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ABSTRACT

Recent releases such as 03 highlight human-like “thinking with images” reasoning
that combines structured tool use with stepwise verification, yet most open-source
approaches still rely on text-only chains, rigid visual schemas, or single-step
pipelines, limiting flexibility, interpretability, and transferability on complex tasks.
We introduce ExeVision, which explores executable code as a universal solver for
visual reasoning. Unlike fixed-schema calls (e.g., only predicting bounding-box
coordinates), ExeVision defines, composes, and executes code to orchestrate mul-
tiple tools, compute intermediate results, and render visual artifacts (e.g., boxes,
lines, plots) that support transparent, self-checkable reasoning. To guide this pro-
cess, we introduce a reward for Balanced Adaptive Tool-call, which balances ex-
ploration with efficiency and mitigates tool overuse. Interestingly, beyond the
expected capabilities taught by atomic supervision, we empirically observe novel
emergent behaviors during RL training: ExeVision demonstrates novel tool in-
vocations, unseen compositions, and cross-task transfer. These behaviors arise
without task-specific fine-tuning, suggesting a general and scalable mechanism of
executable visual reasoning. Extensive experiments across reasoning benchmarks
(e.g., visual search, math, chart QA) show that ExeVision not only consistently
outperforms schema-driven and text-only baselines, but also surpasses advanced
closed models such as GPT-40 and larger open-source models. code is available.

1 INTRODUCTION

Multimodal Large Language Models (MLLMs) have made rapid progress, showing strong capabil-
ities in both visual perception and reasoning. By leveraging the language-centric chain-of-thought
(CoT) mechanism (Brown et al., 2020; Wei et al., 2022), models can decompose complex problems
into intermediate steps, thereby improving performance on challenging tasks. However, the CoT
paradigm’s reliance on static context becomes a critical limitation when extended to modalities such
as vision. This prevents models from interacting with visual inputs or incorporating new observa-
tions during intermediate reasoning (Zou et al., 2024; Chung et al., 2025), creating an information
bottleneck that hinders multi-round focusing and validation. To address this, the 03 system (Ope-
nAl, 2025) integrates the ability to actively seek new information through multiple tool invocations,
supporting iterative reasoning over visual inputs and demonstrating strong perception and analysis.

Research gaps. While recent models have made notable progress, fundamental gaps remain un-
resolved. (1) Current approaches largely extend CoT into multimodal reasoning via text-only tem-
plates, failing to incorporate new observations, refine intermediate steps, or validate its reasoning
against visual evidence (Ko et al., 2025; Feng et al., 2025). (2) In addition, 03 remains a pro-
prietary black-box system: its internal mechanisms are inaccessible, its reasoning process is less
transparent, and its outputs cannot be systematically studied or reproduced; (3) Most open-source
systems incorporating visual reasoning remain restricted to predefined visual workflows, or rigid and
schema-based pipelines (e.g., predicting bounding box coordinates for cropping operations), which
are inherently inflexible and task-specific, limiting transfer to new tools and tasks (Zheng et al.,
2025; Su et al., 2025a; Zhang et al., 2025b; Su et al., 2025b). Consequently, the field still lacks
an open and verifiable medium, that is general across tools and tasks, for multimodal reasoning
that allows MLLMs to dynamically compose tools, produce intermediate artifacts, and self-check
their outputs in a transparent and reproducible manner. Addressing this gap is crucial for achieving
flexible, explainable, and transferable reasoning across complex real-world tasks.
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Figure 1: Left: In SFT stage, the model is equipped with fundamental atomic coding abilities as a
universal solver (e.g., cropping, pointing, annotation) for visual reasoning, through our curated ex-
ecutable trajectories in sandboxed environments. Right: During RL, we empirically observe novel
emergent behaviors: the model spontaneously composes previously learned operations, attempts
novel tool usages, and transfers skills to unseen tasks, going beyond the capabilities covered by su-
pervision. Bottom: After RL, the learnt reasoning abilities translate into consistent and significant
performance gains on diverse multimodal benchmarks. Representative trajectories are in Figure 3.

In this work, we introduce ExeVision, a multimodal reasoning framework that leverages executable
code as a universal medium for visual reasoning. Unlike prior schema-based pipelines with fixed op-
eration templates, code enables the model to define, compose, and execute diverse visual-symbolic
operations, producing both intermediate artifacts (e.g., cropped regions, plots, annotations) and fi-
nal answers within a unified, verifiable reasoning process. To equip the model with fundamental
skills, we curate a high-quality trajectory dataset and use supervised fine-tuning (SFT) to teach
atomic capabilities such as counting, spatial grounding, and image annotating, enabling iterative
exploration-reflection reasoning process. Building on this foundation, we employ reinforcement
learning (RL) to further enhance tool-based reasoning. A central challenge we identify is a trade-
off between exploration and selectivity: naive policies often overuse tools, incurring unnecessary
steps, or underuse them, failing to leverage visual interactions when needed. To address this, we
design a difficulty-adaptive tool-reward mechanism that explicitly modulates incentives based on
task demands, encouraging longer operation chains for genuinely complex problems while discour-
aging redundant calls on simpler ones. This principled reward shaping aligns the learning dynamics
with the intrinsic structure of multimodal tasks, yielding a model that reasons more adaptively and
transparently. Together, these components enable ExeVision to advance beyond rigid schema-based
methods and offer an open, generalizable medium for executable visual reasoning.

Empirical observation of emergent behaviors. Although the model is only explicitly supervised
on atomic operations, our design enables behaviors to emerge during RL stage that go beyond the
provided supervision. In particular, we consistently observe: (1) Novel coding routines. The model
generates procedural and computational code (e.g., clustering, function plotting) that is absent from
the SFT data, indicating a capacity to internalize and extend programming patterns. (2) Composi-
tional strategies. It develops coordinated routines that combine multiple atomic operations, such as
localizing and counting before numerical computation, or cropping followed by rotation and anno-
tation, that were never observed together in the training data, giving rise to higher-level strategies
beyond supervised coverage. (3) Cross-domain transfer. The model reuses code operations learned
in one supervised context to solve novel tasks where such supervision was absent, e.g., applying
mathematical computation routines to answer general visual reasoning questions. Overall, these
findings highlight our central insight: treating executable code as a universal reasoning medium
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enables the model not only to master atomic operations but also to spontaneously develop new capa-
bilities: tool invention, strategic composition, and transferable skills that beyond direct supervision.

Our contributions are summarized as follows: (1) We introduce ExeVision, a multimodal agent
that can “think with images” by planning and composing visual-symbolic operations through exe-
cutable code as a universal medium. To this end, we curate a 34K high-quality SFT dataset covering
diverse atomic code capabilities (e.g., cropping, line drawing, point plotting), and additionally de-
sign a difficulty-adaptive reward mechanism for RL, enabling multi-turn reasoning and balanced
tool use. (2) Beyond these design choices, we report novel empirical findings: despite being trained
only on atomic operations, ExeVision empirically exhibits emergent behaviors during RL training,
including spontaneous novel tool routines, unseen operation compositions, and cross-task transfer to
novel tasks. These observations highlight the scalability and generality of executable-code reason-
ing beyond direct supervision. (3) We evaluate ExeVision on more than 10 multimodal benchmarks,
spanning both general perception and complex reasoning (e.g., visual search, counting). Across the
board, it outperforms advanced closed models (e.g., GPT-40) and larger open-source baselines (e.g.,
Qwen2.5-VL-32B), demonstrating strong visual perception ability and broad generalizability.

2 RELATED WORKS

Recent progress in MLLMs aims to build systems that can effectively understand and reason across
multiple modalities for complex tasks. To achieve this, current research typically focuses on three
key areas: (i) enhancing perceptual capabilities across diverse modalities, (ii) improving reason-
ing and action capabilities through function/tool calling, and (iii) developing high-quality synthetic
datasets for complex multimodal tasks where annotated trajectories are scarce. We address these
aspects in our work and provide detailed discussion in the subsequent section and Appendix A.3.

Perceptual capabilities of MLLMs. Popular MLLMs integrate vision encoders with language
models through lightweight learnable adapters, such as MLP (Zhu et al., 2023), Resampler (Alayrac
et al., 2022) and Q-former (Li et al., 2023), for efficient cross-modal alignment. To enhance vi-
sual comprehension capabilities, later approaches employ visual instruction tuning combined with
knowledge distillation, producing robust dense models, such as LLaVA-series (Liu et al., 2023; Li
et al., 2024a) and InstructBLIP (Dai et al., 2023). Beyond dense architectures, recent state-of-the-art
models continue to improve both model capacity and computational efficiency through mixture-of-
experts (Shazeer et al., 2017), such as Aria (Li et al., 2024b) and Uni-MoE (Li et al., 2025). Other
advancements to improve perception capabilities include accomodating high-resolution image in-
puts (Liu et al., 2024; Guo et al., 2024) or supporting native-resolution images (Bai et al., 2025b).

Multimodal reasoning and tool invocation. Building upon text-based chain-of-thought (CoT) rea-
soning (Wei et al., 2022; Yao et al., 2022), researchers have extended intermediate reasoning steps to
multimodal settings (Zheng et al., 2025; Yeo et al., 2025) including counting (Zhang et al., 2024b),
localization (Wu & Xie, 2024), charts (Li et al., 2024¢), and visual math (Chen et al., 2025). To
enhance reasoning capabilities, recent works integrate external tools through reasoning-and-acting
frameworks (Yao et al., 2022; Yang et al., 2023), learned API usage (Schick et al., 2023), and mul-
timodal agents that orchestrate OCR, detection, and editors (Wu et al., 2023; Shen et al., 2023).
ViperGPT (Surfs et al., 2023) compiles queries into executable programs. Recent models like Ope-
nAI’s 03 (OpenAl, 2025) integrate comprehensive tool capabilities directly into reasoning chains,
trained via RL on large-scale CoT data. Other approaches include RL-based tool invocation (Zheng
et al., 2025; Su et al., 2025a) and SFT-based methods (Wang et al., 2025). However, challenges
remains such as ad-hoc operations, sparse supervision, limited task coverage and lack of compre-
hensive evaluation. We diverge from prior work by pursuing code as universal medium to execute
multimodal reasoning across diverse atomic abilities.

3 METHODOLOGY

Here, we firstly introduce the fundamental preliminary in Section 3.1. An overview of our proposed
ExeVision is shown in Figure 2. In Section 3.2, we further detail the reward designs made for model
training and discuss their resulting benefits. In Section 3.3 and Appendix A.3, we describe the
high-quality data synthesis pipeline, which covers fundamental code-based atomic operations such
as cropping, counting, and math reasoning mainly tailored for SFT for initialization as cold start.
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Figure 2: Overview of our framework. Left: A multimodal query is processed by the MLLM,
which produces rollouts interleaving natural-language reasoning with executable code (e.g., crop-
ping, plotting). Code is executed in a sandbox, and the resulting visual evidence is concatenated with
text to refine reasoning or yield the final answer (e.g., “blue and yellow”). Right: In RL training,
the policy model generates multiple rollouts that are scored by rewards for accuracy (R,c.), format
compliance (Rformar), and tool usage (Req, Rum). The aggregated signal defines the advantage A
for policy updates, closing the loop toward verifiable executable reasoning. Details are in Section 3.

3.1 PRELIMINARY

Multimodal CoT. While chain-of-thought (CoT) reasoning improves interpretability in text-only
settings, it remains static and lacks exploration when extended to multimodal scenarios. To address
this, we define a think—execute—feedback cycle as the minimal reasoning unit under a policy model 7,
where each turn comprises (i) the current query and reasoning trace, (ii) a candidate action, and (iii)
the resulting observation after code execution. Formally, a trajectory is (also see Figure 2, left side)

7= ((St1 @115 80,)s s Sty Qtag_1> 545, )s (Stass Ganswer) ), Where ¢ is time step.

st = (x, V4, €;) contains the original query x, the accumulated reasoning trace V;, and interpreter
feedback €;. Actions a; are drawn from a space including tool calls (code snippets) and a terminal
answer; executing code yields an observation and updates the state to s}. By iterating a; ~ 7(- | s¢)
until a final answer is produced or a maximum turn budget M is reached, each turn becomes an
executable and verifiable reasoning unit. Building on this formulation, Section 3.3 detail the curation
of a high-quality trajectory dataset encompassing diverse atomic abilities. This dataset provides the
foundation for initializing the policy model through SFT, before advancing to RL.

Policy Optimization. In the RL stage, we require a policy optimization method that can compare
multiple rollouts and update the model accordingly. In our case, Group Relative Policy Optimization
(GRPO) (Shao et al., 2024) provides a natural baseline, as it directly normalizes rewards across
sampled trajectories without relying on a separate value network. However, standard GRPO assigns
a uniform advantage to all tokens within a trajectory, which limits its effectiveness for multi-turn
tool reasoning requiring intermediate correction. To address this, we extend the reward design with
sequence-level and turn-level components. In particular, each rollout is evaluated with a composite
reward 7 that integrates outcome and tool-related signals (also see Figure 2, right side):

T(T) = Racc(T) + Rformat(T) + RBAT(T)7

where R,.. denotes final-answer correctness and Ryoma €nforces format compliance, respectively.
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Figure 3: Examples of emergent reasoning trajectories observed during RL: A. Cross-domain tool
transfer, where the MLLM reuses bounding-box drawing (defined only in Chart SFT) to validate
counting. B. Spontaneous tool composition, where the MLLM combines pointing with crop-and-
zoom to capture fine-grained details. C. Novel tool attempt, where the MLLM generates a grid
overlay for counting verification, absent from the SFT data. More results are in Appendix B

In our design, we introduce a two-level reward Rpar that captures Balanced Adaptive Tool-call. In
particular, it decomposes into a sequence-level R4 and a turn-level Ry, balancing task difficulty
with step-wise tool-call correctness. Subsequently, the advantage A is written as:

A(T) = Aseq(RaCC7 Ritormat; Rseq) =+ Aturn(Rtum)-

As we show in Section 3.2, this formluation combines global trajectory outcomes with local execu-
tion feedback, producing more adaptive and robust tool-based reasoning.

3.2 BAT: REWARD DESIGN FOR BALANCED ADAPTIVE TOOL-CALL

Here we discuss the design choice of our proposed adaptive tool reward Rpar, including sequence-
level Ryeq reward and turn-level reward Ry,. An illustration is shown in Figure 6.

Sequence-level adaptive code-invocation reward. Simply rewarding every successful tool call
can lead to degenerate behaviors such as tool spamming or reward hacking on trivial problems (see
Appendix B), which may hinder the reasoning performance (see our ablation studies in Table 3). To
address this, we design an adaptive reward that conditions tool incentives on the group-level accuracy
Lacc: When most rollouts already solve the task correctly (indicating the problem is relatively easy
or solvable without additional tool assistance), further invocations are discouraged. Conversely, low
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Table 1: Results on Counting, Visual Search, and General reasoning benchmarks.

Model Visual Counting Visual Search General
CountBenchQA  PixmoCount V* Bench HR-Bench-4K HR-Bench-8K ChartQA  Charxiv
Closed-Source MLLMs
GPT-40 87.9 - 67.5 65.0 59.6 86.7 47.1
Open-Source MLLMs
Llava-OneVision-7B 82.3 544 72.7 68.5 60.0 80.4 27.1
Llava-OneVision-72B - 60.7 73.8 66.3 60.9 83.7 -
InternVL2.5-8B 55.9 - 73.7 72.0 65.5 82.8 37.2
InternVL3-8B 80.3 - 70.2 70.5 70.0 86.1 38.3
InternVL3-78B - - 76.4 75.5 67.3 89.7 46.0
Qwen2.5-VL-72B 93.6 62.3 84.8 79.4 76.3 89.5 49.7
Qwen2.5-VL-32B 87.8 56.0 85.9 74.8 71.6 - 47.6
Qwen2.5-VL-7B 76.5 50.4 76.4 69.0 66.0 86.3 42.1
Open-Source MLLMs with Tools
Pixel Reasoner-7B - - 84.3 72.9 66.9 - -
Deepeyes-7B 80.4 57.2 90.4 74.8 71.9 78.2 -
Thyme-VL-7B 84.8 - 82.2 77.0 72.0 86.1 44.2
ExeVision-7B 91.2 77.1 84.8 75.2 72.3 87.5 44.1
A v.s. Qwen2.5-VL-7B 119.2% 153.0% 111.0% 19.0% 19.5% 11.4% 14.7%
Lace €ncourages additional exploration. Formally, the sequence-level reward is defined as
Req= (054051 )-d Nuee(r) - 1+ tanh (05— ) 50
seq — . ‘) ARy (T)>0 ) "W o1 - -0
e Jvtotal(T) 2

where Ngyc(7) and Ny (7) denote the numbers of successful and total tool calls in trajectory T,
and d is a decay factor adapting to fiaec. 7y, 0 are hyper-parameters. Thus, higher p,.. reduces d,
discouraging redundant calls, while lower p,. increases d, promoting exploration.

Turn-level execution reward. To penalize failed executions and provide dense correction signals,
we introduce a turn-level reward. For each turn m, an immediate penalty Ry, = —0.5 is assigned
if the code execution fails, and O otherwise. To capture long-term effects, we recursively redefine
Rium,m as the accumulated discounted return:

Rtum,m = Rturn,m + 'Rturn,erla Aturn = (Rt - Nbatch)/abatcb (2)

Here, (3 is a discount factor, and fipach, Obach denote the batch-wise mean and standard deviation
of Rym- The final advantage is obtained by combining the resulting Ay, with the sequence-level
advantage A, (from outcome-level rewards, see Appendix A.1).

Together, the group-adaptive R.q evaluates the quality of an entire trajectory, while Rwm assesses
the correctness of individual tool calls. This complementary design, which we term Rpar = Req +
Ry, mitigates reward hacking, balances efficiency with necessary exploration, and yields more
robust multimodal reasoning policies. We discuss more details in ablation studies, see Figure 5.

3.3 DATASET CURATION

To mitigate the lack of high-quality multi-turn multimodal reasoning data, we construct a 34k dataset
of executable trajectories for SFT initialization before RL. The pipeline (Figure 7) follows a two-step
design: (i) weak-to-strong filtering, where public resources (e.g., SA1B, GEOqga_plus, MMK12) are
automatically filtered and stratified in difficulty using Qwen2.5-VL-7B models; and (ii) multi-turn
atomic supervision, where hard cases are decomposed into trajectories covering three categories:
fundamental image transforms (crop, resize, rotate, etc.), mathematical computation (e.g., mea-
surement, algebra, aggregation), and open-ended visual editing (e.g., drawing, annotation). Each
trajectory is further validated by a strong MLLM to ensure correctness. Finally, the question, code
snippets and response are embedded as follows (example trajectories are shown in Appendix A.3):

Query: <IMAGE> Is the flag blue and yellow or red and yellow?

Response: The image shows..., Let’s call execute_python.code: \n
<code>from PIL import Image \n img = Image.open(‘img.jpg’)...</code>.
Appending compiling results... \n <answer>blue and yellow</answer>

These trajectories provide verifiable supervision of atomic skills, which form the foundation for SFT
initialization before advanced to RL training.
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4 EXPERIMENTS

Implementation Details. We mainly build on Qwen2.5-VL-7B (Bai et al., 2023) as the base model,
and compare against both open-source reasoning MLLMs (e.g., DeepEyes (Zheng et al., 2025),
R1-VL (Zhang et al., 2025a)) and advanced closed models (e.g., GPT-40) across four benchmark
categories: math reasoning (MathVista (Lu et al., 2023), MathVision (Wang et al., 2024a), Math-
Verse (Zhang et al., 2024a), WeMath (Qiao et al., 2024), general reasoning (ChartQA (Masry et al.,
2022)), counting (Pixmo-Count (Deitke et al., 2025), CountBenchQA (Paiss et al., 2023)), and vi-
sual search (Vstar Bench (Wu & Xie, 2024), HRBench (Wang et al., 2024b)). For training, we adopt
SWIFT (Zhao et al., 2024) for SFT and VeRL (Sheng et al., 2024) for RL, using H100 (80GB) GPUs.
We set v = 4,6 = 0.2, and § = 0.2. To ensure a fair comparison, we adopt VLMEvalKit (Duan
et al., 2024) as the evaluation framework. The max-turn set to 10 for evaluation and 6 for training.
Additional implementation details are provided in Appendix A.

4.1 VISUAL REASONING TASKS

As shown in Table 1, ExeVision attains strong re- Table 2: Comprehensive results across math
sults across diverse visual reasoning benchmarks, reasoning benchmarks. ¥ Reported results from
including counting, visual search, and chart under- their official papers.

standing. Notably, it achieves state-of-the-art per- Model Math-Benchmark
. odae!

formance on Counting and ChartQA, outperform- MathVision MathVista MathVerse WeMath

ing the baseline by a large margin and surpassing Closed-Source MLLMs

even larger models. These improvements high-  GpPT40 36.5 63.4 353 442

light the advantage of executable code as a rea- ~ Qwen2>-VL-72B 381 48 516 -

soning medium: by delegating fine-grained visual O"f“'s"“m Reasoning MLLMs

. : R1-Onevision-7B 29.9 64.1 40.0

analysis to coc}e basec.l too}s, hlt et:)xtends bde%onc'l tllclie RIVI 781 by pag 20,0

raw perceptual capacity of the base model, yield- Open-Source General MLLMs

ing gains that cannot be achm;ved through scaling - —~— < 70 i 95 239

alone, particularly on perception-heavy tasks. Llava-OV-7B 18.4 63.2 262 173
Qwen2.5-VL-7B 25.0 68.1 451 354
Deepeyes-7B 26.6 70.1 473 389
ExeVision-7B (Ours) ~ 29.6 703 468 396

4.2 MATH REASONING TASKS

In mathematical reasoning, ExeVision shows consistent gains over open-source baselines (see Ta-
ble 2). For instance, it improves accuracy on MathVision from 25.0 to 29.6 (+18.4%) and on
WeMath from 35.4 to 39.6 (+11.9%), while maintaining competitive results on other benchmarks.
These tasks require precise symbolic manipulation and stepwise calculations, which are naturally
supported by executable code. By externalizing intermediate steps into verifiable scripts, ExeVision
demonstrate strong accuracy and reliability than relying solely on internal approximation.

4.3 KEY FINDINGS: EMERGENT BEHAVIORS DURING RL

Throughout the RL process, we observe empirical novel and surprising findings (shown in Figure 3)
that go beyond the atomic supervision provided during SFT. These findings point toward the scala-
bility of code as a general reasoning medium.

Cross-domain tool transfer. We observe an emergent generalization ability in our ExeVision,
where visual operations defined for a specific task can be repurposed in other contexts. For example,
the bounding-box operation was initially designed to highlight particular results within chart tasks
in our SFT data. However, the model demonstrates the ability to adapt this operation for counting
tasks during RL training: e.g. In Figure 3A, the MLLM assistant first localizes all candidate objects
by drawing bounding boxes, then validates the correctness of each localization, and subsequently
derives the final count. More tool transfer trajectories can be found in Appendix Figure 11. Such
behavior indicates that task-specific visual operations are not rigidly bound to their original purpose,
but can be flexibly generalized to support broader multimodal reasoning scenarios. This suggests
that visual operations such as bounding boxes can function as general reasoning primitives, serving
as transferable building blocks across heterogeneous tasks.

Novel tool composition of learnt capabilities. Although during SFT data curation and collec-
tion, each task was restricted to a single predefined tool or coding operation, we observe that after
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Table 3: Ablation study on reward design. We report accuracy and average turns in trajectories.
Here, we note that in this ablation study we only train 150 steps due to compute constraints.

Components CountBench PixmoCount MathVision MathVerse \& HR4K HRSK Avg.
p Acc. / Turns Acc. / Turns Acc. / Turns Acc. / Turns Acc. /Turns  Acc./Turns  Acc. / Turns | Acc. / Turns

85.3 66.9 23.0 41.4 82.7 72.1 67.1 62.6

SET Cold-Start (w/o RL) 0.2749 0.3902 1.8388 1.1904 1.0052 0.1713 0.0875 ‘ 0.7083

. 88.4 71.2 26.0 46.5 82.7 73.4 69.0 65.3

RL with Race+ Rformar 0.0200 0.0170 1.1086 0.9569 0.1728 0.0413 0.0375 0.3363

+R 85.1 64.4 25.2 44.0 83.3 74.6 68.4 63.6

DeepEyes (Zheng etal., 2025) 1.5960 1.5341 2.2270 1.5190 1.0000 1.0888 1.0525 14311

89.0 72.5 27.0 46.3 82.7 73.8 69.4 65.8

+Rpar (Ours) 0.0000 0.0000 1.0461 1.1662 0.2094 0.2251 0.1950 0.4060

post-training the model develops the ability to compose multiple atomic operations to address more
complex tasks beyond the training coverage: In Figure 3B, to validate the color of the house, the
MLLM assistant first applies a pointing operation to check the house position correctness, then use
crop with zoom-in to focus on fine-grained details. Similarly, in Appendix Figure 12, the bounding-
box drawing and crops are combined to focus and solve the chart reasoning task. These observations
highlight the emergence of novel tool compositions, where elementary visual operations are flexibly
combined to form higher-level reasoning strategies.

Incentivizing emergence of novel unseen capabilities. Interestingly, we also find that the model
exhibits a certain potential to generate tool codes not explicitly defined in the SFT data. These codes
appear to be drawn from the model’s pretraining knowledge and are occasionally activated during the
post-training stage. For example, when asked to count the number of headsets in an image (Figure
3C), the MLLM does not directly respond with a number, but instead attempts to write Python code
with OpenCV functions (e.g., using cv2.rectangle to overlay a grid for better visualization).
This observation suggests that, beyond reproducing SFT-defined behaviors, the model attempts to
reuse and adapt pretrained capabilities (e.g. complex OpenCV operations) to support reasoning
tasks, indicating a certain potential for more flexible tool usage.

4.4 ABLATION STUDIES

Reward Design of Rgar. We compare three re- 199 W SFD. v fuining dota e o FRL Steps
ward designs for guiding tool usage (Table 3): o || = Viau Seoen 5o ff © pmo |
(i) GRPO-reward (Outcome-level reward) fo- s |——""—— o ST :
cuses only on final-answer correctness. While 7 ] 8 .
it shortens interaction turns, it discourages tool s 8 - =
usage and underperforms on complex tasks. (ii) ¢ 78
Deepeyes reward grants positive signals for ev- 52 74
ery successful tool execution upon accurate an- 4 69
‘SW6r. Although thls encourages e?(ploratlon’ SK 10K 20K 34K 40 60 80 100120140 160200240
it also leads to tool overuse on trivial prob- _ Ace. vs. Model Capacity wop Percenta‘ge(% vs. Num_turns
lems, increasing turns without consistent accu- Qwen-2.5-VL-7B mansssin] | Blcome Gratvison)
racy gains. A qualitative example is provided % B b | 80 = [
in Figure 9. (iii) Our reward Rgsr for adaptive ol - o
tool-call balances the two extremes by penal-
izing redundant calls and rewarding selective, 7 4
high-impact interactions. N M

20
As shown in Table 3, outcome-only GRPO N

under-utilizes tools, and the code reward in- ViBench  Pimo  CountBenchQA
flates turns without reliable accuracy improve-

ment. In contrast, Rgar achieves the best over- Figure 4: Scaling analysis on four dimensions:
all accuracy while avoiding unnecessary tool —datasize for SFT, number of RL steps, base model

use, consistently surpassing both baselines. capacity and max-turns during inference.

Scaling up experiments. We study how performance scales along four axes: (i) data size for SFT,
(i1) RL optimization length, (iii) model capacity, and (iv) inference turn budget (max-turn), as sum-
marized in Figure 4. Key observations are: (1) Enlarging the SFT dataset from 5K/10K/20K to 34K
yields steady accuracy gains, showing that both tool selection and symbolic planning benefit from
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Figure 5: We study the impact of turn-level reward in Rgar on several benchmarks, mainly including
visual search (V*), math reasoning (MathVista, MathVerse, MathVision), PixmoCount and Count-
BenchQA. Left: Entropy of model’s generation probabilities. Right: Mean validation accuracy.

broader coverage. (2) Extending RL training up to 240 steps further improves accuracy without
overfitting, supported by our reward design Rpar. (3) Increasing model capacity from 3B to 7B
substantially boosts reasoning benchmarks such as counting and search, with ExeVision-3B even
outperforming a stronger Qwen-2.5-VL 7B model. (4) Although the RL training was conducted
with a maximum of 6 turns, we observe that allowing more turns at inference (e.g., 10) continues to
improve reasoning performance. As shown in Figure 4, the model achieves additional gains even be-
yond 6 turns (0.3%), suggesting that the learned policy can generalize to longer reasoning horizons
than seen during training.

Entropy and Accuracy. Figure 5 evaluates the impact of incorporating turn-level reward (Rym)
on training dynamics and generalization across visual search, math reasoning, and counting bench-
marks. (a) Entropy: Without Ry, policy entropy collapses quickly because flawed intermediate
steps may still lead to correct final answers, reinforcing shortcuts and limiting exploration (Yu et al.,
2025). With Ry, intermediate penalties delay collapse, sustaining exploration. (b) Validation
Accuracy: The additional corrective signals prevent premature convergence and translate into con-
sistently higher accuracy, showing that local feedback improves global generalization.

5 DISCUSSION

We present ExeVision, a framework that leverages executable code as a universal solver for mul-
timodal reasoning. By allowing MLLMs to define, compose, and execute code, it enables flexible
visual reasoning, adaptive multi-tool use, and interpretable intermediate artifacts. Beyond the atomic
skills taught in supervision, we observe emergent behaviors during RL training, including novel tool
routines, compositional strategies, and spontaneous cross-domain transfer. To guide this process,
we introduce Rgar (Reward for Balanced Adaptive Tool-call), which balances exploration with ef-
ficiency and mitigates tool overuse. Even at the 7B scale, ExeVision achieves competitive results
across diverse benchmarks, and our experiments reveal encouraging scalability with larger data,
longer training, and bigger models. Together, these findings highlight executable code as a powerful
reasoning medium and point toward scalable, verifiable, and transferable multimodal Al systems.

Future Work. Our framework demonstrates the potential of multimodal reasoning models to sup-
port natural conversations with seamless and proactive tool use through executable code, thereby
enabling more advanced problem-solving capabilities. Looking ahead, we envision that the ability
to “think with images” will evolve beyond the vision modality and fixed schemas, fostering novel
tool discovery and the spontaneous composition of tools in a more generalized and efficient manner.
Such directions may ultimately pave the way toward multimodal agents that are both versatile and
adaptive across diverse domains.



Under review as a conference paper at ICLR 2026

ETHICS STATEMENT

This work does not involve human subjects, personally identifiable information, or sensitive data.
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we release model checkpoints and example code as supplementary materials. Together, we believe
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APPENDIX

Here, we provide additional materials to complement the main paper. In particular, we include
additional implementation settings (e.g., pipeline and examples of the trajectory construction, train-
ing setups, and hyper-parameters), further descriptions and comparisons of our curated datasets,
additional qualitative and quantitative results on various benchmarks, and extended discussions on
design choices, limitations, and broader impacts. These supplementary materials aim to enhance
reproducibility, transparency, and provide deeper insights into our proposed framework, and the
empirical findings revealed in our comprehensive experiments.

BROADER DISCUSSION

Why code-based tool use, rather than API-style calls? We adopt Python code as the medium for
tool use because it provides a universal and compositional interface. Unlike fixed API schemas, code
naturally supports both tool invocation and program logic (e.g., sequencing, conditionals, loops, nu-
merical computation). This richer interface allows models to flexibly define and combine operations,
and it produces transparent and verifiable execution traces that can be systematically inspected. In
practice, code also makes extension straightforward: adding a new tool only requires exposing its
API, without redesigning templates, retraining connectors, or engineering complex prompts.

Why a single dense model, rather than an agent pipeline? A unified dense model offers several
practical advantages over modular agent workflows: (1) it avoids error propagation across multiple
components by learning an end-to-end interface; (2) it achieves lower latency and compute cost,
since reasoning and tool orchestration are handled in a single forward pass; (3) it is more robust,
as performance does not hinge on the reliability of each sub-module; and (4) it benefits from a
unified optimization target, whereas agent systems often require additional policies or connectors to
be separately tuned.

In addition, given realistic compute constraints, most of our experiments in this work are conducted
with 7B-scale models (e.g., Qwen-2.5-VL-7B), where we already observe promising effects: consis-
tent gains across general understanding and complex reasoning benchmarks, and the emergence of
new behaviors (e.g., novel tool use and tool compositions of atomic skills to new tasks). These em-
pirical observations are easier to scale within a single dense model, while agent pipelines introduce
many interacting modules that complicate both training and deployment. Overall, our design favors
simplicity, efficiency, and scalability, making it a more practical foundation for future progress.
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Figure 6: Illustration of our reward design Rpar: [sq adjusts tool-use incentives based on group-
level accuracy, while Ry, provides step-level penalties for failed executions. Details in Section 3.2.

A ADDITIONAL IMPLEMENTATION DETAILS

A.1 FORMULATION OF STANDARD GRPO IN OUR IMPLEMENTATION

Here, we reveal additional implementation details regarding the RL algorithm used in our work.
Group Relative Policy Optimization (GRPO, Shao et al. (2024)) has demonstrated strong effec-
tiveness across diverse tasks, particularly in multi-turn tool call agents and “thinking with images”
system (Feng et al., 2025; Fu et al., 2025; Zheng et al., 2025; Su et al., 2025a). Unlike PPO (Schul-
man et al., 2017), GRPO removes the need for a separate value network by directly computing
advantages from the normalized rewards of G sampled solutions. Formally, let 7y , and 7y denote
the policy model (parameterized by 6) before and after the update, respectively, both defined over
the action/token space at each position. For a question ¢ sampled from a task dataset O, a group of
G candidate solutions 7; ~ g, are rollouted and evaluated with a reward function r(-). Building on
the clipped surrogate objective of PPO, we write the objective 7 in an empirical expectation form:

jGRPO(e) = EqNQ, {Ti}iG:1N7r901d(‘|q)

G |73l

1 1 i i ; i 3)
|:GZW min( mo(Tie | @ Ti,<t) A, C]ip( mo(Tie | g, Ti<t) L 1—e, 1+5)Ai)

i—1 =1 014 (Tit | 4, 7i <) 014 (Tie | ¢, 7i <)

where ¢ = 0.2 by default, and clip(-) denotes the clipping operator for stability. We omit the KL
penalty here. The normalized within-group reward then defines the advantage A; of solution 7;:
r(ri) — mean({r(7;)}§L,)

std({r () }1)

In our framework, we mostly followed the original implementation of GRPO (Shao et al., 2024) to
compute outcome-driven advantage A,q,.

A = “)

A.2 HYPER PARAMETERS

In Table 4 we present the additional hyperparameters used for training our model on the multimodal
reasoning tasks. We primarily adhere to the same settings as Qwen2.5-VL (Bai et al., 2025a), and
these parameters are mostly applied across other tasks.

A.3 ADDITONAL DICUSSION OF DATASET CURATION

Here, we discuss several related works on data synthesis for MLLM training, then we include addi-
tonal details of our dataset curation pipeline.

Synthetic reasoning data for MLLLM post-training. High-performance MLLMs require substan-
tial instruction-following training data with detailed reasoning trajectories. Recent approaches in-
clude converting existing datasets using fixed templates (Wei et al., 2021; Dai et al., 2023) or dis-
tilling knowledge from strong teacher models (Chen et al., 2024; Zhang et al., 2025c; Wang et al.,
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Table 4: Hyper-parameters and training settings for multimodal reasoning task.

Param. Name Value / Type
Batch size 128
Learning rate Se-5
SFT Warmup ratio 0.05
Numerical precision BF16
Global batch size 256
Rollout 8
RL Total epochs 1
GPUs NVIDIA H100 GPU (80G) x 16
Time About 2 Days
Inference & Eval Deployment platform vLLM (Kwon et al., 2023)

2025), with focus on developing specific capabilities such as visual-centric reasoning (Lan et al.,
2024) and mathematical problem-solving assisted by visual cues (Gao et al., 2023; Chen et al.,
2025). However, several limitations persist in existing approaches: (i) tool-grounded verification
mechanisms are often absent, and (ii) visual operations are typically limited to fixed schema such as
cropping or zooming in (Zheng et al., 2025; Su et al., 2025a). In contrast, we synthesize and curate
training data with comprehensive reasoning trajectories and tool/code-assisted responses across a
wide range of atomic visual operations, employing enhanced process supervision including multi-
judge filtering and consistency validation. This leads to “thinking with images” reasoning capabil-
ity (OpenAl, 2025) with competitive performance while requiring substantially less training data.

The data used for our synthesis pipeline is primarily composed of the following datasets:

* Mathematical Reasoning: MMK12 (Meng et al., 2025), Retool (Feng et al., 2025).
e Table Data: ChartQAPro (Masry et al., 2025), chartgemma (Masry et al., 2024).

* Natural Images: SA1B (Kirillov et al., 2023).

* General Data: Mulberry (Yao et al., 2024).

In addition, our RL data mainly comes from Deepeyes (Zheng et al., 2025), SA1B (Kirillov et al.,
2023) and Pixmo-count train (Deitke et al., 2025).

A.4 PROMPT TEMPLATES
Prompt templates used in RL training. Here, we provide the RL training prompt template in

Appendix Table 5. This template illustrates the input—output format and executable code constraints
used during RL rollouts, offering additional transparency and reproducibility of our training setup.

Table 5: Prompt template for Reinforcement Learning Rollout.

User. <image> Question: {question}

Think step-by-step within <think></think>. You now have the ability to selectively write
executable Python code to enhance your reasoning process. The Python code should be com-
plete scripts, including necessary imports.

Each code snippet is wrapped with

<code>

‘Y 'python

code snippet

ARRURY

</code>

You must provide your final answer in <answer></answer>.
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Figure 7: Overview of the dataset curation pipeline. Top: Weak-to-strong quality filtering:
candidate samples from diverse domains (mathematics, science, visual logic, charts) are first val-
idated for quality and correctness by automatic inspectors and annotators. A weak vision—language
model (VLM) filters out trivial instances, while a stronger VLM categorizes the remaining data into
medium- and hard-difficulty sets. Mid: Multi-turn atomic supervision: the curated data are orga-
nized into three task categories. (a) Predefined image operations (e.g., crop, resize, rotate), where
medium data yield single-turn samples and hard data yield multi-turn trajectories. (b) Mathematical
reasoning, where language CoT traces are decomposed into step-level atomic operations and trans-
lated into executable code. (c) Open-ended image operations (e.g., drawing, annotation), where code
snippets are generated with feedback—verification loops to ensure correctness. Bottom: Example
code snippets, covering image processing, math problem computation, and visual annotation.

Prompt templates used in data synthesis. To ensure the reliability and consistency of synthesized
data, we design a set of standardized prompt templates tailored for different stages of the vision-
language data pipeline. These templates serve complementary purposes: (i) In Table 6: assessing
the informativeness of candidate images to guarantee sufficient visual complexity for fine-grained
reasoning; (ii) In Table 7: labeling and locating the objects that most match the question. (iii) In
Table 8: validating the quality of automatically generated visual question—answer pairs; (iv) In Ta-
ble 9: enforcing a structured step-by-step reasoning process with explicit final answers; and (v)
In Table 10: enhancing reasoning accuracy by incorporating code interpreter support for precise
numerical or logical calculations. Together, these prompt templates provide a comprehensive and
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systematic framework for controlling data quality during synthesis, thereby improving the robust-
ness and utility of the resulting multimodal datasets.

Table 6: Prompt template for assessing image informativeness.

You are an expert vision-language analyst.

Task

1. Observe the entire image.

2. Decide whether the picture meets all Four conditions below:

A. Diversity — Contains > 4 different object categories or > 6 individual objects.

B. Distinguishability — Includes at least one object that is mostly un-occluded, covers j 30% of
the image area, and is not repeated by many visually identical copies.

C. Zoom-in Benefit — For that object (or another), some informative fine-grained detail (e.g.,
printed text, small logo, numerical value, subtle texture, or facial expression) would become
noticeably clearer if the region were enlarged. In other words, a close-up view would materially
help a downstream model answer a question about that object.

D. Is it suitable to come up with some VQA questions that require fine-grained understanding?
3. If all A, B, C, D are satisfied, Please respond with “True” or “False”.

Table 7: Prompt template for bbox generation.

Please detect the entire object that most matches the question in the image.
Question: {question}
If the target is part of an object, you need to give the bbox of the entire object.

For each object, return:
-’ label’: the object name
- "bbox_2d’ : the object’s bounding box coordinates as [x1, y1, x2, y2].

Respond in a JSON array, where each entry is a dictionary with * 1abel’ and ' bbox_2d’.
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Table 8: Prompt template for visual question validation.

You are a quality control assistant. Your task is to evaluate a visual question based on the
provided image, question, and correct answer.

Image: [Image is attached]
Question: {question}
Provided Correct Answer: {correct_answer}

Evaluation Criteria:
1. Correctness: Is the provided “Correct Answer” truly the correct answer based on the image?

2. Difficulty: Is the question non-trivial? It should require careful observation of details and
not be something overly simple or obvious (e.g., "What color is the sky?”).

Your Response:
Respond with ”GOOD” if the question meets BOTH criteria.

Respond with "BAD” if the question fails one or both criteria. Do not provide any other expla-
nation or text.

Table 9: Prompt template for step-by-step solving with final answer tag.

Solve the following problem step by step and then provide the final answer.
The final answer MUST BE enclosed within <answer> </answer> tags.
Question: {question}
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Table 10: Prompt template for revised thinking with code interpreter.

You are a helpful Al assistant. Initially, when solving a question, you would need to think step
by step, without the ability to use code for calculation. Now, you have the capability to write
code to use the code interpreter for calculation. The code will be executed by a sandbox, and
the result can be returned to enhance your reasoning process. You can now leverage code to
enhance your calculation while still maintaining the reasoning process.

The thinking process can have multiple code snippets. Each code snippet is wrapped with
<code>

‘Y 'python

code snippet

AR U

</code>

The returned result is wrapped with
<interpreter> execution results</interpreter>

Goal: Modify the original thinking process to make it more accurate by replacing manual cal-
culation steps that can benefit from code execution with the corresponding code snippets and
their interpreter’s execution results. The core reasoning logic from the original thinking pro-
cess, including any unsuccessful attempts, should remain unchanged. You should only replace
the necessary manual calculation steps with code and interpreter’s execution results, without
altering the rest tokens of the thinking process.

User Question: {question}

Original Thinking Process (without code interpreter’s support):
<original_thinking_process> {original_response}
</original_thinking_process>

Details:

1. Identify sections where code execution could speed up the reasoning process or make the
calculation more accurate. For simple calculations, you should keep the original text-based
reasoning process without executing any code.

2. Replace the manual calculation steps with code snippets and the corresponding interpreter’s
execution results.

3. Keep the logical flow of the reasoning process intact, including any failed exploration at-
tempts that were part of the initial process.

4. The code snippets should be complete scripts, including necessary imports.

5. Outputs in the code snippets must explicitly call the print function.

6. Execution results should match the model’s output exactly, with no extra or missing tokens.

7. If, during the revised thinking process, you obtain the same result as in the original reasoning,
you may omit numerical computations and refrain from simplifying to specific numeric values.

8. If the Original Thinking Process does not include an <answer> section at the end, please
add it: <answer> \boxed{{’The final answer goes here.’}} </answer>

Revised Thinking Process (With code interpreter’s support):
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B ADDITIONAL QUALITATIVE RESULTS

Example SFT training data. To better illustrate the construction of supervised fine-tuning (SFT)
data, we provide representative examples of atomic operations. As shown in Figure 8, the top tra-
jectory corresponds to a two-turn reasoning process, where the model iteratively performs cropping,
observes intermediate results, and reflects on the correctness before locating the accurate price tag
of a specific toothbrush. In contrast, the bottom trajectory demonstrates a single-turn process, in
which the model directly identifies the phone number from a cropped sign. These cases exemplify
how SFT data captures both multi-step and single-step reasoning, integrating tool invocation, visual
observation, and final answer generation.

User Query

Assistant

TR GGG

N=p =g =8 =

What is the price listed on the price tag
directly below the Oral-B VITAL 100
electric toothbrush?

(s
<think>

The image shows a display of various Oral-B electric
toothbrushes arranged neatly on a shelf. Each toothbrush
model is accompanied by detailed information cards and there
are visible price tags below each item. The setting appears to
be a retail store with bright lighting enhancing the visibility of

the products.

The task seems to be identifying the price of the Oral-B

[~ VITAL 100 electric toothbrush from the given options. The
price tag directly beneath the Oral-B VITAL 100 model needs
to be examined carefully to determine the correct value. The
coordinates appear to be <box>[1202, 1245, 1399, 1387]</

sub_img

from PIL import Image
bbox_2d =
img = Image.open(‘input_image.jpg')
sub_img = img.crop(bbox_2d)

[1202, 1245, 1399, 1387]

Observation

-\

Following the cropping of the image, it
reveals the price tag for the Oral-B
VITAL 100 electric toothbrush directly
below its packaging. The price clearly
states "99.90". This matches option A
among the provided choices.
\n\nTherefore, the price listed on the price
tag directly below the Oral-B VITAL 100
electric toothbrush is 799.90".

Observation

<thmk>

A: 99. 3
B: ?;;0 box> Let's execute the code to crop and zoom-in the target
. ’ region.
C: 149. <Jthink>
D: 239. N
( [
: oo N
g bbox_2d = [807, 1232, 1096, 1400] * vitat 100} le i pro 500, Reflection
img = i q | lets me not the
sub_img = img.crop(bbox_2d)\nsub_img \ | see. e
<think> C@

The cropped image shows a digital price tag for an \"ORAL-
B SECZOTECZKA DO ZEBOW PRO 500 SENSIT\" priced
at \"149.-\", but this fails to meet the requirement of finding
the price for the \"Oral-B VITAL 100\" toothbrush. Therefore,|
I must conduct the search again to locate the correct item. The
price tag for Oral-B VITAL 100 seems to be located at
<box>[807, 1232, 1096, 1400]</box>. Let's execute the

</think> . .
<answer>A</answer> code to crop and zoom-in the target region.
</think>
User Query Assistant
<think> from PIL import Image

Whaf is the phone number listed on the
round sign attached to the bamboo stall
near the right edge of the image?

A: 089-7698340

B: 098-5432109

C: 088-1234567

D: 077-9876543

J

The image shows .....

The task seems to be identifying the phone
number listed on the round sign attached to
the bamboo stall. The round sign is located
near the right edge of the image and is part of
a food stall that appears to be selling a type
of dessert. To determine the correct phone
number, I will need to carefully examine the
text on the sign within the specified bounding
box. The coordinates appear to be
<box>[1553, 975, 1737, 1196]</box>. Let's
call execute_python_code to crop.

</think>

bbox_2d = [1553, 975, 1737, 1196]

img = Image.open(‘input_image.3pgl

nsub_img = img.crop(bbox_2d)
sub_img

Observation

\

<think>The cropped image
shows a round sign attached to a
bamboo stall near the right edge
of the image. The sign has text
in Thai and includes a phone
number at the bottom. The
phone number is clearly visible

F~and reads "089-7698340."

Comparing this to the given
choices, the phone number
matches choice A.</think>
<answer>A</answer>

Figure 8: Example SFT training data for an atomic operation. The figure illustrates both a two-turn
(top) and a single-turn (bottom) trajectory. Shown here is the zoom-in operation.

Reward-hacking case when using naive tool call reward for code generation. A naive reward
scheme that simply reinforces every successful tool call is prone to reward hacking, where the model
exploits loopholes in the reward design rather than genuinely improving reasoning. For instance, we
observe failure cases in Figure 9 in which the model generates degenerate tool outputs (e.g., code
consisting only of commentary lines without actual execution) that nevertheless satisfy superficial
reward signals. Such behaviors artificially inflate tool success metrics while providing no real con-
tribution to solving the task, thereby misleading training and undermining reasoning quality.
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</code>
user
<tool_response>

Think with the tool's result, then answer. Determine if it adequately answers the user's question. If the inform
ation is insufficient or irrelevant, formulate a new strategy and execute a new tool call to obtain a helpful result.

</tool_response>

<tool_response>

Turn limit reached. Based on the analysis so far, directly provide the final answer using the <think></think><an
swer></answer> format. Do not use any more tools or execute code.

</tool_response>

assistant

<answer>5</answer>

<code>

**python
(TaskRunner pid=301219) # No code needed for this task as the answer can be directly observed from the image.
(TaskRunner p 01219) "
(TaskRunner pid=301219) </code>

[ground_truth] 5

[score] {'score': 1.8, 'acc':

1.0, 'tool_success_rate': 1.0, 'format_r': -1.0, 'ground_truth': '5', ‘answer': 'S

Figure 9: A sample of reasoning trajectory on reward hacking (using naive DeepEyes-style tool

reward for code generation. The MLLM hacks to generate code with only commentary lines, and
the code was not really executed.

Failure cases observed in our experiments. See Figure 10

User Query Assistant
. ~
<think>
The image shows a sunny day in a picturesque IBI
town with white-washed buildings and
cobblestone streets. There are several people fgbyhon

What is the color of the

walking around, and the architecture features
blue accents, typical of certain Mediterranean
styles. The scene is vibrant with natural light
and colorful details like flowers and plants.
The task seems to be identifying the color of
the watchband worn by one of the individuals
in the image. Observing the person on the right
side of the image, they are wearing a watch
with a visible watchband. The coordinates
appear to be <box>[808, 958, 1146, 1987]</
box> Let's call execute_python_code to crop.

from PIL import Image
bbox_2d = [808, 958, 1146,
1987]

img =
Image.open(’input_image.jpg'
)

sub_img = img.crop(bbox_2d)
sub_ing

Observation

<think>

The cropped image shows a person
wearing a white top and a pink skirt.
The individual is also holding a blue
strap over their shoulder. Upon closely
examining the wrist area, there appears
to be a watch with a strap that matches
the color of the strap being held. The
strap is clearly visible and has a distinct
blue hue.

</think>

<answer>blue</answer>

</think>
\_ watchband? ~ )
User Query Assistant +B. partially obscured object |
("# python D
import cv2
points = [[238, 618], [648, 440], [1170, 480]] .B.
<think> img = cv2.imread(’input_image.jpg")
radius = 6

Looking at the image, I can identify three
individuals seated around a table. Their
approximate positions are <points
x1="238" y1="618" x2="648" y2="440"

thickness = 3
Afor idx, (x, y) in enumerate(points):
cv2.circle(img, (x, y), radius * 2

<think>
After marking these points, I scan

How many people are there

X3="1170" y3="480"
alt="people">people</points>. Let's call
execute_python_code to draw pointings
on the detected object for further
verification

Observation

the rest of the image carefully to see
if there are any other people present.
1 don't spot any additional figures,
so I am confident that the total
number of people here is three.
</think>

</think>

in this image?

<answer>3</answer>

Figure 10: Failure cases. A. The model performs wrongly cropping. B. The person on the right edge
is partially obscured, thus hard to count.

Additional reasoning trajectories of our method. In Figure 11 we show step-by-step reasoning
trajectories across three distinct vision tasks on tool transfer:

Top-row of Figure 11: The assistant tackles a spatial relational question by first localizing both the
bear and the white rock using bounding boxes. It then uses PIL to draw red/blue rectangles around
each object, visually verifying their relative positions. This demonstrates code-mediated spatial
reasoning. Instead of relying on implicit attention maps or pretrained spatial priors, the model
actively constructs visual evidence through code. The act of drawing bounding boxes serves as an
internal “visual scratchpad”, enabling explicit comparison of object positions, which is crucial for
fine-grained spatial inference where ambiguity exists.

Mid-row of Figure 11: The assistant identifies four candidate regions containing parrots based on
initial visual inspection. It then executes a loop of img.crop(boundingbox) operations to isolate
each region, visually confirming that each cropped area contains a unique, clearly distinguishable
parrot. This iterative cropping and verification ensures no over- or under-counting. This exemplifies
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verification-driven counting. Rather than predicting a number directly (which risks hallucination or
confusion with similar objects), the system uses tool-based segmentation to reduce the problem to a
series of binary verifications (“Is this one a parrot?”’). The modularity of PIL operations allows the

model to treat counting as a compositional task — scaling naturally to more complex scenes.

Bottom-row of Figure 11: Given a scientific graph with brightness vs. time, the assistant zooms into
panel (c) using img.crop() to focus on the region with arrows. It observes sharp downward spikes
in the curve at those points and infers they represent sudden drops in brightness, not measurement

noise or calibration artifacts — based on the magnitude and shape of the dips.

Similarly, in Figure 12 trajectories reveal iterative, self-correcting reasoning enabled by dynamic
tool composition, which is based on tool transfer ability since we only define single tool/ability for

\

User Query

Assistant

ETroJe:

es on tool transfer

Is the white rock behind a
bear? (Spatial understanding)

J

<think>To determine if the white rock
is behind a bear, I first need to locate
the bear in the image. The bear is
clearly visible in the center-right of
the frame, lying on a log and
packaging material. Next, I need to
find the white rock in question; it is to
the left in the foreground and partially
behind the rock structure.

To verify the relative positions, I can
draw bounding boxes around both the
bear and the white rock.

</think>

from PIL import Image, ImageDraw
bbox_2d_bear = [97, 48, 397, 304]
bbox_2d_white_rock = [1, 70, 93, 226]
ing = Image.open(input_image.jpg’)
draw = ImageDraw.Draw(img)

draw.rectangle (bbox_2d_bear, outline='red",

width:

w.rectangle(bbox_2d_white_rock,

Observation

<think> ‘

The image contains the bounding boxes: one around the bear and the
other around the white rock. Visually, the white rock is in the
background, partially behind the larger natural rocks and close to the
bear. The white rock is not directly behind the bear, but based on the
question phrasing, "behind" can refer to placement near or slightly
behind. Since the white rock is visibly positioned in the background
area to the left, the bear is indeed near a white rock. The bear's
presence partially obscures the behind view of the white rock but does
not entirely block it from perception. Thercfore, the answer given in
the hint ("Yes") is logical.

</think>

<answer>Yes.</answer>

User Query

Assistant

&

LN

© CanstockPhoto.com

9

How many parrots are there in

<think>Looking over the image, I
spot four distinct parrots arranged in a
grid-like pattern. Their approximate
coordinates are <box>[0, 133, 104,
252]</box>, <box>[105, 131, 214,
252]</box>, <box>[105, 3, 214,
123]</box>, and <box>[0, 3, 104,
123]</box>.

Let's call execute_python_code to
crop.

</think>

S

from PIL import Image
bbox_2d = (0, 133, 104, 252]

img = Image.open(’input_image.jpg’)
sub_imgl = img.crop(bbox_2d)
bbox_2d = [105, 131, 214, 252]
sub_ing2 = img.crop(bbox_2d)

# crop all objects for verification

(=)
<think>

After cropping the image to focus on the first parrot, I can clearly see
its features and confirm that it is indeed a single parrot.

Looking at the cropped image, I can see another parrot clearly. This
confirms that there are indeed four parrots in the original image. The
coordinates for the second parrot are <box>[105, 131, 214, 252]</
box>. T can see a third parrot, which further supports the count. The
coordinates for this parrot are <box>[105, 3, 214, 123]</box>.
Reviewing the final cropped image, I can see the fourth parrot, which
matches the initial observations. All four parrots are distinct and
clearly visible. Therefore, the total number of parrots in the image is
four.

~

What do the arrows in panel () most
likely represent? (Chart reasoning)

(a) shows a step-like increase and
decrease, graph (b) is on a log scale,
and graph (c) is labeled 'Brightness'.
The arrows are pointing to notable
points on the 'Brightness' graph in
panel (c)...

Let's use python to crop and zoom-in

the image? (Visual counting) Obsepsics </think>
\ ) <answer>4</answer>
User Query Assistant
3\
<think>The image shows a set of Y e WBF
three scientific graphs labeled (a), (b), bbox_2d = [0, 133, 104, 252]
and (o). plotted against time. Graph el <think>

‘The cropped image shows panel (c) from the graph, which depicts a
line representing brightness over time. The arrows are pointing to the
points on the graph where the brightness significantly drops. These
points are not random fluctuations or measurement errors, as they
represent clear, steep declines in brightness. They are not markers of
the entire time interval, as they highlight specific instances rather than
an interval. Therefore, the arrows most likely represent sudden drops
in brightness.

A. Points of measurement error. -
Lo <) =

B. Sudden drops in brightness. the target region of interest. /think el

C. Calibration markers. </think> N <answer>B</answer>

D. Time intervals of interest. ) Observation ))

Figure 11: Reasoning trajectories on tool transfer to other tasks.

each task during SFT.

Top-row of Figure 12: The assistant first attempts to locate the person in the striped shirt relative
to the woman drinking. It initially misidentifies coordinates, so it composes two tools: First, it
uses cv2.circle() to draw red points at hypothesized locations — visually flagging potential errors.
Then, it corrects the coordinates and uses PIL.Image.crop() to zoom into the region for closer
inspection. Finally, it confirms the spatial relationship: the striped-shirt person is indeed to the left,

seated next to the drinking woman — no occlusion or misleading posture.

Bottom-row of Figure 12: The assistant must extract a precise numerical value from a scien-
tific plot showing (Am?) vs. sin?(20). It follows a multi-step strategy: Identify region: Uses
ImageDraw.rectangle() to highlight the blue shaded 90% confidence level (CL) band. Zoom in:
Crops the upper boundary of this region using PIL.Image.crop() to isolate the extreme right edge

— where (Am?) reaches its maximum within the CL. Finally interpret scale and answer.
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While these reasoning trajectories during RL exploration are not without flaws, e.g. occasionally
exhibiting imprecise coordinate estimation or redundant tool calls, they collectively demonstrate the
potential of tool-augmented multimodal reasoning.

i_Tra.iecfories on tools composition !

User Query Assistant
<think>
I see the striped shirt is indeed to the left # draw points
i H import cv2
of the woman drinking, but T oveflooked ot ) (G, LT, (95, AR
the coordinates slightly. Let's call img = cv2.imread('input_image.jpg')
.  nointi radius = 6
execute_python_code 1_0 draw pointings cv2.circle(img, (x, y), radius * 2, (255, 0, 0), -1)
on the detected object for further Cv2.putText (img, str(idx+l), (x + radius + 3, ...)
X N verification. g
Is the striped sh}rflfo the left <Jthink> : Observation
\ff the woman drinking? ’ )
i E <think>
;;hm-k> (on G @ a — # crop Now that I've redone the detection with improved coordinates
ter cropping, it's clear from the cropped image that the person . . . .
Wearng & sitped Shi I o, the eft Of the weman scch here £ron PIL inport Tnage given by the hint, the striped shirt seems to be correctly
drinking. The cropped area shows the shoulder and arm of the img = Image.open('input_image.jpg') positioned relative to the woman drinking. The woman in
individual in the striped shirt, positioned to the left of the arm of bbox_2d = (51, 0, 235, 298

green appears on the far left among the patrons, while the
person in a striped shirt is seated next to her.
Let's call execute_python_code to crop.

the woman who scems to be in the act of drinking. There is no sub_img = img.crop(bbox_2d)
indication of any obstruction or misalignment that would suggest

otherwise. Therefore, the detection is correct.

</think> Observation </think>
Canswer>Yes.</answer> J
User Query Assistant
. O\ (<think> N
-4 To solve this problem, we need to analyze the left figure of the provided image, # draw bbox to highlight
which shows the (\Delta mA2) (in (eV/2) versus (\sin"2 2vtheta) (in logarithmic e 2 = (o S ey Ao
scale). The question asks for the highest value of ( \Delta m"2 ) at the 90% img = Image.open('input_image.jpg’)
confidence level (CL) according to the LSND data. draw = InageDraw.Draw(img)
E ] i 1. Identify the relevant region: The legend on the left figure indicates that the 90% TR ), CHAMRCAIGEr, CHE)
N il 1 CL confidence level is represented by the blue shaded area. [ | ecedecaaaaaa
O 2. Locate the highest region of the 90% CL band: Looking at the blue shaded area,

we can see that as the (\sin*2 2\theta) value decreases (i.e., moves to the right on
the plot), the permissible range of (\Delta m"2) increases. The highest point, or the
upper limit, of this permissible range is the most interesting for answering the

v

What is the highest value of
(\Delta m"2) (in (eV"2)) that is
within the 90% confidence level

‘ question. k| .

(CL) according to the LSND data 3. Estimate the value from the plot: We need to estimate the value of (\Delta mA2) i | Observation

shown in the figure? (on the vertical axis) that corresponds to the extreme right of the blue band. This = . i

A. (107§-1} eV"2) B. (10”2 eV"2) requires a more precise measurement than can be done just by looking at the ) 1

C. (1071 eV"2) D. (10°0 eV"2) figure. T )

) \_</think> ~J
E H <think>

<think> = B The red box drawn on the left image highlights the upper

The cropped image provides @ closer view of the blue shaded = ! # cro o i

region labeled "LSND 90% CL." The left figure shows the data + from PIL import Image boundary Sf the 90% confidence levglA(CL) region for

with logarithmic scales on both axes. The task is to find the highest ! img = (\Delta m*2) as a function of (\sin"2 2\theta). By

;ﬂ]m:ie of (\Delta m"2) that is within this 90% confidence level 0 I_mag?-OPen( 'input_image. examining this box, we can estimate the highest value of

and. AR " o
g igz;‘,zd = [133, 37, 933, (\Delta m"2) within this region. From the logarithmic

3. Estimate the value from the axis: The top of the blue band is L 1073) scale on the y-axis, the upper boundary of the red box

clearly above the value of (10°0) (which is 1) on the y-axis. It is i R corresponds to a value of (\Delta m*2) that is just below

sl el lof 1 Oa i) outhe) s e the 10(*1) (10) line, but clearly above the 10(*0) (1) line.

Therefore., the highest value is greater than 1 and less than 10 1 L > Y . :

(V). ! This corresponds to a value of approximately (10"1

Looking at the options, the value (10A1 €VA2) is the most accurate ' eVA2).

description of the highest value within the given range. Observation : Let's call execute_python_code to crop.

</think> g <think> - -

<answer>\boxed {C. (10”1 eV"2)}</answer> J NS

Figure 12: Reasoning trajectories on tools composition.
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C LIMITATIONS

While our method demonstrates promising emergent behaviors and strong performance across di-
verse visual reasoning tasks, several limitations remain. First, the reliance on high-quality synthetic
trajectories implies that certain real-world reasoning patterns may be underrepresented, potentially
limiting robustness in open-domain scenarios. Second, although code provides a universal interface,
extending to richer modalities (e.g., audio) or domain-specific tools (e.g., medical applications) will
require additional engineering. Finally, due to compute constraints, our evaluations are primarily
conducted on 7B-scale models; the scalability of emergent behaviors at larger scales remains to
be systematically examined. Nevertheless, our preliminary experiments suggest a promising trend
when scaling up model capacity and compute resources.

D BROADER IMPACT

This work contributes toward building more transparent and verifiable multimodal reasoning sys-
tems by adopting executable code as the unified medium for tool use. The ability to generate inter-
pretable traces and intermediate artifacts can benefit applications where accountability and auditabil-
ity are essential, such as scientific analysis and education. At the same time, code-generating models
pose risks: malicious users could potentially exploit them for unsafe automation, and generated vi-
sual artifacts might be misused to mislead or manipulate. To mitigate these concerns, we recommend
pairing such systems with appropriate safeguards, including safety filters, usage constraints, and re-
sponsible deployment practices. By doing so, the benefits of executable visual reasoning can be
realized while minimizing the potential for misuse.

LLM USAGE STATEMENT

We used large language models (LLMs) only as auxiliary tools to correct occasional grammatical
errors and typos throughout our writing process, and importantly, no parts of the paper were gen-
erated by LLMs in a substantive or large-scale manner. In addition, we confirm that LLMs did not
contribute to research ideation, methodology design, training data synthesis and generation, or ex-
perimental analysis. We further emphasize that our submission contains no hidden prompt injections
or any other misuse of LLMs.
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