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ABSTRACT

Recent releases such as o3 highlight human-like “thinking with images” reasoning
that combines structured tool use with stepwise verification, yet most open-source
approaches still rely on text-only chains, rigid visual schemas, or single-step
pipelines, limiting flexibility, interpretability, and transferability on complex tasks.
We introduce ExeVision, which explores executable code as a universal solver for
visual reasoning. Unlike fixed-schema calls (e.g., only predicting bounding-box
coordinates), ExeVision defines, composes, and executes code to orchestrate mul-
tiple tools, compute intermediate results, and render visual artifacts (e.g., boxes,
lines, plots) that support transparent, self-checkable reasoning. To guide this pro-
cess, we introduce a reward for Balanced Adaptive Tool-call, which balances ex-
ploration with efficiency and mitigates tool overuse. Interestingly, beyond the
expected capabilities taught by atomic supervision, we empirically observe novel
emergent behaviors during RL training: ExeVision demonstrates novel tool in-
vocations, unseen compositions, and cross-task transfer. These behaviors arise
without task-specific fine-tuning, suggesting a general and scalable mechanism of
executable visual reasoning. Extensive experiments across reasoning benchmarks
(e.g., visual search, math, chart QA) show that ExeVision not only consistently
outperforms schema-driven and text-only baselines, but also surpasses advanced
closed models such as GPT-4o and larger open-source models. code is available.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) have made rapid progress, showing strong capabil-
ities in both visual perception and reasoning. By leveraging the language-centric chain-of-thought
(CoT) mechanism (Brown et al., 2020; Wei et al., 2022), models can decompose complex problems
into intermediate steps, thereby improving performance on challenging tasks. However, the CoT
paradigm’s reliance on static context becomes a critical limitation when extended to modalities such
as vision. This prevents models from interacting with visual inputs or incorporating new observa-
tions during intermediate reasoning (Zou et al., 2024; Chung et al., 2025), creating an information
bottleneck that hinders multi-round focusing and validation. To address this, the o3 system (Ope-
nAI, 2025) integrates the ability to actively seek new information through multiple tool invocations,
supporting iterative reasoning over visual inputs and demonstrating strong perception and analysis.

Research gaps. While recent models have made notable progress, fundamental gaps remain un-
resolved. (1) Current approaches largely extend CoT into multimodal reasoning via text-only tem-
plates, failing to incorporate new observations, refine intermediate steps, or validate its reasoning
against visual evidence (Ko et al., 2025; Feng et al., 2025). (2) In addition, o3 remains a pro-
prietary black-box system: its internal mechanisms are inaccessible, its reasoning process is less
transparent, and its outputs cannot be systematically studied or reproduced; (3) Most open-source
systems incorporating visual reasoning remain restricted to predefined visual workflows, or rigid and
schema-based pipelines (e.g., predicting bounding box coordinates for cropping operations), which
are inherently inflexible and task-specific, limiting transfer to new tools and tasks (Zheng et al.,
2025; Su et al., 2025a; Zhang et al., 2025b; Su et al., 2025b). Consequently, the field still lacks
an open and verifiable medium, that is general across tools and tasks, for multimodal reasoning
that allows MLLMs to dynamically compose tools, produce intermediate artifacts, and self-check
their outputs in a transparent and reproducible manner. Addressing this gap is crucial for achieving
flexible, explainable, and transferable reasoning across complex real-world tasks.
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Our performance: 
(Compared to base: Qwen-2.5-VL-7B) 
- V* bench (+11.0%) 
- HighRes-4k (+9.0%) 
- Math Vision (+18.4%) 
- Count bench (+19.2%) 
- Pixmo Count (+53.0%) 
- CharXiv (+4.7%) 
…

Cropping

from PIL import Image
img = 
Image.open('img.jpg')
bbox_2d = [463, 168, 
500, 217]
sub_img = 
img.crop(bbox_2d)
x1, y1, x2, y2 = 
bbox_2d
bbox_w = x2 - x1
bbox_h = y2 - y1

Pointing

import cv2
points = [[462, 184]]
img = 
cv2.imread(‘img.jpg’)
radius = 6
cv2.circle(img, (x, 
y), radius * 2, (255, 
0, 0), -1)
cv2.putText(img, 
str(idx+1), (x + 
radius + 3, ...)

Annotate
from PIL import Image, 
ImageDraw
boxes = [[0, 0, 223, 
223], [244, 0, 467, 223], 
[473, 0, 644, 223] …]
img = 
Image.open(‘img.jpg’)
draw = 
ImageDraw.Draw(img)
for (x1,y1,x2,y2) in 
boxes:
draw.rectangle(((x1, y1), 
(x2, y2)), outline="red", 
width=5)
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Figure 1: Left: In SFT stage, the model is equipped with fundamental atomic coding abilities as a
universal solver (e.g., cropping, pointing, annotation) for visual reasoning, through our curated ex-
ecutable trajectories in sandboxed environments. Right: During RL, we empirically observe novel
emergent behaviors: the model spontaneously composes previously learned operations, attempts
novel tool usages, and transfers skills to unseen tasks, going beyond the capabilities covered by su-
pervision. Bottom: After RL, the learnt reasoning abilities translate into consistent and significant
performance gains on diverse multimodal benchmarks. Representative trajectories are in Figure 3.

In this work, we introduce ExeVision, a multimodal reasoning framework that leverages executable
code as a universal medium for visual reasoning. Unlike prior schema-based pipelines with fixed op-
eration templates, code enables the model to define, compose, and execute diverse visual–symbolic
operations, producing both intermediate artifacts (e.g., cropped regions, plots, annotations) and fi-
nal answers within a unified, verifiable reasoning process. To equip the model with fundamental
skills, we curate a high-quality trajectory dataset and use supervised fine-tuning (SFT) to teach
atomic capabilities such as counting, spatial grounding, and image annotating, enabling iterative
exploration-reflection reasoning process. Building on this foundation, we employ reinforcement
learning (RL) to further enhance tool-based reasoning. A central challenge we identify is a trade-
off between exploration and selectivity: naı̈ve policies often overuse tools, incurring unnecessary
steps, or underuse them, failing to leverage visual interactions when needed. To address this, we
design a difficulty-adaptive tool-reward mechanism that explicitly modulates incentives based on
task demands, encouraging longer operation chains for genuinely complex problems while discour-
aging redundant calls on simpler ones. This principled reward shaping aligns the learning dynamics
with the intrinsic structure of multimodal tasks, yielding a model that reasons more adaptively and
transparently. Together, these components enable ExeVision to advance beyond rigid schema-based
methods and offer an open, generalizable medium for executable visual reasoning.

Empirical observation of emergent behaviors. Although the model is only explicitly supervised
on atomic operations, our design enables behaviors to emerge during RL stage that go beyond the
provided supervision. In particular, we consistently observe: (1) Novel coding routines. The model
generates procedural and computational code (e.g., clustering, function plotting) that is absent from
the SFT data, indicating a capacity to internalize and extend programming patterns. (2) Composi-
tional strategies. It develops coordinated routines that combine multiple atomic operations, such as
localizing and counting before numerical computation, or cropping followed by rotation and anno-
tation, that were never observed together in the training data, giving rise to higher-level strategies
beyond supervised coverage. (3) Cross-domain transfer. The model reuses code operations learned
in one supervised context to solve novel tasks where such supervision was absent, e.g., applying
mathematical computation routines to answer general visual reasoning questions. Overall, these
findings highlight our central insight: treating executable code as a universal reasoning medium
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enables the model not only to master atomic operations but also to spontaneously develop new capa-
bilities: tool invention, strategic composition, and transferable skills that beyond direct supervision.

Our contributions are summarized as follows: (1) We introduce ExeVision, a multimodal agent
that can “think with images” by planning and composing visual–symbolic operations through exe-
cutable code as a universal medium. To this end, we curate a 34K high-quality SFT dataset covering
diverse atomic code capabilities (e.g., cropping, line drawing, point plotting), and additionally de-
sign a difficulty-adaptive reward mechanism for RL, enabling multi-turn reasoning and balanced
tool use. (2) Beyond these design choices, we report novel empirical findings: despite being trained
only on atomic operations, ExeVision empirically exhibits emergent behaviors during RL training,
including spontaneous novel tool routines, unseen operation compositions, and cross-task transfer to
novel tasks. These observations highlight the scalability and generality of executable-code reason-
ing beyond direct supervision. (3) We evaluate ExeVision on more than 10 multimodal benchmarks,
spanning both general perception and complex reasoning (e.g., visual search, counting). Across the
board, it outperforms advanced closed models (e.g., GPT-4o) and larger open-source baselines (e.g.,
Qwen2.5-VL-32B), demonstrating strong visual perception ability and broad generalizability.

2 RELATED WORKS

Recent progress in MLLMs aims to build systems that can effectively understand and reason across
multiple modalities for complex tasks. To achieve this, current research typically focuses on three
key areas: (i) enhancing perceptual capabilities across diverse modalities, (ii) improving reason-
ing and action capabilities through function/tool calling, and (iii) developing high-quality synthetic
datasets for complex multimodal tasks where annotated trajectories are scarce. We address these
aspects in our work and provide detailed discussion in the subsequent section and Appendix A.3.

Perceptual capabilities of MLLMs. Popular MLLMs integrate vision encoders with language
models through lightweight learnable adapters, such as MLP (Zhu et al., 2023), Resampler (Alayrac
et al., 2022) and Q-former (Li et al., 2023), for efficient cross-modal alignment. To enhance vi-
sual comprehension capabilities, later approaches employ visual instruction tuning combined with
knowledge distillation, producing robust dense models, such as LLaVA-series (Liu et al., 2023; Li
et al., 2024a) and InstructBLIP (Dai et al., 2023). Beyond dense architectures, recent state-of-the-art
models continue to improve both model capacity and computational efficiency through mixture-of-
experts (Shazeer et al., 2017), such as Aria (Li et al., 2024b) and Uni-MoE (Li et al., 2025). Other
advancements to improve perception capabilities include accomodating high-resolution image in-
puts (Liu et al., 2024; Guo et al., 2024) or supporting native-resolution images (Bai et al., 2025b).

Multimodal reasoning and tool invocation. Building upon text-based chain-of-thought (CoT) rea-
soning (Wei et al., 2022; Yao et al., 2022), researchers have extended intermediate reasoning steps to
multimodal settings (Zheng et al., 2025; Yeo et al., 2025) including counting (Zhang et al., 2024b),
localization (Wu & Xie, 2024), charts (Li et al., 2024c), and visual math (Chen et al., 2025). To
enhance reasoning capabilities, recent works integrate external tools through reasoning-and-acting
frameworks (Yao et al., 2022; Yang et al., 2023), learned API usage (Schick et al., 2023), and mul-
timodal agents that orchestrate OCR, detection, and editors (Wu et al., 2023; Shen et al., 2023).
ViperGPT (Surı́s et al., 2023) compiles queries into executable programs. Recent models like Ope-
nAI’s o3 (OpenAI, 2025) integrate comprehensive tool capabilities directly into reasoning chains,
trained via RL on large-scale CoT data. Other approaches include RL-based tool invocation (Zheng
et al., 2025; Su et al., 2025a) and SFT-based methods (Wang et al., 2025). However, challenges
remains such as ad-hoc operations, sparse supervision, limited task coverage and lack of compre-
hensive evaluation. We diverge from prior work by pursuing code as universal medium to execute
multimodal reasoning across diverse atomic abilities.

3 METHODOLOGY

Here, we firstly introduce the fundamental preliminary in Section 3.1. An overview of our proposed
ExeVision is shown in Figure 2. In Section 3.2, we further detail the reward designs made for model
training and discuss their resulting benefits. In Section 3.3 and Appendix A.3, we describe the
high-quality data synthesis pipeline, which covers fundamental code-based atomic operations such
as cropping, counting, and math reasoning mainly tailored for SFT for initialization as cold start.
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MLLM (w/ SFT cold start on  
synthetic trajectories)

<think> The image shows a street scene … The flag is located 
near the left side of the image, attached to a pole.  
The coordinates appear to be <box>[313, 506, 357, 554]</box>. 
Let's call execute_python_code to crop.  
<code> … </code> </think>

<think> The picture depicts a street scene. A flag can be seen on 
the left side … Its bounding box is <box>[442, 688, 476, 697]</box>.  
We can use execute_python_code to crop this region.  
<code> … </code> </think>

Task types:  
- Visual search,  
- Math reasoning, 
- General understanding, 
…

MLLM
Loop until 
answered  
or max-turn.

1st turn output

Sampling a Task

2nd Query: Think with the code 
execution result, then formulate a  
new thinking step if needed or answer.

<think> The image shows a street scene … The flag in 
the background appears to be blue and yellow. </think> 
<answer> blue and yellow </answer>

1st Query:  
Is the flag blue 
and yellow or 
red and yellow?

…

Rollout group

2

1

3

Concat

(reasoning &  
visual results)

x

π

y11 y2 yg1y3

r1 r2 rgr3

y12

y13

yg2

A1 A2 A3 Ag

 

x: multimodal query π: MLLM (policy model)

y: MLLM output rollout     : rollout i in j-th turn

r: reward A: Advantage

Racc: accuracy reward Rformat: format reward

Rseq: sequence-level 
reward Rturn: turn-level reward

yij

r =  Racc + Rformat  
   +  Rseq + Rturn

reward compute 

RL Training

Update

RBAT (ours new reward)

<code> … </code> 
# Python
from PIL import Image
bbox_2d = [313, 506, 357, 554]
img = Image.open(‘image.jpg')
sub_img = img.crop(bbox_2d)

<code> … </code> 
# Python
from PIL import Image
bbox_2d = [442, 688, 476, 697]
img = Image.open(‘image.jpg')
sub_img = img.crop(bbox_2d)

Cropping result in sandbox

Code sandbox (crop, plot, …)

(The answer here is thus blue and yellow)

31

Figure 2: Overview of our framework. Left: A multimodal query is processed by the MLLM,
which produces rollouts interleaving natural-language reasoning with executable code (e.g., crop-
ping, plotting). Code is executed in a sandbox, and the resulting visual evidence is concatenated with
text to refine reasoning or yield the final answer (e.g., “blue and yellow”). Right: In RL training,
the policy model generates multiple rollouts that are scored by rewards for accuracy (Racc), format
compliance (Rformat), and tool usage (Rseq, Rturn). The aggregated signal defines the advantage A
for policy updates, closing the loop toward verifiable executable reasoning. Details are in Section 3.

3.1 PRELIMINARY

Multimodal CoT. While chain-of-thought (CoT) reasoning improves interpretability in text-only
settings, it remains static and lacks exploration when extended to multimodal scenarios. To address
this, we define a think–execute–feedback cycle as the minimal reasoning unit under a policy model π,
where each turn comprises (i) the current query and reasoning trace, (ii) a candidate action, and (iii)
the resulting observation after code execution. Formally, a trajectory is (also see Figure 2, left side)

τ =
(
(st1 , at1 , s

′
t1), . . . , (stm−1

, atM−1
, s′tM−1

), (stM , aanswer)
)
, where t is time step.

st = (x,∇t, ϵt) contains the original query x, the accumulated reasoning trace ∇t, and interpreter
feedback ϵt. Actions at are drawn from a space including tool calls (code snippets) and a terminal
answer; executing code yields an observation and updates the state to s′t. By iterating at ∼ π(· | st)
until a final answer is produced or a maximum turn budget M is reached, each turn becomes an
executable and verifiable reasoning unit. Building on this formulation, Section 3.3 detail the curation
of a high-quality trajectory dataset encompassing diverse atomic abilities. This dataset provides the
foundation for initializing the policy model through SFT, before advancing to RL.

Policy Optimization. In the RL stage, we require a policy optimization method that can compare
multiple rollouts and update the model accordingly. In our case, Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) provides a natural baseline, as it directly normalizes rewards across
sampled trajectories without relying on a separate value network. However, standard GRPO assigns
a uniform advantage to all tokens within a trajectory, which limits its effectiveness for multi-turn
tool reasoning requiring intermediate correction. To address this, we extend the reward design with
sequence-level and turn-level components. In particular, each rollout is evaluated with a composite
reward r that integrates outcome and tool-related signals (also see Figure 2, right side):

r(τ) = Racc(τ) +Rformat(τ) +RBAT(τ),

where Racc denotes final-answer correctness and Rformat enforces format compliance, respectively.
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How many birdhouse patterns 
are there in the image?

<think> 
Looking at the image, I can see 
a collection of nine distinct 
birdhouse patterns arranged in 
a 3x3 grid. Each birdhouse has 
unique designs and colors, 
making them easy to count.  
Let's call execute_python_code 
to highlight the important 
information. 
</think>

from PIL import Image, ImageDraw
boxes = [[0, 0, 223, 223], [244, 0, 
467, 223], [473, 0, 644, 223] …]
img = Image.open(‘input_image.jpg')
draw = ImageDraw.Draw(img)
for (x1,y1,x2,y2) in boxes:
    draw.rectangle(((x1, y1), (x2, 
y2)), outline="red", width=5)
img

Observation

<think> 
After examining each of the 
nine squares, I confirm that 
there are indeed nine different 
birdhouse patterns. Each one 
is clearly separated from the 
others, so I can confidently 
state the total number.  

</think> 
<answer>9</answer>

Is the color of the house tan?

<think> 
Initially, it looks like the house in the 
background could be tan, but given how 
the lighting is affecting the whole scene, 
I'm not entirely sure.  
Let's call execute_python_code to draw 
pointings on the detected object for 
further verification. 
</think>

# draw points
import cv2
points = [[462, 184]]
img = cv2.imread('input_image.jpg')
radius = 6
cv2.circle(img, (x, y), radius * 2, 
(255, 0, 0), -1)
cv2.putText(img, str(idx+1), (x + 
radius + 3, ...)
img Observation

<think> 
Looking once more, I see there's a section in the side 
where the lighting affects the colors differently. 
Because the initial focus was focused on the tan house 
at <box>[463, 168, 500, 217]</box>, but our attention 
should be toward the overall setting. From these 
details, I remain unsure if the answer is yes or no. 
Let's call execute_python_code to crop and zoom-in 
the target region for a closer look. 
</think>

# crop + zoom-in
from PIL import Image
img = 
Image.open('input_image.jpg')
bbox_2d = [463, 168, 500, 217]
sub_img = img.crop(bbox_2d)
x1, y1, x2, y2 = bbox_2d
bbox_w = x2 - x1
bbox_h = y2 - y1
# Zoom-in image
...

Observation

A. Cross-domain tool transfer

B. Spontaneous tool composition

How many headsets are 
there in the image?

<think> 
Looking at the image, I can see a grid 
of headsets arranged in two rows. The 
first row contains five headsets, and the 
second row also has five headsets.  
Let's write and execute Python code to 
draw a grid on the image for better 
visualization. 
</think>

import cv2
img = cv2.imread('input_image.jpg')
grid_size = 5
cell_size = img.shape[1] // 
grid_size
for i in range(grid_size):
    for j in range(grid_size):
        cv2.rectangle(img, …)

Observation

<think> 
Counting each headset 
individually, I find a 
total of ten distinct 
headsets spread across 
the two rows.  
</think> 
<answer>10</answer>

C. Novel tool attemptingUser Query Assistant

User Query Assistant

User Query Assistant

<think> 
Examining the new, magnified section 
of the house, the previous confusion 
comes from the distorted perspective 
and lighting. Despite being partially 
obscured from direct view, there are no 
clear visual cues indicating a tan color. 
Therefore, the conclusion should be 
</think> 
<answer>No</answer>

"No".

Figure 3: Examples of emergent reasoning trajectories observed during RL: A. Cross-domain tool
transfer, where the MLLM reuses bounding-box drawing (defined only in Chart SFT) to validate
counting. B. Spontaneous tool composition, where the MLLM combines pointing with crop-and-
zoom to capture fine-grained details. C. Novel tool attempt, where the MLLM generates a grid
overlay for counting verification, absent from the SFT data. More results are in Appendix B

In our design, we introduce a two-level reward RBAT that captures Balanced Adaptive Tool-call. In
particular, it decomposes into a sequence-level Rseq and a turn-level Rturn, balancing task difficulty
with step-wise tool-call correctness. Subsequently, the advantage A is written as:

A(τ) = Aseq
(
Racc, Rformat, Rseq

)
+Aturn

(
Rturn

)
.

As we show in Section 3.2, this formluation combines global trajectory outcomes with local execu-
tion feedback, producing more adaptive and robust tool-based reasoning.

3.2 BAT: REWARD DESIGN FOR BALANCED ADAPTIVE TOOL-CALL

Here we discuss the design choice of our proposed adaptive tool reward RBAT, including sequence-
level Rseq reward and turn-level reward Rturn. An illustration is shown in Figure 6.

Sequence-level adaptive code-invocation reward. Simply rewarding every successful tool call
can lead to degenerate behaviors such as tool spamming or reward hacking on trivial problems (see
Appendix B), which may hinder the reasoning performance (see our ablation studies in Table 3). To
address this, we design an adaptive reward that conditions tool incentives on the group-level accuracy
µacc: when most rollouts already solve the task correctly (indicating the problem is relatively easy
or solvable without additional tool assistance), further invocations are discouraged. Conversely, low

5
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Table 1: Results on Counting, Visual Search, and General reasoning benchmarks.

Model Visual Counting Visual Search General
CountBenchQA PixmoCount V* Bench HR-Bench-4K HR-Bench-8K ChartQA Charxiv

Closed-Source MLLMs
GPT-4o 87.9 - 67.5 65.0 59.6 86.7 47.1

Open-Source MLLMs
Llava-OneVision-7B 82.3 54.4 72.7 68.5 60.0 80.4 27.1
Llava-OneVision-72B - 60.7 73.8 66.3 60.9 83.7 -
InternVL2.5-8B 55.9 - 73.7 72.0 65.5 82.8 37.2
InternVL3-8B 80.3 - 70.2 70.5 70.0 86.1 38.3
InternVL3-78B - - 76.4 75.5 67.3 89.7 46.0
Qwen2.5-VL-72B 93.6 62.3 84.8 79.4 76.3 89.5 49.7
Qwen2.5-VL-32B 87.8 56.0 85.9 74.8 71.6 - 47.6
Qwen2.5-VL-7B 76.5 50.4 76.4 69.0 66.0 86.3 42.1

Open-Source MLLMs with Tools
Pixel Reasoner-7B - - 84.3 72.9 66.9 - -
Deepeyes-7B 80.4 57.2 90.4 74.8 71.9 78.2 -
Thyme-VL-7B 84.8 - 82.2 77.0 72.0 86.1 44.2

ExeVision-7B 91.2 77.1 84.8 75.2 72.3 87.5 44.1
∆ v.s. Qwen2.5-VL-7B ↑19.2% ↑53.0% ↑11.0% ↑9.0% ↑9.5% ↑1.4% ↑4.7%

µacc encourages additional exploration. Formally, the sequence-level reward is defined as

Rseq =
(
0.5 + 0.5 · IRacc(τ)>0

)
· d · Nsucc(τ)

Ntotal(τ)
, d =

1 + tanh
(
γ(0.5− µacc)

)
2

− δ, (1)

where Nsucc(τ) and Ntotal(τ) denote the numbers of successful and total tool calls in trajectory τ ,
and d is a decay factor adapting to µacc. γ, δ are hyper-parameters. Thus, higher µacc reduces d,
discouraging redundant calls, while lower µacc increases d, promoting exploration.

Turn-level execution reward. To penalize failed executions and provide dense correction signals,
we introduce a turn-level reward. For each turn m, an immediate penalty Rturn,m = −0.5 is assigned
if the code execution fails, and 0 otherwise. To capture long-term effects, we recursively redefine
Rturn,m as the accumulated discounted return:

Rturn,m = Rturn,m + ·Rturn,m+1, Aturn = (Rt − µbatch)/σbatch. (2)
Here, β is a discount factor, and µbatch, σbatch denote the batch-wise mean and standard deviation
of Rturn. The final advantage is obtained by combining the resulting Aturn with the sequence-level
advantage Aseq (from outcome-level rewards, see Appendix A.1).

Together, the group-adaptive Rseq evaluates the quality of an entire trajectory, while Rturn assesses
the correctness of individual tool calls. This complementary design, which we term RBAT = Rseq +
Rturn, mitigates reward hacking, balances efficiency with necessary exploration, and yields more
robust multimodal reasoning policies. We discuss more details in ablation studies, see Figure 5.

3.3 DATASET CURATION

To mitigate the lack of high-quality multi-turn multimodal reasoning data, we construct a 34k dataset
of executable trajectories for SFT initialization before RL. The pipeline (Figure 7) follows a two-step
design: (i) weak-to-strong filtering, where public resources (e.g., SA1B, GEOqa plus, MMK12) are
automatically filtered and stratified in difficulty using Qwen2.5-VL-7B models; and (ii) multi-turn
atomic supervision, where hard cases are decomposed into trajectories covering three categories:
fundamental image transforms (crop, resize, rotate, etc.), mathematical computation (e.g., mea-
surement, algebra, aggregation), and open-ended visual editing (e.g., drawing, annotation). Each
trajectory is further validated by a strong MLLM to ensure correctness. Finally, the question, code
snippets and response are embedded as follows (example trajectories are shown in Appendix A.3):

Query: <IMAGE> Is the flag blue and yellow or red and yellow?
Response: The image shows..., Let’s call execute python code: \n
<code>from PIL import Image \n img = Image.open(‘img.jpg’)...</code>.
Appending compiling results... \n <answer>blue and yellow</answer>

These trajectories provide verifiable supervision of atomic skills, which form the foundation for SFT
initialization before advanced to RL training.
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4 EXPERIMENTS

Implementation Details. We mainly build on Qwen2.5-VL-7B (Bai et al., 2023) as the base model,
and compare against both open-source reasoning MLLMs (e.g., DeepEyes (Zheng et al., 2025),
R1-VL (Zhang et al., 2025a)) and advanced closed models (e.g., GPT-4o) across four benchmark
categories: math reasoning (MathVista (Lu et al., 2023), MathVision (Wang et al., 2024a), Math-
Verse (Zhang et al., 2024a), WeMath (Qiao et al., 2024), general reasoning (ChartQA (Masry et al.,
2022)), counting (Pixmo-Count (Deitke et al., 2025), CountBenchQA (Paiss et al., 2023)), and vi-
sual search (Vstar Bench (Wu & Xie, 2024), HRBench (Wang et al., 2024b)). For training, we adopt
SWIFT (Zhao et al., 2024) for SFT and VeRL (Sheng et al., 2024) for RL, using H100 (80GB) GPUs.
We set γ = 4, δ = 0.2, and β = 0.2. To ensure a fair comparison, we adopt VLMEvalKit (Duan
et al., 2024) as the evaluation framework. The max-turn set to 10 for evaluation and 6 for training.
Additional implementation details are provided in Appendix A.

4.1 VISUAL REASONING TASKS

Table 2: Comprehensive results across math
reasoning benchmarks. † Reported results from
their official papers.

Model Math-Benchmark
MathVision MathVista MathVerse WeMath

Closed-Source MLLMs
GPT-4o 36.5 63.4 35.3 44.2
Qwen2.5-VL-72B 38.1 74.8 57.6 -

Open-Source Reasoning MLLMs

R1-Onevision-7B † 29.9 64.1 40.0 -
R1-VL-7B† 24.7 63.5 40.0 -

Open-Source General MLLMs
InternVL2.5-8B 22.0 64.4 39.5 23.9
Llava-OV-7B 18.4 63.2 26.2 17.3
Qwen2.5-VL-7B 25.0 68.1 45.1 35.4
Deepeyes-7B 26.6 70.1 47.3 38.9
ExeVision-7B (Ours) 29.6 70.3 46.8 39.6

As shown in Table 1, ExeVision attains strong re-
sults across diverse visual reasoning benchmarks,
including counting, visual search, and chart under-
standing. Notably, it achieves state-of-the-art per-
formance on Counting and ChartQA, outperform-
ing the baseline by a large margin and surpassing
even larger models. These improvements high-
light the advantage of executable code as a rea-
soning medium: by delegating fine-grained visual
analysis to code-based tools, it extends beyond the
raw perceptual capacity of the base model, yield-
ing gains that cannot be achieved through scaling
alone, particularly on perception-heavy tasks.

4.2 MATH REASONING TASKS

In mathematical reasoning, ExeVision shows consistent gains over open-source baselines (see Ta-
ble 2). For instance, it improves accuracy on MathVision from 25.0 to 29.6 (+18.4%) and on
WeMath from 35.4 to 39.6 (+11.9%), while maintaining competitive results on other benchmarks.
These tasks require precise symbolic manipulation and stepwise calculations, which are naturally
supported by executable code. By externalizing intermediate steps into verifiable scripts, ExeVision
demonstrate strong accuracy and reliability than relying solely on internal approximation.

4.3 KEY FINDINGS: EMERGENT BEHAVIORS DURING RL

Throughout the RL process, we observe empirical novel and surprising findings (shown in Figure 3)
that go beyond the atomic supervision provided during SFT. These findings point toward the scala-
bility of code as a general reasoning medium.

Cross-domain tool transfer. We observe an emergent generalization ability in our ExeVision,
where visual operations defined for a specific task can be repurposed in other contexts. For example,
the bounding-box operation was initially designed to highlight particular results within chart tasks
in our SFT data. However, the model demonstrates the ability to adapt this operation for counting
tasks during RL training: e.g. In Figure 3A, the MLLM assistant first localizes all candidate objects
by drawing bounding boxes, then validates the correctness of each localization, and subsequently
derives the final count. More tool transfer trajectories can be found in Appendix Figure 11. Such
behavior indicates that task-specific visual operations are not rigidly bound to their original purpose,
but can be flexibly generalized to support broader multimodal reasoning scenarios. This suggests
that visual operations such as bounding boxes can function as general reasoning primitives, serving
as transferable building blocks across heterogeneous tasks.

Novel tool composition of learnt capabilities. Although during SFT data curation and collec-
tion, each task was restricted to a single predefined tool or coding operation, we observe that after
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Table 3: Ablation study on reward design. We report accuracy and average turns in trajectories.
Here, we note that in this ablation study we only train 150 steps due to compute constraints.

Components CountBench
Acc. / Turns

PixmoCount
Acc. / Turns

MathVision
Acc. / Turns

MathVerse
Acc. / Turns

V*
Acc. / Turns

HR4K
Acc. / Turns

HR8K
Acc. / Turns

Avg.
Acc. / Turns

SFT Cold-Start (w/o RL)
85.3
0.2749

66.9
0.3902

23.0
1.8388

41.4
1.1904

82.7
1.0052

72.1
0.1713

67.1
0.0875

62.6
0.7083

RL with Racc+Rformat
88.4
0.0200

71.2
0.0170

26.0
1.1086

46.5
0.9569

82.7
0.1728

73.4
0.0413

69.0
0.0375

65.3
0.3363

+RDeepEyes (Zheng et al., 2025)
85.1
1.5960

64.4
1.5341

25.2
2.2270

44.0
1.5190

83.3
1.0000

74.6
1.0888

68.4
1.0525

63.6
1.4311

+RBAT (Ours) 89.0
0.0000

72.5
0.0000

27.0
1.0461

46.3
1.1662

82.7
0.2094

73.8
0.2251

69.4
0.1950

65.8
0.4060

post-training the model develops the ability to compose multiple atomic operations to address more
complex tasks beyond the training coverage: In Figure 3B, to validate the color of the house, the
MLLM assistant first applies a pointing operation to check the house position correctness, then use
crop with zoom-in to focus on fine-grained details. Similarly, in Appendix Figure 12, the bounding-
box drawing and crops are combined to focus and solve the chart reasoning task. These observations
highlight the emergence of novel tool compositions, where elementary visual operations are flexibly
combined to form higher-level reasoning strategies.

Incentivizing emergence of novel unseen capabilities. Interestingly, we also find that the model
exhibits a certain potential to generate tool codes not explicitly defined in the SFT data. These codes
appear to be drawn from the model’s pretraining knowledge and are occasionally activated during the
post-training stage. For example, when asked to count the number of headsets in an image (Figure
3C), the MLLM does not directly respond with a number, but instead attempts to write Python code
with OpenCV functions (e.g., using cv2.rectangle to overlay a grid for better visualization).
This observation suggests that, beyond reproducing SFT-defined behaviors, the model attempts to
reuse and adapt pretrained capabilities (e.g. complex OpenCV operations) to support reasoning
tasks, indicating a certain potential for more flexible tool usage.

4.4 ABLATION STUDIES
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Figure 4: Scaling analysis on four dimensions:
data size for SFT, number of RL steps, base model
capacity and max-turns during inference.

Reward Design of RBAT. We compare three re-
ward designs for guiding tool usage (Table 3):
(i) GRPO-reward (Outcome-level reward) fo-
cuses only on final-answer correctness. While
it shortens interaction turns, it discourages tool
usage and underperforms on complex tasks. (ii)
Deepeyes reward grants positive signals for ev-
ery successful tool execution upon accurate an-
swer. Although this encourages exploration,
it also leads to tool overuse on trivial prob-
lems, increasing turns without consistent accu-
racy gains. A qualitative example is provided
in Figure 9. (iii) Our reward RBAT for adaptive
tool-call balances the two extremes by penal-
izing redundant calls and rewarding selective,
high-impact interactions.

As shown in Table 3, outcome-only GRPO
under-utilizes tools, and the code reward in-
flates turns without reliable accuracy improve-
ment. In contrast, RBAT achieves the best over-
all accuracy while avoiding unnecessary tool
use, consistently surpassing both baselines.

Scaling up experiments. We study how performance scales along four axes: (i) data size for SFT,
(ii) RL optimization length, (iii) model capacity, and (iv) inference turn budget (max-turn), as sum-
marized in Figure 4. Key observations are: (1) Enlarging the SFT dataset from 5K/10K/20K to 34K
yields steady accuracy gains, showing that both tool selection and symbolic planning benefit from
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            Ours w/   Turn-level reward 
            Ours w/o Turn-level reward

Step

En
tro

py

Step

            Ours w/   Turn-level reward 
            Ours w/o Turn-level reward

Figure 5: We study the impact of turn-level reward in RBAT on several benchmarks, mainly including
visual search (V∗), math reasoning (MathVista, MathVerse, MathVision), PixmoCount and Count-
BenchQA. Left: Entropy of model’s generation probabilities. Right: Mean validation accuracy.

broader coverage. (2) Extending RL training up to 240 steps further improves accuracy without
overfitting, supported by our reward design RBAT. (3) Increasing model capacity from 3B to 7B
substantially boosts reasoning benchmarks such as counting and search, with ExeVision-3B even
outperforming a stronger Qwen-2.5-VL 7B model. (4) Although the RL training was conducted
with a maximum of 6 turns, we observe that allowing more turns at inference (e.g., 10) continues to
improve reasoning performance. As shown in Figure 4, the model achieves additional gains even be-
yond 6 turns (0.3%), suggesting that the learned policy can generalize to longer reasoning horizons
than seen during training.

Entropy and Accuracy. Figure 5 evaluates the impact of incorporating turn-level reward (Rturn)
on training dynamics and generalization across visual search, math reasoning, and counting bench-
marks. (a) Entropy: Without Rturn, policy entropy collapses quickly because flawed intermediate
steps may still lead to correct final answers, reinforcing shortcuts and limiting exploration (Yu et al.,
2025). With Rturn, intermediate penalties delay collapse, sustaining exploration. (b) Validation
Accuracy: The additional corrective signals prevent premature convergence and translate into con-
sistently higher accuracy, showing that local feedback improves global generalization.

5 DISCUSSION

We present ExeVision, a framework that leverages executable code as a universal solver for mul-
timodal reasoning. By allowing MLLMs to define, compose, and execute code, it enables flexible
visual reasoning, adaptive multi-tool use, and interpretable intermediate artifacts. Beyond the atomic
skills taught in supervision, we observe emergent behaviors during RL training, including novel tool
routines, compositional strategies, and spontaneous cross-domain transfer. To guide this process,
we introduce RBAT (Reward for Balanced Adaptive Tool-call), which balances exploration with ef-
ficiency and mitigates tool overuse. Even at the 7B scale, ExeVision achieves competitive results
across diverse benchmarks, and our experiments reveal encouraging scalability with larger data,
longer training, and bigger models. Together, these findings highlight executable code as a powerful
reasoning medium and point toward scalable, verifiable, and transferable multimodal AI systems.

Future Work. Our framework demonstrates the potential of multimodal reasoning models to sup-
port natural conversations with seamless and proactive tool use through executable code, thereby
enabling more advanced problem-solving capabilities. Looking ahead, we envision that the ability
to “think with images” will evolve beyond the vision modality and fixed schemas, fostering novel
tool discovery and the spontaneous composition of tools in a more generalized and efficient manner.
Such directions may ultimately pave the way toward multimodal agents that are both versatile and
adaptive across diverse domains.
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Our study focuses on methodological advances in multimodal reasoning with MLLMs, and, to our
knowledge, we are not aware of any direct ethical concerns related to its development or findings.

REPRODUCIBILITY STATEMENT

We have made extensive efforts to ensure the reproducibility of our work. Implementation details
of our approach are provided in Section 4, and the pipeline for dataset synthesis is described in
Section 3.3. Prompts in training / data synthesis are documented in Appendix A.4. In addition,
we release model checkpoints and example code as supplementary materials. Together, we believe
these resources should enable readers to reproduce our main results and analyses.
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APPENDIX

Here, we provide additional materials to complement the main paper. In particular, we include
additional implementation settings (e.g., pipeline and examples of the trajectory construction, train-
ing setups, and hyper-parameters), further descriptions and comparisons of our curated datasets,
additional qualitative and quantitative results on various benchmarks, and extended discussions on
design choices, limitations, and broader impacts. These supplementary materials aim to enhance
reproducibility, transparency, and provide deeper insights into our proposed framework, and the
empirical findings revealed in our comprehensive experiments.

BROADER DISCUSSION

Why code-based tool use, rather than API-style calls? We adopt Python code as the medium for
tool use because it provides a universal and compositional interface. Unlike fixed API schemas, code
naturally supports both tool invocation and program logic (e.g., sequencing, conditionals, loops, nu-
merical computation). This richer interface allows models to flexibly define and combine operations,
and it produces transparent and verifiable execution traces that can be systematically inspected. In
practice, code also makes extension straightforward: adding a new tool only requires exposing its
API, without redesigning templates, retraining connectors, or engineering complex prompts.

Why a single dense model, rather than an agent pipeline? A unified dense model offers several
practical advantages over modular agent workflows: (1) it avoids error propagation across multiple
components by learning an end-to-end interface; (2) it achieves lower latency and compute cost,
since reasoning and tool orchestration are handled in a single forward pass; (3) it is more robust,
as performance does not hinge on the reliability of each sub-module; and (4) it benefits from a
unified optimization target, whereas agent systems often require additional policies or connectors to
be separately tuned.

In addition, given realistic compute constraints, most of our experiments in this work are conducted
with 7B-scale models (e.g., Qwen-2.5-VL-7B), where we already observe promising effects: consis-
tent gains across general understanding and complex reasoning benchmarks, and the emergence of
new behaviors (e.g., novel tool use and tool compositions of atomic skills to new tasks). These em-
pirical observations are easier to scale within a single dense model, while agent pipelines introduce
many interacting modules that complicate both training and deployment. Overall, our design favors
simplicity, efficiency, and scalability, making it a more practical foundation for future progress.
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Figure 6: Illustration of our reward design RBAT: Rseq adjusts tool-use incentives based on group-
level accuracy, while Rturn provides step-level penalties for failed executions. Details in Section 3.2.

A ADDITIONAL IMPLEMENTATION DETAILS

A.1 FORMULATION OF STANDARD GRPO IN OUR IMPLEMENTATION

Here, we reveal additional implementation details regarding the RL algorithm used in our work.
Group Relative Policy Optimization (GRPO, Shao et al. (2024)) has demonstrated strong effec-
tiveness across diverse tasks, particularly in multi-turn tool call agents and “thinking with images”
system (Feng et al., 2025; Fu et al., 2025; Zheng et al., 2025; Su et al., 2025a). Unlike PPO (Schul-
man et al., 2017), GRPO removes the need for a separate value network by directly computing
advantages from the normalized rewards of G sampled solutions. Formally, let πθold and πθ denote
the policy model (parameterized by θ) before and after the update, respectively, both defined over
the action/token space at each position. For a question q sampled from a task dataset Q, a group of
G candidate solutions τi ∼ πθold are rollouted and evaluated with a reward function r(·). Building on
the clipped surrogate objective of PPO, we write the objective J in an empirical expectation form:
JGRPO(θ) = Eq∼Q, {τi}Gi=1∼πθold

(·|q)[
1

G

G∑
i=1

1

|τi|

|τi|∑
t=1

min
( πθ(τi,t | q, τi,<t)

πθold(τi,t | q, τi,<t)
Ai, clip

( πθ(τi,t | q, τi,<t)

πθold(τi,t | q, τi,<t)
, 1− ε, 1 + ε

)
Ai

)] (3)

where ε = 0.2 by default, and clip(·) denotes the clipping operator for stability. We omit the KL
penalty here. The normalized within-group reward then defines the advantage Ai of solution τi:

Ai =
r(τi)− mean({r(τj)}Gj=1)

std({r(τj)}Gj=1)
. (4)

In our framework, we mostly followed the original implementation of GRPO (Shao et al., 2024) to
compute outcome-driven advantage Aseq .

A.2 HYPER PARAMETERS

In Table 4 we present the additional hyperparameters used for training our model on the multimodal
reasoning tasks. We primarily adhere to the same settings as Qwen2.5-VL (Bai et al., 2025a), and
these parameters are mostly applied across other tasks.

A.3 ADDITONAL DICUSSION OF DATASET CURATION

Here, we discuss several related works on data synthesis for MLLM training, then we include addi-
tonal details of our dataset curation pipeline.

Synthetic reasoning data for MLLM post-training. High-performance MLLMs require substan-
tial instruction-following training data with detailed reasoning trajectories. Recent approaches in-
clude converting existing datasets using fixed templates (Wei et al., 2021; Dai et al., 2023) or dis-
tilling knowledge from strong teacher models (Chen et al., 2024; Zhang et al., 2025c; Wang et al.,
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Table 4: Hyper-parameters and training settings for multimodal reasoning task.

Param. Name Value / Type

SFT

Batch size 128
Learning rate 5e-5
Warmup ratio 0.05

RL

Numerical precision BF16
Global batch size 256
Rollout 8
Total epochs 1
GPUs NVIDIA H100 GPU (80G) × 16
Time About 2 Days

Inference & Eval Deployment platform vLLM (Kwon et al., 2023)

2025), with focus on developing specific capabilities such as visual-centric reasoning (Lan et al.,
2024) and mathematical problem-solving assisted by visual cues (Gao et al., 2023; Chen et al.,
2025). However, several limitations persist in existing approaches: (i) tool-grounded verification
mechanisms are often absent, and (ii) visual operations are typically limited to fixed schema such as
cropping or zooming in (Zheng et al., 2025; Su et al., 2025a). In contrast, we synthesize and curate
training data with comprehensive reasoning trajectories and tool/code-assisted responses across a
wide range of atomic visual operations, employing enhanced process supervision including multi-
judge filtering and consistency validation. This leads to “thinking with images” reasoning capabil-
ity (OpenAI, 2025) with competitive performance while requiring substantially less training data.

The data used for our synthesis pipeline is primarily composed of the following datasets:

• Mathematical Reasoning: MMK12 (Meng et al., 2025), Retool (Feng et al., 2025).

• Table Data: ChartQAPro (Masry et al., 2025), chartgemma (Masry et al., 2024).

• Natural Images: SA1B (Kirillov et al., 2023).

• General Data: Mulberry (Yao et al., 2024).

In addition, our RL data mainly comes from Deepeyes (Zheng et al., 2025), SA1B (Kirillov et al.,
2023) and Pixmo-count train (Deitke et al., 2025).

A.4 PROMPT TEMPLATES

Prompt templates used in RL training. Here, we provide the RL training prompt template in
Appendix Table 5. This template illustrates the input–output format and executable code constraints
used during RL rollouts, offering additional transparency and reproducibility of our training setup.

Table 5: Prompt template for Reinforcement Learning Rollout.

User. <image> Question: {question}
Think step-by-step within <think></think>. You now have the ability to selectively write
executable Python code to enhance your reasoning process. The Python code should be com-
plete scripts, including necessary imports.
Each code snippet is wrapped with
<code>
‘‘‘python
code snippet
‘‘‘
</code>

You must provide your final answer in <answer></answer>.
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Step1.  Let’s…

StepN. Answer…
….

Code Snippets 

import sympy as sp
# Let t be a symbolic variable
t = sp.symbols('t')

# Matrix M with rows as barycentric coordinates 
of D, E, F
M = sp.Matrix([
    [1/2, (1-t)/2, t/2],
    [1/4, (3-t)/4, t/4],
    [1/8, (3-t)/8, (4+t)/8]
])
# Compute the determinant
det_M = M.det()
# Print the symbolic determinant
print("Determinant:", det_M)

from PIL import Image, 
ImageDraw

image = input_image
draw = ImageDraw.Draw(image)
# Draw a red horizontal line at the 
75-case level (y=131)
draw.line([(0, 131), (image.width, 
131)], fill="red", width=2)

# The first peak above the line is 
at x-coordinate ~575.
draw.rectangle([(570, 95), (585, 
350)], outline="blue", width=3)
image.show()

from PIL import Image

img = Image.open('input_image.jpg')
bbox_2d = [1478, 924, 1543, 982]
sub_img = img.crop(bbox_2d)
x1, y1, x2, y2 = bbox_2d
bbox_w = x2 - x1
bbox_h = y2 - y1
# Zoom-in image
if bbox_w < 28 or bbox_h < 28:
    if bbox_w > 0 and bbox_h > 0:
        scale = 56 / min(bbox_w, bbox_h)
        new_w = int(bbox_w * scale)
        new_h = int(bbox_h * scale)
        ...
result_img

Figure 7: Overview of the dataset curation pipeline. Top: Weak-to-strong quality filtering:
candidate samples from diverse domains (mathematics, science, visual logic, charts) are first val-
idated for quality and correctness by automatic inspectors and annotators. A weak vision–language
model (VLM) filters out trivial instances, while a stronger VLM categorizes the remaining data into
medium- and hard-difficulty sets. Mid: Multi-turn atomic supervision: the curated data are orga-
nized into three task categories. (a) Predefined image operations (e.g., crop, resize, rotate), where
medium data yield single-turn samples and hard data yield multi-turn trajectories. (b) Mathematical
reasoning, where language CoT traces are decomposed into step-level atomic operations and trans-
lated into executable code. (c) Open-ended image operations (e.g., drawing, annotation), where code
snippets are generated with feedback–verification loops to ensure correctness. Bottom: Example
code snippets, covering image processing, math problem computation, and visual annotation.

Prompt templates used in data synthesis. To ensure the reliability and consistency of synthesized
data, we design a set of standardized prompt templates tailored for different stages of the vision-
language data pipeline. These templates serve complementary purposes: (i) In Table 6: assessing
the informativeness of candidate images to guarantee sufficient visual complexity for fine-grained
reasoning; (ii) In Table 7: labeling and locating the objects that most match the question. (iii) In
Table 8: validating the quality of automatically generated visual question–answer pairs; (iv) In Ta-
ble 9: enforcing a structured step-by-step reasoning process with explicit final answers; and (v)
In Table 10: enhancing reasoning accuracy by incorporating code interpreter support for precise
numerical or logical calculations. Together, these prompt templates provide a comprehensive and
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systematic framework for controlling data quality during synthesis, thereby improving the robust-
ness and utility of the resulting multimodal datasets.

Table 6: Prompt template for assessing image informativeness.

You are an expert vision-language analyst.
Task
1. Observe the entire image.
2. Decide whether the picture meets all Four conditions below:
A. Diversity – Contains ≥ 4 different object categories or ≥ 6 individual objects.
B. Distinguishability – Includes at least one object that is mostly un-occluded, covers ¡ 30% of
the image area, and is not repeated by many visually identical copies.
C. Zoom-in Benefit – For that object (or another), some informative fine-grained detail (e.g.,
printed text, small logo, numerical value, subtle texture, or facial expression) would become
noticeably clearer if the region were enlarged. In other words, a close-up view would materially
help a downstream model answer a question about that object.
D. Is it suitable to come up with some VQA questions that require fine-grained understanding?
3. If all A, B, C, D are satisfied, Please respond with “True” or “False”.

Table 7: Prompt template for bbox generation.

Please detect the entire object that most matches the question in the image.
Question: {question}
If the target is part of an object, you need to give the bbox of the entire object.

For each object, return:
- ’label’: the object name
- ’bbox_2d’: the object’s bounding box coordinates as [x1, y1, x2, y2].

Respond in a JSON array, where each entry is a dictionary with ’label’ and ’bbox_2d’.
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Table 8: Prompt template for visual question validation.

You are a quality control assistant. Your task is to evaluate a visual question based on the
provided image, question, and correct answer.
Image: [Image is attached]
Question: {question}
Provided Correct Answer: {correct_answer}

Evaluation Criteria:
1. Correctness: Is the provided “Correct Answer” truly the correct answer based on the image?
2. Difficulty: Is the question non-trivial? It should require careful observation of details and
not be something overly simple or obvious (e.g., ”What color is the sky?”).

Your Response:
Respond with ”GOOD” if the question meets BOTH criteria.
Respond with ”BAD” if the question fails one or both criteria. Do not provide any other expla-
nation or text.

Table 9: Prompt template for step-by-step solving with final answer tag.

Solve the following problem step by step and then provide the final answer.
The final answer MUST BE enclosed within <answer> </answer> tags.
Question: {question}
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Table 10: Prompt template for revised thinking with code interpreter.

You are a helpful AI assistant. Initially, when solving a question, you would need to think step
by step, without the ability to use code for calculation. Now, you have the capability to write
code to use the code interpreter for calculation. The code will be executed by a sandbox, and
the result can be returned to enhance your reasoning process. You can now leverage code to
enhance your calculation while still maintaining the reasoning process.
The thinking process can have multiple code snippets. Each code snippet is wrapped with
<code>
‘‘‘python
code snippet
‘‘‘
</code>

The returned result is wrapped with
<interpreter> execution results</interpreter>

Goal: Modify the original thinking process to make it more accurate by replacing manual cal-
culation steps that can benefit from code execution with the corresponding code snippets and
their interpreter’s execution results. The core reasoning logic from the original thinking pro-
cess, including any unsuccessful attempts, should remain unchanged. You should only replace
the necessary manual calculation steps with code and interpreter’s execution results, without
altering the rest tokens of the thinking process.
User Question: {question}
Original Thinking Process (without code interpreter’s support):
<original_thinking_process> {original_response}
</original_thinking_process>

Details:
1. Identify sections where code execution could speed up the reasoning process or make the
calculation more accurate. For simple calculations, you should keep the original text-based
reasoning process without executing any code.
2. Replace the manual calculation steps with code snippets and the corresponding interpreter’s
execution results.
3. Keep the logical flow of the reasoning process intact, including any failed exploration at-
tempts that were part of the initial process.
4. The code snippets should be complete scripts, including necessary imports.
5. Outputs in the code snippets must explicitly call the print function.
6. Execution results should match the model’s output exactly, with no extra or missing tokens.
7. If, during the revised thinking process, you obtain the same result as in the original reasoning,
you may omit numerical computations and refrain from simplifying to specific numeric values.
8. If the Original Thinking Process does not include an <answer> section at the end, please
add it: <answer> \boxed{{’The final answer goes here.’}} </answer>

Revised Thinking Process (With code interpreter’s support):
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B ADDITIONAL QUALITATIVE RESULTS

Example SFT training data. To better illustrate the construction of supervised fine-tuning (SFT)
data, we provide representative examples of atomic operations. As shown in Figure 8, the top tra-
jectory corresponds to a two-turn reasoning process, where the model iteratively performs cropping,
observes intermediate results, and reflects on the correctness before locating the accurate price tag
of a specific toothbrush. In contrast, the bottom trajectory demonstrates a single-turn process, in
which the model directly identifies the phone number from a cropped sign. These cases exemplify
how SFT data captures both multi-step and single-step reasoning, integrating tool invocation, visual
observation, and final answer generation.

Figure 8: Example SFT training data for an atomic operation. The figure illustrates both a two-turn
(top) and a single-turn (bottom) trajectory. Shown here is the zoom-in operation.

Reward-hacking case when using naive tool call reward for code generation. A naive reward
scheme that simply reinforces every successful tool call is prone to reward hacking, where the model
exploits loopholes in the reward design rather than genuinely improving reasoning. For instance, we
observe failure cases in Figure 9 in which the model generates degenerate tool outputs (e.g., code
consisting only of commentary lines without actual execution) that nevertheless satisfy superficial
reward signals. Such behaviors artificially inflate tool success metrics while providing no real con-
tribution to solving the task, thereby misleading training and undermining reasoning quality.
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Figure 9: A sample of reasoning trajectory on reward hacking (using naive DeepEyes-style tool
reward for code generation. The MLLM hacks to generate code with only commentary lines, and
the code was not really executed.

Failure cases observed in our experiments. See Figure 10

What is the color of the 
watchband?

User Query Assistant

<think> 
The image shows a sunny day in a picturesque 
town with white-washed buildings and 
cobblestone streets. There are several people 
walking around, and the architecture features 
blue accents, typical of certain Mediterranean 
styles. The scene is vibrant with natural light 
and colorful details like flowers and plants.  
The task seems to be identifying the color of 
the watchband worn by one of the individuals 
in the image. Observing the person on the right 
side of the image, they are wearing a watch 
with a visible watchband. The coordinates 
appear to be <box>[808, 958, 1146, 1987]</
box> Let's call execute_python_code to crop. 
</think>

# python
from PIL import Image
bbox_2d = [808, 958, 1146, 
1987]
img = 
Image.open(‘input_image.jpg'
)
sub_img = img.crop(bbox_2d)
sub_img

<think> 
The cropped image shows a person 
wearing a white top and a pink skirt. 
The individual is also holding a blue 
strap over their shoulder. Upon closely 
examining the wrist area, there appears 
to be a watch with a strap that matches 
the color of the strap being held. The 
strap is clearly visible and has a distinct 
blue hue.  
</think> 
<answer>blue</answer>Observation

How many people are there 
in this image?

User Query Assistant

<think> 
Looking at the image, I can identify three 
individuals seated around a table. Their 
approximate positions are <points 
x1="238" y1="618" x2="648" y2="440" 
x3="1170" y3="480" 
alt="people">people</points>. Let's call 
execute_python_code to draw pointings 
on the detected object for further 
verification. 
</think>

# python
import cv2
points = [[238, 618], [648, 440], [1170, 480]]
img = cv2.imread(‘input_image.jpg')
radius = 6
thickness = 3
for idx, (x, y) in enumerate(points):
    cv2.circle(img, (x, y), radius * 2, …
    …

<think> 
After marking these points, I scan 
the rest of the image carefully to see 
if there are any other people present. 
I don't spot any additional figures, 
so I am confident that the total 
number of people here is three.  
</think> 
<answer>3</answer>

Observation

A. Inaccurate/wrong cropping

B. partially obscured object

Figure 10: Failure cases. A. The model performs wrongly cropping. B. The person on the right edge
is partially obscured, thus hard to count.

Additional reasoning trajectories of our method. In Figure 11 we show step-by-step reasoning
trajectories across three distinct vision tasks on tool transfer:

Top-row of Figure 11: The assistant tackles a spatial relational question by first localizing both the
bear and the white rock using bounding boxes. It then uses PIL to draw red/blue rectangles around
each object, visually verifying their relative positions. This demonstrates code-mediated spatial
reasoning. Instead of relying on implicit attention maps or pretrained spatial priors, the model
actively constructs visual evidence through code. The act of drawing bounding boxes serves as an
internal “visual scratchpad”, enabling explicit comparison of object positions, which is crucial for
fine-grained spatial inference where ambiguity exists.

Mid-row of Figure 11: The assistant identifies four candidate regions containing parrots based on
initial visual inspection. It then executes a loop of img.crop(boundingbox) operations to isolate
each region, visually confirming that each cropped area contains a unique, clearly distinguishable
parrot. This iterative cropping and verification ensures no over- or under-counting. This exemplifies
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verification-driven counting. Rather than predicting a number directly (which risks hallucination or
confusion with similar objects), the system uses tool-based segmentation to reduce the problem to a
series of binary verifications (“Is this one a parrot?”). The modularity of PIL operations allows the
model to treat counting as a compositional task — scaling naturally to more complex scenes.

Bottom-row of Figure 11: Given a scientific graph with brightness vs. time, the assistant zooms into
panel (c) using img.crop() to focus on the region with arrows. It observes sharp downward spikes
in the curve at those points and infers they represent sudden drops in brightness, not measurement
noise or calibration artifacts — based on the magnitude and shape of the dips.

Is the white rock behind a 
bear? (Spatial understanding) 

User Query Assistant

<think>To determine if the white rock 
is behind a bear, I first need to locate 
the bear in the image. The bear is 
clearly visible in the center-right of 
the frame, lying on a log and 
packaging material. Next, I need to 
find the white rock in question; it is to 
the left in the foreground and partially 
behind the rock structure. 
 To verify the relative positions, I can 
draw bounding boxes around both the 
bear and the white rock. 
</think>

from PIL import Image, ImageDraw

bbox_2d_bear = [97, 48, 397, 304]

bbox_2d_white_rock = [1, 70, 93, 226]

img = Image.open('input_image.jpg')

draw = ImageDraw.Draw(img)

draw.rectangle(bbox_2d_bear, outline="red", 

width=2)draw.rectangle(bbox_2d_white_rock, 

outline="blue", width=2)

Observation

<think> 
The image contains the bounding boxes: one around the bear and the 

other around the white rock. Visually, the white rock is in the 

background, partially behind the larger natural rocks and close to the 

bear. The white rock is not directly behind the bear, but based on the 

question phrasing, "behind" can refer to placement near or slightly 

behind. Since the white rock is visibly positioned in the background 

area to the left, the bear is indeed near a white rock. The bear's 

presence partially obscures the behind view of the white rock but does 

not entirely block it from perception. Therefore, the answer given in 

the hint ("Yes") is logical.

</think> 
<answer>Yes.</answer>

Trajectories on tool transfer

How many parrots are there in 
the image? (Visual counting)

User Query Assistant

<think>Looking over the image, I 
spot four distinct parrots arranged in a 
grid-like pattern. Their approximate 
coordinates are <box>[0, 133, 104, 
252]</box>, <box>[105, 131, 214, 
252]</box>, <box>[105, 3, 214, 
123]</box>, and <box>[0, 3, 104, 
123]</box>.  
Let's call execute_python_code to 
crop. 
</think>

from PIL import Image

bbox_2d = [0, 133, 104, 252]

img = Image.open(‘input_image.jpg')

sub_img1 = img.crop(bbox_2d)

bbox_2d = [105, 131, 214, 252]

sub_img2 = img.crop(bbox_2d)

…

# crop all objects for verification

Observation

<think> 
After cropping the image to focus on the first parrot, I can clearly see 

its features and confirm that it is indeed a single parrot.

Looking at the cropped image, I can see another parrot clearly. This 

confirms that there are indeed four parrots in the original image. The 

coordinates for the second parrot are <box>[105, 131, 214, 252]</

box>. I can see a third parrot, which further supports the count. The 

coordinates for this parrot are <box>[105, 3, 214, 123]</box>.

Reviewing the final cropped image, I can see the fourth parrot, which 

matches the initial observations. All four parrots are distinct and 

clearly visible. Therefore, the total number of parrots in the image is 

four.

</think> 
<answer>4</answer>

What do the arrows in panel (c) most 

likely represent? (Chart reasoning)

A. Points of measurement error.

B. Sudden drops in brightness.

C. Calibration markers.

D. Time intervals of interest.

User Query Assistant

<think>The image shows a set of 
three scientific graphs labeled (a), (b), 
and (c), plotted against time. Graph 
(a) shows a step-like increase and 
decrease, graph (b) is on a log scale, 
and graph (c) is labeled 'Brightness'. 
The arrows are pointing to notable 
points on the 'Brightness' graph in 
panel (c)… 
Let's use python to crop and zoom-in 
the target region of interest. 
</think>

from PIL import Image

bbox_2d = [0, 133, 104, 252]

img = Image.open(‘input_image.jpg')

sub_img1 = img.crop(bbox_2d)

Observation

<think> 
The cropped image shows panel (c) from the graph, which depicts a 

line representing brightness over time. The arrows are pointing to the 

points on the graph where the brightness significantly drops. These 

points are not random fluctuations or measurement errors, as they 

represent clear, steep declines in brightness. They are not markers of 

the entire time interval, as they highlight specific instances rather than 

an interval. Therefore, the arrows most likely represent sudden drops 

in brightness.

</think> 
<answer>B</answer>

Figure 11: Reasoning trajectories on tool transfer to other tasks.

Similarly, in Figure 12 trajectories reveal iterative, self-correcting reasoning enabled by dynamic
tool composition, which is based on tool transfer ability since we only define single tool/ability for
each task during SFT.

Top-row of Figure 12: The assistant first attempts to locate the person in the striped shirt relative
to the woman drinking. It initially misidentifies coordinates, so it composes two tools: First, it
uses cv2.circle() to draw red points at hypothesized locations — visually flagging potential errors.
Then, it corrects the coordinates and uses PIL.Image.crop() to zoom into the region for closer
inspection. Finally, it confirms the spatial relationship: the striped-shirt person is indeed to the left,
seated next to the drinking woman — no occlusion or misleading posture.

Bottom-row of Figure 12: The assistant must extract a precise numerical value from a scien-
tific plot showing (∆m2) vs. sin2(2θ). It follows a multi-step strategy: Identify region: Uses
ImageDraw.rectangle() to highlight the blue shaded 90% confidence level (CL) band. Zoom in:
Crops the upper boundary of this region using PIL.Image.crop() to isolate the extreme right edge
— where (∆m2) reaches its maximum within the CL. Finally interpret scale and answer.
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While these reasoning trajectories during RL exploration are not without flaws, e.g. occasionally
exhibiting imprecise coordinate estimation or redundant tool calls, they collectively demonstrate the
potential of tool-augmented multimodal reasoning.

Trajectories on tools composition

Is the striped shirt to the left 
of the woman drinking?

User Query Assistant

<think> 
I see the striped shirt is indeed to the left 
of the woman drinking, but I overlooked 
the coordinates slightly. Let's call 
execute_python_code to draw pointings 
on the detected object for further 
verification. 
</think>

# draw points

import cv2

points = [[51, 247], [329, 211]]

img = cv2.imread('input_image.jpg')

radius = 6

cv2.circle(img, (x, y), radius * 2, (255, 0, 0), -1)

cv2.putText(img, str(idx+1), (x + radius + 3, ...)

img

<think> 
After cropping, it's clear from the cropped image that the person 
wearing a striped shirt is to the left of the woman seen here 
drinking. The cropped area shows the shoulder and arm of the 
individual in the striped shirt, positioned to the left of the arm of 
the woman who seems to be in the act of drinking. There is no 
indication of any obstruction or misalignment that would suggest 
otherwise. Therefore, the detection is correct.  

</think> 
<answer>Yes.</answer>

Observation

<think> 
Now that I've redone the detection with improved coordinates 

given by the hint, the striped shirt seems to be correctly 

positioned relative to the woman drinking. The woman in 

green appears on the far left among the patrons, while the 

person in a striped shirt is seated next to her.  

Let's call execute_python_code to crop. 

</think>

# crop

from PIL import Image

img = Image.open('input_image.jpg')

bbox_2d = [51, 0, 235, 298]

sub_img = img.crop(bbox_2d)

Observation

What is the highest value of 
(\Delta m^2) (in (eV^2)) that is 
within the 90% confidence level 
(CL) according to the LSND data 
shown in the figure?

A. (10^{-1} eV^2) B. (10^2 eV^2)

C. (10^1 eV^2) D. (10^0 eV^2)

User Query Assistant

<think> 
To solve this problem, we need to analyze the left figure of the provided image, 

which shows the (\Delta m^2) (in (eV^2)) versus (\sin^2 2\theta) (in logarithmic 

scale). The question asks for the highest value of ( \Delta m^2 ) at the 90% 

confidence level (CL) according to the LSND data.

1. Identify the relevant region: The legend on the left figure indicates that the 90% 

CL confidence level is represented by the blue shaded area.

2. Locate the highest region of the 90% CL band: Looking at the blue shaded area, 

we can see that as the (\sin^2 2\theta) value decreases (i.e., moves to the right on 

the plot), the permissible range of (\Delta m^2) increases. The highest point, or the 

upper limit, of this permissible range is the most interesting for answering the 

question.

3. Estimate the value from the plot: We need to estimate the value of (\Delta m^2) 

(on the vertical axis) that corresponds to the extreme right of the blue band. This 

requires a more precise measurement than can be done just by looking at the 

figure.

</think>

# draw bbox to highlight 

from PIL import Image, ImageDraw

bbox_2d = [133, 37, 933, 1073]

img = Image.open('input_image.jpg')

draw = ImageDraw.Draw(img)

draw.rectangle(bbox_2d, outline="red", width=2)

<think> 
The cropped image provides a closer view of the blue shaded 
region labeled "LSND 90% CL." The left figure shows the data 
with logarithmic scales on both axes. The task is to find the highest 
value of (\Delta m^2) that is within this 90% confidence level 
band. 

1….2….

3. Estimate the value from the axis: The top of the blue band is 

clearly above the value of (10^0) (which is 1) on the y-axis. It is 

also below the value of (10^1) (which is 10) on the y-axis. 

Therefore, the highest value is greater than 1 and less than 10 

(eV^2).

Looking at the options, the value (10^1 eV^2) is the most accurate 

description of the highest value within the given range.

</think> 
<answer>\boxed{C. (10^1 eV^2)}</answer>

Observation

<think> 
The red box drawn on the left image highlights the upper 
boundary of the 90% confidence level (CL) region for 
(\Delta m^2) as a function of (\sin^2 2\theta). By 
examining this box, we can estimate the highest value of 
(\Delta m^2) within this region. From the logarithmic 
scale on the y-axis, the upper boundary of the red box 
corresponds to a value of (\Delta m^2) that is just below 
the 10(^1) (10) line, but clearly above the 10(^0) (1) line. 
This corresponds to a value of approximately (10^1 
eV^2). 
Let's call execute_python_code to crop. 

</think>

# crop

from PIL import Image

img = 

Image.open('input_image.

jpg')

bbox_2d = [133, 37, 933, 

1073]

sub_img = 

img.crop(bbox_2d)

Observation

Figure 12: Reasoning trajectories on tools composition.
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C LIMITATIONS

While our method demonstrates promising emergent behaviors and strong performance across di-
verse visual reasoning tasks, several limitations remain. First, the reliance on high-quality synthetic
trajectories implies that certain real-world reasoning patterns may be underrepresented, potentially
limiting robustness in open-domain scenarios. Second, although code provides a universal interface,
extending to richer modalities (e.g., audio) or domain-specific tools (e.g., medical applications) will
require additional engineering. Finally, due to compute constraints, our evaluations are primarily
conducted on 7B-scale models; the scalability of emergent behaviors at larger scales remains to
be systematically examined. Nevertheless, our preliminary experiments suggest a promising trend
when scaling up model capacity and compute resources.

D BROADER IMPACT

This work contributes toward building more transparent and verifiable multimodal reasoning sys-
tems by adopting executable code as the unified medium for tool use. The ability to generate inter-
pretable traces and intermediate artifacts can benefit applications where accountability and auditabil-
ity are essential, such as scientific analysis and education. At the same time, code-generating models
pose risks: malicious users could potentially exploit them for unsafe automation, and generated vi-
sual artifacts might be misused to mislead or manipulate. To mitigate these concerns, we recommend
pairing such systems with appropriate safeguards, including safety filters, usage constraints, and re-
sponsible deployment practices. By doing so, the benefits of executable visual reasoning can be
realized while minimizing the potential for misuse.

LLM USAGE STATEMENT

We used large language models (LLMs) only as auxiliary tools to correct occasional grammatical
errors and typos throughout our writing process, and importantly, no parts of the paper were gen-
erated by LLMs in a substantive or large-scale manner. In addition, we confirm that LLMs did not
contribute to research ideation, methodology design, training data synthesis and generation, or ex-
perimental analysis. We further emphasize that our submission contains no hidden prompt injections
or any other misuse of LLMs.
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