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Abstract

Finding low-rank matrix weights is a key technique for addressing the high memory
usage and computational demands of large models. Most existing algorithms
rely on the factorization of the low-rank matrix weights, which is non-unique
and redundant. Their convergence is slow especially when the target low-rank
matrices are ill-conditioned, because the convergence rate depends on the condition
number of the Jacobian operator for the factorization and the Hessian of the loss
function with respect to the weight matrix. To address this challenge, we adopt
the Riemannian gradient descent (RGD) algorithm on the Riemannian manifold of
fixed-rank matrices to update the entire low-rank weight matrix. This algorithm
completely avoids the factorization, thereby eliminating the negative impact of the
Jacobian condition number. Furthermore, by leveraging the geometric structure
of the Riemannian manifold and selecting an appropriate metric, it mitigates the
negative impact of the Hessian condition number. Ultimately, this results in our two
plug-and-play optimizers: RAdaGrad and RAdamW, which are RGD with metrics
adapted from AdaGrad and AdamW and restricted to the manifold. Our algorithms
can be seamlessly integrated with various deep neural network architectures without
any modifications. We evaluate the effectiveness of our algorithms through fine-
tuning experiments on large language models and diffusion models. Experimental
results consistently demonstrate that our algorithms provide superior performance
compared to state-of-the-art methods. Additionally, our algorithm is not only
effective for fine-tuning large models but is also applicable to deep neural network
(DNN) compression.

1 Introduction

Deep Neural Networks (DNNs) have achieved remarkable success in tasks such as image classification
[18], object detection [19], and semantic segmentation [7]. However, their high memory and
computational demands pose significant challenges for deployment on resource-constrained devices.
For example, ResNet-50 requires up to 4G FLOPs for a single image classification task [5], making
it unsuitable for embedded systems. To address these limitations, techniques such as pruning
[16, 47] and quantization [27, 43] have been developed. While effective, these methods often rely on
specialized hardware for acceleration, limiting their general applicability.

Low-rank matrix approximation has emerged as a promising alternative, widely used in DNN
compression [29, 36, 42], fine-tuning of large models (LMs) [17, 20, 46], and prompt engineering
[14, 23]. By representing weight matrices as the product of two low-rank factors, this approach
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reduces memory usage while preserving input and output dimensions, without requiring specialized
hardware. In LMs, methods like Low-Rank Adaptation (LoRA) [17, 20] train additional low-rank
matrix weights, significantly reducing computational costs while maintaining or even improving
performance compared to full-parameter fine-tuning. These advantages make low-rank matrix
methods indispensable for efficient adaptation of large models to downstream tasks.

Numerous methods have been proposed to obtain low-rank matrix weights in neural networks. Some
approaches [10, 21, 26, 49] employ singular value decomposition (SVD) to directly compute low-rank
matrices weight, but the frequent large-scale SVD operations are computationally expensive. More
commonly, factorization-based methods [17, 20, 37, 46, 48, 50] factorize a rank-r matrix weight
W ∈ Rm×n as W = PQ⊤, where P ∈ Rm×r and Q ∈ Rn×r. While this approach reduces memory
usage by storing P and Q, it has several inherent drawbacks. First, the factorization W = PQ⊤ is not
unique, introducing redundancy that can lead to unbalanced factors, slow convergence, or even failure
to converge. Second, as we will demonstrate later, the convergence rate of these algorithms depends
on the condition number of the Jacobian operator JG(P,Q) of the generator G(P,Q) = PQ⊤. For ill-
conditioned target matrices W , the condition number of JG(P,Q) becomes very large, significantly
slowing convergence. Finally, efficient optimizers such as AdaGrad [11] and AdamW [25, 28], which
are designed to optimize the full weight matrix W , cannot be directly applied to the low-rank factors
P and Q in a way that fully exploits their efficiency.

To overcome these limitations, we propose a novel optimization framework based on Riemannian
optimization. Specifically, we employ the Riemannian Gradient Descent (RGD) algorithm on the
manifold of fixed-rank matrices to directly update the entire low-rank weight matrix W , rather than
its low-rank factors P and Q. While our method has the same order of computational complexity and
memory usage as factorization-based methods, it offers significant advantages. First, it fully exploits
the geometric structure of the Riemannian manifold and the intrinsic representation of low-rank
matrices, avoiding the non-uniqueness and redundancy introduced by factorization. Second, by
directly optimizing W , our method only involves ∇ℓ(W ) and is independent of the Jacobian operator
JG(P,Q), making the convergence rate independent of the condition number of the target matrix
W . Finally, the RGD algorithm allows us to define different metrics on the manifold, enabling the
extension of classical adaptive learning rate and momentum algorithms, such as AdaGrad [11] and
AdamW [25, 28], onto the Riemannian manifold. Building on this framework, we introduce two
novel algorithms: RAdaGrad and RAdamW. These algorithms retain the adaptability of AdaGrad and
AdamW while being better suited to the unique structure of low-rank matrix optimization problems.

Moreover, RAdaGrad and RAdamW function as plug-and-play optimizers that can seamlessly
integrate into a wide range of deep neural network architectures without requiring any changes to the
network structure. To evaluate the effectiveness of our approach, we conduct extensive experiments,
including fine-tuning of large language models and diffusion models. The results consistently show
that RAdaGrad and RAdamW significantly outperform state-of-the-art methods. Furthermore, our
approach is not only highly effective for fine-tuning large models but also demonstrates great potential
in deep neural network compression tasks, highlighting its versatility and practicality.

2 Finding Low-Rank Weights in DNNs

In this section, we examine existing algorithms, discuss their limitations, and propose a novel
framework designed to overcome these challenges. To find the low-rank matrix weights of a deep
neural network, we solve the following optimization problem

min
W

ℓ(W ), subject to rank(W (k)) = rk, k = 1, . . . ,K, (1)

where W = (W (1),W (2), . . . ,W (K)) ∈ E :=
∏K

k=1 Rnk−1×nk represents the weight matrices with
W (k) ∈ Rnk−1×nk , ℓ(W ) is the training loss function, and rk represents the rank of W (k). We use
∇ℓ(W ) to denote its gradient, or (batch) stochastic gradient, without ambiguity.

2.1 Factorization-Based Algorithms

Current mainstream low-rank adaptation methods [17, 20, 37, 46, 48, 50] for finding low-rank weights
primarily rely on factorization-based algorithms, where each weight matrix W (k) is parameterized as
W (k) = P (k)(Q(k))⊤ with P (k) ∈ Rnk−1×rk , Q(k) ∈ Rnk×rk . Here, ⊤ represents matrix transpose.
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Let P = (P (1), P (2), . . . P (K)) and Q = (Q(1), Q(2), . . . , Q(K)) be the factors, and define the
generator

G(P,Q) = (P (1)(Q(1))⊤, P (2)(Q(2))⊤, . . . , P (K)(Q(K))⊤) (2)
as the mapping from these factors to the weight matrices. Factorization-based algorithms obtain
low-rank weights by solving

min
P,Q

f(P,Q), where f(P,Q) := ℓ(G(P,Q)). (3)

The gradient of f(P,Q) is given by the chain rule

∇f(P,Q) = J ∗
G (P,Q) · ∇ℓ

(
W

)
with W = G(P,Q), (4)

where JG is the Jacobian operator of the operator G and ∗ denotes the adjoint of the operator. The
Hessian is given by
∇2f(P,Q) = J ∗

G (P,Q) ·∇2ℓ(W ) ·JG(P,Q)+ the terms related to the changes in JG(P,Q). (5)
The original LoRA algorithm [20] directly applies gradient descent to solve (1), and its convergence
rate is influenced by the condition number of the Hessian ∇2f(P,Q) [3, 33]. From (5), it is evident
that even when only the first term is considered, the convergence rate of the algorithm is significantly
affected by the condition numbers of both the Jacobian operator JG(P,Q) and the Hessian ∇2ℓ(W ).
Since the condition number of JG(P,Q) depends on the condition number of W [12, 31], the
convergence rate deteriorates significantly when the target matrix W is ill-conditioned. Moreover,
imbalances in the factorization of W and poor initialization can also lead to slower convergence.

To develop efficient algorithms, it is therefore crucial to improve the condition of JG(P,Q) and
∇2ℓ(W ).
• Efforts to improve the condition of JG(P,Q): several recent attempts have been made to address

this issue:
– LoRA+[17] employs different learning rates for the two low-rank factors to improve conver-

gence. However, it does not fully eliminate dependence on the condition number of JG(P,Q).
– Riemannian preconditioned LoRA [46] applies simple preconditioners to each factor, partially

mitigating but not entirely eliminating this dependence.
– LoRA-RITE [45] LoRA-RITE employs preconditioners based on transformation invariance,

alleviating the impact of the condition number of JG(P,Q).
– LoRA-PRO [48] removes dependence on the condition number of JG(P,Q) by projecting

factor-based gradients back to a subspace of the matrix space.
– DLRT [37] eliminates this dependence by updating low-rank factors on the quotient manifold.
– Imbalance-Regularized LoRA [50] reduces the impact through regularization terms applied to

the low-rank factors.

• Addressing the condition of ∇2ℓ(W ): none of the aforementioned works directly address the
condition number of ∇2ℓ(W ).
– When the low-rank constraint is absent, there are well-established methods to address this issue.

Classical optimizers such as AdaGrad and AdamW adaptively assign different step sizes to
each component of ∇ℓ(W ). This essentially imposes an adaptive metric in the matrix space,
under which the condition number of ∇2ℓ(W ) is smaller compared to the standard metric.
However, extending this idea to low-rank factors presents significant challenges. Although it is
possible to directly use AdaGrad or AdamW to solve (3) by assigning adaptive step sizes to each
component of ∇f(P,Q), the redundancy in the parameterization of the low-rank factorization
leads to poor algorithm performance, as demonstrated in our experimental section.

2.2 Riemannian Optimization Framework

To develop efficient algorithms, we propose using Riemannian optimization to solve (1), which
addresses all the issues caused by the factorization-based methods discussed in Section 2.1.

It is well known that all rank-rk matrices form a smooth Riemannian manifold [4, 41], denoted as
Mrk , embedded in the matrix space Rnk−1×nk . Consequently, the low-rank weight matrices W

belong to Mr :=
∏K

k=1 Mrk , and Mr is itself a smooth Riemannian manifold embedded in E.
Therefore, (1) can be reformulated as

min
W∈Mr

ℓ(W ). (6)
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We solve this problem using the Riemannian Gradient Descent (RGD) algorithm

Wt+1 = R(Wt − γt∇Mr
ℓ(Wt)), (7)

where Wt ∈ Mr represents the weight matrix at the t-th iteration, γt ∈ R+ denotes the step size,
∇Mr

ℓ(Wt) ∈ TWt
is the Riemannian gradient that lies in the tangent space TWt

of the manifold Mr

at Wt, and R : TWt
→ Mr is a retraction operator that maps matrices from TWt

back to Mr. At
iteration t, the low-rank weight matrices Wt are updated on the tangent space using the Riemannian
gradient, yielding

Zt := Wt − γt∇Mrℓ(Wt) ∈ TWt , (8)
where Zt is then retracted back onto the manifold Mr using the retraction operator R, resulting in
the new low-rank weight matrices Wt+1. It is worth noting that different Riemannian metrics can be
chosen to define the inner product on the tangent spaces of the Riemannian manifold. These metrics
affect both the direction and magnitude of the Riemannian gradient, thereby giving rise to different
algorithms. This provides a general framework where various optimization algorithms can be derived
by selecting appropriate Riemannian metrics.

By calculation, the Riemannian gradient of ℓ(W ) on Mr is given by

∇Mr
ℓ
(
W

)
= PTW

∇ℓ(W ), (9)

where PTW
is the orthogonal projection from E onto the tangent space TW , and ∇ℓ(W ) is the

gradient of ℓ(W ) with respect to W in E. The Riemannian Hessian of ℓ(W ) on Mr is given by:

∇2
Mr

ℓ
(
W

)
= PTW

· ∇2ℓ(W ) · PTW
+ terms related to the changes in PTW

, (10)

where ∇2ℓ(W ) is the Hessian of ℓ(W ) in E. Here, all PTW
, ∇ℓ(W ), and ∇2ℓ(W ) are computed

under the metric on TW extended to E.

We will demonstrate in the next section that, with suitable choices of Riemannian metrics, the
computational and memory complexities of RGD are the same order as those of factorization-based
algorithms. Furthermore, RGD overcomes all the drawbacks of factorization-based algorithms
mentioned in Section 2.1 and offers several advantages:
• Avoiding Redundancy. RGD operates on the manifold of fixed-rank matrices, directly updating the

entire low-rank weight matrix W rather than its factorized components P and Q. By leveraging
the geometric structure of the Riemannian manifold and the intrinsic representation of the tangent
space, RGD avoids the non-uniqueness and redundancy introduced by factorization. Specifically,
as demonstrated in [41, 44], it is easy to find an orthonormal basis for TWt

. This allows us to
efficiently compute updates for Zt in (29) under the orthonormal basis of TWt

, maintaining the
computational complexity and memory usage at the same order as factorization-based algorithms
while eliminating redundancy.

• Convergence Rate Depends Only on the Euclidean Hessian. The convergence rate of RGD
is primarily influenced by the condition number of ∇2ℓ(W ) only. It is well known that the
convergence rate of RGD is affected by the condition number of ∇2

Mr
ℓ(W ) [1]. From (10), if

the second term is negligible, then ∇2
Mr

ℓ(W ) ≈ PTW
· ∇2ℓ(W ) · PTW

, which is the restriction
of ∇2ℓ(W ) to TW . Hence, the condition number of ∇2

Mr
ℓ(W ) is approximately bounded by

the condition number of ∇2ℓ(W ). Therefore, the convergence rate of RGD is mainly influenced
by the condition number of ∇2ℓ(W ) only. In contrast, as shown in (5), the convergence rate of
factorization-based algorithms depends not only on the condition number of ∇2ℓ(W ) but also on
that of JG(P,Q), which is very large if the condition number of W is very large.
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• Designing Riemannian Metrics for Improved Convergence. The geometric structure of the Rie-
mannian manifold allows us to flexibly design a Riemannian metric to improve the convergence
of RGD. As previously discussed, the condition number of ∇2

Mr
ℓ(W ) is approximately bounded

by the condition number of ∇2ℓ(W ). Therefore, it suffices to construct a metric on TW such that,
when extended to E, the condition number of ∇2ℓ(W ) is reduced. Many classical optimization al-
gorithms, such as AdaGrad and AdamW, inherently define a metric on E that reduces the condition
number of ∇2ℓ(W ) by applying different learning rates to different components of the gradient.
Naturally, we can restrict such a metric on E to TW to obtain a Riemannian metric that reduces the
condition number of ∇2

Mr
ℓ(W ), resulting in accelerated RGD algorithms. This approach leads

to two new RGD algorithms: RAdamW and RAdaGrad, which are the main contributions of this
paper.

3 The Proposed Algorithms

For simplicity, we present our algorithms with K = 1. In this case, W ∈ E = Rn0×n1 and
Mr = Mr1 . For convenience, we set r = r1. Additionally, we omit the superscript (k) throughout
to simplify the notation. Extending the case K = 1 to a general K is straightforward.

Recall that the Riemannian Gradient Descent (RGD) algorithm can be written as:
Wt+1 = R(Wt − γt∇Mr

ℓ(Wt)), (11)
where ∇Mr

ℓ(Wt) is the Riemannian gradient, which depends on the Riemannian metric of Mr, and
R is a retraction operator.

To develop practical and efficient RGD algorithms, we must select both a Riemannian metric and
a retraction operator R in (11). For all algorithms, we choose the retraction operator R to be the
r-truncated singular value decomposition (SVD), i.e., R = Hr, where Hr : E → Mr is defined as
Hr(Z) =

∑r
i=1 σiuiv

⊤
i , given the SVD of Z =

∑
i σiuiv

⊤
i .

For the Riemannian metric, we either adopt the standard metric, resulting in the Plain RGD algorithm
presented in Section 3.1, or use a modified metric inspired by AdaGrad and AdamW, leading to the
RAdaGrad and RAdamW algorithms described in Sections 3.2 and 3.3, respectively.

3.1 Plain RGD — Riemannian Gradient Descent with the Standard Metric

We choose R = Hr and equip Mr with the standard metric from the Euclidean space E. Under
this setting, the Riemannian gradient is given by ∇Mr

ℓ(W ) = P(e)
TW

∇eℓ(W ), where P(e)
TW

denotes
the standard orthogonal projection onto the tangent space TW , and ∇eℓ(W ) represents the standard
gradient of in E .

With this setup, the Riemannian Gradient Descent (RGD) from (11) becomes:

Wt+1 = Hr(Wt − γP(e)
Tt

∇eℓ(Wt)), (12)
where, for simplicity, Tt = TWt

. We refer to the algorithm in (12) as the plain RGD. This algorithm
serves as a baseline for the RGD method, and we use it to demonstrate the RGD method in the
simplest setting.

Throughout the computation, Wt is represented by its SVD Wt = UtΣtV
⊤
t , where Σt ∈ Rr×r,

Ut ∈ Rn0×r, and Vt ∈ Rn1×r are matrices containing the singular values and singular vectors,
respectively. Below, we list the computations involved in the plain RGD algorithm (12):

• Since Gt := ∇eℓ(Wt) is the standard gradient in E, it can be directly obtained using standard
backpropagation.

• With the help of Ut and Vt, the tangent space Tt is expressed as:

Tt =
{
UtX

⊤ + Y V ⊤
t | X ∈ Rn1×r, Y ∈ Rn0×r

}
. (13)

An orthogonal basis for Tt can be formed, under which the projection P(e)
Tt

(Gt) is computed as:

P(e)
Tt

(Gt) = UtU
⊤
t Gt +GtVtV

⊤
t − UtU

⊤
t GtVtV

⊤
t . (14)
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Since Zt := Wt−P(e)
Tt

(Gt) ∈ Tt is expressed in the form of (13), we only need to compute the co-

efficient matrices U⊤
t Gt, GtVt, and U⊤

t GtVt in the computation of P(e)
Tt

(Gt). These computations
can be efficiently performed using O(r) matrix-vector products with Gt.

• Since Zt ∈ Tt and every matrix in Tt has a rank at most 2r, the operator Hr(Zt) finds the best
rank-r approximation of a rank-2r matrix. This computation involves two QR decompositions of
size n0 × 2r and n1 × 2r, one matrix-matrix product of size 2r× 2r, and one SVD of size 2r× 2r.
The total computational cost for these operations is O((n0 + n1)r

2 + r3).

In summary, the computation in (12), in addition to evaluating ∇eℓ(Wt), involves O(r) matrix-
vector products and an additional O((n0 + n1)r

2 + r3) operations. The memory complexity is
O((n0 + n1)r). These complexities are of the same order as those of factorization-based algorithms.
More details are provided in Appendix A.

3.2 RAdaGrad — Riemannian Gradient Descent with an Adaptive Data-Driven Metric

RGD can be accelerated by choosing an appropriate adaptive metric on the Riemannian manifold Mr.
Specifically, we can define new weighted inner products ⟨X,Y ⟩gt = ⟨X,AtY ⟩ for any X,Y ∈ Tt

on each tangent space Tt of the Riemannian manifold, where At : Tt → Tt is a linear operator
serving as weights for the inner product.

As we have previously argued, the new metric should be able to reduce the condition number of
∇2

Mr
ℓ(Wt), which ultimately translates to a reduction in the condition number of ∇2ℓ(Wt) under

the metric on Tt extended to E. When the low-rank constraint is absent, many classical optimization
algorithms, such as AdaGrad[11], AdamW [25, 28] and Shampoo [15], inherently define a metric
on E that reduces the condition number of ∇2ℓ(Wt) by applying different learning rates to different
components of the gradient. We modify and restrict such a metric on E to Tt to obtain a Riemannian
metric that reduces the condition number of ∇2

Mr
ℓ(Wt).

At step t, any metric in E is in the form of

⟨X,Y ⟩gt = ⟨X,AtY ⟩, ∀ X,Y ∈ E, (15)

where At : E → E is a linear operator serving as weights for the inner product. Ideally, the best
choice for At would be a multiple of ∇2

eℓ(Wt), the Euclidean Hessian of ℓ under the standard metric
in E. However, computing ∇2

eℓ(Wt) is very expensive. A common approach [8], [30, Chapter 10,
11, and 12] is to use the accumulation of the outer products of Gt := ∇eℓ(Wt), i.e., we choose
At = (

∑
t⟨Gt, ·⟩Gt)

1/2. Nevertheless, computing the gradient under this metric involves the inverse
of At, which is computationally expensive and may even be infeasible. To address this issue, we
further approximate At using several efficient methods:
• In AdaGrad [11] and AdamW [25, 28], we use a diagonal operator to approximate At, yielding

AtY = At ◦ Y, [At]ij =
(
ε+

∑
t[Gt]

2
ij

)1/2
, for i = 1, . . . , n0, j = 1, . . . , n1. (16)

Here, ◦ denotes entry-wise multiplication, and ε is a small positive number for numerical stability.
The inverse of At is simply the entry-wise multiplication by the inverse of each entry of At.

• In Shampoo [15], we exploit the matrix structure of the variables by using the Kronecker product
to approximate At, which gives

AtY = L
1
4
t Y R

1
4
t , where Lt = εI +

∑
t GtG

⊤
t , Rt = εI +

∑
t G

⊤
t Gt. (17)

Here again, ε is a small positive number for numerical stability. The inverse of At is simply
A−1

t Y = L
− 1

4
t Y R

− 1
4

t .

We aim to utilize both the matrix structure of the variable W and the easy invertibility of diagonal
approximations. Thus, we combine both approximations and use the following At, which is both
diagonal and in Kronecker product form:

AtY = L
1
4
t Y R

1
4
t , where Lt = εI +

∑
t diag(GtG

⊤
t ), Rt = εI +

∑
t diag(G⊤

t Gt). (18)

With this new metric on E, the condition number of the Hessian ∇2ℓ(Wt) is reduced. Then, we
restrict this metric onto Tt to obtain our Riemannian metric, under which the condition number of

6



∇2
Mr

ℓ(Wt) is small since it is approximately bounded by that of ∇2ℓ(Wt). More explicitly, the
Riemannian metric we used here is: For any X,Y ∈ Tt, we define their inner product through (15)
with At from (17).

Under this new Riemannian metric, the Riemannian gradient is

∇(g)
Mr

ℓ(Wt) = P(g)
Tt

(
∇gℓ(Wt)

)
= P(g)

Tt
(A−1

t ∇eℓ(Wt)) = P(g)
Tt

(L
− 1

4
t GtR

− 1
4

t ), (19)

where P(g)
Tt

denotes the orthogonal projection onto the tangent space Tt under the weighted inner
product in (15) and (18). We choose R = Hr and apply the general RGD framework in (11). This
gives

(RAdaGrad)


Gt = ∇eℓ(Wt),

Lt = β1Lt−1 + (1− β1)diag(GtG
⊤
t ),

Rt = β2Rt−1 + (1− β2)diag(G⊤
t Gt),

Wt+1 = Hr

(
Wt − γtP(g)

Tt

(
L
− 1

4
t GtR

− 1
4

t

))
.

(20)

Here, we introduce the parameters β1 and β2 to use a weighted accumulation instead of direct
accumulation in (17) and AdaGrad, providing more flexibility. The proposed algorithm is referred to
as RAdaGrad.

Similar to the plain RGD, throughout the computation of RAdaGrad, Wt is represented as its SVD
Wt = UtΣtV

⊤
t . Below, we list the computation in RAdaGrad (20):

• Gt is computed using standard backpropagation, the same as in plain RGD.

• Lt and Rt are diagonal matrices whose diagonals are actually the squared row norms and column
norms of Gt, respectively. Thus, it requires only a computational complexity of O(n1n2) or even
lower if Gt carries some structure.

• Since the metric weighting operator At is in Kronecker product form, the column vector space
Rn0 and the row vector space Rn1 are weighted separately by L

1
4
t and R

1
4
t respectively. To find an

orthogonal basis of Tt, we only need to orthogonalize Ut under L
1
4
t -weighted inner product to obtain

Ũt = Ut(U
⊤
T L

1
4U)−

1
2 and Vt under R

1
4
t -weighted inner product to obtain Ṽt = Vt(V

⊤
t R

1
4V )−

1
2 .

Similar to (14), the projection P(g)
Tt

is given by:

P(g)
Tt

(L
− 1

4
t GtR

− 1
4

t ) = ŨtŨ
⊤
t GtR

− 1
4

t + L
− 1

4
t GtṼtṼ

⊤
t − ŨtŨ

⊤
t GtṼtṼ

⊤
t , (21)

Again, we only need to calculate the coefficient matrices Ũ⊤
t GtR

− 1
4

t , L− 1
4

t GtṼt, and Ũ⊤
t GtṼt in

the computation of P(g)
Tt

(L
− 1

4
t GtR

− 1
4

t ). These computations can be efficiently performed using
O(r) matrix-vector products with Gt.

• The computation of Hr(Zt) is the same as in plain RGD, with a total computational cost of
O((n0 + n1)r

2 + r3).

In total, the computation of RAdaGrad is, in addition to evaluating Gt, O(r) matrix-vector products
with Gt and an extra O((n0 + n1)r

2 + r3) operation. The memory usage is O((n0 + n1)r). Both
complexities are in the same order as factorization-based algorithms. The detailed calculations can
be found in the Appendix B.

3.3 RAdamW — RGD with an Adaptive Momentum and Weight Decay

Momentum is a commonly used acceleration technique for gradient-based algorithms. Adam has
demonstrated certain advantages on convex problems and the Stiefel manifold [2, 35, 40]. To further
enhance the performance of RAdaGrad, we introduce the momentum from AdamW [25, 28] into the
RAdaGrad algorithm.
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In fact, RAdamW can be regarded as a variant of the Riemannian Conjugate Gradient (RCG)
algorithm. The resulting RAdamW algorithm is as follows

(RAdamW)



Gt = ∇eℓ(Wt),

Lt = β1Lt−1 + (1− β1)diag(GtG
⊤
t ),

Rt = β2Rt−1 + (1− β2)diag(G⊤
t Gt),

Mt = β3Mt−1 + (1− β3)Gt,

Wt+1 = Hr

(
(1− θ)Wt − γtP(g)

Tt

(
L
− 1

4
t MtR

− 1
4

t

))
.

(22)

where Mt represents the update direction at t step, which is a linear combination of the original
gradient Gt and Mt−1. Its detailed computation is almost same with RAdaGrad. Here we omit the
detail.

4 Experiments

To comprehensively evaluate the performance of the RAdaGrad and RAdamW algorithms, we
conduct experiments across a range of tasks, including fine-tuning large language models (GPT-2
[32]), fine-tuning diffusion models (Mix-of-Show [13] and Stable Diffusion V1.5 [34]), and deep
neural network (DNN) compression tasks.

For the large model fine-tuning, we compare two kinds of optimization algorithms: SGD-based
algorithms and AdamW-based algorithms. The SGD-based algorithms include LoRA using SGD
(denoted as SGD) [20], ScaledGD [39, 46], plain RGD [44], and RAdaGrad (Algorithm 20). This
comparison allows for an evaluation of the improvements brought by RAdaGrad over conventional
SGD approaches. On the other hand, the AdamW-based algorithms include AdamW (vanilla LoRA)
[20], ScaledAdamW [39, 46], and RAdamW (Algorithm 31). By comparing these AdamW-based
algorithms, we assess the performance advantages of RAdamW.

We validate the effectiveness of the proposed algorithms in DNNs compression on the MNIST and
CIFAR10 datasets using fully connected and convolutional networks. The experimental results
(detailed in Appendix E) demonstrate that RAdaGrad and RAdamW, as plug-and-play optimizers, can
be seamlessly integrated into various network architectures. The large model fine-tuning experiments
are conducted on the NVIDIA A100 GPUs, while the DNN compression experiments are performed
on a system equipped with an AMD Ryzen 7 7800X3D 8-core CPU and an Nvidia RTX 4090 GPU.
The code for all our experiments can be found in the supplementary materials.

4.1 Large Models Fine-Tuning

In this section, we evaluate RAdaGrad and RAdamW algorithms on large model fine-tuning. We
present the experimental results for these algorithms on the fine-tuning of diffusion models (Mix-of-
Show, see sections 4.1.1 and C.3) and Stable Diffusion,see Appendix C.2) and large language models
(GPT-2, see sections 4.1.2 and C.1).

4.1.1 Mix-of-Show

This section preforms our experiment details on Mix-of-show model [13]. We use OpenAI’s clip-
vit-base-patch16 model to calculate the CLIP score, measuring the consistency between generated
images and text prompts. Frèchet Inception Distance (FID) is a commonly used metric for evaluating
class-conditioned generative models. The specific parameter settings for each algorithm are provided
in Table 8 in Appendix C.3. During the experiments, we employ a linear learning rate schedule
and set the rank r = 1, 4. The CLIP and FID scores are reported in Table 1. From Table 1, it is
evident that RAdaGrad and RAdamW significantly outperform other algorithms, whether they are
SGD-based or AdamW-based. Specifically, when r = 1 or 4 ,RAdamW significantly outperforms
Scaled AdamW, achieving nearly 1 point higher CLIP score and about 10 points lower FID score,
demonstrating the effectiveness of our proposed Riemannian algorithms.

4.1.2 GPT-2

We evaluate the performance of RAdaGrad and RAdamW optimizers on GPT-2. To ensure fairness,
all hyperparameters except for the learning rate and weight decay are kept consistent, and the optimal
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Table 1: Experiments for EDLoRA on Clip and FID score.

Methods Rank Metrics Rank Metrics
CLIP↑ FID↓ CLIP↑ FID↓

SGD 1 22.93 68.43 4 27.88 66.57
Scaled GD 1 32.19 53.75 4 32.14 48.65
plain RGD 1 32.56 69.39 4 32.94 52.07
RAdaGrad(ours) 1 32.84 50.45 4 33.95 47.01
AdamW 1 32.84 53.11 4 33.75 52.16
Scaled AdamW 1 31.94 66.77 4 33.61 60.71
RAdamW(ours) 1 33.02 50.84 4 34.69 51.14

combinations are determined via grid search (complete implementation details and hyperparameter
settings can be found in Appendix C.1). On the E2E natural language generation benchmark [22], we
fine-tune GPT-2 small with ranks of 4, 8, and 16. The results are summarized in Table 2.

The experiments demonstrate that RAdaGrad and RAdamW consistently outperform other methods
across all evaluation metrics, validating the efficiency and accuracy of our proposed framework in
LLMs fine-tuning. Moreover, all RGD-based algorithms generally outperform all other algorithms,
further demonstrating the advantages of the RGD framework in effectively leveraging the smooth
manifold structure of low-rank matrices and adaptive metrics. Notably, RAdaGrad achieves perfor-
mance improvements with reduced memory compared to AdamW-based methods, as it avoids storing
historical G matrices. Meanwhile, RAdamW surpassed both AdamW and scaled AdamW across
all evaluation metrics. This performance gain can be attributed to its combination of Riemannian
geometry-aware updates and adaptive learning rates based on first- and second-moment estimation.

Table 2: Scores for LoRA fine-tuning (r = 4, 8 and 16) of GPT-2 on E2E Natural Language
Generation challenge.

rank Method E2E
BLEU NIST MET ROUGE-L CIDEr

4

SGD 66.6 8.54 44.2 68.2 2.32
Scaled GD 68.5 8.72 45.5 69.4 2.40
plain RGD 69.2 8.77 45.7 70.1 2.45

RAdaGrad (ours) 69.8 8.80 46.5 71.1 2.49
AdamW 69.1 8.75 46.0 70.5 2.47

Scaled AdamW 69.5 8.80 46.2 70.9 2.48
RAdamW (ours) 69.8 8.81 46.5 71.1 2.51

8

SGD 65.8 8.46 43.5 68.7 2.33
Scaled GD 68.8 8.75 45.3 69.4 2.43
plain RGD 69.1 8.73 46.0 70.7 2.45

RAdaGrad (ours) 70.1 8.80 46.8 71.7 2.51
AdamW 69.4 8.77 46.2 71.0 2.46

Scaled AdamW 69.7 8.80 46.5 71.3 2.52
RAdamW (ours) 70.3 8.82 46.5 71.8 2.53

16

SGD 65.4 8.07 40.7 67.0 2.07
Scaled GD 68.8 8.75 45.0 69.2 2.39
plain RGD 68.7 8.67 46.1 70.8 2.44

RAdaGrad (ours) 70.3 8.84 46.6 71.8 2.52
AdamW 69.5 8.77 46.4 71.2 2.48

Scaled AdamW 69.8 8.79 46.5 71.7 2.51
RAdamW (ours) 70.1 8.85 46.6 71.6 2.52

5 Conclusion

Most existing algorithms for finding low-rank weights in large models are based on matrix factor-
ization and are constrained by the condition numbers of the Jacobian and Hessian operators. To
address these limitations, we propose a general RGD framework for efficiently finding low-rank
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matrix weights in DNNs. This framework avoids the redundant representation introduced by matrix
factorization, avoids the influence of the Jacobian condition number, and mitigates the impact of
the Hessian condition number by selecting appropriate metrics. Inspired by AdaGrad and AdamW,
we extend their metrics to Riemannian manifolds and propose two new algorithms: RAdaGrad and
RAdamW. These algorithms completely avoid the influence of the Jacobian condition number and
significantly alleviate the effect of the Hessian condition number.

Through experiments on large model fine-tuning and DNN compression tasks, our plug-and-play
optimizers are shown to outperform state-of-the-art methods and are applicable to various network
architectures. Our work not only introduces RAdaGrad and RAdamW but also establishes a unified
framework that provides a novel method to finding the low-rank weights and offers a fresh perspective
for designing efficient algorithms. In the future, we plan to extend this framework to address the
problem of finding low-rank tensor weights in DNNs.

Limitations. The rank-r Riemannian manifold constraint in low-rank adaptation methods inherently
limits their expressiveness compared to full-parameter fine-tuning.

Broader Impact. The proposed RAdaGrad and RAdamW optimizers demonstrate broad compati-
bility across diverse DNN architectures, which is useful to fields like healthcare, farming, and schools,
especially in places with limited resources.
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1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: This paper’s contributions and scope are reflected.

Guidelines:

• The answer NA means that the abstract and introduction do not include the claims
made in the paper.

• The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

• The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

• It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: Provided in Section 5.

Guidelines:

• The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

• The authors are encouraged to create a separate "Limitations" section in their paper.
• The paper should point out any strong assumptions and how robust the results are to

violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

• The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

• The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

• The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

• If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

• While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]
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Justification: The theoretical analysis is provided in Section 3 and supplementary materials.
Guidelines:

• The answer NA means that the paper does not include theoretical results.
• All the theorems, formulas, and proofs in the paper should be numbered and cross-

referenced.
• All assumptions should be clearly stated or referenced in the statement of any theorems.
• The proofs can either appear in the main paper or the supplemental material, but if

they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

• Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

• Theorems and Lemmas that the proof relies upon should be properly referenced.
4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?
Answer: [Yes]
Justification: The implementation details can be found in Appendix C and E.
Guidelines:

• The answer NA means that the paper does not include experiments.
• If the paper includes experiments, a No answer to this question will not be perceived

well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

• If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

• Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: Code is provided in the attached files.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: The implementation details can be found in Appendix C and E.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
• The full details can be provided either with the code, in appendix, or as supplemental

material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: Due to constrained computational resources, the experiment was conducted
only once or twice.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
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• It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

• It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]

Justification: The computer resources are provided in Section 4.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: This paper conforms with the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
• If the authors answer No, they should explain the special circumstances that require a

deviation from the Code of Ethics.
• The authors should make sure to preserve anonymity (e.g., if there is a special consid-

eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [Yes]

Justification: Provided in Section 5.

Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: This paper does not have such risk.

Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]

Justification: The assets are cited and the license and terms are respected.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the package

should be provided. For popular datasets, paperswithcode.com/datasets has
curated licenses for some datasets. Their licensing guide can help determine the license
of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [NA]
Justification: This paper does not release new assets.
Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor search with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: This paper does not involve crowdsourcing nor search with human subjects.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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A Computational Details in the Plain RGD

In this section, we provide the computational details for plain RGD (see Eq. (12) in Section 3.1 of the
main text). Recall that plain RGD generates the iterates via

Wt+1 = Hr

(
Wt − γP(e)

Tt
∇eℓ(Wt)

)
, (23)

where P(e)
Tt

is the orthogonal projection from E onto the tangent space Tt, and ∇eℓ(Wt) denotes the
standard gradient of the loss function ℓ in E.

Throughout the computation, the rank-r weight matrix Wt is represented by its singular value
decomposition (SVD) as Wt = UtΣtV

⊤
t , where Σt ∈ Rr×r is a diagonal matrix whose diagonal

elements are the singular values of Wt, Ut ∈ Rn0×r contains the left singular vectors, and Vt ∈ Rn1×r

contains the right singular vectors.

• Computation of Gt := ∇eℓ(Wt). Since Gt is the standard Euclidean gradient of the loss
function ℓ in E, it can be computed efficiently via standard backpropagation.

• Computation of Zt := Wt − γP(e)
Tt

(Gt). We first establish representations for the matrices
involved in computing Zt.

– Representation of P(e)
Tt

(Gt) in terms of Ut, Vt, and Gt. Let V ⊥
t ∈ R(n1−r)×n1 and

U⊥
t ∈ Rn0×(n1−r) be the orthogonal complements of Vt and Ut, respectively. The

tangent space Tt admits the decomposition:

Tt =
{
UtX

⊤ + Y V ⊤
t | X ∈ Rn1×r, Y ∈ Rn0×r

}
,

=
{
UtK1V

⊤
t |K1 ∈ Rr×r

}
⊕
{
U⊥
t K2V

⊤
t |K2 ∈ R(n0−r)×r}
⊕

{
UtK3(V

⊥
t )⊤ |K3 ∈ Rr×(n1−r)

}
.

Using this decomposition, the projection P(e)
Tt

(Gt) evaluates to:

P(e)
Tt

(Gt) = UtU
⊤
t GtVtV

⊤
t ++UtU

⊤
t GtV

⊥
t (V ⊥

t )⊤ + U⊥
t (U⊥

t )⊤GtVtV
⊤
t

= UtU
⊤
t GtVtV

⊤
t + UtU

⊤
t Gt(I − VtV

⊤
t ) + (I − UtU

⊤
t )GtVtV

⊤
t .

(24)

– Expression of Zt in terms of Ut, Vt, Σt, and Gt. Using the projection, we can
reformulate Zt as

Zt = UtΣtV
⊤
t − γUtU

⊤
t GtVtV

⊤
t − γUtU

⊤
t Gt(I − VtV

⊤
t )− γ(I − UtU

⊤
t )GtVtV

⊤
t

= Ut (Σt − γU⊤
t GtVt)︸ ︷︷ ︸

Y0

V ⊤
t − γUt U

⊤
t Gt(I − VtV

⊤
t )︸ ︷︷ ︸

Y ⊤
1

−γ (I − UtU
⊤
t )GtVt︸ ︷︷ ︸

Y2

V ⊤
t

:= UtY0V
⊤
t − γUtY

⊤
1 − γY2V

⊤
t .

(25)
Therefore, to compute Zt, we only need to compute the coefficient matrices Y0 ∈ Rr×r,
Y1 ∈ Rn1×r, and Y2 ∈ Rn0×r. The detailed procedure is as follows:

– Compute GtVt, GT
t Ut, and U⊤

t (GtVt).
– Compute Y0 = Σt − γ(U⊤

t GtVt).
– Compute Y1 = (GT

t Ut)− Vt(U
⊤
t GtVt)

⊤ and Y2 = (GtVt)− Ut(U
⊤
t GtVt).

This procedure requires O(n0n1r) operations and O((n0 + n1)r) memory.
• Computation of Hr(Zt). The rank of Zt is at most 2r due to its structured representation:

Zt = [ Ut Y2 ]︸ ︷︷ ︸
n0×2r

[
Y0 −γI
−γI 0

]
︸ ︷︷ ︸

2r×2r

[
V ⊤
t

Y ⊤
1

]
︸ ︷︷ ︸
2r×n1

,

Since U⊤
t Y2 = 0, the QR decomposition Y2 = Q2R2 yields an orthognal matrix [Ut Q2] ∈

Rn0×2r. Similarly, the QR decomposition Y1 = Q1R1 gives an orthognal matrix [Vt Q1] ∈

19



Rn1×2r. This allows us to rewrite Zt as:

Zt = [ Ut Q2 ]

[
Y0 −γR⊤

1
−γR2 0

]
︸ ︷︷ ︸

2r×2r

[
V ⊤
t

Q⊤
1

]
, (26)

where both the left and right factors are orthogonal matrices. Therefore, computing the SVD
of Zt reduces to finding the SVD of the central 2r×2r matrix. By retaining only the leading
r singular values and corresponding singular vectors, we obtain the rank-r approximation
Wt+1 := Hr(Zt) in its SVD form. The complete computational procedure consists of the
following steps:

– Compute QR decompositions Y1 = Q1R1 and Y2 = Q2R2.
– Compute the SVD of [

Y0 −γR⊤
1

−γR2 0

]
= CΛDT

– Compute

Ut+1 = [Ut Q2] · C(:, 1 : r), Σt+1 = Λ(1 : r, 1 : r), Vt+1 = [Vt Q1] ·D(:, 1 : r).

The whole procedure requires two QR decompositions, one SVD of size 2r × 2r, and two
matrix-matrix products. The computational complexity is O((n0 + n1)r

2), and the memory
used is O((n0 + n1)r).

B Computational Details in RAdaGrad and RAdamW

In this section, we provide the computational details of the Riemannian Gradient Descent with an
Adaptive Data-Driven Metric (RAdaGrad, see Equation (20) in Section 3.2 of the main text). Recall
that the standard RAdaGrad generates updates using the following formula:

(RAdaGrad)


Gt = ∇eℓ(Wt),

Lt = β1Lt−1 + (1− β1)diag(GtG
⊤
t ),

Rt = β2Rt−1 + (1− β2)diag(G⊤
t Gt),

Wt+1 = Hr

(
Wt − γP(g)

Tt

(
L
− 1

4
t GtR

− 1
4

t

))
,

(27)

where P(g)
Tt

denotes the orthogonal projection from E to the tangent space Tt under the weighted inner
product ⟨X,Y ⟩gt = ⟨X,L

1
4Y R

1
4 ⟩ for X,Y ∈ E, and ∇eℓ(Wt) represents the standard gradient of

the loss function ℓ in the Euclidean space E.

We now present the computational details of the RAdaGrad algorithm. The matrix Wt is expressed
using its singular value decomposition (SVD) as Wt = UtΣtV

⊤
t , where Σt ∈ Rr×r is a diagonal

matrix whose diagonal elements are the singular values of Wt, and Ut ∈ Rn0×r and Vt ∈ Rn1×r are
the left and right singular vector matrices, respectively. The computations involved in RAdaGrad are
outlined below.

• Computation of Gt := ∇eℓ(Wt). In RAdaGrad and RAdamW, Gt is also the standard
Euclidean gradient of the loss function ℓ in E. Therefore, similar to the plain RGD, it can be
directly obtained through backpropagation.

• Computation of Lt and Rt. According to (27), Lt and Rt are diagonal matrices defined by
the squared column 2-norms and squared row 2-norms of Gt, respectively. The computation
involves the following steps:

– Calculate the squared 2-norm of each column and each row of Gt.
– Update the diagonal entries of Lt and Rt using the squared column norms and row

norms, respectively.

The total computational cost for these operations is O(n0n1).

• Computation of Zt := Wt − γP(g)
Tt

(L
− 1

4
t GtR

− 1
4

t ). This is similar to the computation of

P(e)
Tt

(Gt) in plain RGD. We first establish representations for the matrices involved in
computing Zt.
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– Expression of P(g)
Tt

(L
− 1

4
t GtR

− 1
4

t ). This is very similar to P(e)
Tt

(Gt) in plain RGD. The
only difference is that we need to find an orthogonal basis for Tt under the weighted
inner products. Notice that the weighting operator in the weighted inner product ⟨·, ·⟩gt
is in Kronecker product form and is therefore separable in the column vector and row
vector spaces. Specifically, we orthogonalize Ut using the L

1
4
t -inner product to obtain

Ũt = Ut(U
⊤
t L

1
4
t Ut)

− 1
2 , and orthogonalize Vt using the R

1
4
t -inner product to obtain

Ṽt = Vt(V
⊤
t R

1
4
t Vt)

− 1
2 . As a result, we have:

P(g)
Tt

(L
− 1

4
t GtR

− 1
4

t ) = ŨtŨ
⊤
t GtR

− 1
4

t + L
− 1

4
t GtṼtṼ

⊤
t − ŨtŨ

⊤
t GtṼtṼ

⊤
t . (28)

– Representation of Zt in terms of Ut, Vt, Σt, and Gt. Using the projection, we can
reformulate Zt as:

Zt = Wt − γP(g)
Tt

(L
− 1

4
t GtR

− 1
4

t )

= UtΣtVt − γŨtŨ
⊤
t GtR

− 1
4

t − γL
− 1

4
t GtṼtṼ

⊤
t + γŨtŨ

⊤
t GtṼtṼ

⊤
t .

Each term can be expressed in terms of Ut, Vt, and Σt:

* ŨtŨ
⊤
t GtR

− 1
4

t = Ut (U
⊤
t L

1
4
t Ut)

−1U⊤
t︸ ︷︷ ︸

K⊤
1

GtR
− 1

4
t := UtK1

⊤GtR
− 1

4
t .

* L
− 1

4
t GtṼtṼ

⊤
t = L

− 1
4

t Gt Vt(V
⊤
t R

1
4
t Vt)

−1︸ ︷︷ ︸
K2

V ⊤
t := L

− 1
4

t GtK2V
⊤
t .

* ŨtŨ
⊤
t GtṼtṼ

⊤
t = UtK

⊤
1 GtK2V

⊤
t .

Substituting these into the expression for Zt, we obtain:

Zt = Wt − γP(g)
Tt

(L
− 1

4
t GtR

− 1
4

t )

= UtΣtVt − γUtK1
⊤GtR

− 1
4

t − γL
− 1

4
t GtK2V

⊤
t + γUtK

−⊤
1 GtK2V

⊤
t

= Ut (Σt − γK⊤
1 GtR

− 1
4

t Vt − γU⊤
t L

− 1
4

t GtK2 + γK⊤
1 GtK2)︸ ︷︷ ︸

Y0

V ⊤
t

− γUt K1
⊤GtR

− 1
4

t (I − VtV
⊤
t )︸ ︷︷ ︸

Y ⊤
1

−γ (I − UtU
⊤
t )L

− 1
4

t GtK2︸ ︷︷ ︸
Y2

V ⊤
t

:= UtY0V
⊤
t − γUtY

⊤
1 − γY2V

⊤
t .

(29)

Therefore, to compute Zt, it is sufficient to calculate the coefficient matrices Y0 ∈ Rr×r,
Y1 ∈ Rn1×r, and Y2 ∈ Rn0×r. The detailed procedure is as follows:

– Compute K1 = Ut(U
⊤
t L

1
4
t Ut)

−1 and K2 = Vt(V
⊤
t R

1
4
t Vt)

−1.
– Compute G⊤

t K1, GtK2, and K⊤
1 (GtK2).

– Compute L
− 1

4
t (GtK2) and R

− 1
4

t (G⊤
t K1) by rescaling each row.

– Compute Y0 = Σt − γ
(
(K⊤

1 GtR
− 1

4
t )Vt + U⊤

t (L
− 1

4
t GtK2)− (K⊤

1 GtK2)
)
.

– Compute Y1 = (K1
⊤GtR

− 1
4

t ) −
(
(K1

⊤GtR
− 1

4
t )Vt

)
V ⊤
t and Y2 = (L

− 1
4

t GtK2) −
Ut

(
U⊤
t (L

− 1
4

t GtK2)
)
.

Since Lt and Rt are diagonal matrices, the multiplications involved in L
− 1

4
t and R

− 1
4

t rescale
the rows and columns, making them computationally cheap. The entire procedure requires
O(n0n1r) operations and O((n0 + n1)r) memory.

• Computation of Hr(Zt). From (29), it follows that Zt can be rewritten in the following
form:

Zt = [ Ut Y2 ]︸ ︷︷ ︸
n0×2r

[
Y0 −γI
−γI 0

]
︸ ︷︷ ︸

2r×2r

[
V ⊤
t

Y ⊤
1

]
︸ ︷︷ ︸
2r×n1

(30)
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with U⊤
t Y2 = 0 and V ⊤

t Y1 = 0. This form is exactly the same as (26) in plain RGD, except
for different Y0, Y1, and Y2. Therefore, the computation of Wt+1 = Hr(Zt) is identical
to that of plain RGD. As such, we omit the detailed computational steps here. Similar to
plain RGD, the computational complexity is O((n0 + n1)r

2), and the memory usage is
O((n0 + n1)r).

Regarding the computational details of the RAdamW algorithm (see Equation (22) in Section 3.3 of
the main text), the RAdamW algorithm is as follows:

(RAdamW)



Gt = ∇eℓ(Wt),

Lt = β1Lt−1 + (1− β1)diag(GtG
⊤
t ),

Rt = β2Rt−1 + (1− β2)diag(G⊤
t Gt),

Mt = β3Mt−1 + (1− β3)Gt,

Wt+1 = Hr

(
(1− θ)Wt − γtP(g)

Tt

(
L
− 1

4
t MtR

− 1
4

t

))
.

(31)

Note that compared to the RAdaGrad algorithm, the only difference is that Gt in RAdaGrad is
replaced with Mt in the last line. As a result, the computational procedure remains almost the same.
For this reason, we omit the computational details of the RAdamW algorithm here.

C Supplementary Experiments for Large Models Fine-Tuning

C.1 GPT-2

C.1.1 Sensitivity Analysis of Hyperparameters

To evaluate the stability of the proposed optimizer, we test the sensitivity of RAdaGrad and RAdamW
to the parameters on GPT-2. Specifically, we validate their sensitivity to weight decay, learning rate,
and smoothing parameters, with the results shown in Table 3, Table 4, and Table 5, respectively. The
results indicate that all metrics exhibit slight fluctuations within the error range.

In detail, Table 3 presents the training loss and evaluation metrics under different weight decay
settings. For these experiments, RAdaGrad’s learning rate was fixed at 5e-3, RAdamW’s learning
rate was fixed at 8e-3, smoothing parameters were set to β1 = β2 = 0.98, and the rank was set to
4. Table 4 shows the training loss and evaluation metrics under varying learning rates, with weight
decay fixed at 1e-2, smoothing parameters set to β3 = 0.9, β1 = β2 = 0.98, and the rank set to 4.
Table 5 provides the training loss and evaluation metrics for different smoothing parameters β1 = β2,
with the learning rate fixed at 8e-3, smoothing parameter β3 = 0.9, weight decay set to 1e-2, and the
rank set to 4.

Table 3: Training loss and evaluation scores for the GPT-2 fine-tuned model (r = 4) under varying
weight decay schedules.

Methods Weight Deacy Training Loss E2E
BLEU NIST MET ROUGE-L CIDEr

RAdaGrad
1e-2 2.56 69.8 8.80 46.5 71.1 2.49
1e-3 2.56 70.0 8.82 46.5 71.2 2.51
1e-4 2.56 69.7 8.79 46.5 70.9 2.50

RAdamW
1e-2 2.56 69.8 8.81 46.5 71.1 2.51
1e-3 2.56 68.8 8.76 45.5 70.1 2.42
1e-4 2.56 70.0 8.83 46.3 71.2 2.48

C.1.2 Training Loss Curve

To further demonstrate the advantages of RAdaGrad and RAdamW, we compare the loss within the
same runtime, and the results are shown in Figure 1. These results highlight the effectiveness of the
proposed optimizers.
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Table 4: Training loss and evaluation scores for the GPT-2 fine-tuned model (r = 4) under varying
learning rates.

Methods Learning Rate Training Loss E2E
BLEU NIST MET ROUGE-L CIDEr

RAdaGrad
1e-2 2.55 69.5 8.76 46.9 71.4 2.52
5e-3 2.56 69.8 8.80 46.5 71.1 2.49
1e-3 2.59 69.3 8.79 45.9 70.5 2.44

RAdamW
1e-2 2.57 69.2 8.76 46.0 70.7 2.46
5e-3 2.56 69.1 8.75 46.1 70.7 2.47
1e-3 2.59 69.2 8.76 45.8 70.2 2.44

Table 5: Training loss and evaluation scores for the GPT-2 fine-tuned model (r = 4) under varying
smooth parameters.

Methods Parameter β1, β2 Training Loss E2E
BLEU NIST MET ROUGE-L CIDEr

RAdamW
0.96 2.56 69.3 8.81 45.9 70.5 2.45
0.98 2.56 69.8 8.81 46.5 71.1 2.51
0.99 2.56 69.2 8.78 46.0 70.8 2.47

C.1.3 Parameter Setting

Our training and inference configurations for GPT-2 fine-tuning (Table 6) maintain full consistency
with the experimental setup in [46]. The model is trained using a linear learning rate schedule over 5
epochs. Optimizer hyperparameters are systematically outlined in Table 7, with two key adaptations
based on empirical observations:(1) plain RGD Stabilization: To address the comparatively large
learning rate of plain Riemannian Gradient Descent (RGD) and mitigate potential training instability
caused by gradient updates, we reduced the weight decay parameters. (2) RAdamW Configuration:
The first-order moment parameter β3 is fixed at 0.9, while a grid search is performed for the second-
order moment parameter β1 = β2 within the set 0.96, 0.98, 0.99, 0.999.

C.2 Stable Diffusion V1.5

Diffusion models are widely used in image generation tasks, and LoRA has become a common
technique for fine-tuning diffusion models. We take the commonly used Stable Diffusion V1.5
model as an example to demonstrate the effectiveness of RAdaGrad in LoRA fine-tuning for object
generation. The experiments are conducted on three datasets from Huggingface open-source models
[38]: naruto-blip-captions [6], flowers-blip-captions [38], and simpsons-blip-captions, with corre-
sponding prompts "a hellokitty with naruto style", "A woman in long hair in <simpsons>", and "a
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(a) Training loss curve over training time when fine-
tuning with rank 8 using SGD-based methods.
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(b) Training loss curve over training step when fine-
tuning with rank 64 using AdamW-based methods.

Figure 1: Training loss of GPT-2 small model fine-tuned using different optimizers.
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Table 6: Training and Inference Configuration for GPT-2 fine-tuning.

Parameter Value Parameter Value
Training Inference

Dropout Prob 0.1
Batch Size 8
# Epoch 5 Beam Size 10

Warmup Steps 500 Length Penalty 0.8
LR Scheduler Linear No Repeat Ngram Size 4
Label Smooth 0.1

LoRA α 32

Table 7: Core Optimizer Parameters for GPT-2 fine-tuning.

Methods Weight Decay Learning Rate (×10−3) β3 β1 = β2rank 4 rank 8 rank 16
SGD 0.01 90 90 200 / /

scaled GD 0.01 20 30 40 / /
plain RGD 0.0001 80 100 200 / /
RAdaGrad 0.01 5 8 40 / 0.98
AdamW 0.01 0.2 0.2 0.2 0.9 0.999

scaled AdamW 0.01 0.8 2 2 0.7 0.8
RAdamW 0.01 8 10 8 0.9 0.98

yellow flower". Figure 2 displays the generated results from the four algorithms, with all experiments
training LoRA for 4000 epochs.

<naruto> <simpsons> <flowers>

Scaled GD

Scaled
AdamW

plain RGD

RAdaGrad

Figure 2: Generation results for LoRA <naruto>, <flowers> and <simpsons> with different
optimizers. Default optimizer is AdamW with default learning rate 1e − 4 for U-Net tuning and
1e− 5 for text-encoder tuning.

Simpsons-blip-caption. The Simpsons-blip-caption dataset contains 786 (image, description) pairs,
and Figure 2 shows the final generated results from four algorithms. The image quality produced
by all four optimizers is comparable, with each successfully capturing the distinctive style of the
Simpsons animation. However, the intermediate results of the generation process highlight the
advantages of RAdaGrad. As shown in Figure 3, at the 500th epoch, while the other algorithms
had not yet produced clear images, the images generated by RAdaGrad already exhibited the strong
stylistic features of the Simpsons, indicating faster convergence and greater efficiency.

C.3 Mix-Of-Show

We begin by training the model using 14 images of Potter provided by the original project repository,
replacing the character names in the image captions with < VPotter >. The provided tokens include
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results at 500th epoch results at 2000th epoch results at 4000th epoch

Scaled GD

Scaled
AdamW

plain RGD

RAdaGrad

Figure 3: Generation results for LoRA <simpsons> with prompt "A woman with long hair with
<simpsons> style." using different optimizers. It shows the changes in objects generated by different
algorithms over training time.

Table 8: Hyperparameters for Mix-of-Show fine-tuning

plain RGD RAdaGrad RAdamW
1 4 1 4 1 4

Training
Mixed precision fp16
Weight Decay 0.0 1e-2 1e-4
Batch Size 2
# Steps 3500
Unet Kv Drop Rate 0
LR Scheduler Linear
LR (tuned, ×10−4) 1e3 1e3 0.7 1.0 0.7 1.0
AdamW β3 / / 0.9
AdamW β1 = β2 / 0.999 0.999
LoRA α 1.0
Inference
Mixed precision fp16
Num Samples Per Prompt 10
Batch Size 4
Alpha List [0, 0.7, 1.0]
Num Inference Steps 50
Guidance Scale 7.5

"blurry background", "upper body", "looking at the viewer", "holding a wand", "standing", and others.
Figure 4 shows the generation results for the prompt "A VPotter wearing a blue shirt" and Figure 5
shows the generation results for the prompt "A VPotter in front of eiffel tower" The images generated
by RAdaGrad and RAdamW more closely resemble Potter. Most images generated by ScaledAdamW
resemble Potter, but the eyes in the images are influenced by the word "blue" and appear blue eyes,
differing from the real eyes of Potter.

Further, we fine-tune the model using 15 images of Hermione provided by the original repository,
replacing the character names in the image captions with < VHermione >. The provided tokens
include "blurry background", "upper body", "looking at the viewer", "head tilt", "arms at sides",
"brown background", "holding a wand", "standing", and others. Figure 6 shows the results for the
prompt "A < VHermione > wearing a red hat" and Figure 7 shows the generation results for the
prompt "A photo of < VHermione >".

The results in Figure 6 indicate that RAdaGrad and RAdamW significantly outperform the other
algorithms, especially in capturing facial features. The Hermione wearing a red hat generated by
these two algorithms more closely resembles Hermione’s real facial characteristics. However, the
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facial features in the images generated by Scaled SGD and SGD appear highly unnatural and even
fail to resemble Hermione herself. In Figure 7, the images of Hermione generated by RAdaGrad
and RAdamW exhibit more distinctive characteristics of Hermione compared to other algorithms.
In particular, the images generated by RAdaGrad display richer facial details, such as freckles on
Hermione’s face, capturing her facial features more precisely. Similarly, RAdamW also captures
some details more finely. These all results highlight the powerful image-generation capabilities of
RAdaGrad and RAdamW.

SGD

Scaled SGD

plain RGD

RAdaGrad(ours)

AdamW

Scaled AdamW

RAdamW(ours)

Figure 4: Generation results for LoRA <Potter> with prompt "A VPotter wearing a blue shirt." using
different optimizers.
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SGD

Scaled SGD

plain RGD

RAdaGrad(ours)

AdamW

Scaled AdamW

RAdamW(ours)

Figure 5: Generation results for LoRA <Potter> with prompt "A VPotter in front of eiffel tower."
using different optimizers.
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SGD

Scaled SGD

plain RGD

RAdaGrad(ours)

AdamW

Scaled AdamW

RAdamW(ours)

Figure 6: Generation results for LoRA <Hermione> with prompt "A <Hermione> wearing a red
hat." using different optimizers.
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SGD

Scaled SGD

plain RGD

RAdaGrad(ours)

AdamW

Scaled AdamW

RAdamW(ours)

Figure 7: Generation results for LoRA <Hermione> with prompt "A photo of <Hermione>." using
different optimizers.
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D Code Implementation Details in Our Paper

The corresponding code for Algorithms 1, 2, and 3 can be found in Codes/examples/NLG/src/
optimizer_custom.py. The classes corresponding to these algorithms are listed below:

• Algorithm 1 — class plain RGD(Optimizer)

• Algorithm 2 — class RAdaGrad(Optimizer)

• Algorithm 3 — class RAdamW(Optimizer)

Algorithm 1 Pseudocode of plain RGD in Pytorch
# Create lora_U, lora_S, lora_Vh in loralib/layer.py
lora_U = nn.parameter(self.weight.zeros(out_features, r))
lora_S = nn.parameter(self.weight.zeros(r))
lora_Vh = nn.parameter(self.weight.zeros(r, in_features))
# Initialize lora_U, lora_S, lora_Vh in loralib/layer.py
nn.init.zeros_(self.lora_U)
nn.init.ones_(self.lora_S)
nn.init.kaiming_uniform_(self.lora_Vh, a=math.sqrt(5))
# Use hook to catch the gradient of W in loralib/layer.py
W.regisiter_hook()
# Group trainable parameters into LoRA pairs in optimizer.py.
for lora_U, lora_S, lora_Vh in pairwise(trainable_parameter):

param_groups.append({"params": [lora_U, lora_S, lora_Vh], \
"lr": learning_rate})

# Update rules in optimizer.py
for group in param_groups:

U, S, Vh = group["params"]
G_W = W_grad # gradient of W
# compute the weight update component
pre_grad = -group['lr'] * G_W
# compute some matrices for later use
UU_T_inv = torch.inverse(U.T @ U)
VV_T_inv = torch.inverse(Vh @ Vh.T)
# compute matrix K1
Y1 = UU_T_inv @ U.T @ pre_grad @ (I - Vh.T @ Vh)
Q1, K1 = torch.linalg.qr(Y1.T)
# compute matrix K0
K0 = torch.diag(S) + UU_T_inv @ U.T @ pre_grad @ Vh.T \

+ (U.T - UU_T_inv @ U.T) @ pre_grad @ Vh.T @ VV_T_inv
# compute matrix K2
Y2 = (torch.eye(U.shape[0]) - U @ U.T) @ pre_grad @ Vh.T @ VV_T_inv
Q2, K2 = torch.linalg.qr(Y2)
# SVD of a matrix of size 2r x 2r
U_m, S_m, Vh_m = torch.linalg.svd([[K0, K1.T], [K2, 0]])
# Update parameters
U = [U, Q2] @ U_m, S = S_m, Vh = Vh_m @ [[Vh], [Q1.T]]
U = U[:, :self.rank], S = S[ :self.rank], Vh = Vh[:self.rank, :]
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Algorithm 2 Pseudocode of RAdaGrad in Pytorch
# Create lora_U, lora_S, lora_Vh in loralib/layer.py
lora_U = nn.parameter(self.weight.zeros(out_features, r))
lora_S = nn.parameter(self.weight.zeros(r))
lora_Vh = nn.parameter(self.weight.zeros(r, in_features))
# Initialize lora_U, lora_S, lora_Vh in loralib/layer.py
nn.init.zeros_(self.lora_U)
nn.init.ones_(self.lora_S)
nn.init.kaiming_uniform_(self.lora_Vh, a=math.sqrt(5))
# Use hook to catch the gradient of W in loralib/layer.py
W.regisiter_hook()
# Group trainable parameters into LoRA pairs in optimizer.py.
for lora_U, lora_S, lora_Vh in pairwise(trainable_parameter):

param_groups.append({"params": [lora_U, lora_S, lora_Vh], \
"lr": learning_rate})

# Update rules in optimizer.py
for group in param_groups:

U, S, Vh = group["params"]
G_W = W_grad # gradient of W
L_t = beta1*L_{t-1} + (1-beta1)*torch.einsum('ij,ij->i', G_W, G_W)
R_t = beta2*R_{t-1} + (1-beta2)*torch.einsum('ij,ij->j', G_W, G_W)
# compute the weight update component
pre_grad = -group['lr']*[torch.diag(L_t**(-0.25)) @ G_W \

@ torch.diag(R_t**(-0.25))]
# compute some matrices for later use
ULU_inv = torch.inverse(U.T @ torch.diag(L_t**0.25) @ U)
VRV_inv = torch.inverse(Vh @ torch.diag(R_t**0.25) @ Vh.T)
ULZ = U.T @ torch.diag(L_t**0.25) @ pre_grad
ZRV = pre_grad @ torch.diag(R_t**0.25) @ Vh.T
# compute matrix K1
Y1 = ULU_inv @ ULZ @ (torch.eye(Vh.shape[0])-Vh.T @ Vh)
Q1, K1 = torch.linalg.qr(Y1.T)
# compute matrix K0
K0 = torch.diag(S) + ULU_inv @ ULZ @ Vh.T + \

(U.T - ULU_inv @ U.T @ torch.diag(L_t**0.25)) @ ZRV @ VRV_inv
# compute matrix K2
Y2 = (torch.eye(U.shape[0]) - U @ U.T) @ ZRV @ VV_T_inv
Q2, K2 = torch.linalg.qr(Y2)
# SVD of a matrix of size 2r x 2r
U_m, S_m, Vh_m = torch.linalg.svd([[K0, K1.T], [K2, 0]])
# Update parameters
U = [U, Q2] @ U_m, S = S_m, Vh = Vh_m @ [[Vh], [Q1.T]]
U = U[:, :self.rank], S = S[ :self.rank], Vh = Vh[:self.rank, :]

E Supplementary Experiments for DNNs Compression

E.1 DNNs Compression on MNIST Dataset.

To evaluate the performance of the algorithms, we randomly divide the MNIST dataset [9] into a
training dataset with 50,000 samples and a test dataset with 10,000 samples. The image dataset is
normalized pixel-wise, without any other data augmentation or regularization techniques applied.

Five-Layer Fully Connected Network. We first train a five-layer fully connected neural network
on the MNIST dataset. The number of neurons for each layer is (5120, 5120, 5120, 5120, 10). To
achieve DNNs compression, we employ a dynamic rank adjustment strategy [24] from DLRT
for the weight matrix of each layer. This strategy adaptively truncates the singular values in
S = diag(σi) based on a parameter τ and selects the smallest r × r submatrix that satisfies a
specific condition (Σi≥(r+1)σ

2
i )

1/2 ≤ τ . The initial rank for weight matrix of each layer is set to
(500, 500, 500, 500, 10). We set the optimal dynamic rank adjustment thresholds τ for plain RGD,
RAdaGrad, and DLRT to be 0.5, 0.5, and 0.13, respectively. Notably, the τ value for DLRT is smaller
because, during experimentation, we observe that larger or smaller τ values led to a decrease in test
accuracy for DLRT. 0.13 is identified as the optimal threshold for maintaining high test accuracy.
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Algorithm 3 Pseudocode of RAdamW in Pytorch
# Create lora_U, lora_S, lora_Vh in loralib/layer.py
lora_U = nn.parameter(self.weight.zeros(out_features, r))
lora_S = nn.parameter(self.weight.zeros(r))
lora_Vh = nn.parameter(self.weight.zeros(r, in_features))
# Initialize lora_U, lora_S, lora_Vh in loralib/layer.py
nn.init.zeros_(self.lora_U)
nn.init.ones_(self.lora_S)
nn.init.kaiming_uniform_(self.lora_Vh, a=math.sqrt(5))
# Use hook to catch the gradient of W in loralib/layer.py
W.regisiter_hook()
# Group trainable parameters into LoRA pairs in optimizer.py.
for lora_U, lora_S, lora_Vh in pairwise(trainable_parameter):

param_groups.append({"params": [lora_U, lora_S, lora_Vh], \
"lr": learning_rate})

# Update rules in optimizer.py
for group in param_groups:

U, S, Vh = group["params"]
G_W = W_grad # gradient of W
W_m_t = beta1*W_m_{t-1}+(1-beta1)*G_W # update first moment in step t
L_t = beta1*L_{t-1} + (1-beta1)*torch.einsum('ij,ij->i', G_W, G_W)
R_t = beta2*R_{t-1} + (1-beta2)*torch.einsum('ij,ij->j', G_W, G_W)
# compute the weight update component
step_size = group['lr'] * sqrt(1-beta2**t) / (1-beta1**t)
pre_grad = -step_size*[torch.diag(L_t**(-0.25)) @ W_m_t \

@ torch.diag(R_t**(-0.25))]
# compute some matrices for later use
ULU_inv = torch.inverse(U.T @ torch.diag(L_t**0.25) @ U)
VRV_inv = torch.inverse(Vh @ torch.diag(R_t**0.25) @ Vh.T)
ULZ = U.T @ torch.diag(L_t**0.25) @ pre_grad
ZRV = pre_grad @ torch.diag(R_t**0.25) @ Vh.T
# compute matrix K1
Y1 = ULU_inv @ ULZ @ (I - Vh.T @ Vh)
Q1, K1 = torch.linalg.qr(Y1.T)
# compute matrix K0, K2 similarly
# ...
# Update parameters
# SVD of a matrix of size 2r x 2r
U_m, S_m, Vh_m = torch.linalg.svd([[K0, K1.T], [K2, 0]])
U = [U, Q2] @ U_m, S = S_m, Vh = Vh_m @ [[Vh], [Q1.T]]
U = U[:, :self.rank], S = S[ :self.rank], Vh = Vh[:self.rank, :]

Furthermore, we also select the optimal training parameters for the three algorithms. The batch size
of plain RGD and RAdaGrad is 128, and the learning rates are 0.07 and 0.06, respectively. The batch
size of DLRT is 256 and the learning rate is 0.01.

Table 9: The best test accuracy and the final rank of different methods for a fully-connected network.

Algorithms Rank Test Accuracy

DLRT (30,29,28,34,5) 96.77%
plain RGD (37,27,36,35,5) 98.38%
RAdaGrad (16,6,9,24,5) 98.65%

Under these experimental settings, we train fully connected neural networks using these three
algorithms for a total of 75 epochs, and record the test accuracy and loss function, as shown in
Figures 8(a) and (b). To more clearly illustrate the effect of DNN compression, we also display
the evolution of the rank of weight matrices for each layer during the training process, as shown in
Figures 9(a), (c), and (e). The final test accuracy results are shown in Table 9. The experimental
results indicate that the RAdaGrad algorithm achieves the highest test accuracy while achieving the
maximum DNNs compression rate. The final ranks of the weight matrices obtained by the RAdaGrad
algorithm are (16, 6, 9, 24, 5), which are the lowest among the three algorithms, and its test accuracy
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reached 98.8%, also the highest among the three algorithms. This convincingly demonstrates that
compared to the factorized-based algorithm (baseline DLRT), the RAdaGrad algorithm can eliminate
the dependence on the condition numbers of two low-rank factors. Furthermore, compared to plain
RGD, the RAdaGrad algorithm achieves the same level of test accuracy while providing superior
DNN compression.

(a) Test Accuracy FC (b) Test Loss FC

(c) Test Accuracy LeNet5 (d) Test Loss LeNet5

Figure 8: Test accuracy and loss function for the fully connected network and LeNet5 network.

Convolutional Network – LeNet5. To further verify the effectiveness of the RAdaGrad algorithm,
we apply it to compress the LeNet5 network on the MNIST dataset. For the convolutional layers
in LeNet5, we reshaped their convolutional kernels into matrices, with dimensions calculated as: n
(number of output channels) × m (number of input channels ∗ kernel size). Consistent with the fully
connected networks compression, we still adopt the dynamic rank adjustment strategy from DLRT.
The initial rank for weight matrix of each convolutional layer is set to rk = min(nk, mk) / 2. Through
experimentation, we determine the optimal thresholds τ for the plain RGD, RAdaGrad, and DLRT
algorithms to be 0.6, 0.9, and 0.11, respectively. Additionally, we set the optimal training parameters
for the three algorithms: both plain RGD and RAdaGrad had a batch size 64 with learning rate 0.11;
DLRT had a batch size 128 with a learning rate 0.02.

Table 10: The best test accuracy and the final rank of different methods for LeNet5.

Algorithms Rank Test Accuracy

DLRT (7,12,19,5) 97.231%
plain RGD (10,25,14,5) 99.2337%
RAdaGrad (10,25,9,5) 99.2536%

We train LeNet5 using these three algorithms for 70 epochs. The test accuracy and test loss are shown
in Figures 8(c) and (d), respectively. The evolution of the rank for each layer during the training
process, as depicted in Figures 9(b), (d), and (f). The final test accuracy and ranks are listed in Table
10. The results indicate that the RAdaGrad algorithm not only achieved the highest compression rate
but also attained the best test accuracy, consistent with the findings from the experiments on fully
connected networks. Specifically, the final ranks of the weight matrices achieved by the RAdaGrad
algorithm are (10, 25, 9, 5), the lowest among the three algorithms, and its test accuracy reached
99.25%, the highest among all algorithms. This further demonstrates that the convergence rate of the
RAdaGrad algorithm is independent of the condition numbers of two low-rank factors.
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(a) Rank of DLRT FC (b) Rank of DLRT LeNet5

(c) Rank of plain RGD FC (d) Rank of plain RGD LeNet5

(e) Rank of RAdaGrad FC (f) Rank of RAdaGrad LeNet5

Figure 9: The evolution of ranks for each layer in the fully connected network and LeNet5 network.

E.2 DNNs Compression on CIFAR10 Dataset.

We further test the three algorithms on the CIFAR-10 dataset. The CIFAR-10 dataset consists of
60000 color images, each with a resolution of 32× 32 pixels, divided into 10 classes, with each class
containing 6000 images. Among these, 50000 images are used as the training dataset, and 10000
images are used as the test dataset. In this experiment, we train the VGG11 and VGG16 networks
with low-rank weight matrices. All algorithms are trained for 400 epochs.

VGG11 and VGG16. VGG11 and VGG16 are two widely used deep convolutional neural network
models developed by the Visual Geometry Group (VGG) at the University of Oxford. The models
are renowned for their excellent performance in image recognition and classification, particularly
in the 2014 ImageNet challenge. These models are characterized by the use of small 3× 3 convo-
lutional kernels and multiple convolutional layers. VGG11 includes 11 weight layers, including 8
convolutional layers and 3 fully connected layers, while VGG16 includes 16 weight layers, with 13
convolutional layers and 3 fully connected layers.

Table 11: The best test accuracy and the final rank of different methods for VGG11.

Algorithms Rank Test Accuracy

DLRT (10,11,14,14,13,14,12,14,12,21,2) 66.7623%
plain RGD (2,2,2,2,2,2,2,2,2,2,5) 90.3877%
RAdaGrad (2,2,2,2,2,2,2,2,2,2,5) 90.1701 %

We conduct compression experiments on the VGG11 and VGG16 DNNs using three optimizers:
RAdaGrad, plain RGD, and DLRT, with the final results presented in Tables 11 and 12. From the
results in these two tables, it can be observed that the compression performance of plain RGD and
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Table 12: The best test accuracy and the final rank of different methods for VGG16.

Algorithms Rank Test Accuracy

DLRT (7,11,11,12,13,14,15,15,12,15,13,16,15,17,19,5) 77.2449%
plain RGD (2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,5) 92.0886%
RAdaGrad (2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,5) 92.1477%

RAdaGrad is comparable, and both significantly outperform the DLRT algorithm. Specifically, plain
RGD and RAdaGrad achieve extremely low ranks while maintaining high test accuracy. In contrast,
the DLRT algorithm results in higher ranks and relatively lower test accuracy. These results strongly
support our core idea: optimization algorithms based on RGDframework (such as plain RGD and
RAdaGrad) have proven to be an efficient method for DNNs compression by finding low-rank weight
matrices on Riemannian manifolds. This kind of method not only significantly reduces the memory
usage of DNNs but also largely preserves their performance, achieving excellent results in practical
applications. This fully validates our previous statement: optimization algorithms based on the
RGD framework not only eliminate the redundancy introduced by matrix factorization methods and
completely avoid the negative impact of the Jacobian’s condition number, but also effectively reduce
the condition number of the Hessian by selecting appropriate metrics on the Riemannian manifold.
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