
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

OPTIMAL CLIENT TRAINING IN FEDERATED LEARNING
WITH DEEP REINFORCEMENT LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

Federated Learning (FL) is a distributed framework for collaborative model training
over large-scale distributed data. Centralized FL leverages a server to aggregate
client models which can enable higher performance while maintaining client data
privacy. However, it has been shown that in centralized model aggregation, per-
formance can degrade in the presence of non-IID data across different clients. We
remark that training a client locally on more data than necessary does not
benefit the overall performance of all clients. In this paper, we devise a novel
framework that leverages Deep Reinforcement Learning (DRL) to optimize an
agent that selects the optimal amount of data necessary to train a client model with-
out oversharing information with the server. Starting from complete unawareness
of the client’s performance, the DRL agent utilizes the change in training loss as a
reward signal and learns to optimize the amount of data necessary for improving the
client’s performance. Specifically, after each aggregation round, the DRL algorithm
considers the local performance as the current state and outputs the optimal weights
for each class in the training data to be used during the next round of local training.
In doing so, the agent learns a policy that creates the optimal partition of the local
training dataset during the FL rounds. After FL, the client utilizes the entire local
training dataset to further enhance its performance on its own data distribution,
mitigating the non-IID effects of aggregation. Through extensive experiments,
we demonstrate that training FL clients through our algorithm results in superior
performance on multiple benchmark datasets and FL frameworks.

1 INTRODUCTION

Rise in computational power has enabled learning algorithms to learn from increasingly more data
and it has generally been assumed that learning from more data leads to higher performance. However,
the amount of data required by the learning algorithm still remains an arbitrary choice driven by
personal whim and past experience. At the same time, in distributed systems, continuing to use more
data for model training can pose privacy risk concerns, particularly in settings where data can be
leaked or used for personal identification (Allouah et al., 2023; Wu et al., 2024; Fowl et al., 2023).
Federated Learning has emerged as a powerful framework for distributed learning through which
multiple parties, also known as clients, collaborate to train global models without sharing their data
Li et al. (2021)McMahan et al. (2017). Centralized FL enables clients to perform limited training on
local datasets while the centralized server aggregates the client parameters using different aggregation
methods. In this way, each client’s data is kept private, and superior performance can be achieved.

Our primary motivation is that training a client locally on more data than necessary does not benefit
the overall performance of all clients. This is because the data across different clients are not
independent and two sets of data can cancel out their effects on the model update with the aggregation
mechanism. Finding the optimal amount of data necessary for local training enables the client to
optimize its own performance while maximizing contributions to the global model training through
aggregation. Moreover, we empirically find that at the end of the federated learning rounds, the client
benefits from unused data in the prior learning rounds by training the final aggregated parameters
on the complete local training dataset. This unused data provides the client with fresh information
enriching the model parameters. This phenomenon is illustrated through our experiments in Fig. 1.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

(a) Naive vs. Optimized Accuracy

(b) Data selection in each of 10 classes

Figure 1: Naive vs. optimized clients.

In this paper, we build a novel Federated Learning
framework to find the optimal subset of local train-
ing data. We first introduce the notion of an optimal
client, which finds the optimal ratio of local training
data to train the local model without oversharing local
information with the server. To maintain a distinction
between the optimal clients and all other clients in the
federated learning scheme, we refer to the remaining
clients, using all local training data, as naive clients.
Selection of the optimal subset is demonstrated in
Fig. 1(b) where the radii of the unit circle represent
the proportion of data used in naive clients and an
optimal client during FL. The annotations on the cir-
cumference represent each class in the client’s local
dataset (CIFAR-10). As shown in Fig. 1(a), using an
optimal subset of training data in the optimal client
does not hurt the performance of other naive clients.
At the same time, our new algorithm can improve the
performance of the optimal client compared with the
original strategy in FL. To build our optimal client,
we introduce Reinforcement Learning during the fed-
erated learning rounds to train an RL agent. The RL
agent takes the model performance on the client’s
local dataset in each federated learning round as the
current state. An action is defined as changing the
optimal ratio of training data to be used for local train-
ing. The optimal client treats the federated learning
setting as the environment and the reward for the RL
agent is the reduction in training loss. The action taken by the agent selects a subset of local data
for each class in the dataset. The selected subset is then used by the optimal client for local training
to optimize a given metric (i.e., F1 Scores, Recall, Precision, Accuracy, etc.) for each class in the
dataset. As the federated learning rounds progress, the agent learns to optimize the amount of local
training data used by the optimal client.

The contributions of this paper are summarized as follows:

• We provide a framework based on Deep Reinforcement Learning to select local training data used
for a client to be optimized. Additionally, we investigate and present the results of our proposed
framework using well-known Federated Learning aggregation algorithms.

• We design two unique functions for the reinforcement learning agent to take actions and adapt
them to the existing ϵ-Greedy action selection set up.

• We design a reward function which takes into account the loss of the local client as well as the
amount of data utilized in local training.

• We conduct theoretical analysis and proof for an upper bound on the performance of the Optimal
Client during Federated Learning.

2 PRELIMINARY

Federated Learning (FL) is a distributed learning method that preserves data privacy by training
models locally on distributed devices. Instead of sharing actual data with a central server, only
local models or local model updates are shared. The server implements an aggregation algorithm
to combine the local models or model updates into a global model which is then disseminated back
to the local clients. A typical FL workflow is presented in Fig. 2. Formally, given a set of K total
clients, denote the overall datasets as D = {D1, D2, ..., DK} from all clients where each client only
leverage its local dataset with N samples Dk : {xn, yn}Nn=1.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

Figure 2: Federated learning workflow.

In FedAvg McMahan et al. (2017), the federated
learning objective can be written as:

min
w

f∗(w)
∆
=

1

K

K∑
k=1

fk(w) (1)

Here w represents the global model parameters and
fk(w) : R 7→ R is the expected local loss of the client
defined as fk(w)

∆
= 1

|Dk|fk(w,Dk) where fk can
be substituted for any loss function. The averaging
algorithm can also be replaced by other algorithms
such as FedMedian Yin et al. (2018) and FedCDA
Wang et al. (2024a).

Reinforcement Learning (RL) enables building systems in which agents interact with environ-
ments to accomplish one or many tasks. Generally, RL systems are modeled as Markov Decision
Processes (MDP). A time step t, the agent observes an initial state St ∈ S of the environment.

Figure 3: Agent environment interaction.

Following a policy πt(·|s), which maps states to ac-
tions, the agent takes an action At ∈ A. This transi-
tions the environment to the next state St+1 and the
agent receives a reward signal Rt+1 ∈ R, informing
the agent about the quality of its action. As shown
in Fig. 3, the agent environment interaction model
gives rise to trajectories (St, At, Rt+1, St+1...) (Sut-
ton, 2018). The expected total reward is given as

Gt=
∞∑
k=0

γkRt+k+1, where γ ∈ (0, 1) is the discount

factor. The value of a given state is meausred by the State-Value Function Vπ(s)=Eπ[Gt|St = s].
Similarly, the quality of an action paired with a state is given by the Action-Value Function
qπ(s, a) = Eπ[Gt|St = s,At = a]. The RL objective is to find an optimal policy π∗ which maxi-
mizes an agent’s total return. Such a policy shares the optimal state-value function v∗(s)

.
= max

π
vπ(s)

and the optimal action-value function q∗(s, a)
.
= max

π
qπ(s, a). Deep Reinforcement Learning (DRL)

combines the function approximation ability of Deep Learning with Reinforcement Learning’s sequen-
tial decision making. This enables building Reinforcement Learning systems which can generalize
to large state and continuous action spaces. Using Deep Learning this process is accomplished by
mapping large state spaces to features and features to actions. In recent years, Deep Learning has
been extended to Reinforcement Learning methods (Gao et al., 2024; Liu et al., 2024; Schulman
et al., 2017; Lillicrap et al., 2016).

3 PROBLEM SETUP AND FRAMEWORK

Given the local dataset Dk on a client to be optimized, our target is to generate the optimal amount of
training data D

′

k for federated learning. Fig. 4 depicts the workflow to optimize the percentage of
data in each class for the agent (i.e., the client highlighted with blue) to be optimized. We consider
the aggregated parameters of the model on the server as the current state st. The action at is defined
as a vector that represents the percentage of samples used for training in each class. Based on the
performance of the aggregated parameters on the server, we calculate the reward rt with a designed
reward function. We train the policy πθ parameterized with θ based on the reward rt, generated from
the loss of the aggregated model Lagg and the loss of the client’s local model parameters Ll based
on local training. The training process encourages πθ to find the optimal percentage of data used in
each class for creating D

′

k in the upcoming FL rounds. Then, after the process of federated learning,
we further leverage the complete dataset Dk to fine-tune the Optimal Client until its performance
converges. Using Dk in the final training rounds gives the Optimal Client an incremental boost in
performance resulting from unused data in the previous rounds. With the proposed framework, we
can not only optimize local training but also guarantee that the data changes on the optimal client
have little impact on the performance of other clients.

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Server
Aggregation

T+1 1---T

1---T

Naive Client

Local Training Optimal Client Local Training

Naive Client

Local Training

Figure 4: Optimal data selection framework.

4 METHOD

Given a total of T federated learning communication rounds, to train the RL agent, we utilize
the class-wise performance measured on the local training dataset after server aggregation in the
communication round t as the current state st. In our experiments, we use F1-Score given by
F1 = 2PR

P+R as a performance measure where P and R are Precision and Recall, respectively
Goodfellow et al. (2016)Chinchor & Sundheim (1993). Note that F1-Score can be easily substituted
for a different performance measure. The policy consumes this state st and outputs a vector action at
containing weights zc for each class c in the local dataset.

Formally, for K total clients in the federated learning scheme, with client k as the client to be
optimized, Dk : {X,Y } as the local dataset for the Optimal Client, and wt as the server aggregated
parameters in the communication round t, the state for communication round t is:

st = F1(f̂k(X;wt), Y) (2)

Here, fk(wt) is the local model of the Optimal Client parameterized with the server aggregated
parameters. Additionally, we implement two action selection strategies and adapt them to the
ϵ-Greedy method. Using a parameterized policy πθ, the action in round t is given by:

at = πθ(st) = [z1, z2, . . . , zC]⇒ {z ∈ R, bl ≤ z ≤ bu} s.t. bl, bu ∈ (0, 1], (3)

where bl and bu are user-defined lower and upper bounds respectively.

ϵ-Greedy Normalized Action implements a normalized version of the action generated by the policy.
The action vector at is first normalized and multiplied by the total samples in the local training dataset
to get the count of data samples for each class c in the dataset.

a′t ⇐
at∑
at
|Dk| (4)

Here a′ = [a′1, a
′
2, . . . , a

′
C] is a vector of data sample counts for each class. The class counts are then

adjusted to not exceed the total number of samples available for each class. Given that for each class
in the local training dataset the maximum class count for each class is |Dkc |, and Unif(0, 1) as the
Standard Uniform Distribution on the interval (0, 1) (Blitzstein & Hwang, 2019), then the ϵ-Greedy
Normalized Action is given as:

a′t ⇐

[
max(a′

1,|Dk1
|)

|Dk1
| ,

max(a′
2,|Dk2

|)
|Dk2

| , . . .
max(a′

C ,|DkC
|)

|DkC
|

]
if 1√

t
< Unif(0, 1),

argmax
a

Q(a) otherwise.

(5)

ϵ-Greedy Weighted Metric Action implements a look-back period η, where every η communication
rounds, the Optimal Client computes the difference in the absolute value between the current F1-
Score and the F1-Score from η rounds in the past. The difference is then normalized and for every

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

class where the F1-Score has decreased since η rounds, the weight for that class is increased by the
normalized difference. Formally, given F1t+η and F1η as the F1-Scores in the current round and the
F1-Scores from η rounds ago, then the normalized difference is given by:

∆F1 =
|F1t+η − F1η|∑
c |F1t+η − F1η|

. (6)

With the F1 score, the agent’s action is given by:

at ⇐

at +∆F1at if 1√

t
< Unif(0, 1),

argmax
a

Q(a) otherwise.
(7)

The Optimal Client utilizes the action generated by the RL policy to create an Action Partitioned
Dataset, denoted by D

′

k such that D
′

k ⊂ Dk. Fig. 5 illustrates this procedure.

Figure 5: Action partitioned dataset.

As the federated learning rounds
progress we implement a loss esti-
mation mechanism. Specifically, the
Optimal Client waits for τ commu-
nication rounds and then in every
subsequent round estimates the local
loss for the local training update after
the server aggregation in the follow-
ing round. Based on the assumption
that, as the federated learning rounds
progress, the client’s local training on
the local dataset is supposed to produce a lower training loss as we utilize the following piece-wise
reward function.

Rt ⇐

Lagg−Ll

Ll

1
at−λ if T < τ,

Lagg−Lest

Lest

1
at−λ otherwise.

(8)

Here, Lagg is the loss on the local dataset after server aggregation, Ll on the local dataset after local
training, Lest = −ue−vt is the estimated loss, at = 1

|at|
∑

at is the mean action generated by the
policy πθ, and λ is a user defined parameter which normalizes the reward by controlling the amount
of local training data generated by the policy. As part of loss estimation, Lest, we fit a non-linear curve
(Vugrin et al., 2007) to estimate the parameters, u and v, after each federated learning round past τ
rounds. Using equation 2, equation 5, equation 7, and equation 8 we can generate RL trajectories
(st, at, Rt+1, st+1...). The actor-critic paradigm, in Deep Reinforcement Learning, then enables
learning a parameterized actor policy πθ(a|s) which outputs an action a given the current state s,
as well as a parameterized critic network vφ(s) which approximates a state value function. The
critic network can be updated through Mean Squared Error∇L(φ|st, at) = (Q̂n(st, at)− vφ(st))

2

followed by the update for policy network ∇θL(θ|st, at) = Q̂n(st, at).∇θlogπθ(at|st) where
Q̂n(st, at) =

∑n−1
k=0 rt+k + vφ(st+n) is the n-step target Plaat (2022).

Algorithm. We present the algorithm to train the Optimal Client both from a server as well as a
client perspective. The server-side implementation follows a typical federated learning setup up
whereas the client-side implementation includes optimized training for the client both during and
after Federated Learning. We use DDPG (Deep Deterministic Policy Gradient) (Lillicrap et al., 2016)
to train the RL policy. For brevity, we don’t include the training of RL policy as part of this algorithm,
but details regarding training the RL policy, including the algorithm and the hyperparameters for each
experiment, can be found in Appendix A.4.

Analysis. In this section, we investigate if the performance of the Optimal Client has an upper
bound during the federated learning rounds. Based on the assumption that using more data leads
to higher performance, we note that the performance of the Optimal Client will not be as good as

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Optimal Client Training: K(number of total clients), C ∈ (0, 1) 7→ R (predetermined
ratio of clients to participate in each round), FederatedAggregation (federated learning aggregation
algorithm.), E (local train epochs)
Server:

initialize w0

for round t = 0, 1, 2, · · · , T do
St = {random sample of C ∗K Clients}
for k ∈ S in parallel do

wt+1 = OptimalClientTrain(k,wt)
end for
wt+1 = FederatedAggregation(St)

end for
Client: ▷ OptimalClientTrain(k,wt)

while t ≤ T do
Compute st using Equation. 2
Compute at using Equation. 3
D

′

k ← Dk(at) ▷ ActionPartitionedDataset

B ← {Create batches of size B ∈ D
′

k}
for e = 1, 2, 3 · · · in E do

for b in B do
wt ← wt − η∇l(w; b)

end for
end for

end while
return wt to server
B ← {Create batches of size B ∈ Dk}
for e = 1, 2, 3 · · · in E do ▷ UntilConvergence

for b in B do
wt ← wt − η∇l(w; b)

end for
end for

if it was trained on its entire local dataset. Under this assumption we elucidate the answer to one
main question: Is there an upper bound to the performance of the Optimal Client during Federated
Learning.

Proposition (Performance Bound of Client Training) Given st and at = [z1, z2, . . . , zC] ⇒
{z ∈ R, 0 ≤ z ≤ 1} as the state and the action taken by the policy, let z be the radius of a unit
circle representing the total available sample size for each class in the Action Partitioned Dataset
D

′

k1,2,3···C
∀c ∈ C. Let A = [Z1, Z2, . . . , ZC]⇒ {Z ∈ R, 0 ≤ Z ≤ 1} be a vector representing the

total samples for each class in the complete local client dataset D
′

k1,2,3···C
∀c ∈ C. Additionally, let

ω = Z2
C − z2c be the difference in the squared radii. The performance bound, of the client trained on

the complete dataset, for class c is defined as the area of the circle:

Pkc = πZ2
c (9)

Using Equation 9, the total performance of client k, on the complete local dataset, is given as:

Pk = πZ2
1 + πZ2

2 + πZ2
3 + · · ·+ πZ2

c

Similarly, using Equation 9, the performance of client k on the Action Partitioned Dataset is:

P
′

k = πz21 + πz22 + πz23 + · · ·+ πz2c

Theorem: A client trained on the Action Partitioned Dataset D
′

k relative to the entire local dataset
Dk has a performance bound given by:

Pk − P
′

k ≤ Ω

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Proof:

Pk − P
′

k = πZ2
1 + πZ2

2 + πZ2
3 + · · ·+ πZ2

c − πz21 − πz22 − πz23 − · · · − πz2c

= πZ2
1 − πz21 + πZ2

2 − πz22 + πZ2
3 − πz23 + · · ·+ πZ2

C − πz2C

= π(Z2
1 − z21) + π(Z2

2 − z22) + π(Z2
3 − z23) · · ·π(Z2

C − z2C)

= πω1 + πω2 + πω3 · · ·πωC

≤ π

C∑
c=1

ωc = Ω

The proof above shows that constructing a dataset D
′

k by minimizing the difference between the
action taken by the policy and the total sample size for each class in the dataset will lead to better
performance by the Optimal Client during the federated learning rounds. However, we note that this
also represents a trade-off between the performance improvement that the Optimal Client will benefit
from by retaining these data samples for training post the federated learning rounds.

5 EXPERIMENTAL SETUP

Methods. We conduct experiments of our proposed methodology using 5 Federated Learning
aggregation baseline algorithms. These algorithms include FedCDA Wang et al. (2024a), FedProx
Li et al. (2020), FedMedian Yin et al. (2018), FedAvgM Hsu et al. (2019), and FedAvg McMahan
et al. (2017). For Deep Reinforcement Learning we use DDPG Lillicrap et al. (2016) and we use
ResNet50 He et al. (2016) as the server and the client models.

Datasets. We conduct our experiments using 3 datasets including, CIFAR 10, CIFAR 100 Krizhevsky
et al. (2009), and FashionMNIST Xiao et al. (2017). Each dataset contains 10, 100, and 10 classes,
respectively. From the overall dataset, we create non-IID partitions using the Dirichlet Partitioner
Yurochkin et al. (2019), and each partition is given to each client as its own local dataset. Furthermore,
each partition is split using 80/20 training and validation split, where 80% of the data is used for
training and 20% of the data is used for validation.

Results and Analysis Our experiments show the utility of our proposed method compared to well-
established baselines. We conduct 100 Federated Learning rounds for 8 clients where each client is
trained for 1 local epoch. Through our experiments, we demonstrate the generalization capability of
our method in different federated learning settings. The results from our experiments are summarized
in Table 1, where we show a comparison of the best mean performance of the Naive Clients, including
Precision, Recall, and Accuracy, relative to the Optimal Client on the validation datasets. Each
two-row combination represents a comparison of the mean performance achieved by all naive clients
in the federated learning setup relative to the best performance of the Optimal Client achieved after
training on the complete local training dataset, Dk, post the federated learning rounds.

Fig. 6 shows the mean validation accuracy of the Naive Clients relative to the Optimal Client, after
each server aggregation during the federated learning rounds. The final validation accuracy of the
Optimal Client is plotted as a separate line which shows the best validation accuracy attained by the
Optimal Client by training on its entire local dataset after the federated learning rounds. It can be
observed that the Optimal Client produces lower performance relative to the naive client during the
federated learning rounds. This phenomenon is illustrated in Fig. 7 and attributed to the fact that
during the federated learning rounds the Optimal Client utilizes a smaller proportion of the local
dataset relative to all other clients. Fig. 7(a) shows normalized actions and Fig. 7(b) shows weighted
metric actions, taken by the RL policy in comparison to naive data selection using 80/20 train test split.
During the federated learning phase, the RL policy determines the minimum viable amount of data
necessary for local training. However, after the federated learning rounds finish, the Optimal Client is
trained on its entire local dataset until it converges. During this phase of local training, the Optimal
Client exhibits superior performance. In addition to the performance improvement of the Optimal
Client post federated learning rounds, we also observe a considerable increase in convergence speed
which can be ascribed to the fact that the Optimal Client resumes local training using the aggregated
parameters from the final federated learning round.

Ablation Study. As part of our ablation study, we conduct experiments using naive actions for every
client. Naive actions correspond to each client’s dataset being split using the 80/20 split. The results

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

Cifar 10 FashionMNIST CIFAR 100

Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy

FedAvg 50.28 38.15 29.65 73.41 52.58 37.47 16.88 16.15 13.01

FedAvg + Our Method 52.41 48.28 43.22 67.23 58.19 53.31 20.17 17.99 24.90

FedAvgM 50.27 38.00 31.10 76.04 55.24 38.14 16.90 16.13 13.26

FedAvgM + Our Method 53.96 48.85 43.36 67.24 58.69 51.25 20.87 18.61 26.10

FedMedian 44.20 35.48 31.81 75.42 56.45 42.67 15.84 15.40 13.21

FedMedian + Our Method 53.72 47.28 42.58 64.45 59.29 49.74 20.82 19.02 25.75

FedProx 50.84 39.10 31.20 75.92 54.93 37.64 16.73 16.00 13.27

FedProx + Our Method 53.51 48.50 42.94 65.90 57.66 50.18 21.34 18.42 26.14

FedCDA 46.52 34.42 30.69 76.38 55.54 38.56 13.44 12.95 12.10

FedCDA + Our Method 57.03 50.61 43.64 66.19 56.99 49.87 21.54 19.50 26.47

Table 1: Performance comparison with baseline methods. Each two-row combination shows the mean
performance of naive clients, over the complete federated learning rounds, relative to the performance
of the Optimal Client, after the federated learning rounds, from training on the complete local dataset.

0 20 40 60 80
Server Round/Epoch

0

10

20

30

40

50

ac
cu

ra
cy

FedAvg Naive
FedAvg Optimal during FL
FedAvg Optimal after FL

0 20 40 60 80 100
Server Round/Epoch

10

20

30

40

50

ac
cu

ra
cy

FedAvgM Naive
FedAvgM Optimal during FL
FedAvgM Optimal after FL

0 20 40 60 80
Server Round/Epoch

10

20

30

40

ac
cu

ra
cy

FedMedian Naive
FedMedian Optimal during FL
FedMedian Optimal after FL

0 20 40 60 80 100
Server Round/Epoch

10

15

20

25

30

35

40

45

ac
cu

ra
cy

FedProx Naive
FedProx Optimal during FL
FedProx Optimal after FL

0 20 40 60 80
Server Round/Epoch

10
15
20
25
30
35
40
45

ac
cu

ra
cy

FedCDA Naive
FedCDA Optimal during FL
FedCDA Optimal after FL

Figure 6: Mean accuracy in FL rounds. The blue line represents the mean accuracy of all naive
clients. The green line represents the accuracy of the Optimal Client. The dark green line represents
the accuracy of the Optimal Client in each epoch after federated learning rounds.
of our ablation experiments are summarized in Table 2. It is evident from the results that learning a
RL policy to partition the local dataset, during the federated learning rounds, followed by training on
the complete local dataset, yields improved overall performance for the Optimal Client.

Precision Recall Accuracy
FedAvg (original) 78.96 59.10 41.21

FedAvg (with optimal client) 73.41 52.58 37.47

FedAvgM (original) 77.45 56.49 38.86
FedAvgM (with optimal client) 76.04 55.24 38.14

FedMedian (original) 76.68 56.92 41.28
FedMedian (with optimal client) 75.42 56.54 42.67

FedProx (original) 78.70 58.68 40.62
FedProx (with optimal client) 75.92 54.93 37.64

FedCDA (original) 73.92 52.74 37.19
FedCDA (with optimal client) 76.38 55.54 38.56

Table 2: Effects of the optimal client on other naive clients.
All experiment was conducted on the local dataset using 80/20
training and validation split.

Discussion. Our experimental
findings show that training a
client on a subset of its own local
data allows the client to improve
its performance during the feder-
ated learning rounds, and benefit
considerably by training on the
complete dataset after the feder-
ated learning rounds. Utilizing
RL, a parameterized policy can
be learned and optimized, on the
client’s local performance, as the
client interacts with the server.
This enables the client to dynam-
ically create subsets of its local
training data. During federated
learning, the client benefits from
aggregation while post federated
learning the client leverages information from unused samples to further improve its performance.
We note that training on a smaller subset of data can make the Optimal Client marginally lag in
performance relative to other clients. This sets up our motivation to further investigate potential
solutions for maintaining competitive performance during the federated learning rounds.

6 RELATED WORKS.

Since our work prioritizes improving client performance in a federated learning setting, we provide
an overview of related methods and techniques that address data heterogeneity issues and improve
client personalization. These areas form the cross-section of technologies that enable our research.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

(a) Normalized vs. Naive Actions (b) Weighted Metric vs. Naive Actions

Figure 7: Optimal actions taken by the RL agent in different federated learning rounds, versus Naive
Actions taken by each client. The legend displays actions taken by the RL agent.

Data Heterogeneity Issues. Data Heterogeneity can potentially have an adverse impact on model
convergence as well as final model performance (Kim et al., 2023; Yu et al., 2023; Heinbaugh et al.,
2023; Li et al., 2020; Karimireddy et al., 2020). To address this issue, many variants of FL aggregation
algorithms, since FedAVG McMahan et al. (2017) have been proposed. FedProx Li et al. (2020) add
a proximal term to get the local models to be closer to the global model. FedDC Gao et al. (2022)
addresses data heterogeneity through a local drift variable which improves model consistency and
performance, resulting in faster convergence across diverse tasks. FedCDA Wang et al. (2024a)
addresses this issue in a cross-round setting by selecting and aggregating local models that minimize
divergence from the global model. Tang et al. (2024) improve client updates in an attempt to improve
the global model performance. Huang et al. (2024) introduce two compressed FL algorithms that
attain improved performance under arbitrary data heterogeneity. (Wang et al., 2024b; Li et al., 2024)
study data heterogeneity in an asynchronous setting and propose methods for caching local client
updates to measure each client’s contribution to the global model as well as reducing staleness of
clients in global model updates.

Personalization and Optimization. Due to device as well as data heterogeneity, training client
models on local data can potentially result in better outcomes relative to participating in federated
learning (Wu et al., 2020). Personalization (Xu et al., 2023; Tan et al., 2022) attempts to circumvent
this shortcoming by improving client performance while taking local data distribution of a client
into consideration (Jiang et al., 2024). Huang et al. (2021) propose a method, FedAMP, by which
they enable a message passing mechanism between similar clients in a federated setting to improve
performance amongst them. FedALA Zhang et al. (2023) achieves better personalization by adapting
to the local objective through element-wise aggregation of the global and the local model. FedPAC
Scott et al. (2024) implements a regularization term to account for the label distribution shift scenario
amongst clients, and learns shared feature extraction layers in deep neural networks across clients as
well as shared classification heads in clients with similar data distributions. (Wang et al., 2024c; Kim
et al., 2024; Cheng et al., 2024) study hyperparameter optimization and momentum to gain faster
convergence whereas (Fan et al., 2024) study client fairness based on contribution. Chanda et al.
(2024) strive for improved performance by training clients on coresets of their local training data, by
assigning a weight vector to each client, which acts as the coreset weight.

7 CONCLUSION

In our work, we propose a novel method to train clients for improved personalization through efficient
usage of the client’s own local data. In doing so, we leverage deep reinforcement learning’s planning
and sequential decision making capabilities. Our method shows that efficient utilization of local data
can enable clients to have better performance compared to naive training on the local dataset during
federated learning. Additionally, we show that a learned RL policy, by designing an adequate reward
function, can aid the client in optimizing its performance. We note that utilizing a smaller subset of
local data can result in lower performance during the federated learning rounds and to remedy this we
establish a theoretical upper bound on client performance, and present a trade-off between improving
performance during federated learning rounds versus improving performance post federated learning.
Overall, we hope that our work encourages more research interest in utilizing RL to orchestrate client
training in a federated setting and future works extend the ideas presented in our work to multiple
clients using multi-agent as well as model-based RL systems.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

REFERENCES

Youssef Allouah, Rachid Guerraoui, Nirupam Gupta, Rafael Pinot, and John Stephan. On the
privacy-robustness-utility trilemma in distributed learning. In Andreas Krause, Emma Brunskill,
Kyunghyun Cho, Barbara Engelhardt, Sivan Sabato, and Jonathan Scarlett (eds.), International
Conference on Machine Learning, ICML 2023, 23-29 July 2023, Honolulu, Hawaii, USA, volume
202 of Proceedings of Machine Learning Research, pp. 569–626. PMLR, 2023. URL https:
//proceedings.mlr.press/v202/allouah23a.html.

Daniel J Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Javier Fernandez-Marques, Yan Gao,
Lorenzo Sani, Hei Li Kwing, Titouan Parcollet, Pedro PB de Gusmão, and Nicholas D Lane.
Flower: A friendly federated learning research framework. arXiv preprint arXiv:2007.14390,
2020.

Joseph K Blitzstein and Jessica Hwang. Introduction to probability. Chapman and Hall/CRC, 2019.

Lars Buitinck, Gilles Louppe, Mathieu Blondel, Fabian Pedregosa, Andreas Mueller, Olivier Grisel,
Vlad Niculae, Peter Prettenhofer, Alexandre Gramfort, Jaques Grobler, Robert Layton, Jake
VanderPlas, Arnaud Joly, Brian Holt, and Gaël Varoquaux. API design for machine learning
software: experiences from the scikit-learn project. In ECML PKDD Workshop: Languages for
Data Mining and Machine Learning, pp. 108–122, 2013.

Prateek Chanda, Shrey Modi, and Ganesh Ramakrishnan. Bayesian coreset optimization for person-
alized federated learning. In The Twelfth International Conference on Learning Representations,
2024. URL https://openreview.net/forum?id=uz7d2N2zul.

Ziheng Cheng, Xinmeng Huang, Pengfei Wu, and Kun Yuan. Momentum benefits non-iid federated
learning simply and provably. In The Twelfth International Conference on Learning Representa-
tions, 2024. URL https://openreview.net/forum?id=TdhkAcXkRi.

Nancy Chinchor and Beth M Sundheim. Muc-5 evaluation metrics. In Fifth Message Understanding
Conference (MUC-5): Proceedings of a Conference Held in Baltimore, Maryland, August 25-27,
1993, 1993.

Zhenan Fan, Huang Fang, Xinglu Wang, Zirui Zhou, Jian Pei, Michael Friedlander, and Yong Zhang.
Fair and efficient contribution valuation for vertical federated learning. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=sLQb8q0sUi.

Liam H. Fowl, Jonas Geiping, Steven Reich, Yuxin Wen, Wojciech Czaja, Micah Goldblum, and
Tom Goldstein. Decepticons: Corrupted transformers breach privacy in federated learning for
language models. In The Eleventh International Conference on Learning Representations, ICLR
2023, Kigali, Rwanda, May 1-5, 2023. OpenReview.net, 2023. URL https://openreview.
net/forum?id=r0BrY4BiEXO.

Liang Gao, Huazhu Fu, Li Li, Yingwen Chen, Ming Xu, and Cheng-Zhong Xu. Feddc: Federated
learning with non-iid data via local drift decoupling and correction. In Proceedings of the
IEEE/CVF conference on computer vision and pattern recognition, pp. 10112–10121, 2022.

Ziqi Gao, Tao Feng, Jiaxuan You, Chenyi Zi, Yan Zhou, Chen Zhang, and Jia Li. Deep reinforcement
learning for modelling protein complexes. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=4MsfQ2H0lP.

Ian Goodfellow, Yoshua Bengio, Aaron Courville, and Yoshua Bengio. Deep learning, volume 1.
MIT Press, 2016.

Charles R. Harris, K. Jarrod Millman, Stéfan J. van der Walt, Ralf Gommers, Pauli Virtanen, David
Cournapeau, Eric Wieser, Julian Taylor, Sebastian Berg, Nathaniel J. Smith, Robert Kern, Matti
Picus, Stephan Hoyer, Marten H. van Kerkwijk, Matthew Brett, Allan Haldane, Jaime Fernández
del Río, Mark Wiebe, Pearu Peterson, Pierre Gérard-Marchant, Kevin Sheppard, Tyler Reddy,
Warren Weckesser, Hameer Abbasi, Christoph Gohlke, and Travis E. Oliphant. Array programming
with NumPy. Nature, 585(7825):357–362, September 2020. doi: 10.1038/s41586-020-2649-2.
URL https://doi.org/10.1038/s41586-020-2649-2.

10

https://proceedings.mlr.press/v202/allouah23a.html
https://proceedings.mlr.press/v202/allouah23a.html
https://openreview.net/forum?id=uz7d2N2zul
https://openreview.net/forum?id=TdhkAcXkRi
https://openreview.net/forum?id=sLQb8q0sUi
https://openreview.net/forum?id=sLQb8q0sUi
https://openreview.net/forum?id=r0BrY4BiEXO
https://openreview.net/forum?id=r0BrY4BiEXO
https://openreview.net/forum?id=4MsfQ2H0lP
https://doi.org/10.1038/s41586-020-2649-2

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image
recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition,
pp. 770–778, 2016.

Clare Elizabeth Heinbaugh, Emilio Luz-Ricca, and Huajie Shao. Data-free one-shot federated learning
under very high statistical heterogeneity. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=_hb4vM3jspB.

Tzu-Ming Harry Hsu, Hang Qi, and Matthew Brown. Measuring the effects of non-identical data
distribution for federated visual classification. arXiv preprint arXiv:1909.06335, 2019.

Xinmeng Huang, Ping Li, and Xiaoyun Li. Stochastic controlled averaging for federated learn-
ing with communication compression. In The Twelfth International Conference on Learning
Representations, 2024. URL https://openreview.net/forum?id=jj5ZjZsWJe.

Yutao Huang, Lingyang Chu, Zirui Zhou, Lanjun Wang, Jiangchuan Liu, Jian Pei, and Yong Zhang.
Personalized cross-silo federated learning on non-iid data. In Proceedings of the AAAI conference
on artificial intelligence, volume 35, pp. 7865–7873, 2021.

J. D. Hunter. Matplotlib: A 2d graphics environment. Computing in Science & Engineering, 9(3):
90–95, 2007. doi: 10.1109/MCSE.2007.55.

Plotly Technologies Inc. Collaborative data science, 2015. URL https://plot.ly.

Nathalie Japkowicz and Mohak Shah. Evaluating learning algorithms: a classification perspective.
Cambridge University Press, 2011.

Meirui Jiang, Anjie Le, Xiaoxiao Li, and Qi Dou. Heterogeneous personalized federated learn-
ing by local-global updates mixing via convergence rate. In The Twelfth International Confer-
ence on Learning Representations, 2024. URL https://openreview.net/forum?id=
7pWRLDBAtc.

Sai Praneeth Karimireddy, Satyen Kale, Mehryar Mohri, Sashank Reddi, Sebastian Stich, and
Ananda Theertha Suresh. Scaffold: Stochastic controlled averaging for federated learning. In
International conference on machine learning, pp. 5132–5143. PMLR, 2020.

Junhyung Lyle Kim, Taha Toghani, Cesar A Uribe, and Anastasios Kyrillidis. Adaptive federated
learning with auto-tuned clients. In The Twelfth International Conference on Learning Representa-
tions, 2024. URL https://openreview.net/forum?id=g0mlwqs8pi.

Minjae Kim, Sangyoon Yu, Suhyun Kim, and Soo-Mook Moon. DepthFL : Depthwise federated
learning for heterogeneous clients. In The Eleventh International Conference on Learning Repre-
sentations, 2023. URL https://openreview.net/forum?id=pf8RIZTMU58.

Alex Krizhevsky, Geoffrey Hinton, et al. Learning multiple layers of features from tiny images. 2009.

Maxim Lapan. Deep Reinforcement Learning Hands-On: Apply modern RL methods to practical
problems of chatbots, robotics, discrete optimization, web automation, and more. Packt Publishing
Ltd, 2020.

Qinbin Li, Zeyi Wen, Zhaomin Wu, Sixu Hu, Naibo Wang, Yuan Li, Xu Liu, and Bingsheng He. A
survey on federated learning systems: Vision, hype and reality for data privacy and protection.
IEEE Transactions on Knowledge and Data Engineering, 35(4):3347–3366, 2021.

Tian Li, Anit Kumar Sahu, Manzil Zaheer, Maziar Sanjabi, Ameet Talwalkar, and Virginia Smith.
Federated optimization in heterogeneous networks. Proceedings of Machine learning and systems,
2:429–450, 2020.

Zilinghan Li, Pranshu Chaturvedi, Shilan He, Han Chen, Gagandeep Singh, Volodymyr Kindratenko,
Eliu A Huerta, Kibaek Kim, and Ravi Madduri. Fedcompass: Efficient cross-silo federated
learning on heterogeneous client devices using a computing power-aware scheduler. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=msXxrttLOi.

11

https://openreview.net/forum?id=_hb4vM3jspB
https://openreview.net/forum?id=jj5ZjZsWJe
https://plot.ly
https://openreview.net/forum?id=7pWRLDBAtc
https://openreview.net/forum?id=7pWRLDBAtc
https://openreview.net/forum?id=g0mlwqs8pi
https://openreview.net/forum?id=pf8RIZTMU58
https://openreview.net/forum?id=msXxrttLOi
https://openreview.net/forum?id=msXxrttLOi

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas Heess, Tom Erez, Yuval Tassa,
David Silver, and Daan Wierstra. Continuous control with deep reinforcement learning. In
Yoshua Bengio and Yann LeCun (eds.), 4th International Conference on Learning Representations,
ICLR 2016, San Juan, Puerto Rico, May 2-4, 2016, Conference Track Proceedings, 2016. URL
http://arxiv.org/abs/1509.02971.

Jung-Chun Liu, Chi-Hsien Chang, Shao-Hua Sun, and Tian-Li Yu. Integrating planning and deep
reinforcement learning via automatic induction of task substructures. In The Twelfth International
Conference on Learning Representations, 2024. URL https://openreview.net/forum?
id=PR6RMsxuW7.

Ilya Loshchilov and Frank Hutter. Sgdr: Stochastic gradient descent with warm restarts. arXiv
preprint arXiv:1608.03983, 2016.

Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas.
Communication-efficient learning of deep networks from decentralized data. In Artificial intelli-
gence and statistics, pp. 1273–1282. PMLR, 2017.

Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor
Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An imperative style,
high-performance deep learning library. Advances in neural information processing systems, 32,
2019.

Aske Plaat. Deep reinforcement learning, volume 10. Springer, 2022.

Sebastian Ruder. An overview of gradient descent optimization algorithms. arXiv preprint
arXiv:1609.04747, 2016.

John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Radford, and Oleg Klimov. Proximal policy
optimization algorithms. arXiv preprint arXiv:1707.06347, 2017.

Jonathan Scott, Hossein Zakerinia, and Christoph H Lampert. PeFLL: Personalized federated learning
by learning to learn. In The Twelfth International Conference on Learning Representations, 2024.
URL https://openreview.net/forum?id=MrYiwlDRQO.

Richard S Sutton. Reinforcement learning: An introduction. A Bradford Book, 2018.

Alysa Ziying Tan, Han Yu, Lizhen Cui, and Qiang Yang. Towards personalized federated learning.
IEEE transactions on neural networks and learning systems, 34(12):9587–9603, 2022.

Zhenheng Tang, Yonggang Zhang, Shaohuai Shi, Xinmei Tian, Tongliang Liu, Bo Han, and Xiaowen
Chu. Fedimpro: Measuring and improving client update in federated learning. In The Twelfth
International Conference on Learning Representations, 2024. URL https://openreview.
net/forum?id=giU9fYGTND.

Pauli Virtanen, Ralf Gommers, Travis E. Oliphant, Matt Haberland, Tyler Reddy, David Cournapeau,
Evgeni Burovski, Pearu Peterson, Warren Weckesser, Jonathan Bright, Stéfan J. van der Walt,
Matthew Brett, Joshua Wilson, K. Jarrod Millman, Nikolay Mayorov, Andrew R. J. Nelson, Eric
Jones, Robert Kern, Eric Larson, C J Carey, İlhan Polat, Yu Feng, Eric W. Moore, Jake VanderPlas,
Denis Laxalde, Josef Perktold, Robert Cimrman, Ian Henriksen, E. A. Quintero, Charles R. Harris,
Anne M. Archibald, Antônio H. Ribeiro, Fabian Pedregosa, Paul van Mulbregt, and SciPy 1.0
Contributors. SciPy 1.0: Fundamental Algorithms for Scientific Computing in Python. Nature
Methods, 17:261–272, 2020. doi: 10.1038/s41592-019-0686-2.

Kay White Vugrin, Laura Painton Swiler, Randall M Roberts, Nicholas J Stucky-Mack, and Sean P
Sullivan. Confidence region estimation techniques for nonlinear regression in groundwater flow:
Three case studies. Water Resources Research, 43(3), 2007.

Haozhao Wang, Haoran Xu, Yichen Li, Yuan Xu, Ruixuan Li, and Tianwei Zhang. FedCDA:
Federated learning with cross-rounds divergence-aware aggregation. In The Twelfth International
Conference on Learning Representations, 2024a. URL https://openreview.net/forum?
id=nbPGqeH3lt.

12

http://arxiv.org/abs/1509.02971
https://openreview.net/forum?id=PR6RMsxuW7
https://openreview.net/forum?id=PR6RMsxuW7
https://openreview.net/forum?id=MrYiwlDRQO
https://openreview.net/forum?id=giU9fYGTND
https://openreview.net/forum?id=giU9fYGTND
https://openreview.net/forum?id=nbPGqeH3lt
https://openreview.net/forum?id=nbPGqeH3lt

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yujia Wang, Yuanpu Cao, Jingcheng Wu, Ruoyu Chen, and Jinghui Chen. Tackling the data
heterogeneity in asynchronous federated learning with cached update calibration. In The Twelfth
International Conference on Learning Representations, 2024b. URL https://openreview.
net/forum?id=4aywmeb97I.

Ziyao Wang, Jianyu Wang, and Ang Li. Fedhyper: A universal and robust learning rate scheduler for
federated learning with hypergradient descent. In The Twelfth International Conference on Learning
Representations, 2024c. URL https://openreview.net/forum?id=Kl9CqKf7h6.

Di Wu, Jun Bai, Yiliao Song, Junjun Chen, Wei Zhou, Yong Xiang, and Atul Sajjanhar. Fedinverse:
Evaluating privacy leakage in federated learning. In The Twelfth International Conference on
Learning Representations, ICLR 2024, Vienna, Austria, May 7-11, 2024. OpenReview.net, 2024.
URL https://openreview.net/forum?id=nTNgkEIfeb.

Qiong Wu, Kaiwen He, and Xu Chen. Personalized federated learning for intelligent iot applications:
A cloud-edge based framework. IEEE Open Journal of the Computer Society, 1:35–44, 2020.

Han Xiao, Kashif Rasul, and Roland Vollgraf. Fashion-mnist: a novel image dataset for benchmarking
machine learning algorithms, 2017.

Jian Xu, Xinyi Tong, and Shao-Lun Huang. Personalized federated learning with feature alignment
and classifier collaboration. In The Eleventh International Conference on Learning Representations,
2023. URL https://openreview.net/forum?id=SXZr8aDKia.

Dong Yin, Yudong Chen, Ramchandran Kannan, and Peter Bartlett. Byzantine-robust distributed
learning: Towards optimal statistical rates. In International conference on machine learning, pp.
5650–5659. Pmlr, 2018.

Shuyang Yu, Junyuan Hong, Haotao Wang, Zhangyang Wang, and Jiayu Zhou. Turning the curse of
heterogeneity in federated learning into a blessing for out-of-distribution detection. In The Eleventh
International Conference on Learning Representations, 2023. URL https://openreview.
net/forum?id=mMNimwRb7Gr.

Mikhail Yurochkin, Mayank Agarwal, Soumya Ghosh, Kristjan Greenewald, Nghia Hoang, and
Yasaman Khazaeni. Bayesian nonparametric federated learning of neural networks. In International
conference on machine learning, pp. 7252–7261. PMLR, 2019.

Jianqing Zhang, Yang Hua, Hao Wang, Tao Song, Zhengui Xue, Ruhui Ma, and Haibing Guan.
Fedala: Adaptive local aggregation for personalized federated learning. In Proceedings of the
AAAI Conference on Artificial Intelligence, volume 37, pp. 11237–11244, 2023.

A APPENDIX

A.1 PRECISION, RECALL, AND F1-SCORES

Based on the formulations in (Japkowicz & Shah, 2011), given a classifier f , Precision (P), Recall
(R), and Fα-Scores (Fα) are defined as:

P(f) =
TP

TP + FP

R(f) =
TP

TP + FN

Fα(f) =
(1− α)(P(f) ∗ R(f))

αP + R

As a variant of F-Scores, with α = 1, F1-Score (F1) is defined as:

F1(f) =
2(P(f) ∗ R(f))

P + R
Where TP, FP, and FN, are True Positives, False Positives, and False Negatives, respectively.

13

https://openreview.net/forum?id=4aywmeb97I
https://openreview.net/forum?id=4aywmeb97I
https://openreview.net/forum?id=Kl9CqKf7h6
https://openreview.net/forum?id=nTNgkEIfeb
https://openreview.net/forum?id=SXZr8aDKia
https://openreview.net/forum?id=mMNimwRb7Gr
https://openreview.net/forum?id=mMNimwRb7Gr

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A.2 VALIDATION PLOTS

The validation accuracy plots for each dataset including Fashion Mnist, CIFAR 10, and CIFAR 100
are presented below.

0 20 40 60 80 100
Server Round/Epoch

10

15

20

25

30

35

40

ac
cu

ra
cy

FedAvg Naive
FedAvg Optimal during FL
FedAvg Optimal after FL

0 20 40 60 80
Server Round/Epoch

10

15

20

25

30

35

40

ac
cu

ra
cy

FedAvgM Naive
FedAvgM Optimal during FL
FedAvgM Optimal after FL

0 20 40 60 80 100
Server Round/Epoch

10

15

20

25

30

35

40

ac
cu

ra
cy

FedMedian Naive
FedMedian Optimal during FL
FedMedian Optimal after FL

0 20 40 60 80 100
Server Round/Epoch

10

15

20

25

30

35

40

ac
cu

ra
cy

FedProx Naive
FedProx Optimal during FL
FedProx Optimal after FL

0 20 40 60 80
Server Round/Epoch

10

15

20

25

30

35

40

ac
cu

ra
cy

FedCDA Naive
FedCDA Optimal during FL
FedCDA Optimal after FL

(a) Validation Accuracy - CIFAR10

0 20 40 60 80
Server Round/Epoch

0

10

20

30

40

50

ac
cu

ra
cy

FedAvg Naive
FedAvg Optimal during FL
FedAvg Optimal after FL

0 20 40 60 80 100
Server Round/Epoch

10

20

30

40

50

ac
cu

ra
cy

FedAvgM Naive
FedAvgM Optimal during FL
FedAvgM Optimal after FL

0 20 40 60 80
Server Round/Epoch

10

20

30

40

ac
cu

ra
cy

FedMedian Naive
FedMedian Optimal during FL
FedMedian Optimal after FL

0 20 40 60 80 100
Server Round/Epoch

10

15

20

25

30

35

40

45

ac
cu

ra
cy

FedProx Naive
FedProx Optimal during FL
FedProx Optimal after FL

0 20 40 60 80
Server Round/Epoch

10
15
20
25
30
35
40
45

ac
cu

ra
cy

FedCDA Naive
FedCDA Optimal during FL
FedCDA Optimal after FL

(b) Validation Accuracy - FashionMNIST

0 20 40 60 80
Server Round/Epoch

0

5

10

15

20

ac
cu

ra
cy

FedAvg Naive
FedAvg Optimal during FL
FedAvg Optimal after FL

0 20 40 60 80 100
Server Round/Epoch

0

5

10

15

20

ac
cu

ra
cy

FedAvgM Naive
FedAvgM Optimal during FL
FedAvgM Optimal after FL

0 20 40 60 80 100
Server Round/Epoch

0

5

10

15

20

25

ac
cu

ra
cy

FedMedian Naive
FedMedian Optimal during FL
FedMedian Optimal after FL

0 20 40 60 80
Server Round/Epoch

0

5

10

15

20

25

ac
cu

ra
cy

FedProx Naive
FedProx Optimal during FL
FedProx Optimal after FL

0 20 40 60 80 100
Server Round/Epoch

0

5

10

15

20

25

ac
cu

ra
cy

FedCDA Naive
FedCDA Optimal during FL
FedCDA Optimal after FL

(c) Validation Accuracy - CIFAR100

A.3 EXPERIMENT HYPERPARAMETERS

The hyperparameters for the federated learning procedure are given below:

NUM_CLIENTS = 8
LOCAL_TRAINING_EPOCHS = 1
LOCAL_LEARNING_RATE = 1e-5
LOSS_ESTIMATION_WAITING_PERIOD = 5
LOCAL_TRAINING_BATCH_SIZE = 16

DATASETS = [
{

’name’: ’cifar100’,
’num_classes’: 100,
’input_shape’: 224,
’training_periods’: 100,
’optimizer_config’:

{
’learning_rate’: 0.001,
’learning_rate_decay’: 0.1,
’learning_rate_decay_period’: 30,
’weight_decay’: 1e-4,

},
},
{

’name’: ’cifar10’,
’num_classes’: 10,
’input_shape’: 224,
’training_periods’: 100,
’optimizer_config’:

{

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

’learning_rate’: 0.001,
’learning_rate_decay’: 0.1,
’learning_rate_decay_period’: 30,
’weight_decay’: 1e-4,

},
},
{

’name’: ’fashion_mnist’,
’num_classes’: 10,
’input_shape’: 224,
’training_periods’: 100,
’optimizer_config’:

{
’learning_rate’: 0.0001,
’learning_rate_decay’: 0.1,
’learning_rate_decay_period’: 30,
’weight_decay’: 1e-4,

},
}

]

#retraining the Optimal Client after the federated learning rounds
RETRAINING_LEARNING_RATE = 1e-6

A.4 RL TRAINING

RL training is conducted, in an episodic manner, using DDPG (Deep Deterministic Policy Gradient)
(Lillicrap et al., 2016) adapted to continuous actions using (Lapan, 2020). In the actor and the
critic networks we use Softplus activation. Both networks are optimized using Stochastic Gradient
Descent (SGD) (Ruder, 2016) with a Cosine Annealing Learning Rate scheduler (Loshchilov &
Hutter, 2016). Hyperparameters for the training procedure are presented below:

GAMMA = 0.99 #reward discount factor
REWARD_STEPS = 4
EPISODE_LENGTH = 4

#number of hidden neurons in the actor and critic networks
HID_SIZE = 128

#SGD learning rate
ACTOR_LEARNING_RATE = 0.02
CRITIC_LEARNING_RATE = 0.05

A.5 ENVIRONMENT AND LIBRARIES.

Our experiments are implemented in Python. Additionaly, we use scientific programming libraries
including scikit-learn Buitinck et al. (2013), Numpy Harris et al. (2020), Flower Beutel et al. (2020),
Scipy Virtanen et al. (2020), and PyTorch Paszke et al. (2019). All plots are generated using Matplotlib
Hunter (2007) and Plotly Inc. (2015). The experiments are conducted using 3 NVIDIA GeForce RTX
3080 GPUs.

15

	Introduction
	Preliminary
	Problem Setup and Framework
	Method
	Experimental Setup
	Related Works.
	Conclusion
	Appendix
	Precision, Recall, and F1-Scores
	Validation Plots
	Experiment Hyperparameters
	RL Training
	Environment and Libraries.

