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Abstract

Multilingual pre-trained models (mPLMs)001
have shown impressive performance on cross-002
lingual transfer tasks. However, the transfer003
performance is often hindered when a low-004
resource target language is written in a differ-005
ent script than the high-resource source lan-006
guage, even though the two languages may007
be related or share parts of their vocabularies.008
Inspired by recent work that uses translitera-009
tion to address this problem, our paper pro-010
poses a transliteration-based post-pretraining011
alignment (PPA) method aiming to improve012
the cross-lingual alignment between languages013
using diverse scripts. We select two areal lan-014
guage groups, Mediterranean-Amharic-Farsi015
and South+East Asian Languages, wherein016
the languages are mutually influenced but use017
different scripts. We apply our method to these018
language groups and conduct extensive experi-019
ments on a spectrum of downstream tasks. The020
results show that after PPA, models consistently021
outperform the original model (up to 50% for022
some tasks) in English-centric transfer. In addi-023
tion, when we use languages other than English024
as sources in transfer, our method obtains even025
larger improvements. We will make our code026
and models publicly available.027

1 Introduction028

Recent mPLMs such as mBERT (Devlin et al.,029

2019) and XLM-R (Conneau et al., 2020) have030

shown remarkable performance on cross-lingual031

transfer tasks by learning cross-lingual representa-032

tions from monolingual corpora (Pires et al., 2019;033

Artetxe et al., 2020a). Despite their impressive per-034

formance, these models still exhibit limitations in035

cross-lingual transfer involving low-resource lan-036

guages. Deshpande et al. (2022) showed that the037

downstream performance of mPLMs is correlated038

with the degree of alignment between word embed-039

dings across languages. Another factor that hin-040

ders the knowledge transfer is the script diversity041

or script barrier of represented languages, which 042

has been observed even in the case of related lan- 043

guages (Anastasopoulos and Neubig, 2019; Muller 044

et al., 2021). The script barrier problem can also 045

be viewed from the perspective of representation 046

alignment. Wen-Yi and Mimno (2023) showed that 047

token representations from different scripts could 048

be almost perfectly linearly separated, indicating 049

that models struggle to learn a common represen- 050

tation space. Therefore, post-training is required 051

to boost zero-shot cross-lingual transfer in tasks 052

like sentence retrieval, text classification, or se- 053

quence labeling, all of which benefit from better 054

cross-lingual alignment (Hämmerl et al., 2024). 055

Many post-training alignment strategies use ob- 056

jectives that rely on bilingual dictionaries or paral- 057

lel data to align the representations of mPLMs (Cao 058

et al., 2020; Wang et al., 2020; Schuster et al., 2019; 059

Pan et al., 2021). However, dictionaries and par- 060

allel corpora are often limited in the data scale or 061

the number of languages they cover (Artetxe et al., 062

2020b), which might be impractical for building 063

strong supervision signals for many low-resource 064

languages. Another alternative that improves cross- 065

lingual alignment is to use transliteration (a pro- 066

cess of converting the text of a language from one 067

script to another). Transliteration can improve the 068

lexical overlap, especially for related languages 069

(Moosa et al., 2023). Different from translation, 070

transliterations can be obtained nearly for free us- 071

ing well-performing rule-based transliteration tools 072

(Hermjakob et al., 2018). Therefore, several works 073

have shown improvements in cross-lingual transfer 074

by pre-training or fine-tuning models with data 075

transliterated into a common script (Murikinati 076

et al., 2020; Muller et al., 2021; Purkayastha et al., 077

2023; Moosa et al., 2023). However, these works 078

require the use of a single common script by the 079

model. This is restrictive for many tasks as the 080

process of transliteration can be lossy and non- 081

invertible. 082
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Recently, Liu et al. (2024a) proposed a sequence-083

level contrastive learning objective to improve the084

alignment across different scripts at a large scale085

(for more than 500 languages), using sentences086

in both their original scripts and their Latin-script087

transliterations, validated by English-centric cross-088

lingual zero-shot transfer evaluations. However,089

there are three major limitations in their setup.090

First, the contrastive objective only manipulates091

the sequence-level representations in the middle092

layer, which does not directly contribute to better093

alignment in the token-level space. Second, not094

every language pair has extensive lexical overlap095

that can boost cross-lingual transfer: transliteration-096

based alignment makes more sense for mutually097

influenced languages. Lastly, English alone as a098

transfer source language does not fully exploit the099

alignment benefit, as it does not have the most lexi-100

cal overlap with other languages.101

To this end, we propose a new transliteration-102

based post-training alignment method that works103

on both sequence and token levels. Our method104

does not rely on parallel data. Instead, similar to105

Liu et al. (2024a), we use the monolingual data in106

their original scripts and their Latin transliteration107

obtained by using Uroman (Hermjakob et al., 2018),108

a rule-based transliteration tool. We investigate the109

impact of the strategy by focusing on two groups110

of languages: Mediterranean-Amharic-Farsi and111

South+East Asian Languages, described more in112

detail in Section 4.2. The languages in each group113

share areal features but differ in scripts. Some lan-114

guages are closely related as members of the same115

language family (e.g., Semitic and Sino-Tibetan).116

Additionally, languages in each group have exten-117

sive lexical overlap due to historical contact and118

geographical proximity (e.g., Chinese and Korean119

or Turkish and Arabic). As these languages are120

written in different scripts, transliteration can help121

to better exploit the shared linguistic properties122

and thus improve the cross-lingual transfer perfor-123

mance.124

We leverage our method to post-train125

Glot500 (ImaniGooghari et al., 2023) (a126

continually pre-trained model from XLM-R on127

more than 500 languages) on the selected language128

groups and evaluate the zero-shot cross-lingual129

transfer performance on three types of downstream130

tasks: sentence retrieval, text classification, and131

sequence labeling. The evaluation is done with132

English as the source language, as well as with133

three other source languages of different scripts in134

each group. We show that our method consistently 135

improves the downstream task performance across 136

different languages and scripts. Moreover, our 137

method further boosts the transfer performance 138

when better source languages are chosen, as the 139

performance depends on the degree of alignment 140

between the source and target languages – precisely 141

the alignment that our approach boosts. 142

Our contributions can be summarized as follows: 143

(i) We propose a transliteration-based post-training 144

alignment method that operates on both sequence 145

and token levels, aiming to bridge the script barrier 146

in mPLMs; (ii) We investigate the impact of our 147

method on two areal groups of languages with dif- 148

ferent scripts and show consistent improvements 149

in zero-shot cross-lingual transfer; (iii) We sys- 150

tematically explore how different source languages 151

influence the zero-shot transfer performance of our 152

obtained transliteration-aligned models. 153

2 Related Work 154

Many recent works have proposed pre-training or 155

fine-tuning alignment methods to improve cross- 156

lingual transfer in mPLMs. Cao et al. (2020) pro- 157

posed a fine-tuning embedding alignment objec- 158

tive between word pairs procured in an unsuper- 159

vised fashion from parallel data using statistical 160

word alignment models (Dyer et al., 2013). Chaud- 161

hary et al. (2020) improved alignment during pre- 162

training by using bilingual dictionaries to replace 163

words in original sentences with translations in 164

other languages. Similarly, Tang et al. (2022) used 165

bilingual dictionaries to explicitly align the em- 166

beddings of the same words in different languages 167

during pre-training. Wei et al. (2021) proposed a hi- 168

erarchical contrastive learning pre-training method, 169

which uses parallel data to align representations at 170

the word and sentence levels. Similarly, Hu et al. 171

(2021) proposed a pre-training method with explicit 172

alignment signals from parallel data that encour- 173

ages symmetry at both word and sentence levels. 174

Pan et al. (2021) combined contrastive learning 175

with translation language modeling (Conneau and 176

Lample, 2019) as a post-training alignment method 177

that uses parallel data as well. While these methods 178

have shown improvements in cross-lingual trans- 179

fer, they have the limitation of requiring parallel 180

data or bilingual dictionaries, which may be hard 181

to acquire for many low-resource languages. 182

Transliteration is a process of converting the text 183

of a language from one script to another (Wellisch 184
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et al., 1978). This process does not involve translat-185

ing meanings but rather represents the original sym-186

bols as closely as possible in the target script. Dif-187

ferent works have proposed transliteration-based188

methods to address the script barrier problem in189

multilingual models. Murikinati et al. (2020) used190

transliteration to a common script to improve cross-191

lingual morphological inflection. Khemchandani192

et al. (2021) exploited language relatedness be-193

tween Indian languages and leveraged translitera-194

tion to a common script to adapt multilingual mod-195

els to low-resource languages. Muller et al. (2021)196

analyzed the behavior of multilingual models on197

unseen languages and found that languages writ-198

ten in different scripts do not benefit from transfer199

learning. They proposed transliteration to the high-200

resource source language script as a solution to201

address the script barrier. Purkayastha et al. (2023)202

showed that fine-tuning multilingual models on203

data transliterated into Latin script improves cross-204

lingual transfer for low-resource languages. Simi-205

larly, Moosa et al. (2023) pre-trained models from206

scratch on data transliterated into a common script207

for the Indic languages and showed improvements208

in cross-lingual transfer. Our work is most related209

to TRANSLICO proposed by Liu et al. (2024a),210

where a sequence-level contrastive learning objec-211

tive is used to encourage alignment across different212

scripts without restricting the models to a com-213

mon script, using data in their original scripts and214

their Latin-script transliteration. However, their215

English-centric evaluation setup limits the ability216

to fully reveal the impact of transliteration. This217

paper systematically explores how transliteration-218

based alignment enhances the performance of using219

various source languages.220

3 Methods221

We present a transliteration-based post-training222

alignment method that can be used to fine-tune223

existing encoder-only mPLMs for improved align-224

ment across languages using different scripts,225

boosting cross-lingual transfer performance. Our226

method consists of three objectives: masked lan-227

guage modeling, sentence-level alignment, and228

token-level alignment. All objectives are trained229

on combined original and transliterated data. The230

transliterated data is obtained by converting the231

original data into Latin script. The transliteration232

process uses Uroman (Hermjakob et al., 2018), a233

rule-based system that can convert nearly all char-234

acter sets into a common Latin script. The overall 235

method is illustrated in Figure 1, and we introduce 236

the three objectives in detail in the following. 237

3.1 Masked Language Modeling 238

Given an input sequence in its original script: 239

Xorig
i or its transliterated version: X latn

i , we apply 240

the naive MLM objective (Devlin et al., 2019) to 241

predict randomly masked tokens in both sequences: 242

LMLM = E

[
−

∑
m∈M

log pMLM(Xi,m|hi,m)

]
243

where M is the set of masked positions in the 244

input sentence Xi (either Xorig
i or X latn

i ) and 245

PMLM(Xi,m|hi,m is the probability of predicting 246

token Xi,m giving hi,m, the final contextualized 247

representation at the position m in the ith sequence. 248

The probability is computed by an MLM head. 249

Fine-tuning with MLM on original data is neces- 250

sary to preserve the model’s knowledge. On the 251

other hand, the mPLM has very limited knowl- 252

edge about the transliterated data, which makes the 253

MLM objective on transliterated data crucial for 254

learning useful cross-script representations. We 255

refer to the MLM objective for the original data 256

(resp. transliterated data) as Lorig
MLM (resp. Llatn

MLM). 257

3.2 Sentence-Level Alignment 258

We treat an input sequence in the original script 259

Xorig
i and its transliterated version X latn

i as hav- 260

ing the same semantics. Therefore, we apply a 261

sequence-level contrastive learning objective, simi- 262

lar to SimCSE (Gao et al., 2021), to encourage the 263

model to learn similar sequence-level representa- 264

tions for the original and transliterated sequences. 265

This setting is analogous to other works that apply 266

contrastive learning on pairs formed by an origi- 267

nal sentence and its English translation (Chi et al., 268

2021; Pan et al., 2021). In our context, Latin acts 269

as a pivot script, encouraging better cross-lingual 270

alignment of representations in different scripts. 271

Following Liu et al. (2024a), we apply the 272

contrastive learning objective on a given batch 273

of original and transliterated sequences B = 274

{(Xorig
i , X latn

i )}Ni=1. Each batch defines positive 275

contrastive pairs (X,X+) where X is the original 276

sequence and X+ is its transliterated version or 277

vice versa, i.e., (Xorig
i , X latn

i ) or (X latn
i , Xorig

i ). 278

For each positive pair, the negative examples are 279

formed by all other sequences in the batch B− = 280

B \ {(Xorig
i , X latn

i )} (slightly abusing notation). 281
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Figure 1: Overview of our transliteration-based post-training alignment method consisting of three objectives:
masked language modeling (Lorig

MLM and Llatn
MLM), sentence-level alignment (LSEQ), and token-level alignment (LTLM).

The contrastive loss is then defined as:282

LSEQ = E

[
− log

esim(f(X),f(X+))/τ

esim(f(X),f(X+))/τ + NEG

]
283

where NEG =
∑

(X,X−)∈B− esim(f(X),f(X−))/τ , f284

is defined as mean pooling over the 8th layer output285

contextualized embeddings (ignoring the special286

tokens output except for [mask] token), sim is the287

dot product, and τ is the temperature set to 1.288

3.3 Token-Level Alignment289

The sentence-level alignment objective helps the290

model to learn similar sentence representations for291

the original and transliterated sequences. This is292

useful for improving performance in sentence-level293

downstream tasks like sentence retrieval or classi-294

fication. However, this objective manipulates the295

output of a middle layer, which does not directly296

contribute to better alignment in the token-level297

space. For token-level tasks like NER and POS tag-298

ging, alignment at the token level might be more299

beneficial. Therefore, we propose a token-level300

alignment objective that further encourages the301

model to align the representations of the original302

and transliterated words. We adapt the translation303

language modeling objective introduced by Con-304

neau and Lample (2019), which is equivalent to305

applying the MLM objective on a concatenated306

bilingual sentence pair. Specifically, given a sen-307

tence pair (Xorig
i , X latn

i ), we apply the MLM ob-308

jective on the concatenated sequence Xorig
i ⊕X latn

i309

or X latn
i ⊕Xorig

i , where concatenation order is ran- 310

domly chosen during training. The intuition is that, 311

to predict a token masked in the original sentence, 312

the model can either attend to surrounding tokens 313

in the original script or their transliterations and 314

vice versa. This encourages the model to align the 315

representations in the original script and the Latin 316

script. We refer to this objective as transliteration 317

language modeling (TLM) and the loss as LTLM. 318

The overall training objective combines the 319

masked language modeling, sentence-level align- 320

ment, and token-level alignment objectives: 321

L = Lorig
MLM + Llatn

MLM + LSEQ + LTLM 322

4 Experiments 323

4.1 General Setups 324

We use the Glot500 model (ImaniGooghari et al., 325

2023), a state-of-the-art multilingual encoder-only 326

model pre-trained on more than 500 languages, as 327

our source model for all our experiments. We fine- 328

tune Glot500 on two groups of languages using the 329

proposed transliteration-based post-training align- 330

ment method. The languages for each group are 331

selected based on areal features so that they have 332

some lexical overlap in different degrees and cover 333

various scripts. We then evaluate the two resulting 334

models on several downstream tasks in a zero-shot 335

cross-lingual transfer manner. Apart from the stan- 336

dard transfer setting with English as the source 337

language, we also evaluate the model’s transfer 338

capabilities with three other source languages of 339

different scripts for each language group. 340
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Figure 2: Geographical distribution of languages selected in each group. Mediterranean-Amharic-Farsi are shown
with circles, while South+East Asian Languages are shown with squares.

4.2 Languages, Data and Models341

The two language groups are named as342

Mediterranean-Amharic-Farsi and South+East343

Asian Languages. We visualize each group’s344

geographical distribution of the selected languages345

in Figure 2. The languages within each group are346

spoken in adjacent areas and there is a long history347

of linguistic influence between them. For example,348

Arabic has had extensive contact with languages349

such as Turkish and Persian (Versteegh, 2001).350

The data for each language is sampled from the351

Glot500-c training dataset (ImaniGooghari et al.,352

2023). We sample 10% of the available data for353

each language, or a minimum of 10k sentences,354

whichever is larger. The data is then transliterated355

into Latin script using Uroman (Hermjakob et al.,356

2018). Table 1 shows each group’s languages357

and the number of sampled sentences. In total,358

Mediterranean-Amharic-Farsi consists of 10359

languages, 5 scripts and around 16M sentences,360

while South+East Asian Languages consists of 10361

languages, 7 scripts and around 4M sentences. We362

fine-tune Glot500 using our alignment method363

on each group separately. We then select the364

best checkpoint for each group by validating the365

checkpoints’ performance on the Tatoeba (Artetxe366

and Schwenk, 2019) sentence retrieval dataset,367

which contains 1000 English-aligned sentences.368

We compute the top-10 retrieval accuracy based369

on the cosine similarity of the averaged 8th-layer370

contextual embeddings. The best checkpoint for371

each group is regarded as our final aligned model.372

Language Script Code Language Code Num. Sent.

Mediterranean-Amharic-Farsi

Macro Lang. Arabic Arab ara 2.4M
Standard Arabic Arab arb 15k
Moroccan Arabic Arab ary 10k
Egyptian Arabic Arab arz 348k
Macro Lang. Farsi Arab fas 1.8M
Amharic Ethi amh 286k
Greek Grek ell 2.2M
Hebrew Hebr heb 1.8M
Turkish Latn tur 2.9M
Maltese Latn mlt 4M

South+East Asian Languages

Macro Lang. Chinese Hani zho 2.4M
Classical Chinese Hani lzh 10k
Yue Chinese Hani yue 48k
Wu Chinese Hani wuu 22k
Korean Hang kor 646k
Lao Laoo lao 10k
Lahu Latn lhu 10k
Burmese Mymr mya 94k
Tibetan Tibt bod 27k
Thai Thai tha 773k

Table 1: Basic information and number of sampled
sentences for each language in the two language groups.

4.3 Downstream Tasks 373

We evaluate the resulting aligned model for each 374

group on several downstream tasks (described be- 375

low). For each task, we use four different source 376

languages, English and three other source lan- 377

guages belonging to the same group that use dif- 378

ferent scripts. The evaluation is done in a zero- 379

shot cross-lingual transfer manner: we fine-tune 380

the models on the train set of a given source lan- 381

guage, select the best checkpoint, and compute the 382

macro F1 score (except for SR-B where we com- 383

pute the average top-10 retrieval accuracy) on the 384

test sets of the remaining languages in each group. 385

Note that no training step is needed for the retrieval 386

task: we directly use the sentences from the source 387
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SR-B Taxi1500 SIB200 NER POS
Latn Arab Grek Hebr Latn Arab Grek Hebr Latn Arab Grek Hebr Latn Arab Grek Hebr Latn Arab Grek Hebr

Glot500

tur_Latn 63.2 77.6 51.8 32.2 63.0 63.5 55.6 44.1 81.4 79.8 82.1 79.8 74.1 71.4 71.7 70.4 70.4 49.4 63.8 66.5
mlt_Latn 50.4 55.0 69.2 44.8 54.1 57.3 53.0 46.1 81.8 79.3 82.8 82.6 69.2 60.0 68.2 66.9 81.1 59.8 76.9 74.2
ell_Grek 48.6 58.6 src 40.8 64.0 61.4 src 44.1 77.7 74.4 src 81.7 72.7 72.1 src 72.6 86.1 58.3 src 67.8
heb_Hebr 21.8 27.8 33.8 src 35.4 44.9 39.0 src 77.6 73.9 81.7 src 48.9 58.7 52.6 src 68.3 70.1 60.6 src
amh_Ethi 52.8 64.6 51.2 33.2 7.2 10.4 12.7 15.1 73.1 74.9 74.1 74.8 43.8 52.5 54.0 46.6 66.5 65.1 64.3 73.6
ara_Arab - - - - - - - - - - - - 57.2 src 56.7 61.5 84.6 src 63.2 78.0
arz_Arab 24.8 33.6 52.8 44.8 35.1 43.1 45.2 42.7 79.7 src 81.8 80.4 58.4 75.1 63.8 65.2 - - - -
ary_Arab 15.2 16.4 29.0 28.4 35.8 40.3 41.6 39.6 79.9 80.2 84.0 82.0 - - - - - - - -
arb_Arab 14.6 23.0 29.0 32.2 - - - - 79.9 79.9 82.8 81.2 - - - - - - - -
fas_Arab 89.2 src 72.4 40.2 71.0 src 59.2 48.7 - - - - 49.7 66.2 58.2 50.6 71.5 67.2 60.9 72.0

Average 42.2 44.5 48.6 37.0 45.7 45.8 43.8 40.1 78.9 77.5 81.3 80.4 59.3 65.1 60.8 62.0 72.8 61.6 65.0 72.0

Ours

tur_Latn 81.0 91.2 77.8 49.4 64.8 65.1 54.6 38.2 85.6 86.0 84.8 85.6 77.0 73.1 76.9 73.2 73.6 52.8 66.4 68.0
mlt_Latn 85.6 93.4 90.4 59.4 66.6 60.9 58.4 42.5 86.2 85.8 84.6 85.4 75.2 72.0 73.9 75.2 83.1 63.0 77.1 77.8
ell_Grek 68.0 85.4 src 45.2 63.6 60.4 src 36.4 82.3 81.4 src 82.1 73.8 73.9 src 75.3 85.9 58.7 src 70.7
heb_Hebr 29.0 32.0 42.8 src 45.3 44.5 45.8 src 79.0 79.8 79.9 src 51.9 61.6 57.2 src 67.7 71.3 59.8 src
amh_Ethi 63.6 79.4 64.8 49.4 7.6 9.6 17.0 11.3 77.2 77.9 76.6 76.9 45.0 51.7 54.0 50.0 66.2 63.9 63.7 74.9
ara_Arab - - - - - - - - - - - - 59.9 src 60.4 65.1 65.3 src 62.3 77.7
arz_Arab 56.4 79.4 82.2 69.6 41.8 44.1 49.6 42.4 83.1 src 83.4 82.8 58.3 76.7 65.6 68.3 - - - -
ary_Arab 47.6 66.2 66.2 65.4 39.0 37.3 39.0 40.5 83.2 82.7 82.9 83.3 - - - - - - - -
arb_Arab 44.4 55.0 56.0 49.6 - - - - 82.8 83.3 83.1 83.1 - - - - - - - -
fas_Arab 89.6 src 87.0 57.8 71.9 src 63.2 37.5 - - - - 48.6 63.1 62.3 56.9 71.6 69.1 61.5 71.3

Average 62.8 72.7 70.9 55.7 50.1 46.0 46.8 35.5 82.4 82.4 82.2 82.7 61.2 67.4 64.3 66.3 73.3 63.1 65.1 73.4

Table 2: Cross-lingual transfer results across 5 tasks on the Mediterranean-Amharic-Farsi group. Columns
represent the script of the source language (denoted with “src”), while rows represent the target languages. Results
are averaged over 5 random seeds. For each source-target language pair, the best score is bolded. For each target
language, we underline the best source transfer score for each task (for both Glot500 and our method).

language as the queries and retrieve the most simi-388

lar sentences in the target languages. For tasks that389

require additional fine-tuning, we report the results390

averaged over five different seeds. The downstream391

tasks are as follows (see details in §B):392

SR-B A sentence retrieval dataset where the par-393

allel sentences are from the Bible. We compute the394

top-10 retrieval accuracy on 500 parallel sentences395

following ImaniGooghari et al. (2023).396

Taxi1500 A multilingual text classification397

dataset covering more than 1500 languages with398

sentences from 6 topics (Ma et al., 2023).399

SIB200 A multilingual text classification dataset400

covering more than 200 languages for 7 top-401

ics (Adelani et al., 2024).402

NER A multilingual sequence labeling dataset403

for named entity recognition (Pan et al., 2017) that404

consists of articles annotated with 7 different tags,405

e.g., location, person, etc.406

POS A multilingual sequence labeling dataset for407

part-of-speech (POS) tagging (de Marneffe et al.,408

2021) consisting of sentences annotated with 17409

universal POS tags, e.g., NOUN, ADJ, etc.410

5 Results and Analysis 411

We report the results of Glot500 and our post- 412

trained aligned models on the downstream tasks 413

in Table 2 for Mediterranean-Amharic-Farsi and in 414

Table 3 for South+East Asian Languages. Overall, 415

our aligned models outperform Glot500 across dif- 416

ferent tasks for both language groups, occasionally 417

with a slight performance drop for certain source- 418

target language combinations. In the following, we 419

highlight our essential findings from the results. 420

Per-group performances differ slightly. Start- 421

ing with Mediterranean-Amharic-Farsi, we ob- 422

serve that the post-trained aligned model gener- 423

ally outperforms Glot500 on all downstream tasks. 424

The SR-B task shows the most significant improve- 425

ment, with the aligned model achieving, on aver- 426

age, more than 20% higher accuracy than Glot500 427

for all source languages. For other tasks, the 428

aligned model also demonstrates a consistent, al- 429

beit smaller, improvement, with Glot500 occasion- 430

ally outperforming the post-trained aligned model 431

for specific source-target language pairs. How- 432

ever, we observe a more mixed performance for the 433

South+East Asian Languages, especially for se- 434

quence labeling tasks, namely NER and POS, with 435
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SR-B Taxi1500 SIB200 NER POS
Latn Hang Hani Thai Latn Hang Hani Thai Latn Hang Hani Thai Latn Hang Hani Thai Latn Hang Hani

Glot500

tha_Thai 45.4 47.2 42.6 src 64.1 63.8 73.6 src 82.0 83.1 83.1 src 4.3 2.8 7.5 src 55.0 29.8 49.0
kor_Hang 61.0 src 64.6 51.2 68.6 src 63.5 65.5 82.7 src 83.0 82.5 51.8 src 40.2 10.1 52.6 src 39.2
yue_Hani 24.0 31.6 65.8 44.4 64.0 62.8 68.0 62.1 84.7 84.4 src 86.9 24.0 37.4 69.1 16.4 38.8 49.3 78.5
wuu_Hani - - - - - - - - - - - - 35.1 58.3 62.4 16.1 - - -
zho_Hani 44.4 46.4 src 39.6 65.0 61.9 src 62.0 - - - - 23.6 32.7 src 15.0 40.1 49.9 src
lzh_Hani 63.4 65.8 75.8 43.2 57.3 60.5 61.5 56.1 - - - - 12.0 29.8 60.1 22.3 19.4 27.2 50.7
lao_Laoo 49.6 59.8 48.6 64.6 72.0 68.5 73.9 74.8 80.4 80.0 80.0 82.4 - - - - - - -
lhu_Latn 5.0 6.0 6.6 7.2 27.0 34.1 27.8 26.4 - - - - - - - - - - -
mya_Mymr 29.4 37.8 29.0 33.6 61.8 63.2 56.8 60.5 80.1 80.7 78.6 79.5 54.1 65.2 49.7 9.3 - - -
bod_Tibt 33.2 49.4 44.4 49.8 - - - - 70.0 68.8 65.1 72.7 36.5 42.8 50.0 25.5 - - -

Average 39.4 43.0 47.1 41.7 60.0 60.7 62.1 59.9 79.3 79.4 78.0 80.8 30.2 38.4 48.4 16.4 41.2 39.1 54.4

Ours

tha_Thai 45.2 85.6 55.2 src 66.3 66.7 67.8 src 86.6 85.9 82.9 src 3.5 2.6 8.6 src 50.6 30.3 48.6
kor_Hang 58.8 src 79.6 76.6 71.3 src 65.8 68.2 83.1 src 82.4 83.8 55.5 src 43.2 3.1 52.8 src 45.0
yue_Hani 71.4 91.8 98.8 89.8 64.5 66.4 69.2 67.9 87.2 84.7 src 89.0 21.0 36.1 70.1 15.8 29.3 38.6 79.3
wuu_Hani - - - - - - - - - - - - 45.5 56.7 64.7 1.7 - - -
zho_Hani 41.4 75.0 src 46.4 65.8 65.0 src 67.7 - - - - 21.5 35.9 src 15.6 32.2 44.1 src
lzh_Hani 37.4 48.6 67.6 37.0 63.4 58.3 61.4 55.2 - - - - 11.7 33.7 61.4 20.0 13.9 14.3 52.1
lao_Laoo 56.4 90.8 67.0 77.4 70.2 69.5 69.4 67.2 82.6 81.6 81.0 83.2 - - - - - - -
lhu_Latn 15.8 26.6 21.0 27.4 23.9 36.5 24.9 32.1 - - - - - - - - - - -
mya_Mymr 37.8 60.4 54.4 59.6 62.2 68.3 59.2 63.0 80.9 81.8 80.0 81.0 56.0 62.4 45.0 5.8 - - -
bod_Tibt 60.8 88.8 83.4 80.2 - - - - 70.5 73.5 71.4 71.4 40.3 43.1 41.6 1.1 - - -

Average 47.2 70.9 65.8 61.8 61.0 61.5 59.7 60.2 81.8 81.5 79.6 81.7 31.9 38.6 47.8 9.0 35.8 31.8 56.3

Table 3: Cross-lingual transfer results across 5 tasks on the South+East Asian Languages group. Columns
represent the script of the source language (denoted with “src”), while rows represent the target languages. Results
are averaged over 5 random seeds. For each source-target language pair, the best score is bolded. For each target
language, we underline the best source transfer score for each task (for both Glot500 and our method)

the aligned models performing worse than Glot500436

when transferring from more than half of the source437

languages. We hypothesize that this performance438

drop is primarily due to the transliteration process,439

which loses the semantic and contextual nuances440

and induces more token-level ambiguity for most441

of the languages (Amrhein and Sennrich, 2020; Liu442

et al., 2024a). This ambiguity makes token-level443

alignment more difficult. In contrast, the aligned444

model achieves consistent improvements in NER445

and POS for Mediterranean-Amharic-Farsi, where446

less token-level ambiguity is introduced as the lan-447

guages are originally written in phonetic scripts, to448

which Latin also belongs.449

Source languages matter. We observe that the450

performance can vary significantly for both groups451

of languages depending on the source language452

used for transfer. This phenomenon occurs due to453

the script and language similarity between specific454

source and target languages. In general, transfer-455

ring from in-group high-resource languages per-456

forms better than transferring from English. Tak-457

ing the SR-B task for example, for Mediterranean-458

Amharic-Farsi, the best performance is achieved459

when transferring from Farsi. For the South+East460

Asian Languages, the best performance is achieved 461

when transferring from Korean. The text classifica- 462

tion tasks generally show less variation in perfor- 463

mance, though transferring from Hebrew achieves 464

the worst performance for Mediterranean-Amharic- 465

Farsi in Taxi1500. For the NER and POS tasks, 466

transferring from Arabic and Hebrew achieves the 467

best performance for Mediterranean-Amharic-Farsi 468

while transferring from Chinese achieves the best 469

performance for both tasks in South+East Asian 470

Languages. Nevertheless, comparing our aligned 471

models against Glot500, the performance generally 472

improves for most source languages. This indi- 473

cates that our proposed transliteration-based post- 474

training method effectively improves the alignment 475

between related languages and further boosts per- 476

formance when a proper source language is chosen. 477

5.1 Ablation Study 478

We perform an ablation study to investigate the 479

impact of different training objectives on the per- 480

formance of the post-trained aligned models. Start- 481

ing from the base Glot500 model, we apply dif- 482

ferent combinations of the training objectives: 483

masked language modeling (MLM), sentence- 484

level alignment (SEQ), and token-level alignment 485
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SR-B Taxi1500 SIB200 NER POS
Latn Arab Grek Hebr Latn Arab Grek Hebr Latn Arab Grek Hebr Latn Arab Grek Hebr Latn Arab Grek Hebr

Glot500 42.2 44.5 48.6 37.0 45.7 45.8 43.8 40.1 78.9 77.5 81.3 80.4 59.3 65.1 60.8 62.0 72.8 61.6 65.0 72.0

MLM 50.2 53.2 55.4 40.2 47.7 43.8 46.9 31.8 82.6 82.4 82.5 80.4 61.7 68.5 63.3 66.5 71.9 62.4 63.7 72.0
MLM+SEQ 62.9 71.9 69.8 57.1 49.0 46.0 48.5 36.1 82.4 82.4 83.5 82.4 61.1 67.4 64.6 66.1 72.5 62.1 64.7 72.7
MLM+TLM 50.4 54.7 55.7 41.6 50.4 46.5 47.3 37.2 82.6 81.7 82.4 81.8 61.9 67.1 64.0 66.8 73.2 63.1 64.5 73.5
MLM+SEQ+TLM 62.8 72.7 70.9 55.7 50.1 46.0 46.8 35.5 82.4 82.4 82.2 82.7 61.2 67.4 64.3 66.3 73.3 63.1 65.1 73.4

Table 4: Ablation study results for Mediterranean-Amharic-Farsi. The columns represent the script of the source
language. The results are averaged over all target languages. Bold (underlined): best (second-best) result.

SR-B Taxi1500 SIB200 NER POS
Latn Hang Hani Thai Latn Hang Hani Thai Latn Hang Hani Thai Latn Hang Hani Thai Latn Hang Hani

Glot500 39.4 43.0 47.1 41.7 60.0 59.2 60.7 58.2 79.3 79.4 78.0 80.8 30.2 38.4 48.4 16.4 41.2 39.1 54.4

MLM 45.8 54.3 54.7 51.4 58.5 60.2 60.4 60.3 80.9 80.3 79.4 81.6 28.7 37.9 46.7 7.2 29.5 27.3 54.2
MLM+SEQ 47.0 63.8 61.0 56.1 60.6 59.9 60.0 61.0 81.8 79.3 79.3 80.3 30.9 39.3 46.5 7.7 31.4 30.9 55.4
MLM+TLM 45.4 55.7 57.8 54.5 61.4 60.6 59.5 60.0 81.9 81.5 79.5 81.5 31.0 39.0 47.6 9.1 34.6 32.1 54.8
MLM+SEQ+TLM 47.2 70.9 65.8 61.8 61.0 61.5 59.7 60.2 81.8 81.5 79.6 81.7 31.9 38.6 47.8 9.0 35.8 31.8 56.3

Table 5: Ablation study results for South+East Asian Languages. The columns represent the script of the source
language. The results are averaged over all target languages. Bold (underlined): best (second-best) result.

(TLM). There are four different combinations486

in total (MLM+SEQ is the training objective of487

TRANSLICO (Liu et al., 2024a)). Note that we do488

not consider the variant where the MLM objective489

is missing since MLM is important to preserve the490

language modeling capability. We report the av-491

erage performance of using four different source492

languages across all target languages for each lan-493

guage group in Table 4 and Table 5.494

The lone MLM objective already provides some495

slight improvement over the base Glot500 model.496

We hypothesize this is due to the benefit of spe-497

cializing the model to a small group of languages.498

When the sequence-level alignment (SEQ) objec-499

tive is included, the performance is generally fur-500

ther improved compared with the MLM variant, es-501

pecially for the retrieval task. This is not surprising502

as the SEQ improves the sequence-level alignment.503

When instead the token-level alignment (TLM) ob-504

jective is included, there is a slight improvement505

in the performance for most tasks compared to the506

MLM+SEQ objective, except for the retrieval task.507

We also observe that text classification tasks show508

the least variation in performance for most source509

languages. This is especially the case for SIB200,510

which seems to be the easiest task for the models.511

Our whole objective (MLM+SEQ+TLM) gen-512

erally performs better than the other models513

by combining sequence and token-level align-514

ment benefits. For Mediterranean-Amharic-Farsi,515

though MLM+SEQ+TLM performs on par with516

the MLM+SEQ objective on NER, it achieves bet-517

ter performance on POS. Similarly, our complete518

training objective outperforms MLM+SEQ on both 519

NER and POS for South+East Asian Languages. 520

When comparing the performance of the full train- 521

ing objective against MLM+TLM, we observe an 522

equal performance across different tasks, except 523

for the retrieval task, where the full training ob- 524

jective noticeably outperforms MLM+TLM. Even 525

though SEQ objective is the most critical for im- 526

proving the retrieval task, we also observe a per- 527

formance increase in the retrieval task when TLM 528

is included. This indicates that our post-training 529

alignment method, with TLM, effectively improves 530

both the sequence and token-level alignment. 531

6 Conclusion 532

In this work, we propose a transliteration-based 533

post-training method that contains both sequence 534

and token-level objectives to improve the cross- 535

lingual/script alignment of mPLMs and thus boost 536

their zero-shot cross-lingual transfer performance. 537

We apply our post-training method to fine-tune 538

Glo500 on two language groups that share areal 539

features and have extensive lexical overlap. Our 540

extensive experiments using different source lan- 541

guages show that our aligned models consistently 542

outperform the original Glot500 model. In partic- 543

ular, our method enhances the alignment between 544

related languages and, therefore, improves cross- 545

lingual transfer between these languages. We also 546

analyze the impact of different training objectives 547

and show that the sequence and token-level align- 548

ment objectives are both critical for achieving the 549

best performance across different tasks. 550

8



Limitations551

Even though the mPLM is fine-tuned with our552

method, where the transliterated text is used as553

an auxiliary input, the mPLM has only seen the554

Latin transliterations during its pre-training phase.555

This can limit the performance of the post-trained556

aligned models, especially for languages with com-557

plex scripts. An extension of this work could ex-558

pand the vocabulary to include the subwords from559

Latin transliterations as done by Liu et al. (2024b)560

before fine-tuning or continued-pre-train the model561

on the transliterated text so that the models can be562

more effective in modeling the transliterated data.563

We are further limited by the transliteration pro-564

cess, which only partially captures the phonetic565

and semantic information of the original text, es-566

pecially for languages with significantly different567

scripts from the Latin script. This leads to a loss of568

information during the alignment process, which569

can negatively impact the performance of the post-570

trained aligned models. Future work could improve571

the transliteration process to better capture the lin-572

guistic properties of the original text.573
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A Training Details 851

For the MLM objective, we use the normal mask- 852

ing probability of 15%. We use the AdamW op- 853

timizer (Kingma and Ba, 2015; Loshchilov and 854

Hutter, 2019) with an initial learning rate of 2e− 855

5, β1 = 0.9, β2 = 0.999, ϵ = 1e − 8, weight de- 856

cay of 0.01, and a linear learning rate scheduler 857

with no warm-up steps. We use FP16 mixed pre- 858

cision training (Micikevicius et al., 2018). Each 859

batch contains sentence pairs in the original and 860

Latin scripts, with a maximum sequence length 861

of 512 tokens. We set the per-device batch size 862

to 16, gradient accumulation steps to 8, and use 863

four NVIDIA A100 80GB GPUs. This leads to 864

an effective batch size of 512. The Mediterranean- 865

Amharic-Farsi model is trained for 2 epochs, while 866

the South+East Asian Languages model is trained 867

for 8 epochs. We use the HuggingFace Transform- 868

ers library (Wolf et al., 2020) for all experiments. 869

The trainings take around 30 hours for both groups. 870

We store the model checkpoints every 2000 steps. 871

For the sequence-level contrastive learning ob- 872

jective, we unify all the per-device batch sentence 873

embeddings into a global batch in order to have a 874

larger amount of negative samples. For the token- 875

level alignment objective, differently from the orig- 876

inal TLM, we do not reset the positional embed- 877

dings for the second sentence in a given pair. 878

B Downstream Tasks Fine-Tuning 879

For the downstream tasks that require fine-tuning, 880

we further fine-tune the post-trained aligned models 881

on the training set of a given source language, select 882

the best checkpoint with early stopping based on 883

the f1 score on the source language’s validation 884
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set, and evaluate the macro F1 score on the test885

sets of the remaining languages in each group. The886

fine-tuning results are averaged over five different887

seeds. All models are fine-tuned on a single GPU.888

Unless otherwise stated, the same optimizer and889

scheduler settings are used as in the post-training890

alignment phase.891

SR-B We use the same setup as ImaniGooghari892

et al. (2023), by calculating the top-10 retrieval893

accuracy on 500 parallel sentences from the Bible.894

This task does not require any fine-tuning, and the895

retrieval is done by computing the cosine similarity896

between the average 8th-layer contextual embed-897

dings of the source and target sentences.898

Taxi1500 A multilingual text classification899

dataset covering more than 1500 languages formed900

by classifying 1077 bible verses into six topics (Ma901

et al., 2023). The learning rate is set to 1e− 5, and902

we fine-tune the models for 40 epochs with a batch903

size of 32 and a maximum sequence length of 100904

tokens.905

SIB200 A multilingual text classification dataset906

covering more than 200 languages formed by classi-907

fying 1004 article sentences into 7 topics (Adelani908

et al., 2024). We use the same fine-tuning setup909

as the Taxi1500 task, except for the maximum se-910

quence length, which is set to 160 tokens.911

NER We evaluate the models on the WikiAnn912

named entity recognition dataset (Pan et al., 2017),913

a multilingual dataset consisting of articles anno-914

tated with 7 different tags. We set the learning915

rate to 2e− 5, the batch size to 32, gradient accu-916

mulation steps to 2, and the maximum sequence917

length to 256 tokens. We fine-tune the models for918

5 epochs.919

POS We evaluate the models on the Universal920

Dependencies (UD) v2.11 part-of-speech tagging921

dataset (de Marneffe et al., 2021), a multilingual922

dataset consisting of sentences annotated with 17923

universal POS tags. We use the same fine-tuning924

setup as the NER task, except for number of epochs,925

which is set to 10.926

C Vocabulary Analysis927

We compare the coverage of the Glot500 vocab-928

ulary in the original and transliterated corpora by929

tokenizing the fine-tuning datasets and counting the930

number of unique tokens. The results are shown931

in Table 6. As expected, the transliterated text is932

represented by a smaller part of the vocabulary 933

leading to text being broken down into smaller sub- 934

words. This result suggests that the performance 935

of the post-trained aligned models could be further 936

improved by extending the vocabulary of the pre- 937

trained model based on the transliterated corpus. 938

Language Group Original Tokens Transliterated Tokens

Mediterranean-Amharic-Farsi 209K 125K
South+East Asian Languages 120K 88K

Table 6: Number of unique tokens in the Glot500 vocab-
ulary covered in the original and transliterated corpora
for each language group. A smaller set of unique tokens
is used after transliterating the corpora into the common
Latin script.

D Full Ablation Results 939

We provide the full results of the other models 940

trained with different combinations of training ob- 941

jectives for both language groups in Table 7, Ta- 942

ble 8, Table 9, Table 10, Table 11, and Table 12. 943
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SR-B Taxi1500 SIB200 NER POS
Latn Arab Grek Hebr Latn Arab Grek Hebr Latn Arab Grek Hebr Latn Arab Grek Hebr Latn Arab Grek Hebr

tur_Latn 78.6 89.4 67.2 38.6 65.1 65.1 58.9 36.2 86.8 86.2 84.8 82.9 77.2 73.1 76.5 73.9 73.2 51.1 66.5 68.7
mlt_Latn 76.2 78.6 80.2 47.2 61.3 56.6 59.5 35.6 84.1 85.8 84.8 83.0 75.2 73.3 71.6 74.7 81.6 62.6 77.5 75.8
ell_Grek 57.2 64.2 src 36.2 61.5 60.5 src 32.4 82.9 81.3 src 79.9 73.8 74.1 src 75.0 85.3 57.0 src 63.0
heb_Hebr 25.6 28.0 32.2 src 43.8 43.3 45.8 src 78.6 77.2 79.2 src 50.8 60.5 55.9 src 65.8 70.8 57.7 src
amh_Ethi 62.8 77.8 60.8 38.2 4.8 5.1 12.5 11.6 77.8 79.4 76.6 76.0 43.8 53.2 52.7 49.8 64.5 64.4 60.5 74.7
ara_Arab - - - - - - - - - - - - 58.2 src 59.6 66.6 62.9 src 59.8 77.2
arz_Arab 30.4 42.4 59.4 51.2 39.5 38.4 47.8 37.3 84.4 src 82.9 80.3 58.9 77.6 65.3 67.4 - - - -
ary_Arab 19.4 23.4 34.0 36.0 35.2 37.8 39.2 36.0 82.9 81.7 85.3 81.5 - - - - - - - -
arb_Arab 12.6 22.4 30.8 33.4 - - - - 83.0 85.0 83.4 79.2 - - - - - - - -
fas_Arab 89.8 src 79.2 40.8 70.1 src 64.6 33.8 - - - - 55.6 67.8 61.7 58.0 69.6 68.6 60.2 72.5

Average 50.2 53.2 55.4 40.2 47.7 43.8 46.9 31.8 82.6 82.4 82.5 80.4 61.7 68.5 63.3 66.5 71.9 62.4 63.7 72.0

Table 7: Results for the Mediterranean-Amharic-Farsi model with the MLM objective. Columns represent the
script of the transfer source language (denoted with “src”), while rows represent the target languages. Results are
averaged over 5 random seeds. For each target language, we underline the best source transfer score for each task.

SR-B Taxi1500 SIB200 NER POS
Latn Arab Grek Hebr Latn Arab Grek Hebr Latn Arab Grek Hebr Latn Arab Grek Hebr Latn Arab Grek Hebr

tur_Latn 80.6 90.0 77.2 52.4 68.1 70.5 62.2 40.0 86.8 87.4 86.8 85.9 78.0 73.0 77.2 72.7 73.5 50.0 66.7 68.2
mlt_Latn 83.2 90.2 87.8 62.8 64.1 59.2 59.2 40.3 84.8 85.2 85.4 84.3 74.5 71.3 72.1 75.0 82.4 61.9 76.8 75.9
ell_Grek 67.0 83.0 src 47.4 61.6 61.8 src 38.9 83.1 82.0 src 82.2 73.1 73.6 src 75.1 85.9 57.5 src 68.6
heb_Hebr 32.0 37.4 45.4 src 45.9 46.0 45.9 src 79.8 77.5 80.1 src 50.4 60.6 57.0 src 66.6 71.1 58.8 src
amh_Ethi 57.4 71.0 57.8 46.6 4.8 6.2 14.6 13.7 76.4 79.2 78.8 77.5 41.9 52.3 54.1 49.5 65.1 63.6 63.1 74.1
ara_Arab - - - - - - - - - - - - 56.5 src 61.9 65.8 63.9 src 61.7 78.0
arz_Arab 59.0 79.2 82.6 71.4 39.1 40.3 49.3 43.0 83.6 src 83.9 81.8 59.1 75.6 66.9 67.3 - - - -
ary_Arab 52.6 68.4 68.4 68.0 36.9 38.2 39.5 38.8 82.3 81.5 84.8 82.8 - - - - - - - -
arb_Arab 47.6 56.0 56.2 52.2 - - - - 82.6 84.0 85.0 82.6 - - - - - - - -
fas_Arab 87.0 src 83.0 56.2 71.2 src 68.6 38.0 - - - - 55.1 65.2 63.0 57.4 69.9 68.2 60.7 71.3

Average 62.9 71.9 69.8 57.1 49.0 46.0 48.5 36.1 82.4 82.4 83.5 82.4 61.1 67.4 64.6 66.1 72.5 62.1 64.7 72.7

Table 8: Results for the Mediterranean-Amharic-Farsi model with the MLM+SEQ objective. Columns represent
the script of the transfer source language (denoted with “src”), while rows represent the target languages. Results are
averaged over 5 random seeds. For each target language, we underline the best source transfer score for each task.

SR-B Taxi1500 SIB200 NER POS
Latn Arab Grek Hebr Latn Arab Grek Hebr Latn Arab Grek Hebr Latn Arab Grek Hebr Latn Arab Grek Hebr

tur_Latn 78.2 89.4 66.2 40.0 64.0 66.2 59.9 41.2 86.8 86.2 84.9 85.2 76.7 72.6 76.4 73.3 73.3 52.4 66.9 68.9
mlt_Latn 76.8 82.0 82.2 48.0 66.8 61.5 60.2 45.0 86.3 85.1 85.7 83.6 75.8 72.0 72.6 75.6 83.1 64.0 77.3 78.7
ell_Grek 56.6 64.8 src 34.0 65.1 66.5 src 40.0 82.5 81.5 src 81.8 73.6 73.7 src 75.5 85.8 58.3 src 67.4
heb_Hebr 26.2 27.8 33.2 src 47.1 43.9 41.4 src 77.6 77.6 80.7 src 51.9 60.4 56.6 src 67.5 70.8 59.2 src
amh_Ethi 60.0 78.2 57.0 37.4 7.5 8.5 17.0 10.6 77.1 77.6 76.7 76.4 46.2 51.7 54.0 46.6 65.7 63.4 62.5 75.3
ara_Arab - - - - - - - - - - - - 60.1 src 59.3 66.8 65.7 src 60.0 77.9
arz_Arab 30.2 45.4 61.2 54.4 42.8 40.9 49.4 42.1 83.9 src 82.2 82.6 57.6 76.0 66.2 68.9 - - - -
ary_Arab 21.8 27.0 35.6 39.6 38.3 37.8 39.6 39.0 83.6 81.1 82.5 81.5 - - - - - - - -
arb_Arab 13.8 23.6 31.2 36.2 - - - - 83.1 82.9 84.0 81.6 - - - - - - - -
fas_Arab 90.0 src 79.6 43.4 72.0 src 63.5 42.2 - - - - 53.5 63.2 63.0 60.7 71.6 69.6 60.9 73.0

Average 50.4 54.7 55.7 41.6 50.4 46.5 47.3 37.2 82.6 81.7 82.4 81.8 61.9 67.1 64.0 66.8 73.2 63.1 64.5 73.5

Table 9: Results for the Mediterranean-Amharic-Farsi model with the MLM+TLM objective. Columns represent
the script of the transfer source language (denoted with “src”), while rows represent the target languages. Results are
averaged over 5 random seeds. For each target language, we underline the best source transfer score for each task.
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SR-B Taxi1500 SIB200 NER POS
Latn Hang Hani Thai Latn Hang Hani Thai Latn Hang Hani Thai Latn Hang Hani Thai Latn Hang Hani

tha_Thai 39.6 47.8 46.4 src 65.2 65.1 70.6 src 85.5 84.3 83.8 src 1.9 0.4 8.7 src 47.1 29.2 48.2
kor_Hang 74.4 src 70.0 65.4 63.3 src 62.0 65.4 82.8 src 83.0 83.8 56.2 src 40.7 2.9 52.9 src 38.2
yue_Hani 38.2 55.8 82.4 67.6 68.6 66.4 70.2 69.4 86.0 85.5 src 88.3 16.8 33.7 70.4 11.8 20.3 30.7 78.6
wuu_Hani - - - - - - - - - - - - 32.2 54.2 62.8 1.3 - - -
zho_Hani 46.0 49.8 src 44.4 64.8 67.8 src 67.8 - - - - 17.7 33.1 src 11.0 20.6 33.9 src
lzh_Hani 62.2 70.4 74.8 44.6 60.0 58.5 64.4 57.6 - - - - 8.2 33.3 62.0 14.7 6.7 15.2 51.6
lao_Laoo 53.6 78.4 53.8 72.2 67.9 67.4 72.6 69.3 83.0 80.8 81.2 83.9 - - - - - - -
lhu_Latn 6.4 8.8 7.6 10.4 20.2 31.1 21.7 29.6 - - - - - - - - - - -
mya_Mymr 32.8 43.2 32.8 43.2 57.8 65.2 61.3 62.9 79.6 79.6 80.5 79.6 56.6 68.6 38.7 3.6 - - -
bod_Tibt 59.8 80.4 70.2 64.0 - - - - 68.6 71.4 68.5 72.1 39.7 42.0 43.2 5.5 - - -

Average 45.8 54.3 54.7 51.4 58.5 60.2 60.4 60.3 80.9 80.3 79.4 81.6 28.7 37.9 46.7 7.2 29.5 27.3 54.2

Table 10: Results for the South+East Asian Languages model with the MLM objective. Columns represent the
script of the transfer source language (denoted with “src”), while rows represent the target languages. Results are
averaged over 5 random seeds. For each target language, we underline the best source transfer score for each task.

SR-B Taxi1500 SIB200 NER POS
Latn Hang Hani Thai Latn Hang Hani Thai Latn Hang Hani Thai Latn Hang Hani Thai Latn Hang Hani

tha_Thai 49.0 75.6 55.6 src 66.4 67.1 71.2 src 86.3 83.6 84.3 src 2.7 1.7 8.3 src 47.8 27.6 48.3
kor_Hang 58.6 src 72.2 70.8 67.3 src 61.6 68.3 82.9 src 83.3 83.4 55.8 src 41.2 3.6 53.1 src 41.8
yue_Hani 60.2 84.4 97.4 81.0 66.2 61.9 67.7 67.2 86.9 83.7 src 88.0 19.3 35.0 70.5 12.2 23.0 37.9 79.4
wuu_Hani - - - - - - - - - - - - 44.2 58.6 63.9 2.0 - - -
zho_Hani 45.2 67.4 src 44.4 66.2 64.5 src 68.0 - - - - 19.9 36.2 src 13.2 23.5 41.2 src
lzh_Hani 36.6 37.2 55.8 30.0 65.0 59.8 60.1 58.4 - - - - 9.3 31.4 62.4 18.8 9.6 16.8 52.1
lao_Laoo 55.2 81.6 60.2 72.6 70.9 66.2 72.9 67.9 82.8 80.9 82.2 83.5 - - - - - - -
lhu_Latn 19.4 23.4 18.0 22.4 23.1 36.7 27.6 30.7 - - - - - - - - - - -
mya_Mymr 40.2 58.0 49.0 50.6 59.5 63.4 58.5 66.3 81.8 79.6 78.0 78.7 57.2 65.6 43.2 2.4 - - -
bod_Tibt 58.6 83.4 79.8 77.4 - - - - 70.2 68.9 68.9 68.1 38.9 46.2 36.3 1.7 - - -

Average 47.0 63.8 61.0 56.1 60.6 59.9 60.0 61.0 81.8 79.3 79.3 80.3 30.9 39.3 46.5 7.7 31.4 30.9 55.4

Table 11: Results for the South+East Asian Languages model with the MLM+SEQ objective. Columns represent
the script of the transfer source language (denoted with “src”), while rows represent the target languages. Results are
averaged over 5 random seeds. For each target language, we underline the best source transfer score for each task.

SR-B Taxi1500 SIB200 NER POS
Latn Hang Hani Thai Latn Hang Hani Thai Latn Hang Hani Thai Latn Hang Hani Thai Latn Hang Hani

tha_Thai 37.6 46.8 45.6 src 64.6 63.7 69.4 src 86.5 84.5 85.0 src 1.7 2.2 9.4 src 50.4 30.6 47.4
kor_Hang 72.8 src 75.0 67.6 66.9 src 61.4 66.0 83.6 src 82.8 83.7 56.0 src 43.4 4.0 52.8 src 41.2
yue_Hani 43.0 67.2 88.8 76.6 69.1 62.7 66.3 65.2 87.1 86.0 src 89.1 19.4 34.7 70.6 13.4 27.4 38.9 79.4
wuu_Hani - - - - - - - - - - - - 44.5 56.6 63.0 3.6 - - -
zho_Hani 45.0 49.4 src 44.0 68.3 63.2 src 69.2 - - - - 19.8 34.0 src 12.4 30.3 43.6 src
lzh_Hani 57.6 69.6 80.0 48.4 64.0 59.7 61.6 55.4 - - - - 12.1 35.4 61.1 17.2 12.1 15.3 51.3
lao_Laoo 57.2 77.4 54.2 71.8 72.2 68.9 72.6 70.4 81.9 82.5 81.4 83.6 - - - - - - -
lhu_Latn 8.0 10.4 9.4 13.2 22.6 38.4 25.0 31.9 - - - - - - - - - - -
mya_Mymr 33.0 44.2 39.4 47.4 63.6 67.9 60.1 61.6 80.9 81.2 80.0 80.3 54.3 66.3 40.5 5.4 - - -
bod_Tibt 54.6 80.6 70.0 67.2 - - - - 71.2 73.5 68.5 70.7 40.4 44.2 44.9 8.0 - - -

Average 45.4 55.7 57.8 54.5 61.4 60.6 59.5 60.0 81.9 81.5 79.5 81.5 31.0 39.0 47.6 9.1 34.6 32.1 54.8

Table 12: Results for the South+East Asian Languages model with the MLM+TLM objective. Columns represent
the script of the transfer source language (denoted with “src”), while rows represent the target languages. Results are
averaged over 5 random seeds. For each target language, we underline the best source transfer score for each task.
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