to some extent, for the absence of guidance w.r.t. additional conditioning signals, as can
be seen in the form of even larger FID gains of up to 25.05% / 47.60% in the unconditional setting.
Overall, Spatial CFG boosts the inpainting quality, especially for a small number of steps (10). We
provide an additional analysis for 50 steps as well as for CFG composition w.r.t. other conditions in
Appendix B, and show a qualitative ablation in Appendix C.

4.6 FASTER INPAINTING WITH CLEAN TOKEN CACHING

Figure 6: CTC Speedup. Clean To-
ken Caching speeds up inpainting
with almost no loss of quality loss.

Leveraging the DiT architecture to denoise only tokens that
need to be inpainted, we proposed Clean Token Caching (CTC)
in Sec. 3.3. Fig. 6 shows the quality-throughput trade-off for
different cache update intervals in terms of FID and number of
inpainted images per second, relative to without it, i.e., a cache
update interval of 1 step. We ensure comparable results using
a NVIDIA L40 GPU for 50 sampling steps with a fixed batch
size of 128 / 32 for ImageNet1k and JourneyDB, respectively.
CTC can significantly speed up inpainting with negligible loss
of quality. Depending on the mask sizes, we achieve speed-
ups of up to 156.53% / 109.19% with at most 1.31% / 0.26%
increase of FID for a cache update interval of 10 steps. This
shows that clean (t = 0) tokens in each transformer block do
not change significantly between consecutive sampling steps,
despite full attention between all tokens. CTC exploits this
and avoids unnecessary recomputation. As a result, Saint is
especially efficient for small edits.

5 CONCLUSION

We presented Saint, a novel approach to fine-tuning latent Diffusion Transformers for image inpainting.
By performing masking via noising with the mask as noise levels, we enable flexible inpainting with
continuous masks. The proposed Spatial CFG boosts quality by guiding the inference process to fully
leverage the masked input image as conditioning. Clean Token Caching speeds up sampling with
negligible loss of quality by denoising only what needs to be inpainted. Together, Saint achieves
state-of-the-art class-, text-, and unconditional inpainting.

9
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Saint: Spatial Guidance for Inpainting

Appendix
In this supplementary material, we provide additional experimental details including hyperparameters
in Sec. A and analyze the effect of our proposed Spatial CFG for more sampling steps and in
combination with CFG for other conditions in Sec. B. Furthermore, Sec. C and Sec. D provide a
qualitative ablation of Spatial CFG and additional qualitative comparisons with baselines, respectively.
The usage of Large Language Models (LLMs) for this paper is detailed in Sec. E.

A EXPERIMENTAL DETAILS

We provide experimental details in addition to the setup explained in Sec. 4.1.
Continuous Masks. We create continuous mask equivalents to the binary masks from Mayet et al.
(2025). Blob for soft outpainting is created as a radial, linear gradient from no to full masking with a
radius equal to a quarter of the image diagonal. Gradient is a continuous version of Half in form of a
linear gradient from no masking for the first pixel column on the left side to full masking on the right.
Soft masks are created by applying Gaussian blur with σ = 16 on the binary Thick (aka Wide) masks.
Pre-Trained Models. We use LightningDiT (Yao et al., 2025) (XL) with 675M and PixArt-α (Chen
et al., 2024) with 0.6B parameters as base models, both trained for 256× 256 image resolution.
Training. Fine-tuning for Saint and baselines is done for 100k iterations and effective batch sizes
512 / 256 on 4 NVIDIA H100s for up to 2 days. We use the AdamW optimizer with learning rates
1 × 10−4 / 5 × 10−6, β1, β2 (0.9, 0.95) / (0.9, 0.999), and weight decay 0 / 0.03, following the
original work by Yao et al. (2025) and established fine-tuning setups for text-to-image models.
Sampling. We employ the established discrete Euler and DDIM (Song et al., 2021) samplers for the
flow-based LightningDiT and diffusion-based PixArt-α, respectively. Furthermore, for inpainting on
ImageNet1k, we use the same timestep shift of 0.3 as Yao et al. (2025).

B SPATIAL CFG ANALYSIS

This section provides an ablation of the impact of our Spatial Classifier-Free Guidance formulation,
described in detail in Sec. 3.2. Tab. B1 reports FID and LPIPS scores of Saint with and without
Spatial CFG for class- and text-conditional inpainting, averaged for binary and continuous masks.
Spatial CFG consistently boosts both visual quality as well as alignment with the masked input image.
Fig. B1 shows the relative FID gains using different Spatial CFG scales for inpainting with 50
steps for all combinations of masks, datasets, and additional conditioning. There, we observe that
inpainting with binary masks – Expand, Half and Thick – often benefit more from the Spatial CFG
compared to continuous masks. Note that at the beginning of inference with continuous masks like
Blob or Gradient, almost all tokens contain at least some noise. Additionally, the fully clean region is
often surrounded by tokens with at least some noise. This may lead to minimal differences between
ucond and uuncond, which, as we hypothesize, could result in the CFG extrapolating in a seemingly
random direction and harming the quality. Overall, compared to the results for 10 steps in Fig. 5,
inference with 50 steps requires lower Spatial CFG scales.
We further analyze Spatial CFG in combination with class and text CFG in Fig. B2. Using 10
sampling steps for inpainting Expand and Blob masks, we investigate relative FID gains over different
CFG scales for two options. On the left, we provide results for one fully conditional and one fully

ImageNet1k JourneyDB
10 Steps 50 Steps 10 Steps 50 Steps

Mask Method FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓ FID↓ LPIPS↓

Ours w/o Spatial CFG 10.416 0.314 6.837 0.295 13.980 0.323 9.845 0.314

B
in

.

Ours 9.156 0.292 6.654 0.281 12.916 0.309 9.598 0.305

Ours w/o Spatial CFG 10.097 0.311 7.168 0.293 20.663 0.408 11.691 0.380

C
on

.

Ours 9.234 0.308 7.168 0.293 16.957 0.401 11.556 0.381

Table B1: Quantitative Spatial CFG Ablation. We provide average scores for class-/text-conditional
inpainting with binary and continuous masks with and without Spatial CFG.
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Figure B1: Spatial CFG Scale Ablation for 50 Steps. Compared to the same ablation for 10 steps
in Fig. 5, inference with more steps benefits from lower Spatial CFG scales.

unconditional forward pass with predictions combined using a single shared CFG scale. On the right,
we show compositional CFG (Liu et al., 2022) by combining a fully unconditional pass with two
partially conditional forward passes for each condition (masked input and class label or text prompt).
We can observe that the best performance is achieved using similar CFG scales for both conditions.
As a result, shared CFG yields strong performance with only two forward passes. However, the
strongest FID gains can be obtained by carefully tuning the individual scales in a compositional
formulation. More importantly, looking at the first column of the heatmaps, i.e., scores with class
or text CFG only, we can see that a combination with our Spatial CFG always improves sample
quality. Therefore, we conclude that Spatial CFG adds another dimension of guidance that enforces
consistency with the masked input image.

C QUALITATIVE SPATIAL CFG ABLATION

We provide a qualitative Spatial CFG ablation in Fig. C1 and Fig. C2 for ImageNet1k and JourneyDB,
respectively. It boosts alignment with the masked input image, which in turn also improves visual
fidelity. Fig. C1 supports this claim with examples being (from top to bottom) 1) finding a pose
of a butterfly fitting the given image patch, 2) replicated patterns from the hair slide, 3) inpainting
matching desserts, and 4) picking up the graffiti pattern on a freight car. Furthermore, it provides
substantial gains in the unconditional setting, visible in the form of 5) sampling a lizard species closer
to the one in the original image and 6) matching lamp stands. Similar observations can be made for
text-conditional inpainting in Fig. C2. The examples show 1) more visually appealing soft resampling
of the original, as well as 2) and 4) exploiting symmetries to achieve higher quality. Finally, 5) shows
that our Spatial CFG can significantly help in scenarios with no text/class conditioning and a high
mask ratio, where low-step inference without CFG fails due to a large number of possible samples.

D ADDITIONAL QUALITATIVE RESULTS

We provide extensive qualitative results in Fig. D1 to Fig. D8 with one figure per combination of
dataset, conditional or unconditional inpainting, and binary or continuous masks.

E USE OF LARGE LANGUAGE MODELS

Large Language Models (LLMs) have been used during the work on this paper for:
• Search for relevant papers – by Perplexity.ai
• Feedback on the readability and clarity of the written text – by ChatGPT

All research contributions like the ideas for methods, their implementation, figures, experimental
evaluation, and analyses are solely our own work.
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Figure B2: CFG Composition Analysis. We analyze the combination of our Spatial CFG with
common class label or text prompt CFG in terms of relative FID gains for the two masks Blob and
Expand and 10 sampling steps. Left: CFG with a shared scale. Right: grid search of individual scales.
Comparing the first columns in the heatmaps with the corresponding best scores reveals that Spatial
CFG cannot simply be replaced with a higher scale for class or text CFG, but supplements guidance
along an additional dimension: consistency with the masked input.
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Original Input No Spatial CFG Spatial CFG

Figure C1: Qualitative Spatial CFG Ablation on ImageNet1k.
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Original Input No Spatial CFG Spatial CFG

Figure C2: Qualitative Spatial CFG Ablation on JourneyDB.
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Original Input RePaint LDM TD-Paint Ours

Figure D1: Class-Conditional Inpainting on ImageNet1k with Binary Masks.
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Original Input Diff. Diff. LDM TD-Paint Ours

Figure D2: Class-Conditional Inpainting on ImageNet1k with Continuous Masks.

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Original Input RePaint LDM TD-Paint Ours

Figure D3: Unconditional Inpainting on ImageNet1k with Binary Masks.
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Original Input Diff. Diff. LDM TD-Paint Ours

Figure D4: Unconditional Inpainting on ImageNet1k with Continuous Masks.
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Original Input RePaint LDM TD-Paint Ours

Figure D5: Text-Conditional Inpainting on JourneyDB with Binary Masks.

22



1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Original Input Diff. Diff. LDM TD-Paint Ours

Figure D6: Text-Conditional Inpainting on JourneyDB with Continuous Masks.
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Original Input RePaint LDM TD-Paint Ours

Figure D7: Unconditional Inpainting on JourneyDB with Binary Masks.
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Original Input Diff. Diff. LDM TD-Paint Ours

Figure D8: Unconditional Inpainting on JourneyDB with Continuous Masks.
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