
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

EXECUTABLE VISUAL REASONING: FROM
UNIVERSAL SOLVER TO EMERGENT BEHAVIORS

Anonymous authors
Paper under double-blind review

ABSTRACT

Recent releases such as o3 highlight human-like “thinking with images” reasoning
that combines structured tool use with stepwise verification, yet most open-source
approaches still rely on text-only chains, rigid visual schemas, or single-step
pipelines, limiting flexibility, interpretability, and transferability on complex tasks.
We introduce ExeVision, which explores executable code as a universal solver for
visual reasoning. Unlike fixed-schema calls (e.g., only predicting bounding-box
coordinates), ExeVision defines, composes, and executes code to orchestrate mul-
tiple tools, compute intermediate results, and render visual artifacts (e.g., boxes,
lines, plots) that support transparent, self-checkable reasoning. To guide this pro-
cess, we introduce a reward for Balanced Adaptive Tool-call, which balances ex-
ploration with efficiency and mitigates tool overuse. Interestingly, beyond the
expected capabilities taught by atomic supervision, we empirically observe novel
emergent behaviors during RL training: ExeVision demonstrates novel tool in-
vocations, unseen compositions, and cross-task transfer. These behaviors arise
without task-specific fine-tuning, suggesting a general and scalable mechanism of
executable visual reasoning. Extensive experiments across reasoning benchmarks
(e.g., visual search, math, chart QA) show that ExeVision not only consistently
outperforms schema-driven and text-only baselines, but also surpasses advanced
closed models such as GPT-4o and larger open-source models. code is available.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) have made rapid progress, showing strong capabil-
ities in both visual perception and reasoning. By leveraging the language-centric chain-of-thought
(CoT) mechanism (Brown et al., 2020; Wei et al., 2022), models can decompose complex problems
into intermediate steps, thereby improving performance on challenging tasks. However, the CoT
paradigm’s reliance on static context becomes a critical limitation when extended to modalities such
as vision. This prevents models from interacting with visual inputs or incorporating new observa-
tions during intermediate reasoning (Zou et al., 2024; Chung et al., 2025), creating an information
bottleneck that hinders multi-round focusing and validation. To address this, the o3 system (Ope-
nAI, 2025) integrates the ability to actively seek new information through multiple tool invocations,
supporting iterative reasoning over visual inputs and demonstrating strong perception and analysis.

Research gaps. While recent models have made notable progress, fundamental gaps remain un-
resolved. (1) Current approaches largely extend CoT into multimodal reasoning via text-only tem-
plates, failing to incorporate new observations, refine intermediate steps, or validate its reasoning
against visual evidence (Ko et al., 2025; Feng et al., 2025). (2) In addition, o3 remains a pro-
prietary black-box system: its internal mechanisms are inaccessible, its reasoning process is less
transparent, and its outputs cannot be systematically studied or reproduced; (3) Most open-source
systems incorporating visual reasoning remain restricted to predefined visual workflows, or rigid and
schema-based pipelines (e.g., predicting bounding box coordinates for cropping operations), which
are inherently inflexible and task-specific, limiting transfer to new tools and tasks (Zheng et al.,
2025; Su et al., 2025a; Zhang et al., 2025b; Su et al., 2025b). Consequently, the field still lacks
an open and verifiable medium, that is general across tools and tasks, for multimodal reasoning
that allows MLLMs to dynamically compose tools, produce intermediate artifacts, and self-check
their outputs in a transparent and reproducible manner. Addressing this gap is crucial for achieving
flexible, explainable, and transferable reasoning across complex real-world tasks.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Our performance:
(Compared to base: Qwen-2.5-VL-7B)
- V* bench (+11.0%)
- HighRes-4k (+9.0%)
- Math Vision (+18.4%)
- Count bench (+19.2%)
- Pixmo Count (+53.0%)
- CharXiv (+4.7%)
…

Cropping

from PIL import Image
img =
Image.open('img.jpg')
bbox_2d = [463, 168,
500, 217]
sub_img =
img.crop(bbox_2d)
x1, y1, x2, y2 =
bbox_2d
bbox_w = x2 - x1
bbox_h = y2 - y1

Pointing

import cv2
points = [[462, 184]]
img =
cv2.imread(‘img.jpg’)
radius = 6
cv2.circle(img, (x,
y), radius * 2, (255,
0, 0), -1)
cv2.putText(img,
str(idx+1), (x +
radius + 3, ...)

Annotate
from PIL import Image,
ImageDraw
boxes = [[0, 0, 223,
223], [244, 0, 467, 223],
[473, 0, 644, 223] …]
img =
Image.open(‘img.jpg’)
draw =
ImageDraw.Draw(img)
for (x1,y1,x2,y2) in
boxes:
draw.rectangle(((x1, y1),
(x2, y2)), outline="red",
width=5)

60

64

67

71

74

77

81

84

20 40 60 100 200

PixmoCount

Novel tool attempting

Tool transfer to novel tasks

Tool composition

step

ac
cu

ra
cy

74

76

78

80

81

83

85

87

Novel tool attempting

Tool transfer to novel tasks

V* bench

Tool composition

ac
cu

ra
cy

step

Figure 1: Left: In SFT stage, the model is equipped with fundamental atomic coding abilities as a
universal solver (e.g., cropping, pointing, annotation) for visual reasoning, through our curated ex-
ecutable trajectories in sandboxed environments. Right: During RL, we empirically observe novel
emergent behaviors: the model spontaneously composes previously learned operations, attempts
novel tool usages, and transfers skills to unseen tasks, going beyond the capabilities covered by su-
pervision. Bottom: After RL, the learnt reasoning abilities translate into consistent and significant
performance gains on diverse multimodal benchmarks. Representative trajectories are in Figure 3.

In this work, we introduce ExeVision, a multimodal reasoning framework that leverages executable
code as a universal medium for visual reasoning. Unlike prior schema-based pipelines with fixed op-
eration templates, code enables the model to define, compose, and execute diverse visual–symbolic
operations, producing both intermediate artifacts (e.g., cropped regions, plots, annotations) and fi-
nal answers within a unified, verifiable reasoning process. To equip the model with fundamental
skills, we curate a high-quality trajectory dataset and use supervised fine-tuning (SFT) to teach
atomic capabilities such as counting, spatial grounding, and image annotating, enabling iterative
exploration-reflection reasoning process. Building on this foundation, we employ reinforcement
learning (RL) to further enhance tool-based reasoning. A central challenge we identify is a trade-
off between exploration and selectivity: naı̈ve policies often overuse tools, incurring unnecessary
steps, or underuse them, failing to leverage visual interactions when needed. To address this, we
design a difficulty-adaptive tool-reward mechanism that explicitly modulates incentives based on
task demands, encouraging longer operation chains for genuinely complex problems while discour-
aging redundant calls on simpler ones. This principled reward shaping aligns the learning dynamics
with the intrinsic structure of multimodal tasks, yielding a model that reasons more adaptively and
transparently. Together, these components enable ExeVision to advance beyond rigid schema-based
methods and offer an open, generalizable medium for executable visual reasoning.

Empirical observation of emergent behaviors. Although the model is only explicitly supervised
on atomic operations, our design enables behaviors to emerge during RL stage that go beyond the
provided supervision. In particular, we consistently observe: (1) Novel coding routines. The model
generates procedural and computational code (e.g., clustering, function plotting) that is absent from
the SFT data, indicating a capacity to internalize and extend programming patterns. (2) Composi-
tional strategies. It develops coordinated routines that combine multiple atomic operations, such as
localizing and counting before numerical computation, or cropping followed by rotation and anno-
tation, that were never observed together in the training data, giving rise to higher-level strategies
beyond supervised coverage. (3) Cross-domain transfer. The model reuses code operations learned
in one supervised context to solve novel tasks where such supervision was absent, e.g., applying
mathematical computation routines to answer general visual reasoning questions. Overall, these
findings highlight our central insight: treating executable code as a universal reasoning medium

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

enables the model not only to master atomic operations but also to spontaneously develop new capa-
bilities: tool invention, strategic composition, and transferable skills that beyond direct supervision.

Our contributions are summarized as follows: (1) We introduce ExeVision, a multimodal agent
that can “think with images” by planning and composing visual–symbolic operations through exe-
cutable code as a universal medium. To this end, we curate a 34K high-quality SFT dataset covering
diverse atomic code capabilities (e.g., cropping, line drawing, point plotting), and additionally de-
sign a difficulty-adaptive reward mechanism for RL, enabling multi-turn reasoning and balanced
tool use. (2) Beyond these design choices, we report novel empirical findings: despite being trained
only on atomic operations, ExeVision empirically exhibits emergent behaviors during RL training,
including spontaneous novel tool routines, unseen operation compositions, and cross-task transfer to
novel tasks. These observations highlight the scalability and generality of executable-code reason-
ing beyond direct supervision. (3) We evaluate ExeVision on more than 10 multimodal benchmarks,
spanning both general perception and complex reasoning (e.g., visual search, counting). Across the
board, it outperforms advanced closed models (e.g., GPT-4o) and larger open-source baselines (e.g.,
Qwen2.5-VL-32B), demonstrating strong visual perception ability and broad generalizability.

2 RELATED WORKS

Recent progress in MLLMs aims to build systems that can effectively understand and reason across
multiple modalities for complex tasks. To achieve this, current research typically focuses on three
key areas: (i) enhancing perceptual capabilities across diverse modalities, (ii) improving reason-
ing and action capabilities through function/tool calling, and (iii) developing high-quality synthetic
datasets for complex multimodal tasks where annotated trajectories are scarce. We address these
aspects in our work and provide detailed discussion in the subsequent section and Appendix A.3.

Perceptual capabilities of MLLMs. Popular MLLMs integrate vision encoders with language
models through lightweight learnable adapters, such as MLP (Zhu et al., 2023), Resampler (Alayrac
et al., 2022) and Q-former (Li et al., 2023), for efficient cross-modal alignment. To enhance vi-
sual comprehension capabilities, later approaches employ visual instruction tuning combined with
knowledge distillation, producing robust dense models, such as LLaVA-series (Liu et al., 2023; Li
et al., 2024a) and InstructBLIP (Dai et al., 2023). Beyond dense architectures, recent state-of-the-art
models continue to improve both model capacity and computational efficiency through mixture-of-
experts (Shazeer et al., 2017), such as Aria (Li et al., 2024b) and Uni-MoE (Li et al., 2025). Other
advancements to improve perception capabilities include accomodating high-resolution image in-
puts (Liu et al., 2024; Guo et al., 2024) or supporting native-resolution images (Bai et al., 2025b).

Multimodal reasoning and tool invocation. Building upon text-based chain-of-thought (CoT) rea-
soning (Wei et al., 2022; Yao et al., 2022), researchers have extended intermediate reasoning steps to
multimodal settings (Zheng et al., 2025; Yeo et al., 2025) including counting (Zhang et al., 2024b),
localization (Wu & Xie, 2024), charts (Li et al., 2024c), and visual math (Chen et al., 2025). To
enhance reasoning capabilities, recent works integrate external tools through reasoning-and-acting
frameworks (Yao et al., 2022; Yang et al., 2023), learned API usage (Schick et al., 2023), and mul-
timodal agents that orchestrate OCR, detection, and editors (Wu et al., 2023; Shen et al., 2023).
ViperGPT (Surı́s et al., 2023) compiles queries into executable programs. Recent models like Ope-
nAI’s o3 (OpenAI, 2025) integrate comprehensive tool capabilities directly into reasoning chains,
trained via RL on large-scale CoT data. Other approaches include RL-based tool invocation (Zheng
et al., 2025; Su et al., 2025a) and SFT-based methods (Wang et al., 2025). However, challenges
remains such as ad-hoc operations, sparse supervision, limited task coverage and lack of compre-
hensive evaluation. We diverge from prior work by pursuing code as universal medium to execute
multimodal reasoning across diverse atomic abilities.

3 METHODOLOGY

Here, we firstly introduce the fundamental preliminary in Section 3.1. An overview of our proposed
ExeVision is shown in Figure 2. In Section 3.2, we further detail the reward designs made for model
training and discuss their resulting benefits. In Section 3.3 and Appendix A.3, we describe the
high-quality data synthesis pipeline, which covers fundamental code-based atomic operations such
as cropping, counting, and math reasoning mainly tailored for SFT for initialization as cold start.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

MLLM (w/ SFT cold start on
synthetic trajectories)

<think> The image shows a street scene … The flag is located
near the left side of the image, attached to a pole.
The coordinates appear to be <box>[313, 506, 357, 554]</box>.
Let's call execute_python_code to crop.
<code> … </code> </think>

<think> The picture depicts a street scene. A flag can be seen on
the left side … Its bounding box is <box>[442, 688, 476, 697]</box>.
We can use execute_python_code to crop this region.
<code> … </code> </think>

Task types:
- Visual search,
- Math reasoning,
- General understanding,
…

MLLM
Loop until
answered
or max-turn.

1st turn output

Sampling a Task

2nd Query: Think with the code
execution result, then formulate a
new thinking step if needed or answer.

<think> The image shows a street scene … The flag in
the background appears to be blue and yellow. </think>
<answer> blue and yellow </answer>

1st Query:
Is the flag blue
and yellow or
red and yellow?

…

Rollout group

2

1

3

Concat

(reasoning &
visual results)

x

π

y11 y2 yg1y3

r1 r2 rgr3

y12

y13

yg2

A1 A2 A3 Ag

x: multimodal query π: MLLM (policy model)

y: MLLM output rollout : rollout i in j-th turn

r: reward A: Advantage

Racc: accuracy reward Rformat: format reward

Rseq: sequence-level
reward Rturn: turn-level reward

yij

r = Racc + Rformat
 + Rseq + Rturn

reward compute

RL Training

Update

RBAT (ours new reward)

<code> … </code>
Python
from PIL import Image
bbox_2d = [313, 506, 357, 554]
img = Image.open(‘image.jpg')
sub_img = img.crop(bbox_2d)

<code> … </code>
Python
from PIL import Image
bbox_2d = [442, 688, 476, 697]
img = Image.open(‘image.jpg')
sub_img = img.crop(bbox_2d)

Cropping result in sandbox

Code sandbox (crop, plot, …)

(The answer here is thus blue and yellow)

31

Figure 2: Overview of our framework. Left: A multimodal query is processed by the MLLM,
which produces rollouts interleaving natural-language reasoning with executable code (e.g., crop-
ping, plotting). Code is executed in a sandbox, and the resulting visual evidence is concatenated with
text to refine reasoning or yield the final answer (e.g., “blue and yellow”). Right: In RL training,
the policy model generates multiple rollouts that are scored by rewards for accuracy (Racc), format
compliance (Rformat), and tool usage (Rseq, Rturn). The aggregated signal defines the advantage A
for policy updates, closing the loop toward verifiable executable reasoning. Details are in Section 3.

3.1 PRELIMINARY

Multimodal CoT. While chain-of-thought (CoT) reasoning improves interpretability in text-only
settings, it remains static and lacks exploration when extended to multimodal scenarios. To address
this, we define a think–execute–feedback cycle as the minimal reasoning unit under a policy model π,
where each turn comprises (i) the current query and reasoning trace, (ii) a candidate action, and (iii)
the resulting observation after code execution. Formally, a trajectory is (also see Figure 2, left side)

τ =
(
(st1 , at1 , s

′
t1), . . . , (stm−1

, atM−1
, s′tM−1

), (stM , aanswer)
)
, where t is time step.

st = (x,∇t, ϵt) contains the original query x, the accumulated reasoning trace ∇t, and interpreter
feedback ϵt. Actions at are drawn from a space including tool calls (code snippets) and a terminal
answer; executing code yields an observation and updates the state to s′t. By iterating at ∼ π(· | st)
until a final answer is produced or a maximum turn budget M is reached, each turn becomes an
executable and verifiable reasoning unit. Building on this formulation, Section 3.3 detail the curation
of a high-quality trajectory dataset encompassing diverse atomic abilities. This dataset provides the
foundation for initializing the policy model through SFT, before advancing to RL.

Policy Optimization. In the RL stage, we require a policy optimization method that can compare
multiple rollouts and update the model accordingly. In our case, Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) provides a natural baseline, as it directly normalizes rewards across
sampled trajectories without relying on a separate value network. However, standard GRPO assigns
a uniform advantage to all tokens within a trajectory, which limits its effectiveness for multi-turn
tool reasoning requiring intermediate correction. To address this, we extend the reward design with
sequence-level and turn-level components. In particular, each rollout is evaluated with a composite
reward r that integrates outcome and tool-related signals (also see Figure 2, right side):

r(τ) = Racc(τ) +Rformat(τ) +RBAT(τ),

where Racc denotes final-answer correctness and Rformat enforces format compliance, respectively.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

How many birdhouse patterns
are there in the image?

<think>
Looking at the image, I can see
a collection of nine distinct
birdhouse patterns arranged in
a 3x3 grid. Each birdhouse has
unique designs and colors,
making them easy to count.
Let's call execute_python_code
to highlight the important
information.
</think>

from PIL import Image, ImageDraw
boxes = [[0, 0, 223, 223], [244, 0,
467, 223], [473, 0, 644, 223] …]
img = Image.open(‘input_image.jpg')
draw = ImageDraw.Draw(img)
for (x1,y1,x2,y2) in boxes:
 draw.rectangle(((x1, y1), (x2,
y2)), outline="red", width=5)
img

Observation

<think>
After examining each of the
nine squares, I confirm that
there are indeed nine different
birdhouse patterns. Each one
is clearly separated from the
others, so I can confidently
state the total number.

</think>
<answer>9</answer>

Is the color of the house tan?

<think>
Initially, it looks like the house in the
background could be tan, but given how
the lighting is affecting the whole scene,
I'm not entirely sure.
Let's call execute_python_code to draw
pointings on the detected object for
further verification.
</think>

draw points
import cv2
points = [[462, 184]]
img = cv2.imread('input_image.jpg')
radius = 6
cv2.circle(img, (x, y), radius * 2,
(255, 0, 0), -1)
cv2.putText(img, str(idx+1), (x +
radius + 3, ...)
img Observation

<think>
Looking once more, I see there's a section in the side
where the lighting affects the colors differently.
Because the initial focus was focused on the tan house
at <box>[463, 168, 500, 217]</box>, but our attention
should be toward the overall setting. From these
details, I remain unsure if the answer is yes or no.
Let's call execute_python_code to crop and zoom-in
the target region for a closer look.
</think>

crop + zoom-in
from PIL import Image
img =
Image.open('input_image.jpg')
bbox_2d = [463, 168, 500, 217]
sub_img = img.crop(bbox_2d)
x1, y1, x2, y2 = bbox_2d
bbox_w = x2 - x1
bbox_h = y2 - y1
Zoom-in image
...

Observation

A. Cross-domain tool transfer

B. Spontaneous tool composition

How many headsets are
there in the image?

<think>
Looking at the image, I can see a grid
of headsets arranged in two rows. The
first row contains five headsets, and the
second row also has five headsets.
Let's write and execute Python code to
draw a grid on the image for better
visualization.
</think>

import cv2
img = cv2.imread('input_image.jpg')
grid_size = 5
cell_size = img.shape[1] //
grid_size
for i in range(grid_size):
 for j in range(grid_size):
 cv2.rectangle(img, …)

Observation

<think>
Counting each headset
individually, I find a
total of ten distinct
headsets spread across
the two rows.
</think>
<answer>10</answer>

C. Novel tool attemptingUser Query Assistant

User Query Assistant

User Query Assistant

<think>
Examining the new, magnified section
of the house, the previous confusion
comes from the distorted perspective
and lighting. Despite being partially
obscured from direct view, there are no
clear visual cues indicating a tan color.
Therefore, the conclusion should be
</think>
<answer>No</answer>

"No".

Figure 3: Examples of emergent reasoning trajectories observed during RL: A. Cross-domain tool
transfer, where the MLLM reuses bounding-box drawing (defined only in Chart SFT) to validate
counting. B. Spontaneous tool composition, where the MLLM combines pointing with crop-and-
zoom to capture fine-grained details. C. Novel tool attempt, where the MLLM generates a grid
overlay for counting verification, absent from the SFT data. More results are in Appendix B

In our design, we introduce a two-level reward RBAT that captures Balanced Adaptive Tool-call. In
particular, it decomposes into a sequence-level Rseq and a turn-level Rturn, balancing task difficulty
with step-wise tool-call correctness. Subsequently, the advantage A is written as:

A(τ) = Aseq
(
Racc, Rformat, Rseq

)
+Aturn

(
Rturn

)
.

As we show in Section 3.2, this formluation combines global trajectory outcomes with local execu-
tion feedback, producing more adaptive and robust tool-based reasoning.

3.2 BAT: REWARD DESIGN FOR BALANCED ADAPTIVE TOOL-CALL

Here we discuss the design choice of our proposed adaptive tool reward RBAT, including sequence-
level Rseq reward and turn-level reward Rturn. An illustration is shown in Figure 6.

Sequence-level adaptive code-invocation reward. Simply rewarding every successful tool call
can lead to degenerate behaviors such as tool spamming or reward hacking on trivial problems (see
Appendix B), which may hinder the reasoning performance (see our ablation studies in Table 3). To
address this, we design an adaptive reward that conditions tool incentives on the group-level accuracy
µacc: when most rollouts already solve the task correctly (indicating the problem is relatively easy
or solvable without additional tool assistance), further invocations are discouraged. Conversely, low

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: Results on Counting, Visual Search, and General reasoning benchmarks.

Model Visual Counting Visual Search General
CountBenchQA PixmoCount V* Bench HR-Bench-4K HR-Bench-8K ChartQA Charxiv

Closed-Source MLLMs
GPT-4o 87.9 - 67.5 65.0 59.6 86.7 47.1

Open-Source MLLMs
Llava-OneVision-7B 82.3 54.4 72.7 68.5 60.0 80.4 27.1
Llava-OneVision-72B - 60.7 73.8 66.3 60.9 83.7 -
InternVL2.5-8B 55.9 - 73.7 72.0 65.5 82.8 37.2
InternVL3-8B 80.3 - 70.2 70.5 70.0 86.1 38.3
InternVL3-78B - - 76.4 75.5 67.3 89.7 46.0
Qwen2.5-VL-72B 93.6 62.3 84.8 79.4 76.3 89.5 49.7
Qwen2.5-VL-32B 87.8 56.0 85.9 74.8 71.6 - 47.6
Qwen2.5-VL-7B 76.5 50.4 76.4 69.0 66.0 86.3 42.1

Open-Source MLLMs with Tools
Pixel Reasoner-7B - - 84.3 72.9 66.9 - -
Deepeyes-7B 80.4 57.2 90.4 74.8 71.9 78.2 -
Thyme-VL-7B 84.8 - 82.2 77.0 72.0 86.1 44.2

ExeVision-7B 91.2 77.1 84.8 75.2 72.3 87.5 44.1
∆ v.s. Qwen2.5-VL-7B ↑19.2% ↑53.0% ↑11.0% ↑9.0% ↑9.5% ↑1.4% ↑4.7%

µacc encourages additional exploration. Formally, the sequence-level reward is defined as

Rseq =
(
0.5 + 0.5 · IRacc(τ)>0

)
· d · Nsucc(τ)

Ntotal(τ)
, d =

1 + tanh
(
γ(0.5− µacc)

)
2

− δ, (1)

where Nsucc(τ) and Ntotal(τ) denote the numbers of successful and total tool calls in trajectory τ ,
and d is a decay factor adapting to µacc. γ, δ are hyper-parameters. Thus, higher µacc reduces d,
discouraging redundant calls, while lower µacc increases d, promoting exploration.

Turn-level execution reward. To penalize failed executions and provide dense correction signals,
we introduce a turn-level reward. For each turn m, an immediate penalty Rturn,m = −0.5 is assigned
if the code execution fails, and 0 otherwise. To capture long-term effects, we recursively redefine
Rturn,m as the accumulated discounted return:

Rturn,m = Rturn,m + ·Rturn,m+1, Aturn = (Rt − µbatch)/σbatch. (2)
Here, β is a discount factor, and µbatch, σbatch denote the batch-wise mean and standard deviation
of Rturn. The final advantage is obtained by combining the resulting Aturn with the sequence-level
advantage Aseq (from outcome-level rewards, see Appendix A.1).

Together, the group-adaptive Rseq evaluates the quality of an entire trajectory, while Rturn assesses
the correctness of individual tool calls. This complementary design, which we term RBAT = Rseq +
Rturn, mitigates reward hacking, balances efficiency with necessary exploration, and yields more
robust multimodal reasoning policies. We discuss more details in ablation studies, see Figure 5.

3.3 DATASET CURATION

To mitigate the lack of high-quality multi-turn multimodal reasoning data, we construct a 34k dataset
of executable trajectories for SFT initialization before RL. The pipeline (Figure 7) follows a two-step
design: (i) weak-to-strong filtering, where public resources (e.g., SA1B, GEOqa plus, MMK12) are
automatically filtered and stratified in difficulty using Qwen2.5-VL-7B models; and (ii) multi-turn
atomic supervision, where hard cases are decomposed into trajectories covering three categories:
fundamental image transforms (crop, resize, rotate, etc.), mathematical computation (e.g., mea-
surement, algebra, aggregation), and open-ended visual editing (e.g., drawing, annotation). Each
trajectory is further validated by a strong MLLM to ensure correctness. Finally, the question, code
snippets and response are embedded as follows (example trajectories are shown in Appendix A.3):

Query: <IMAGE> Is the flag blue and yellow or red and yellow?
Response: The image shows..., Let’s call execute python code: \n
<code>from PIL import Image \n img = Image.open(‘img.jpg’)...</code>.
Appending compiling results... \n <answer>blue and yellow</answer>

These trajectories provide verifiable supervision of atomic skills, which form the foundation for SFT
initialization before advanced to RL training.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

4 EXPERIMENTS

Implementation Details. We mainly build on Qwen2.5-VL-7B (Bai et al., 2023) as the base model,
and compare against both open-source reasoning MLLMs (e.g., DeepEyes (Zheng et al., 2025),
R1-VL (Zhang et al., 2025a)) and advanced closed models (e.g., GPT-4o) across four benchmark
categories: math reasoning (MathVista (Lu et al., 2023), MathVision (Wang et al., 2024a), Math-
Verse (Zhang et al., 2024a), WeMath (Qiao et al., 2024), general reasoning (ChartQA (Masry et al.,
2022)), counting (Pixmo-Count (Deitke et al., 2025), CountBenchQA (Paiss et al., 2023)), and vi-
sual search (Vstar Bench (Wu & Xie, 2024), HRBench (Wang et al., 2024b)). For training, we adopt
SWIFT (Zhao et al., 2024) for SFT and VeRL (Sheng et al., 2024) for RL, using H100 (80GB) GPUs.
We set γ = 4, δ = 0.2, and β = 0.2. To ensure a fair comparison, we adopt VLMEvalKit (Duan
et al., 2024) as the evaluation framework. The max-turn set to 10 for evaluation and 6 for training.
Additional implementation details are provided in Appendix A.

4.1 VISUAL REASONING TASKS

Table 2: Comprehensive results across math
reasoning benchmarks. † Reported results from
their official papers.

Model Math-Benchmark
MathVision MathVista MathVerse WeMath

Closed-Source MLLMs
GPT-4o 36.5 63.4 35.3 44.2
Qwen2.5-VL-72B 38.1 74.8 57.6 -

Open-Source Reasoning MLLMs

R1-Onevision-7B † 29.9 64.1 40.0 -
R1-VL-7B† 24.7 63.5 40.0 -

Open-Source General MLLMs
InternVL2.5-8B 22.0 64.4 39.5 23.9
Llava-OV-7B 18.4 63.2 26.2 17.3
Qwen2.5-VL-7B 25.0 68.1 45.1 35.4
Deepeyes-7B 26.6 70.1 47.3 38.9
ExeVision-7B (Ours) 29.6 70.3 46.8 39.6

As shown in Table 1, ExeVision attains strong re-
sults across diverse visual reasoning benchmarks,
including counting, visual search, and chart under-
standing. Notably, it achieves state-of-the-art per-
formance on Counting and ChartQA, outperform-
ing the baseline by a large margin and surpassing
even larger models. These improvements high-
light the advantage of executable code as a rea-
soning medium: by delegating fine-grained visual
analysis to code-based tools, it extends beyond the
raw perceptual capacity of the base model, yield-
ing gains that cannot be achieved through scaling
alone, particularly on perception-heavy tasks.

4.2 MATH REASONING TASKS

In mathematical reasoning, ExeVision shows consistent gains over open-source baselines (see Ta-
ble 2). For instance, it improves accuracy on MathVision from 25.0 to 29.6 (+18.4%) and on
WeMath from 35.4 to 39.6 (+11.9%), while maintaining competitive results on other benchmarks.
These tasks require precise symbolic manipulation and stepwise calculations, which are naturally
supported by executable code. By externalizing intermediate steps into verifiable scripts, ExeVision
demonstrate strong accuracy and reliability than relying solely on internal approximation.

4.3 KEY FINDINGS: EMERGENT BEHAVIORS DURING RL

Throughout the RL process, we observe empirical novel and surprising findings (shown in Figure 3)
that go beyond the atomic supervision provided during SFT. These findings point toward the scala-
bility of code as a general reasoning medium.

Cross-domain tool transfer. We observe an emergent generalization ability in our ExeVision,
where visual operations defined for a specific task can be repurposed in other contexts. For example,
the bounding-box operation was initially designed to highlight particular results within chart tasks
in our SFT data. However, the model demonstrates the ability to adapt this operation for counting
tasks during RL training: e.g. In Figure 3A, the MLLM assistant first localizes all candidate objects
by drawing bounding boxes, then validates the correctness of each localization, and subsequently
derives the final count. More tool transfer trajectories can be found in Appendix Figure 11. Such
behavior indicates that task-specific visual operations are not rigidly bound to their original purpose,
but can be flexibly generalized to support broader multimodal reasoning scenarios. This suggests
that visual operations such as bounding boxes can function as general reasoning primitives, serving
as transferable building blocks across heterogeneous tasks.

Novel tool composition of learnt capabilities. Although during SFT data curation and collec-
tion, each task was restricted to a single predefined tool or coding operation, we observe that after

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Ablation study on reward design. We report accuracy and average turns in trajectories.
Here, we note that in this ablation study we only train 150 steps due to compute constraints.

Components CountBench
Acc. / Turns

PixmoCount
Acc. / Turns

MathVision
Acc. / Turns

MathVerse
Acc. / Turns

V*
Acc. / Turns

HR4K
Acc. / Turns

HR8K
Acc. / Turns

Avg.
Acc. / Turns

SFT Cold-Start (w/o RL)
85.3
0.2749

66.9
0.3902

23.0
1.8388

41.4
1.1904

82.7
1.0052

72.1
0.1713

67.1
0.0875

62.6
0.7083

RL with Racc+Rformat
88.4
0.0200

71.2
0.0170

26.0
1.1086

46.5
0.9569

82.7
0.1728

73.4
0.0413

69.0
0.0375

65.3
0.3363

+RDeepEyes (Zheng et al., 2025)
85.1
1.5960

64.4
1.5341

25.2
2.2270

44.0
1.5190

83.3
1.0000

74.6
1.0888

68.4
1.0525

63.6
1.4311

+RBAT (Ours) 89.0
0.0000

72.5
0.0000

27.0
1.0461

46.3
1.1662

82.7
0.2094

73.8
0.2251

69.4
0.1950

65.8
0.4060

post-training the model develops the ability to compose multiple atomic operations to address more
complex tasks beyond the training coverage: In Figure 3B, to validate the color of the house, the
MLLM assistant first applies a pointing operation to check the house position correctness, then use
crop with zoom-in to focus on fine-grained details. Similarly, in Appendix Figure 12, the bounding-
box drawing and crops are combined to focus and solve the chart reasoning task. These observations
highlight the emergence of novel tool compositions, where elementary visual operations are flexibly
combined to form higher-level reasoning strategies.

Incentivizing emergence of novel unseen capabilities. Interestingly, we also find that the model
exhibits a certain potential to generate tool codes not explicitly defined in the SFT data. These codes
appear to be drawn from the model’s pretraining knowledge and are occasionally activated during the
post-training stage. For example, when asked to count the number of headsets in an image (Figure
3C), the MLLM does not directly respond with a number, but instead attempts to write Python code
with OpenCV functions (e.g., using cv2.rectangle to overlay a grid for better visualization).
This observation suggests that, beyond reproducing SFT-defined behaviors, the model attempts to
reuse and adapt pretrained capabilities (e.g. complex OpenCV operations) to support reasoning
tasks, indicating a certain potential for more flexible tool usage.

4.4 ABLATION STUDIES

44

52

60

68

76

84

92

100

5K 10K 20K 34K

Math Reasoninig
Visual Search
General

69

74

78

83

87

91

96

100

40 60 80 100 120 140 160 200 240

CountBench
Pixmo
V*

Acc (after SFT). vs. # training data Acc. vs. # RL Steps

50

60

70

80

90

100

V* Bench Pixmo CountBenchQA

Qwen-2.5-VL-7B
ExeVision-3B
ExeVision-7B

Acc. vs. Model Capacity
100

80

60

40

20

Percentage (%) vs. Num_turns

[1, 2] [3, 4] [5, 6] [6, 6+)

23.4% / 55.3%

64.6% / 23.7%

4.9% / 10.5%

5.1% / 4.1%

0.7% / 2.0%

 Incorrect (MathVision)
 Correct (MathVision)
 Incorrect (MathVista)
 Correct (MathVista)

1.2% / 0.8%

0.3% / 3.0%

0.2% / 0.3%

Figure 4: Scaling analysis on four dimensions:
data size for SFT, number of RL steps, base model
capacity and max-turns during inference.

Reward Design of RBAT. We compare three re-
ward designs for guiding tool usage (Table 3):
(i) GRPO-reward (Outcome-level reward) fo-
cuses only on final-answer correctness. While
it shortens interaction turns, it discourages tool
usage and underperforms on complex tasks. (ii)
Deepeyes reward grants positive signals for ev-
ery successful tool execution upon accurate an-
swer. Although this encourages exploration,
it also leads to tool overuse on trivial prob-
lems, increasing turns without consistent accu-
racy gains. A qualitative example is provided
in Figure 9. (iii) Our reward RBAT for adaptive
tool-call balances the two extremes by penal-
izing redundant calls and rewarding selective,
high-impact interactions.

As shown in Table 3, outcome-only GRPO
under-utilizes tools, and the code reward in-
flates turns without reliable accuracy improve-
ment. In contrast, RBAT achieves the best over-
all accuracy while avoiding unnecessary tool
use, consistently surpassing both baselines.

Scaling up experiments. We study how performance scales along four axes: (i) data size for SFT,
(ii) RL optimization length, (iii) model capacity, and (iv) inference turn budget (max-turn), as sum-
marized in Figure 4. Key observations are: (1) Enlarging the SFT dataset from 5K/10K/20K to 34K
yields steady accuracy gains, showing that both tool selection and symbolic planning benefit from

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

 Ours w/ Turn-level reward
 Ours w/o Turn-level reward

Step

En
tro

py

Step

 Ours w/ Turn-level reward
 Ours w/o Turn-level reward

Figure 5: We study the impact of turn-level reward in RBAT on several benchmarks, mainly including
visual search (V∗), math reasoning (MathVista, MathVerse, MathVision), PixmoCount and Count-
BenchQA. Left: Entropy of model’s generation probabilities. Right: Mean validation accuracy.

broader coverage. (2) Extending RL training up to 240 steps further improves accuracy without
overfitting, supported by our reward design RBAT. (3) Increasing model capacity from 3B to 7B
substantially boosts reasoning benchmarks such as counting and search, with ExeVision-3B even
outperforming a stronger Qwen-2.5-VL 7B model. (4) Although the RL training was conducted
with a maximum of 6 turns, we observe that allowing more turns at inference (e.g., 10) continues to
improve reasoning performance. As shown in Figure 4, the model achieves additional gains even be-
yond 6 turns (0.3%), suggesting that the learned policy can generalize to longer reasoning horizons
than seen during training.

Entropy and Accuracy. Figure 5 evaluates the impact of incorporating turn-level reward (Rturn)
on training dynamics and generalization across visual search, math reasoning, and counting bench-
marks. (a) Entropy: Without Rturn, policy entropy collapses quickly because flawed intermediate
steps may still lead to correct final answers, reinforcing shortcuts and limiting exploration (Yu et al.,
2025). With Rturn, intermediate penalties delay collapse, sustaining exploration. (b) Validation
Accuracy: The additional corrective signals prevent premature convergence and translate into con-
sistently higher accuracy, showing that local feedback improves global generalization.

5 DISCUSSION

We present ExeVision, a framework that leverages executable code as a universal solver for mul-
timodal reasoning. By allowing MLLMs to define, compose, and execute code, it enables flexible
visual reasoning, adaptive multi-tool use, and interpretable intermediate artifacts. Beyond the atomic
skills taught in supervision, we observe emergent behaviors during RL training, including novel tool
routines, compositional strategies, and spontaneous cross-domain transfer. To guide this process,
we introduce RBAT (Reward for Balanced Adaptive Tool-call), which balances exploration with ef-
ficiency and mitigates tool overuse. Even at the 7B scale, ExeVision achieves competitive results
across diverse benchmarks, and our experiments reveal encouraging scalability with larger data,
longer training, and bigger models. Together, these findings highlight executable code as a powerful
reasoning medium and point toward scalable, verifiable, and transferable multimodal AI systems.

Future Work. Our framework demonstrates the potential of multimodal reasoning models to sup-
port natural conversations with seamless and proactive tool use through executable code, thereby
enabling more advanced problem-solving capabilities. Looking ahead, we envision that the ability
to “think with images” will evolve beyond the vision modality and fixed schemas, fostering novel
tool discovery and the spontaneous composition of tools in a more generalized and efficient manner.
Such directions may ultimately pave the way toward multimodal agents that are both versatile and
adaptive across diverse domains.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not involve human subjects, personally identifiable information, or sensitive data.
Our study focuses on methodological advances in multimodal reasoning with MLLMs, and, to our
knowledge, we are not aware of any direct ethical concerns related to its development or findings.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. Implementation details
of our approach are provided in Section 4, and the pipeline for dataset synthesis is described in
Section 3.3. Prompts in training / data synthesis are documented in Appendix A.4. In addition,
we release model checkpoints and example code as supplementary materials. Together, we believe
these resources should enable readers to reproduce our main results and analyses.

REFERENCES

Jean-Baptiste Alayrac, Jeff Donahue, Pauline Luc, Antoine Miech, Iain Barr, Yana Hasson, Karel
Lenc, Arthur Mensch, Katherine Millican, Malcolm Reynolds, et al. Flamingo: a visual language
model for few-shot learning. Advances in neural information processing systems, 35:23716–
23736, 2022.

Jinze Bai, Shuai Bai, Shusheng Yang, Shijie Wang, Sinan Tan, Peng Wang, Junyang Lin, Chang
Zhou, and Jingren Zhou. Qwen-vl: A versatile vision-language model for understanding, local-
ization, text reading, and beyond. arXiv preprint arXiv:2308.12966, 2023.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, Humen Zhong, Yuanzhi Zhu, Mingkun Yang, Zhaohai Li, Jianqiang Wan,
Pengfei Wang, Wei Ding, Zheren Fu, Yiheng Xu, Jiabo Ye, Xi Zhang, Tianbao Xie, Zesen Cheng,
Hang Zhang, Zhibo Yang, Haiyang Xu, and Junyang Lin. Qwen2.5-vl technical report. arXiv
preprint arXiv:2502.13923, 2025a.

Shuai Bai, Keqin Chen, Xuejing Liu, Jialin Wang, Wenbin Ge, Sibo Song, Kai Dang, Peng Wang,
Shijie Wang, Jun Tang, et al. Qwen2. 5-vl technical report. arXiv preprint arXiv:2502.13923,
2025b.

Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. Advances in neural information processing systems, 33:1877–1901, 2020.

Lin Chen, Jinsong Li, Xiaoyi Dong, Pan Zhang, Conghui He, Jiaqi Wang, Feng Zhao, and Dahua
Lin. Sharegpt4v: Improving large multi-modal models with better captions. In European Confer-
ence on Computer Vision, pp. 370–387. Springer, 2024.

Xinyan Chen, Renrui Zhang, Dongzhi Jiang, Aojun Zhou, Shilin Yan, Weifeng Lin, and Hongsheng
Li. Mint-cot: Enabling interleaved visual tokens in mathematical chain-of-thought reasoning.
arXiv preprint arXiv:2506.05331, 2025.

Jiwan Chung, Junhyeok Kim, Siyeol Kim, Jaeyoung Lee, Min Soo Kim, and Youngjae Yu. Don’t
look only once: Towards multimodal interactive reasoning with selective visual revisitation. arXiv
preprint arXiv:2505.18842, 2025.

Wenliang Dai, Junnan Li, Dongxu Li, Anthony Tiong, Junqi Zhao, Weisheng Wang, Boyang Li,
Pascale N Fung, and Steven Hoi. Instructblip: Towards general-purpose vision-language models
with instruction tuning. Advances in neural information processing systems, 36:49250–49267,
2023.

Matt Deitke, Christopher Clark, Sangho Lee, Rohun Tripathi, Yue Yang, Jae Sung Park, Moham-
madreza Salehi, Niklas Muennighoff, Kyle Lo, Luca Soldaini, et al. Molmo and pixmo: Open
weights and open data for state-of-the-art vision-language models. In Proceedings of the Com-
puter Vision and Pattern Recognition Conference, pp. 91–104, 2025.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Haodong Duan, Junming Yang, Yuxuan Qiao, Xinyu Fang, Lin Chen, Yuan Liu, Xiaoyi Dong,
Yuhang Zang, Pan Zhang, Jiaqi Wang, et al. Vlmevalkit: An open-source toolkit for evaluat-
ing large multi-modality models. In Proceedings of the 32nd ACM international conference on
multimedia, pp. 11198–11201, 2024.

Jiazhan Feng, Shijue Huang, Xingwei Qu, Ge Zhang, Yujia Qin, Baoquan Zhong, Chengquan Jiang,
Jinxin Chi, and Wanjun Zhong. Retool: Reinforcement learning for strategic tool use in llms.
arXiv preprint arXiv:2504.11536, 2025.

Wei Fu, Jiaxuan Gao, Xujie Shen, Chen Zhu, Zhiyu Mei, Chuyi He, Shusheng Xu, Guo Wei, Jun
Mei, Jiashu Wang, et al. Areal: A large-scale asynchronous reinforcement learning system for
language reasoning. arXiv preprint arXiv:2505.24298, 2025.

Jiahui Gao, Renjie Pi, Jipeng Zhang, Jiacheng Ye, Wanjun Zhong, Yufei Wang, Lanqing Hong,
Jianhua Han, Hang Xu, Zhenguo Li, et al. G-llava: Solving geometric problem with multi-modal
large language model. arXiv preprint arXiv:2312.11370, 2023.

Zonghao Guo, Ruyi Xu, Yuan Yao, Junbo Cui, Zanlin Ni, Chunjiang Ge, Tat-Seng Chua, Zhiyuan
Liu, and Gao Huang. Llava-uhd: an lmm perceiving any aspect ratio and high-resolution images.
In European Conference on Computer Vision, pp. 390–406. Springer, 2024.

Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In Proceed-
ings of the IEEE/CVF international conference on computer vision, pp. 4015–4026, 2023.

Jongwoo Ko, Sungnyun Kim, Sungwoo Cho, and Se-Young Yun. Flex-judge: Think once, judge
anywhere. arXiv preprint arXiv:2505.18601, 2025.

Woosuk Kwon, Zhuohan Li, Siyuan Zhuang, Ying Sheng, Lianmin Zheng, Cody Hao Yu, Joseph E.
Gonzalez, Hao Zhang, and Ion Stoica. Efficient memory management for large language model
serving with pagedattention. In Proceedings of the ACM SIGOPS 29th Symposium on Operating
Systems Principles, 2023.

Mengcheng Lan, Chaofeng Chen, Yue Zhou, Jiaxing Xu, Yiping Ke, Xinjiang Wang, Litong Feng,
and Wayne Zhang. Text4seg: Reimagining image segmentation as text generation. arXiv preprint
arXiv:2410.09855, 2024.

Bo Li, Yuanhan Zhang, Dong Guo, Renrui Zhang, Feng Li, Hao Zhang, Kaichen Zhang, Peiyuan
Zhang, Yanwei Li, Ziwei Liu, et al. Llava-onevision: Easy visual task transfer. arXiv preprint
arXiv:2408.03326, 2024a.

Dongxu Li, Yudong Liu, Haoning Wu, Yue Wang, Zhiqi Shen, Bowen Qu, Xinyao Niu, Fan Zhou,
Chengen Huang, Yanpeng Li, et al. Aria: An open multimodal native mixture-of-experts model.
arXiv preprint arXiv:2410.05993, 2024b.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi. Blip-2: Bootstrapping language-image
pre-training with frozen image encoders and large language models. In International conference
on machine learning, pp. 19730–19742. PMLR, 2023.

Qianlong Li, Chen Huang, Shuai Li, Yuanxin Xiang, Deng Xiong, and Wenqiang Lei. Graphot-
ter: Evolving llm-based graph reasoning for complex table question answering. arXiv preprint
arXiv:2412.01230, 2024c.

Yunxin Li, Shenyuan Jiang, Baotian Hu, Longyue Wang, Wanqi Zhong, Wenhan Luo, Lin Ma,
and Min Zhang. Uni-moe: Scaling unified multimodal llms with mixture of experts. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 2025.

Haotian Liu, Chunyuan Li, Qingyang Wu, and Yong Jae Lee. Visual instruction tuning. Advances
in neural information processing systems, 36:34892–34916, 2023.

Haotian Liu, Chunyuan Li, Yuheng Li, and Yong Jae Lee. Improved baselines with visual instruction
tuning. In Proceedings of the IEEE/CVF conference on computer vision and pattern recognition,
pp. 26296–26306, 2024.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Pan Lu, Hritik Bansal, Tony Xia, Jiacheng Liu, Chunyuan Li, Hannaneh Hajishirzi, Hao Cheng, Kai-
Wei Chang, Michel Galley, and Jianfeng Gao. Mathvista: Evaluating mathematical reasoning of
foundation models in visual contexts. arXiv preprint arXiv:2310.02255, 2023.

Ahmed Masry, Do Xuan Long, Jia Qing Tan, Shafiq Joty, and Enamul Hoque. Chartqa: A bench-
mark for question answering about charts with visual and logical reasoning. arXiv preprint
arXiv:2203.10244, 2022.

Ahmed Masry, Megh Thakkar, Aayush Bajaj, Aaryaman Kartha, Enamul Hoque, and Shafiq
Joty. Chartgemma: Visual instruction-tuning for chart reasoning in the wild. arXiv preprint
arXiv:2407.04172, 2024.

Ahmed Masry, Mohammed Saidul Islam, Mahir Ahmed, Aayush Bajaj, Firoz Kabir, Aaryaman
Kartha, Md Tahmid Rahman Laskar, Mizanur Rahman, Shadikur Rahman, Mehrad Shahmoham-
madi, et al. Chartqapro: A more diverse and challenging benchmark for chart question answering.
arXiv preprint arXiv:2504.05506, 2025.

Fanqing Meng, Lingxiao Du, Zongkai Liu, Zhixiang Zhou, Quanfeng Lu, Daocheng Fu, Tiancheng
Han, Botian Shi, Wenhai Wang, Junjun He, et al. Mm-eureka: Exploring the frontiers of multi-
modal reasoning with rule-based reinforcement learning. arXiv preprint arXiv:2503.07365, 2025.

OpenAI. Openai o3 and o4-mini system card. https://cdn.
openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/
o3-and-o4-mini-system-card.pdf, April 2025. System Card.

Roni Paiss, Ariel Ephrat, Omer Tov, Shiran Zada, Inbar Mosseri, Michal Irani, and Tali Dekel.
Teaching CLIP to Count to Ten. arXiv preprint arXiv:2302.12066, 2023.

Runqi Qiao, Qiuna Tan, Guanting Dong, Minhui Wu, Chong Sun, Xiaoshuai Song, Zhuoma
GongQue, Shanglin Lei, Zhe Wei, Miaoxuan Zhang, et al. We-math: Does your large multi-
modal model achieve human-like mathematical reasoning? arXiv preprint arXiv:2407.01284,
2024.

Timo Schick, Jane Dwivedi-Yu, Roberto Dessı̀, Roberta Raileanu, Maria Lomeli, Eric Hambro,
Luke Zettlemoyer, Nicola Cancedda, and Thomas Scialom. Toolformer: Language models can
teach themselves to use tools. Advances in Neural Information Processing Systems, 36:68539–
68551, 2023.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Zhihong Shao, Peiyi Wang, Qihao Zhu, Runxin Xu, Junxiao Song, Xiao Bi, Haowei Zhang,
Mingchuan Zhang, YK Li, Yang Wu, et al. Deepseekmath: Pushing the limits of mathemati-
cal reasoning in open language models. arXiv preprint arXiv:2402.03300, 2024.

Noam Shazeer, Azalia Mirhoseini, Krzysztof Maziarz, Andy Davis, Quoc Le, Geoffrey Hinton,
and Jeff Dean. Outrageously large neural networks: The sparsely-gated mixture-of-experts layer.
arXiv preprint arXiv:1701.06538, 2017.

Yongliang Shen, Kaitao Song, Xu Tan, Dongsheng Li, Weiming Lu, and Yueting Zhuang. Hugging-
gpt: Solving ai tasks with chatgpt and its friends in hugging face. Advances in Neural Information
Processing Systems, 36:38154–38180, 2023.

Guangming Sheng, Chi Zhang, Zilingfeng Ye, Xibin Wu, Wang Zhang, Ru Zhang, Yanghua Peng,
Haibin Lin, and Chuan Wu. Hybridflow: A flexible and efficient rlhf framework. arXiv preprint
arXiv: 2409.19256, 2024.

Alex Su, Haozhe Wang, Weiming Ren, Fangzhen Lin, and Wenhu Chen. Pixel reasoner: In-
centivizing pixel-space reasoning with curiosity-driven reinforcement learning. arXiv preprint
arXiv:2505.15966, 2025a.

Zhaochen Su, Linjie Li, Mingyang Song, Yunzhuo Hao, Zhengyuan Yang, Jun Zhang, Guanjie
Chen, Jiawei Gu, Juntao Li, Xiaoye Qu, et al. Openthinkimg: Learning to think with images via
visual tool reinforcement learning. arXiv preprint arXiv:2505.08617, 2025b.

12

https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf
https://cdn.openai.com/pdf/2221c875-02dc-4789-800b-e7758f3722c1/o3-and-o4-mini-system-card.pdf

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Dı́dac Surı́s, Sachit Menon, and Carl Vondrick. Vipergpt: Visual inference via python execution
for reasoning. In Proceedings of the IEEE/CVF international conference on computer vision, pp.
11888–11898, 2023.

Ke Wang, Junting Pan, Weikang Shi, Zimu Lu, Houxing Ren, Aojun Zhou, Mingjie Zhan, and
Hongsheng Li. Measuring multimodal mathematical reasoning with math-vision dataset. In The
Thirty-eight Conference on Neural Information Processing Systems Datasets and Benchmarks
Track, 2024a. URL https://openreview.net/forum?id=QWTCcxMpPA.

Wenbin Wang, Liang Ding, Minyan Zeng, Xiabin Zhou, Li Shen, Yong Luo, and Dacheng Tao.
Divide, conquer and combine: A training-free framework for high-resolution image perception
in multimodal large language models. arXiv preprint, 2024b. URL https://arxiv.org/
abs/2408.15556.

Ye Wang, Qianglong Chen, Zejun Li, Siyuan Wang, Shijie Guo, Zhirui Zhang, and Zhongyu Wei.
Simple o3: Towards interleaved vision-language reasoning. arXiv preprint arXiv:2508.12109,
2025.

Jason Wei, Maarten Bosma, Vincent Y Zhao, Kelvin Guu, Adams Wei Yu, Brian Lester, Nan Du,
Andrew M Dai, and Quoc V Le. Finetuned language models are zero-shot learners. arXiv preprint
arXiv:2109.01652, 2021.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny
Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. Advances in
neural information processing systems, 35:24824–24837, 2022.

Chenfei Wu, Shengming Yin, Weizhen Qi, Xiaodong Wang, Zecheng Tang, and Nan Duan. Vi-
sual chatgpt: Talking, drawing and editing with visual foundation models. arXiv preprint
arXiv:2303.04671, 2023.

Penghao Wu and Saining Xie. V?: Guided visual search as a core mechanism in multimodal llms.
In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pp.
13084–13094, 2024.

Zhengyuan Yang, Linjie Li, Jianfeng Wang, Kevin Lin, Ehsan Azarnasab, Faisal Ahmed, Zicheng
Liu, Ce Liu, Michael Zeng, and Lijuan Wang. Mm-react: Prompting chatgpt for multimodal
reasoning and action. arXiv preprint arXiv:2303.11381, 2023.

Huanjin Yao, Jiaxing Huang, Wenhao Wu, Jingyi Zhang, Yibo Wang, Shunyu Liu, Yingjie Wang,
Yuxin Song, Haocheng Feng, Li Shen, et al. Mulberry: Empowering mllm with o1-like reasoning
and reflection via collective monte carlo tree search. arXiv preprint arXiv:2412.18319, 2024.

Shunyu Yao, Jeffrey Zhao, Dian Yu, Nan Du, Izhak Shafran, Karthik Narasimhan, and Yuan Cao.
React: Synergizing reasoning and acting in language models. arXiv preprint arXiv:2210.03629,
2022.

Edward Yeo, Yuxuan Tong, Morry Niu, Graham Neubig, and Xiang Yue. Demystifying long chain-
of-thought reasoning in llms. arXiv preprint arXiv:2502.03373, 2025.

Qiying Yu, Zheng Zhang, Ruofei Zhu, Yufeng Yuan, Xiaochen Zuo, Yu Yue, Weinan Dai, Tiantian
Fan, Gaohong Liu, Lingjun Liu, et al. Dapo: An open-source llm reinforcement learning system
at scale. arXiv preprint arXiv:2503.14476, 2025.

Jingyi Zhang, Jiaxing Huang, Huanjin Yao, Shunyu Liu, Xikun Zhang, Shijian Lu, and Dacheng
Tao. R1-vl: Learning to reason with multimodal large language models via step-wise group
relative policy optimization. arXiv preprint arXiv:2503.12937, 2025a.

Renrui Zhang, Dongzhi Jiang, Yichi Zhang, Haokun Lin, Ziyu Guo, Pengshuo Qiu, Aojun Zhou,
Pan Lu, Kai-Wei Chang, Yu Qiao, et al. Mathverse: Does your multi-modal llm truly see the
diagrams in visual math problems? In European Conference on Computer Vision, pp. 169–186.
Springer, 2024a.

Xiang Zhang, Juntai Cao, and Chenyu You. Counting ability of large language models and impact
of tokenization. arXiv preprint arXiv:2410.19730, 2024b.

13

https://openreview.net/forum?id=QWTCcxMpPA
https://arxiv.org/abs/2408.15556
https://arxiv.org/abs/2408.15556

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Xintong Zhang, Zhi Gao, Bofei Zhang, Pengxiang Li, Xiaowen Zhang, Yang Liu, Tao Yuan, Yuwei
Wu, Yunde Jia, Song-Chun Zhu, et al. Chain-of-focus: Adaptive visual search and zooming for
multimodal reasoning via rl. arXiv preprint arXiv:2505.15436, 2025b.

Yi-Fan Zhang, Xingyu Lu, Shukang Yin, Chaoyou Fu, Wei Chen, Xiao Hu, Bin Wen, Kaiyu
Jiang, Changyi Liu, Tianke Zhang, et al. Thyme: Think beyond images. arXiv preprint
arXiv:2508.11630, 2025c.

Yuze Zhao, Jintao Huang, Jinghan Hu, Xingjun Wang, Yunlin Mao, Daoze Zhang, Zeyinzi Jiang,
Zhikai Wu, Baole Ai, Ang Wang, Wenmeng Zhou, and Yingda Chen. Swift:a scalable lightweight
infrastructure for fine-tuning, 2024. URL https://arxiv.org/abs/2408.05517.

Ziwei Zheng, Michael Yang, Jack Hong, Chenxiao Zhao, Guohai Xu, Le Yang, Chao Shen, and
Xing Yu. Deepeyes: Incentivizing “thinking with images” via reinforcement learning. arXiv
preprint arXiv:2505.14362, 2025.

Deyao Zhu, Jun Chen, Xiaoqian Shen, Xiang Li, and Mohamed Elhoseiny. Minigpt-4: En-
hancing vision-language understanding with advanced large language models. arXiv preprint
arXiv:2304.10592, 2023.

Xin Zou, Yizhou Wang, Yibo Yan, Yuanhuiyi Lyu, Kening Zheng, Sirui Huang, Junkai Chen,
Peijie Jiang, Jia Liu, Chang Tang, et al. Look twice before you answer: Memory-space vi-
sual retracing for hallucination mitigation in multimodal large language models. arXiv preprint
arXiv:2410.03577, 2024.

APPENDIX

Here, we provide additional materials to complement the main paper. In particular, we include
additional implementation settings (e.g., pipeline and examples of the trajectory construction, train-
ing setups, and hyper-parameters), further descriptions and comparisons of our curated datasets,
additional qualitative and quantitative results on various benchmarks, and extended discussions on
design choices, limitations, and broader impacts. These supplementary materials aim to enhance
reproducibility, transparency, and provide deeper insights into our proposed framework, and the
empirical findings revealed in our comprehensive experiments.

BROADER DISCUSSION

Why code-based tool use, rather than API-style calls? We adopt Python code as the medium for
tool use because it provides a universal and compositional interface. Unlike fixed API schemas, code
naturally supports both tool invocation and program logic (e.g., sequencing, conditionals, loops, nu-
merical computation). This richer interface allows models to flexibly define and combine operations,
and it produces transparent and verifiable execution traces that can be systematically inspected. In
practice, code also makes extension straightforward: adding a new tool only requires exposing its
API, without redesigning templates, retraining connectors, or engineering complex prompts.

Why a single dense model, rather than an agent pipeline? A unified dense model offers several
practical advantages over modular agent workflows: (1) it avoids error propagation across multiple
components by learning an end-to-end interface; (2) it achieves lower latency and compute cost,
since reasoning and tool orchestration are handled in a single forward pass; (3) it is more robust,
as performance does not hinge on the reliability of each sub-module; and (4) it benefits from a
unified optimization target, whereas agent systems often require additional policies or connectors to
be separately tuned.

In addition, given realistic compute constraints, most of our experiments in this work are conducted
with 7B-scale models (e.g., Qwen-2.5-VL-7B), where we already observe promising effects: consis-
tent gains across general understanding and complex reasoning benchmarks, and the emergence of
new behaviors (e.g., novel tool use and tool compositions of atomic skills to new tasks). These em-
pirical observations are easier to scale within a single dense model, while agent pipelines introduce
many interacting modules that complicate both training and deployment. Overall, our design favors
simplicity, efficiency, and scalability, making it a more practical foundation for future progress.

14

https://arxiv.org/abs/2408.05517

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Response …

Persistent execution environment

Reasoning Code Reasoning Code Response Reasoning Code Response

Rturn,2 Rturn,m+1

Turn1 Turn2 Turn t

…

…

Reasoning Answer

A1
turn A2

turn Am
turn

Aseq

Turn-Level

Sequence-Level

Rturn,mRturn,1
Am+1

turn

Figure 6: Illustration of our reward design RBAT: Rseq adjusts tool-use incentives based on group-
level accuracy, while Rturn provides step-level penalties for failed executions. Details in Section 3.2.

A ADDITIONAL IMPLEMENTATION DETAILS

A.1 FORMULATION OF STANDARD GRPO IN OUR IMPLEMENTATION

Here, we reveal additional implementation details regarding the RL algorithm used in our work.
Group Relative Policy Optimization (GRPO, Shao et al. (2024)) has demonstrated strong effec-
tiveness across diverse tasks, particularly in multi-turn tool call agents and “thinking with images”
system (Feng et al., 2025; Fu et al., 2025; Zheng et al., 2025; Su et al., 2025a). Unlike PPO (Schul-
man et al., 2017), GRPO removes the need for a separate value network by directly computing
advantages from the normalized rewards of G sampled solutions. Formally, let πθold and πθ denote
the policy model (parameterized by θ) before and after the update, respectively, both defined over
the action/token space at each position. For a question q sampled from a task dataset Q, a group of
G candidate solutions τi ∼ πθold are rollouted and evaluated with a reward function r(·). Building on
the clipped surrogate objective of PPO, we write the objective J in an empirical expectation form:
JGRPO(θ) = Eq∼Q, {τi}Gi=1∼πθold

(·|q)[
1

G

G∑
i=1

1

|τi|

|τi|∑
t=1

min
(πθ(τi,t | q, τi,<t)

πθold(τi,t | q, τi,<t)
Ai, clip

(πθ(τi,t | q, τi,<t)

πθold(τi,t | q, τi,<t)
, 1− ε, 1 + ε

)
Ai

)] (3)

where ε = 0.2 by default, and clip(·) denotes the clipping operator for stability. We omit the KL
penalty here. The normalized within-group reward then defines the advantage Ai of solution τi:

Ai =
r(τi)− mean({r(τj)}Gj=1)

std({r(τj)}Gj=1)
. (4)

In our framework, we mostly followed the original implementation of GRPO (Shao et al., 2024) to
compute outcome-driven advantage Aseq .

A.2 HYPER PARAMETERS

In Table 4 we present the additional hyperparameters used for training our model on the multimodal
reasoning tasks. We primarily adhere to the same settings as Qwen2.5-VL (Bai et al., 2025a), and
these parameters are mostly applied across other tasks.

A.3 ADDITONAL DICUSSION OF DATASET CURATION

Here, we discuss several related works on data synthesis for MLLM training, then we include addi-
tonal details of our dataset curation pipeline.

Synthetic reasoning data for MLLM post-training. High-performance MLLMs require substan-
tial instruction-following training data with detailed reasoning trajectories. Recent approaches in-
clude converting existing datasets using fixed templates (Wei et al., 2021; Dai et al., 2023) or dis-
tilling knowledge from strong teacher models (Chen et al., 2024; Zhang et al., 2025c; Wang et al.,

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Table 4: Hyper-parameters and training settings for multimodal reasoning task.

Param. Name Value / Type

SFT

Batch size 128
Learning rate 5e-5
Warmup ratio 0.05

RL

Numerical precision BF16
Global batch size 256
Rollout 8
Total epochs 1
GPUs NVIDIA H100 GPU (80G) × 16
Time About 2 Days

Inference & Eval Deployment platform vLLM (Kwon et al., 2023)

2025), with focus on developing specific capabilities such as visual-centric reasoning (Lan et al.,
2024) and mathematical problem-solving assisted by visual cues (Gao et al., 2023; Chen et al.,
2025). However, several limitations persist in existing approaches: (i) tool-grounded verification
mechanisms are often absent, and (ii) visual operations are typically limited to fixed schema such as
cropping or zooming in (Zheng et al., 2025; Su et al., 2025a). In contrast, we synthesize and curate
training data with comprehensive reasoning trajectories and tool/code-assisted responses across a
wide range of atomic visual operations, employing enhanced process supervision including multi-
judge filtering and consistency validation. This leads to “thinking with images” reasoning capabil-
ity (OpenAI, 2025) with competitive performance while requiring substantially less training data.

The data used for our synthesis pipeline is primarily composed of the following datasets:

• Mathematical Reasoning: MMK12 (Meng et al., 2025), Retool (Feng et al., 2025).

• Table Data: ChartQAPro (Masry et al., 2025), chartgemma (Masry et al., 2024).

• Natural Images: SA1B (Kirillov et al., 2023).

• General Data: Mulberry (Yao et al., 2024).

In addition, our RL data mainly comes from Deepeyes (Zheng et al., 2025), SA1B (Kirillov et al.,
2023) and Pixmo-count train (Deitke et al., 2025).

A.4 PROMPT TEMPLATES

Prompt templates used in RL training. Here, we provide the RL training prompt template in
Appendix Table 5. This template illustrates the input–output format and executable code constraints
used during RL rollouts, offering additional transparency and reproducibility of our training setup.

Table 5: Prompt template for Reinforcement Learning Rollout.

User. <image> Question: {question}
Think step-by-step within <think></think>. You now have the ability to selectively write
executable Python code to enhance your reasoning process. The Python code should be com-
plete scripts, including necessary imports.
Each code snippet is wrapped with
<code>
‘‘‘python
code snippet
‘‘‘
</code>

You must provide your final answer in <answer></answer>.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Data Filtering

Mathematics Visual

ScienceChart

Inspector

Annotator

Quality
…

Correct

Retry

Weak LVLM
Strong LVLM

Medium Dataset

Hard Dataset

(a) Predefined operations (b) Mathematics (c) Open-ended operations

VLM

Language CoT

Feedback

Code Snippet

Questions

Multi-turns samples

Verifier

VLM

Interpreter

Operations

Answer

Fe
ed

ba
ck

Instruct

VLM

Single-turns samples
Multi-turns
samples

(1) Medium Data (2) Hard Data Language CoT

Decompose

Multi-turns samples

Step1. Let’s…

StepN. Answer…
….

Code Snippets

import sympy as sp
Let t be a symbolic variable
t = sp.symbols('t')

Matrix M with rows as barycentric coordinates
of D, E, F
M = sp.Matrix([
 [1/2, (1-t)/2, t/2],
 [1/4, (3-t)/4, t/4],
 [1/8, (3-t)/8, (4+t)/8]
])
Compute the determinant
det_M = M.det()
Print the symbolic determinant
print("Determinant:", det_M)

from PIL import Image,
ImageDraw

image = input_image
draw = ImageDraw.Draw(image)
Draw a red horizontal line at the
75-case level (y=131)
draw.line([(0, 131), (image.width,
131)], fill="red", width=2)

The first peak above the line is
at x-coordinate ~575.
draw.rectangle([(570, 95), (585,
350)], outline="blue", width=3)
image.show()

from PIL import Image

img = Image.open('input_image.jpg')
bbox_2d = [1478, 924, 1543, 982]
sub_img = img.crop(bbox_2d)
x1, y1, x2, y2 = bbox_2d
bbox_w = x2 - x1
bbox_h = y2 - y1
Zoom-in image
if bbox_w < 28 or bbox_h < 28:
 if bbox_w > 0 and bbox_h > 0:
 scale = 56 / min(bbox_w, bbox_h)
 new_w = int(bbox_w * scale)
 new_h = int(bbox_h * scale)
 ...
result_img

Figure 7: Overview of the dataset curation pipeline. Top: Weak-to-strong quality filtering:
candidate samples from diverse domains (mathematics, science, visual logic, charts) are first val-
idated for quality and correctness by automatic inspectors and annotators. A weak vision–language
model (VLM) filters out trivial instances, while a stronger VLM categorizes the remaining data into
medium- and hard-difficulty sets. Mid: Multi-turn atomic supervision: the curated data are orga-
nized into three task categories. (a) Predefined image operations (e.g., crop, resize, rotate), where
medium data yield single-turn samples and hard data yield multi-turn trajectories. (b) Mathematical
reasoning, where language CoT traces are decomposed into step-level atomic operations and trans-
lated into executable code. (c) Open-ended image operations (e.g., drawing, annotation), where code
snippets are generated with feedback–verification loops to ensure correctness. Bottom: Example
code snippets, covering image processing, math problem computation, and visual annotation.

Prompt templates used in data synthesis. To ensure the reliability and consistency of synthesized
data, we design a set of standardized prompt templates tailored for different stages of the vision-
language data pipeline. These templates serve complementary purposes: (i) In Table 6: assessing
the informativeness of candidate images to guarantee sufficient visual complexity for fine-grained
reasoning; (ii) In Table 7: labeling and locating the objects that most match the question. (iii) In
Table 8: validating the quality of automatically generated visual question–answer pairs; (iv) In Ta-
ble 9: enforcing a structured step-by-step reasoning process with explicit final answers; and (v)
In Table 10: enhancing reasoning accuracy by incorporating code interpreter support for precise
numerical or logical calculations. Together, these prompt templates provide a comprehensive and

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

systematic framework for controlling data quality during synthesis, thereby improving the robust-
ness and utility of the resulting multimodal datasets.

Table 6: Prompt template for assessing image informativeness.

You are an expert vision-language analyst.
Task
1. Observe the entire image.
2. Decide whether the picture meets all Four conditions below:
A. Diversity – Contains ≥ 4 different object categories or ≥ 6 individual objects.
B. Distinguishability – Includes at least one object that is mostly un-occluded, covers ¡ 30% of
the image area, and is not repeated by many visually identical copies.
C. Zoom-in Benefit – For that object (or another), some informative fine-grained detail (e.g.,
printed text, small logo, numerical value, subtle texture, or facial expression) would become
noticeably clearer if the region were enlarged. In other words, a close-up view would materially
help a downstream model answer a question about that object.
D. Is it suitable to come up with some VQA questions that require fine-grained understanding?
3. If all A, B, C, D are satisfied, Please respond with “True” or “False”.

Table 7: Prompt template for bbox generation.

Please detect the entire object that most matches the question in the image.
Question: {question}
If the target is part of an object, you need to give the bbox of the entire object.

For each object, return:
- ’label’: the object name
- ’bbox_2d’: the object’s bounding box coordinates as [x1, y1, x2, y2].

Respond in a JSON array, where each entry is a dictionary with ’label’ and ’bbox_2d’.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Table 8: Prompt template for visual question validation.

You are a quality control assistant. Your task is to evaluate a visual question based on the
provided image, question, and correct answer.
Image: [Image is attached]
Question: {question}
Provided Correct Answer: {correct_answer}

Evaluation Criteria:
1. Correctness: Is the provided “Correct Answer” truly the correct answer based on the image?
2. Difficulty: Is the question non-trivial? It should require careful observation of details and
not be something overly simple or obvious (e.g., ”What color is the sky?”).

Your Response:
Respond with ”GOOD” if the question meets BOTH criteria.
Respond with ”BAD” if the question fails one or both criteria. Do not provide any other expla-
nation or text.

Table 9: Prompt template for step-by-step solving with final answer tag.

Solve the following problem step by step and then provide the final answer.
The final answer MUST BE enclosed within <answer> </answer> tags.
Question: {question}

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

Table 10: Prompt template for revised thinking with code interpreter.

You are a helpful AI assistant. Initially, when solving a question, you would need to think step
by step, without the ability to use code for calculation. Now, you have the capability to write
code to use the code interpreter for calculation. The code will be executed by a sandbox, and
the result can be returned to enhance your reasoning process. You can now leverage code to
enhance your calculation while still maintaining the reasoning process.
The thinking process can have multiple code snippets. Each code snippet is wrapped with
<code>
‘‘‘python
code snippet
‘‘‘
</code>

The returned result is wrapped with
<interpreter> execution results</interpreter>

Goal: Modify the original thinking process to make it more accurate by replacing manual cal-
culation steps that can benefit from code execution with the corresponding code snippets and
their interpreter’s execution results. The core reasoning logic from the original thinking pro-
cess, including any unsuccessful attempts, should remain unchanged. You should only replace
the necessary manual calculation steps with code and interpreter’s execution results, without
altering the rest tokens of the thinking process.
User Question: {question}
Original Thinking Process (without code interpreter’s support):
<original_thinking_process> {original_response}
</original_thinking_process>

Details:
1. Identify sections where code execution could speed up the reasoning process or make the
calculation more accurate. For simple calculations, you should keep the original text-based
reasoning process without executing any code.
2. Replace the manual calculation steps with code snippets and the corresponding interpreter’s
execution results.
3. Keep the logical flow of the reasoning process intact, including any failed exploration at-
tempts that were part of the initial process.
4. The code snippets should be complete scripts, including necessary imports.
5. Outputs in the code snippets must explicitly call the print function.
6. Execution results should match the model’s output exactly, with no extra or missing tokens.
7. If, during the revised thinking process, you obtain the same result as in the original reasoning,
you may omit numerical computations and refrain from simplifying to specific numeric values.
8. If the Original Thinking Process does not include an <answer> section at the end, please
add it: <answer> \boxed{{’The final answer goes here.’}} </answer>

Revised Thinking Process (With code interpreter’s support):

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

B ADDITIONAL QUALITATIVE RESULTS

Example SFT training data. To better illustrate the construction of supervised fine-tuning (SFT)
data, we provide representative examples of atomic operations. As shown in Figure 8, the top tra-
jectory corresponds to a two-turn reasoning process, where the model iteratively performs cropping,
observes intermediate results, and reflects on the correctness before locating the accurate price tag
of a specific toothbrush. In contrast, the bottom trajectory demonstrates a single-turn process, in
which the model directly identifies the phone number from a cropped sign. These cases exemplify
how SFT data captures both multi-step and single-step reasoning, integrating tool invocation, visual
observation, and final answer generation.

Figure 8: Example SFT training data for an atomic operation. The figure illustrates both a two-turn
(top) and a single-turn (bottom) trajectory. Shown here is the zoom-in operation.

Reward-hacking case when using naive tool call reward for code generation. A naive reward
scheme that simply reinforces every successful tool call is prone to reward hacking, where the model
exploits loopholes in the reward design rather than genuinely improving reasoning. For instance, we
observe failure cases in Figure 9 in which the model generates degenerate tool outputs (e.g., code
consisting only of commentary lines without actual execution) that nevertheless satisfy superficial
reward signals. Such behaviors artificially inflate tool success metrics while providing no real con-
tribution to solving the task, thereby misleading training and undermining reasoning quality.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

Figure 9: A sample of reasoning trajectory on reward hacking (using naive DeepEyes-style tool
reward for code generation. The MLLM hacks to generate code with only commentary lines, and
the code was not really executed.

Failure cases observed in our experiments. See Figure 10

What is the color of the
watchband?

User Query Assistant

<think>
The image shows a sunny day in a picturesque
town with white-washed buildings and
cobblestone streets. There are several people
walking around, and the architecture features
blue accents, typical of certain Mediterranean
styles. The scene is vibrant with natural light
and colorful details like flowers and plants.
The task seems to be identifying the color of
the watchband worn by one of the individuals
in the image. Observing the person on the right
side of the image, they are wearing a watch
with a visible watchband. The coordinates
appear to be <box>[808, 958, 1146, 1987]</
box> Let's call execute_python_code to crop.
</think>

python
from PIL import Image
bbox_2d = [808, 958, 1146,
1987]
img =
Image.open(‘input_image.jpg'
)
sub_img = img.crop(bbox_2d)
sub_img

<think>
The cropped image shows a person
wearing a white top and a pink skirt.
The individual is also holding a blue
strap over their shoulder. Upon closely
examining the wrist area, there appears
to be a watch with a strap that matches
the color of the strap being held. The
strap is clearly visible and has a distinct
blue hue.
</think>
<answer>blue</answer>Observation

How many people are there
in this image?

User Query Assistant

<think>
Looking at the image, I can identify three
individuals seated around a table. Their
approximate positions are <points
x1="238" y1="618" x2="648" y2="440"
x3="1170" y3="480"
alt="people">people</points>. Let's call
execute_python_code to draw pointings
on the detected object for further
verification.
</think>

python
import cv2
points = [[238, 618], [648, 440], [1170, 480]]
img = cv2.imread(‘input_image.jpg')
radius = 6
thickness = 3
for idx, (x, y) in enumerate(points):
 cv2.circle(img, (x, y), radius * 2, …
 …

<think>
After marking these points, I scan
the rest of the image carefully to see
if there are any other people present.
I don't spot any additional figures,
so I am confident that the total
number of people here is three.
</think>
<answer>3</answer>

Observation

A. Inaccurate/wrong cropping

B. partially obscured object

Figure 10: Failure cases. A. The model performs wrongly cropping. B. The person on the right edge
is partially obscured, thus hard to count.

Additional reasoning trajectories of our method. In Figure 11 we show step-by-step reasoning
trajectories across three distinct vision tasks on tool transfer:

Top-row of Figure 11: The assistant tackles a spatial relational question by first localizing both the
bear and the white rock using bounding boxes. It then uses PIL to draw red/blue rectangles around
each object, visually verifying their relative positions. This demonstrates code-mediated spatial
reasoning. Instead of relying on implicit attention maps or pretrained spatial priors, the model
actively constructs visual evidence through code. The act of drawing bounding boxes serves as an
internal “visual scratchpad”, enabling explicit comparison of object positions, which is crucial for
fine-grained spatial inference where ambiguity exists.

Mid-row of Figure 11: The assistant identifies four candidate regions containing parrots based on
initial visual inspection. It then executes a loop of img.crop(boundingbox) operations to isolate
each region, visually confirming that each cropped area contains a unique, clearly distinguishable
parrot. This iterative cropping and verification ensures no over- or under-counting. This exemplifies

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

verification-driven counting. Rather than predicting a number directly (which risks hallucination or
confusion with similar objects), the system uses tool-based segmentation to reduce the problem to a
series of binary verifications (“Is this one a parrot?”). The modularity of PIL operations allows the
model to treat counting as a compositional task — scaling naturally to more complex scenes.

Bottom-row of Figure 11: Given a scientific graph with brightness vs. time, the assistant zooms into
panel (c) using img.crop() to focus on the region with arrows. It observes sharp downward spikes
in the curve at those points and infers they represent sudden drops in brightness, not measurement
noise or calibration artifacts — based on the magnitude and shape of the dips.

Is the white rock behind a
bear? (Spatial understanding)

User Query Assistant

<think>To determine if the white rock
is behind a bear, I first need to locate
the bear in the image. The bear is
clearly visible in the center-right of
the frame, lying on a log and
packaging material. Next, I need to
find the white rock in question; it is to
the left in the foreground and partially
behind the rock structure.
 To verify the relative positions, I can
draw bounding boxes around both the
bear and the white rock.
</think>

from PIL import Image, ImageDraw

bbox_2d_bear = [97, 48, 397, 304]

bbox_2d_white_rock = [1, 70, 93, 226]

img = Image.open('input_image.jpg')

draw = ImageDraw.Draw(img)

draw.rectangle(bbox_2d_bear, outline="red",

width=2)draw.rectangle(bbox_2d_white_rock,

outline="blue", width=2)

Observation

<think>
The image contains the bounding boxes: one around the bear and the

other around the white rock. Visually, the white rock is in the

background, partially behind the larger natural rocks and close to the

bear. The white rock is not directly behind the bear, but based on the

question phrasing, "behind" can refer to placement near or slightly

behind. Since the white rock is visibly positioned in the background

area to the left, the bear is indeed near a white rock. The bear's

presence partially obscures the behind view of the white rock but does

not entirely block it from perception. Therefore, the answer given in

the hint ("Yes") is logical.

</think>
<answer>Yes.</answer>

Trajectories on tool transfer

How many parrots are there in
the image? (Visual counting)

User Query Assistant

<think>Looking over the image, I
spot four distinct parrots arranged in a
grid-like pattern. Their approximate
coordinates are <box>[0, 133, 104,
252]</box>, <box>[105, 131, 214,
252]</box>, <box>[105, 3, 214,
123]</box>, and <box>[0, 3, 104,
123]</box>.
Let's call execute_python_code to
crop.
</think>

from PIL import Image

bbox_2d = [0, 133, 104, 252]

img = Image.open(‘input_image.jpg')

sub_img1 = img.crop(bbox_2d)

bbox_2d = [105, 131, 214, 252]

sub_img2 = img.crop(bbox_2d)

…

crop all objects for verification

Observation

<think>
After cropping the image to focus on the first parrot, I can clearly see

its features and confirm that it is indeed a single parrot.

Looking at the cropped image, I can see another parrot clearly. This

confirms that there are indeed four parrots in the original image. The

coordinates for the second parrot are <box>[105, 131, 214, 252]</

box>. I can see a third parrot, which further supports the count. The

coordinates for this parrot are <box>[105, 3, 214, 123]</box>.

Reviewing the final cropped image, I can see the fourth parrot, which

matches the initial observations. All four parrots are distinct and

clearly visible. Therefore, the total number of parrots in the image is

four.

</think>
<answer>4</answer>

What do the arrows in panel (c) most

likely represent? (Chart reasoning)

A. Points of measurement error.

B. Sudden drops in brightness.

C. Calibration markers.

D. Time intervals of interest.

User Query Assistant

<think>The image shows a set of
three scientific graphs labeled (a), (b),
and (c), plotted against time. Graph
(a) shows a step-like increase and
decrease, graph (b) is on a log scale,
and graph (c) is labeled 'Brightness'.
The arrows are pointing to notable
points on the 'Brightness' graph in
panel (c)…
Let's use python to crop and zoom-in
the target region of interest.
</think>

from PIL import Image

bbox_2d = [0, 133, 104, 252]

img = Image.open(‘input_image.jpg')

sub_img1 = img.crop(bbox_2d)

Observation

<think>
The cropped image shows panel (c) from the graph, which depicts a

line representing brightness over time. The arrows are pointing to the

points on the graph where the brightness significantly drops. These

points are not random fluctuations or measurement errors, as they

represent clear, steep declines in brightness. They are not markers of

the entire time interval, as they highlight specific instances rather than

an interval. Therefore, the arrows most likely represent sudden drops

in brightness.

</think>
<answer>B</answer>

Figure 11: Reasoning trajectories on tool transfer to other tasks.

Similarly, in Figure 12 trajectories reveal iterative, self-correcting reasoning enabled by dynamic
tool composition, which is based on tool transfer ability since we only define single tool/ability for
each task during SFT.

Top-row of Figure 12: The assistant first attempts to locate the person in the striped shirt relative
to the woman drinking. It initially misidentifies coordinates, so it composes two tools: First, it
uses cv2.circle() to draw red points at hypothesized locations — visually flagging potential errors.
Then, it corrects the coordinates and uses PIL.Image.crop() to zoom into the region for closer
inspection. Finally, it confirms the spatial relationship: the striped-shirt person is indeed to the left,
seated next to the drinking woman — no occlusion or misleading posture.

Bottom-row of Figure 12: The assistant must extract a precise numerical value from a scien-
tific plot showing (∆m2) vs. sin2(2θ). It follows a multi-step strategy: Identify region: Uses
ImageDraw.rectangle() to highlight the blue shaded 90% confidence level (CL) band. Zoom in:
Crops the upper boundary of this region using PIL.Image.crop() to isolate the extreme right edge
— where (∆m2) reaches its maximum within the CL. Finally interpret scale and answer.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

While these reasoning trajectories during RL exploration are not without flaws, e.g. occasionally
exhibiting imprecise coordinate estimation or redundant tool calls, they collectively demonstrate the
potential of tool-augmented multimodal reasoning.

Trajectories on tools composition

Is the striped shirt to the left
of the woman drinking?

User Query Assistant

<think>
I see the striped shirt is indeed to the left
of the woman drinking, but I overlooked
the coordinates slightly. Let's call
execute_python_code to draw pointings
on the detected object for further
verification.
</think>

draw points

import cv2

points = [[51, 247], [329, 211]]

img = cv2.imread('input_image.jpg')

radius = 6

cv2.circle(img, (x, y), radius * 2, (255, 0, 0), -1)

cv2.putText(img, str(idx+1), (x + radius + 3, ...)

img

<think>
After cropping, it's clear from the cropped image that the person
wearing a striped shirt is to the left of the woman seen here
drinking. The cropped area shows the shoulder and arm of the
individual in the striped shirt, positioned to the left of the arm of
the woman who seems to be in the act of drinking. There is no
indication of any obstruction or misalignment that would suggest
otherwise. Therefore, the detection is correct.

</think>
<answer>Yes.</answer>

Observation

<think>
Now that I've redone the detection with improved coordinates

given by the hint, the striped shirt seems to be correctly

positioned relative to the woman drinking. The woman in

green appears on the far left among the patrons, while the

person in a striped shirt is seated next to her.

Let's call execute_python_code to crop.

</think>

crop

from PIL import Image

img = Image.open('input_image.jpg')

bbox_2d = [51, 0, 235, 298]

sub_img = img.crop(bbox_2d)

Observation

What is the highest value of
(\Delta m^2) (in (eV^2)) that is
within the 90% confidence level
(CL) according to the LSND data
shown in the figure?

A. (10^{-1} eV^2) B. (10^2 eV^2)

C. (10^1 eV^2) D. (10^0 eV^2)

User Query Assistant

<think>
To solve this problem, we need to analyze the left figure of the provided image,

which shows the (\Delta m^2) (in (eV^2)) versus (\sin^2 2\theta) (in logarithmic

scale). The question asks for the highest value of (\Delta m^2) at the 90%

confidence level (CL) according to the LSND data.

1. Identify the relevant region: The legend on the left figure indicates that the 90%

CL confidence level is represented by the blue shaded area.

2. Locate the highest region of the 90% CL band: Looking at the blue shaded area,

we can see that as the (\sin^2 2\theta) value decreases (i.e., moves to the right on

the plot), the permissible range of (\Delta m^2) increases. The highest point, or the

upper limit, of this permissible range is the most interesting for answering the

question.

3. Estimate the value from the plot: We need to estimate the value of (\Delta m^2)

(on the vertical axis) that corresponds to the extreme right of the blue band. This

requires a more precise measurement than can be done just by looking at the

figure.

</think>

draw bbox to highlight

from PIL import Image, ImageDraw

bbox_2d = [133, 37, 933, 1073]

img = Image.open('input_image.jpg')

draw = ImageDraw.Draw(img)

draw.rectangle(bbox_2d, outline="red", width=2)

<think>
The cropped image provides a closer view of the blue shaded
region labeled "LSND 90% CL." The left figure shows the data
with logarithmic scales on both axes. The task is to find the highest
value of (\Delta m^2) that is within this 90% confidence level
band.

1….2….

3. Estimate the value from the axis: The top of the blue band is

clearly above the value of (10^0) (which is 1) on the y-axis. It is

also below the value of (10^1) (which is 10) on the y-axis.

Therefore, the highest value is greater than 1 and less than 10

(eV^2).

Looking at the options, the value (10^1 eV^2) is the most accurate

description of the highest value within the given range.

</think>
<answer>\boxed{C. (10^1 eV^2)}</answer>

Observation

<think>
The red box drawn on the left image highlights the upper
boundary of the 90% confidence level (CL) region for
(\Delta m^2) as a function of (\sin^2 2\theta). By
examining this box, we can estimate the highest value of
(\Delta m^2) within this region. From the logarithmic
scale on the y-axis, the upper boundary of the red box
corresponds to a value of (\Delta m^2) that is just below
the 10(^1) (10) line, but clearly above the 10(^0) (1) line.
This corresponds to a value of approximately (10^1
eV^2).
Let's call execute_python_code to crop.

</think>

crop

from PIL import Image

img =

Image.open('input_image.

jpg')

bbox_2d = [133, 37, 933,

1073]

sub_img =

img.crop(bbox_2d)

Observation

Figure 12: Reasoning trajectories on tools composition.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

C LIMITATIONS

While our method demonstrates promising emergent behaviors and strong performance across di-
verse visual reasoning tasks, several limitations remain. First, the reliance on high-quality synthetic
trajectories implies that certain real-world reasoning patterns may be underrepresented, potentially
limiting robustness in open-domain scenarios. Second, although code provides a universal interface,
extending to richer modalities (e.g., audio) or domain-specific tools (e.g., medical applications) will
require additional engineering. Finally, due to compute constraints, our evaluations are primarily
conducted on 7B-scale models; the scalability of emergent behaviors at larger scales remains to
be systematically examined. Nevertheless, our preliminary experiments suggest a promising trend
when scaling up model capacity and compute resources.

D BROADER IMPACT

This work contributes toward building more transparent and verifiable multimodal reasoning sys-
tems by adopting executable code as the unified medium for tool use. The ability to generate inter-
pretable traces and intermediate artifacts can benefit applications where accountability and auditabil-
ity are essential, such as scientific analysis and education. At the same time, code-generating models
pose risks: malicious users could potentially exploit them for unsafe automation, and generated vi-
sual artifacts might be misused to mislead or manipulate. To mitigate these concerns, we recommend
pairing such systems with appropriate safeguards, including safety filters, usage constraints, and re-
sponsible deployment practices. By doing so, the benefits of executable visual reasoning can be
realized while minimizing the potential for misuse.

LLM USAGE STATEMENT

We used large language models (LLMs) only as auxiliary tools to correct occasional grammatical
errors and typos throughout our writing process, and importantly, no parts of the paper were gen-
erated by LLMs in a substantive or large-scale manner. In addition, we confirm that LLMs did not
contribute to research ideation, methodology design, training data synthesis and generation, or ex-
perimental analysis. We further emphasize that our submission contains no hidden prompt injections
or any other misuse of LLMs.

25

	Introduction
	Related Works
	Methodology
	Preliminary
	BAT: Reward Design for Balanced Adaptive Tool-call
	Dataset Curation

	Experiments
	Visual Reasoning Tasks
	Math Reasoning Tasks
	Key Findings: Emergent Behaviors during RL
	Ablation Studies

	Discussion
	Additional implementation details
	Formulation of standard GRPO in our implementation
	Hyper parameters
	Additonal Dicussion of Dataset Curation
	Prompt templates

	Additional qualitative results
	Limitations
	Broader impact

