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ABSTRACT

Federated Learning (FL) is a distributed framework for collaborative model training
over large-scale distributed data. Centralized FL leverages a server to aggregate
client models which can enable higher performance while maintaining client data
privacy. However, it has been shown that in centralized model aggregation, per-
formance can degrade in the presence of non-IID data across different clients. We
remark that training a client locally on more data than necessary does not
benefit the overall performance of all clients. In this paper, we devise a novel
framework that leverages Deep Reinforcement Learning (DRL) to optimize an
agent that selects the optimal amount of data necessary to train a client model with-
out oversharing information with the server. Starting from complete unawareness
of the client’s performance, the DRL agent utilizes the change in training loss as a
reward signal and learns to optimize the amount of data necessary for improving the
client’s performance. Specifically, after each aggregation round, the DRL algorithm
considers the local performance as the current state and outputs the optimal weights
for each class in the training data to be used during the next round of local training.
In doing so, the agent learns a policy that creates the optimal partition of the local
training dataset during the FL rounds. After FL, the client utilizes the entire local
training dataset to further enhance its performance on its own data distribution,
mitigating the non-IID effects of aggregation. Through extensive experiments,
we demonstrate that training FL clients through our algorithm results in superior
performance on multiple benchmark datasets and FL frameworks.

1 INTRODUCTION

Rise in computational power has enabled learning algorithms to learn from increasingly more data
and it has generally been assumed that learning from more data leads to higher performance. However,
the amount of data required by the learning algorithm still remains an arbitrary choice driven by
personal whim and past experience. At the same time, in distributed systems, continuing to use more
data for model training can pose privacy risk concerns, particularly in settings where data can be
leaked or used for personal identification (Allouah et al., 2023; Wu et al., 2024; Fowl et al., 2023).
Federated Learning has emerged as a powerful framework for distributed learning through which
multiple parties, also known as clients, collaborate to train global models without sharing their data
Li et al. (2021)McMahan et al. (2017). Centralized FL enables clients to perform limited training on
local datasets while the centralized server aggregates the client parameters using different aggregation
methods. In this way, each client’s data is kept private, and superior performance can be achieved.

Our primary motivation is that training a client locally on more data than necessary does not benefit
the overall performance of all clients. This is because the data across different clients are not
independent and two sets of data can cancel out their effects on the model update with the aggregation
mechanism. Finding the optimal amount of data necessary for local training enables the client to
optimize its own performance while maximizing contributions to the global model training through
aggregation. Moreover, we empirically find that at the end of the federated learning rounds, the client
benefits from unused data in the prior learning rounds by training the final aggregated parameters
on the complete local training dataset. This unused data provides the client with fresh information
enriching the model parameters. This phenomenon is illustrated through our experiments in Fig. 1.
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(a) Naive vs. Optimized Accuracy

(b) Data selection in each of 10 classes

Figure 1: Naive vs. optimized clients.

In this paper, we build a novel Federated Learning
framework to find the optimal subset of local train-
ing data. We first introduce the notion of an optimal
client, which finds the optimal ratio of local training
data to train the local model without oversharing local
information with the server. To maintain a distinction
between the optimal clients and all other clients in the
federated learning scheme, we refer to the remaining
clients, using all local training data, as naive clients.
Selection of the optimal subset is demonstrated in
Fig. 1(b) where the radii of the unit circle represent
the proportion of data used in naive clients and an
optimal client during FL. The annotations on the cir-
cumference represent each class in the client’s local
dataset (CIFAR-10). As shown in Fig. 1(a), using an
optimal subset of training data in the optimal client
does not hurt the performance of other naive clients.
At the same time, our new algorithm can improve the
performance of the optimal client compared with the
original strategy in FL. To build our optimal client,
we introduce Reinforcement Learning during the fed-
erated learning rounds to train an RL agent. The RL
agent takes the model performance on the client’s
local dataset in each federated learning round as the
current state. An action is defined as changing the
optimal ratio of training data to be used for local train-
ing. The optimal client treats the federated learning
setting as the environment and the reward for the RL
agent is the reduction in training loss. The action taken by the agent selects a subset of local data
for each class in the dataset. The selected subset is then used by the optimal client for local training
to optimize a given metric (i.e., F1 Scores, Recall, Precision, Accuracy, etc.) for each class in the
dataset. As the federated learning rounds progress, the agent learns to optimize the amount of local
training data used by the optimal client.

The contributions of this paper are summarized as follows:

• We provide a framework based on Deep Reinforcement Learning to select local training data used
for a client to be optimized. Additionally, we investigate and present the results of our proposed
framework using well-known Federated Learning aggregation algorithms.

• We design two unique functions for the reinforcement learning agent to take actions and adapt
them to the existing ϵ-Greedy action selection set up.

• We design a reward function which takes into account the loss of the local client as well as the
amount of data utilized in local training.

• We conduct theoretical analysis and proof for an upper bound on the performance of the Optimal
Client during Federated Learning.

2 PRELIMINARY

Federated Learning (FL) is a distributed learning method that preserves data privacy by training
models locally on distributed devices. Instead of sharing actual data with a central server, only
local models or local model updates are shared. The server implements an aggregation algorithm
to combine the local models or model updates into a global model which is then disseminated back
to the local clients. A typical FL workflow is presented in Fig. 2. Formally, given a set of K total
clients, denote the overall datasets as D = {D1, D2, ..., DK} from all clients where each client only
leverage its local dataset with N samples Dk : {xn, yn}Nn=1.
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Figure 2: Federated learning workflow.

In FedAvg McMahan et al. (2017), the federated
learning objective can be written as:

min
w

f∗(w)
∆
=

1

K

K∑
k=1

fk(w) (1)

Here w represents the global model parameters and
fk(w) : R 7→ R is the expected local loss of the client
defined as fk(w)

∆
= 1

|Dk|fk(w,Dk) where fk can
be substituted for any loss function. The averaging
algorithm can also be replaced by other algorithms
such as FedMedian Yin et al. (2018) and FedCDA
Wang et al. (2024a).

Reinforcement Learning (RL) enables building systems in which agents interact with environ-
ments to accomplish one or many tasks. Generally, RL systems are modeled as Markov Decision
Processes (MDP). A time step t, the agent observes an initial state St ∈ S of the environment.

Figure 3: Agent environment interaction.

Following a policy πt(·|s), which maps states to ac-
tions, the agent takes an action At ∈ A. This transi-
tions the environment to the next state St+1 and the
agent receives a reward signal Rt+1 ∈ R, informing
the agent about the quality of its action. As shown
in Fig. 3, the agent environment interaction model
gives rise to trajectories (St, At, Rt+1, St+1...) (Sut-
ton, 2018). The expected total reward is given as

Gt=
∞∑
k=0

γkRt+k+1, where γ ∈ (0, 1) is the discount

factor. The value of a given state is meausred by the State-Value Function Vπ(s)=Eπ[Gt|St = s].
Similarly, the quality of an action paired with a state is given by the Action-Value Function
qπ(s, a) = Eπ[Gt|St = s,At = a]. The RL objective is to find an optimal policy π∗ which maxi-
mizes an agent’s total return. Such a policy shares the optimal state-value function v∗(s)

.
= max

π
vπ(s)

and the optimal action-value function q∗(s, a)
.
= max

π
qπ(s, a). Deep Reinforcement Learning (DRL)

combines the function approximation ability of Deep Learning with Reinforcement Learning’s sequen-
tial decision making. This enables building Reinforcement Learning systems which can generalize
to large state and continuous action spaces. Using Deep Learning this process is accomplished by
mapping large state spaces to features and features to actions. In recent years, Deep Learning has
been extended to Reinforcement Learning methods (Gao et al., 2024; Liu et al., 2024; Schulman
et al., 2017; Lillicrap et al., 2016).

3 PROBLEM SETUP AND FRAMEWORK

Given the local dataset Dk on a client to be optimized, our target is to generate the optimal amount of
training data D

′

k for federated learning. Fig. 4 depicts the workflow to optimize the percentage of
data in each class for the agent (i.e., the client highlighted with blue) to be optimized. We consider
the aggregated parameters of the model on the server as the current state st. The action at is defined
as a vector that represents the percentage of samples used for training in each class. Based on the
performance of the aggregated parameters on the server, we calculate the reward rt with a designed
reward function. We train the policy πθ parameterized with θ based on the reward rt, generated from
the loss of the aggregated model Lagg and the loss of the client’s local model parameters Ll based
on local training. The training process encourages πθ to find the optimal percentage of data used in
each class for creating D

′

k in the upcoming FL rounds. Then, after the process of federated learning,
we further leverage the complete dataset Dk to fine-tune the Optimal Client until its performance
converges. Using Dk in the final training rounds gives the Optimal Client an incremental boost in
performance resulting from unused data in the previous rounds. With the proposed framework, we
can not only optimize local training but also guarantee that the data changes on the optimal client
have little impact on the performance of other clients.
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Server 
Aggregation

T+1 1---T

1---T

Naive Client 

Local Training Optimal Client Local Training

Naive Client 

Local Training

Figure 4: Optimal data selection framework.

4 METHOD

Given a total of T federated learning communication rounds, to train the RL agent, we utilize
the class-wise performance measured on the local training dataset after server aggregation in the
communication round t as the current state st. In our experiments, we use F1-Score given by
F1 = 2PR

P+R as a performance measure where P and R are Precision and Recall, respectively
Goodfellow et al. (2016)Chinchor & Sundheim (1993). Note that F1-Score can be easily substituted
for a different performance measure. The policy consumes this state st and outputs a vector action at
containing weights zc for each class c in the local dataset.

Formally, for K total clients in the federated learning scheme, with client k as the client to be
optimized, Dk : {X,Y } as the local dataset for the Optimal Client, and wt as the server aggregated
parameters in the communication round t, the state for communication round t is:

st = F1(f̂k(X;wt), Y ) (2)

Here, fk(wt) is the local model of the Optimal Client parameterized with the server aggregated
parameters. Additionally, we implement two action selection strategies and adapt them to the
ϵ-Greedy method. Using a parameterized policy πθ, the action in round t is given by:

at = πθ(st) = [z1, z2, . . . , zC ]⇒ {z ∈ R, bl ≤ z ≤ bu} s.t. bl, bu ∈ (0, 1], (3)

where bl and bu are user-defined lower and upper bounds respectively.

ϵ-Greedy Normalized Action implements a normalized version of the action generated by the policy.
The action vector at is first normalized and multiplied by the total samples in the local training dataset
to get the count of data samples for each class c in the dataset.

a′t ⇐
at∑
at
|Dk| (4)

Here a′ = [a′1, a
′
2, . . . , a

′
C ] is a vector of data sample counts for each class. The class counts are then

adjusted to not exceed the total number of samples available for each class. Given that for each class
in the local training dataset the maximum class count for each class is |Dkc |, and Unif(0, 1) as the
Standard Uniform Distribution on the interval (0, 1) (Blitzstein & Hwang, 2019), then the ϵ-Greedy
Normalized Action is given as:

a′t ⇐


[
max(a′

1,|Dk1
|)

|Dk1
| ,

max(a′
2,|Dk2

|)
|Dk2

| , . . .
max(a′

C ,|DkC
|)

|DkC
|

]
if 1√

t
< Unif(0, 1),

argmax
a

Q(a) otherwise.

(5)

ϵ-Greedy Weighted Metric Action implements a look-back period η, where every η communication
rounds, the Optimal Client computes the difference in the absolute value between the current F1-
Score and the F1-Score from η rounds in the past. The difference is then normalized and for every
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class where the F1-Score has decreased since η rounds, the weight for that class is increased by the
normalized difference. Formally, given F1t+η and F1η as the F1-Scores in the current round and the
F1-Scores from η rounds ago, then the normalized difference is given by:

∆F1 =
|F1t+η − F1η|∑
c |F1t+η − F1η|

. (6)

With the F1 score, the agent’s action is given by:

at ⇐


at +∆F1at if 1√

t
< Unif(0, 1),

argmax
a

Q(a) otherwise.
(7)

The Optimal Client utilizes the action generated by the RL policy to create an Action Partitioned
Dataset, denoted by D

′

k such that D
′

k ⊂ Dk. Fig. 5 illustrates this procedure.

Figure 5: Action partitioned dataset.

As the federated learning rounds
progress we implement a loss esti-
mation mechanism. Specifically, the
Optimal Client waits for τ commu-
nication rounds and then in every
subsequent round estimates the local
loss for the local training update after
the server aggregation in the follow-
ing round. Based on the assumption
that, as the federated learning rounds
progress, the client’s local training on
the local dataset is supposed to produce a lower training loss as we utilize the following piece-wise
reward function.

Rt ⇐


Lagg−Ll

Ll

1
at−λ if T < τ,

Lagg−Lest

Lest

1
at−λ otherwise.

(8)

Here, Lagg is the loss on the local dataset after server aggregation, Ll on the local dataset after local
training, Lest = −ue−vt is the estimated loss, at = 1

|at|
∑

at is the mean action generated by the
policy πθ, and λ is a user defined parameter which normalizes the reward by controlling the amount
of local training data generated by the policy. As part of loss estimation, Lest, we fit a non-linear curve
(Vugrin et al., 2007) to estimate the parameters, u and v, after each federated learning round past τ
rounds. Using equation 2, equation 5, equation 7, and equation 8 we can generate RL trajectories
(st, at, Rt+1, st+1...). The actor-critic paradigm, in Deep Reinforcement Learning, then enables
learning a parameterized actor policy πθ(a|s) which outputs an action a given the current state s,
as well as a parameterized critic network vφ(s) which approximates a state value function. The
critic network can be updated through Mean Squared Error∇L(φ|st, at) = (Q̂n(st, at)− vφ(st))

2

followed by the update for policy network ∇θL(θ|st, at) = Q̂n(st, at).∇θlogπθ(at|st) where
Q̂n(st, at) =

∑n−1
k=0 rt+k + vφ(st+n) is the n-step target Plaat (2022).

Algorithm. We present the algorithm to train the Optimal Client both from a server as well as a
client perspective. The server-side implementation follows a typical federated learning setup up
whereas the client-side implementation includes optimized training for the client both during and
after Federated Learning. We use DDPG (Deep Deterministic Policy Gradient) (Lillicrap et al., 2016)
to train the RL policy. For brevity, we don’t include the training of RL policy as part of this algorithm,
but details regarding training the RL policy, including the algorithm and the hyperparameters for each
experiment, can be found in Appendix A.4.

Analysis. In this section, we investigate if the performance of the Optimal Client has an upper
bound during the federated learning rounds. Based on the assumption that using more data leads
to higher performance, we note that the performance of the Optimal Client will not be as good as
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Algorithm 1 Optimal Client Training: K(number of total clients), C ∈ (0, 1) 7→ R (predetermined
ratio of clients to participate in each round), FederatedAggregation (federated learning aggregation
algorithm.), E (local train epochs)
Server:

initialize w0

for round t = 0, 1, 2, · · · , T do
St = {random sample of C ∗K Clients}
for k ∈ S in parallel do

wt+1 = OptimalClientTrain(k,wt)
end for
wt+1 = FederatedAggregation(St)

end for
Client: ▷ OptimalClientTrain(k,wt)

while t ≤ T do
Compute st using Equation. 2
Compute at using Equation. 3
D

′

k ← Dk(at) ▷ ActionPartitionedDataset

B ← {Create batches of size B ∈ D
′

k}
for e = 1, 2, 3 · · · in E do

for b in B do
wt ← wt − η∇l(w; b)

end for
end for

end while
return wt to server
B ← {Create batches of size B ∈ Dk}
for e = 1, 2, 3 · · · in E do ▷ UntilConvergence

for b in B do
wt ← wt − η∇l(w; b)

end for
end for

if it was trained on its entire local dataset. Under this assumption we elucidate the answer to one
main question: Is there an upper bound to the performance of the Optimal Client during Federated
Learning.

Proposition (Performance Bound of Client Training) Given st and at = [z1, z2, . . . , zC ] ⇒
{z ∈ R, 0 ≤ z ≤ 1} as the state and the action taken by the policy, let z be the radius of a unit
circle representing the total available sample size for each class in the Action Partitioned Dataset
D

′

k1,2,3···C
∀c ∈ C. Let A = [Z1, Z2, . . . , ZC ]⇒ {Z ∈ R, 0 ≤ Z ≤ 1} be a vector representing the

total samples for each class in the complete local client dataset D
′

k1,2,3···C
∀c ∈ C. Additionally, let

ω = Z2
C − z2c be the difference in the squared radii. The performance bound, of the client trained on

the complete dataset, for class c is defined as the area of the circle:

Pkc = πZ2
c (9)

Using Equation 9, the total performance of client k, on the complete local dataset, is given as:

Pk = πZ2
1 + πZ2

2 + πZ2
3 + · · ·+ πZ2

c

Similarly, using Equation 9, the performance of client k on the Action Partitioned Dataset is:

P
′

k = πz21 + πz22 + πz23 + · · ·+ πz2c

Theorem: A client trained on the Action Partitioned Dataset D
′

k relative to the entire local dataset
Dk has a performance bound given by:

Pk − P
′

k ≤ Ω

6
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Proof:

Pk − P
′

k = πZ2
1 + πZ2

2 + πZ2
3 + · · ·+ πZ2

c − πz21 − πz22 − πz23 − · · · − πz2c

= πZ2
1 − πz21 + πZ2

2 − πz22 + πZ2
3 − πz23 + · · ·+ πZ2

C − πz2C

= π(Z2
1 − z21) + π(Z2

2 − z22) + π(Z2
3 − z23) · · ·π(Z2

C − z2C)

= πω1 + πω2 + πω3 · · ·πωC

≤ π

C∑
c=1

ωc = Ω

The proof above shows that constructing a dataset D
′

k by minimizing the difference between the
action taken by the policy and the total sample size for each class in the dataset will lead to better
performance by the Optimal Client during the federated learning rounds. However, we note that this
also represents a trade-off between the performance improvement that the Optimal Client will benefit
from by retaining these data samples for training post the federated learning rounds.

5 EXPERIMENTAL SETUP

Methods. We conduct experiments of our proposed methodology using 5 Federated Learning
aggregation baseline algorithms. These algorithms include FedCDA Wang et al. (2024a), FedProx
Li et al. (2020), FedMedian Yin et al. (2018), FedAvgM Hsu et al. (2019), and FedAvg McMahan
et al. (2017). For Deep Reinforcement Learning we use DDPG Lillicrap et al. (2016) and we use
ResNet50 He et al. (2016) as the server and the client models.

Datasets. We conduct our experiments using 3 datasets including, CIFAR 10, CIFAR 100 Krizhevsky
et al. (2009), and FashionMNIST Xiao et al. (2017). Each dataset contains 10, 100, and 10 classes,
respectively. From the overall dataset, we create non-IID partitions using the Dirichlet Partitioner
Yurochkin et al. (2019), and each partition is given to each client as its own local dataset. Furthermore,
each partition is split using 80/20 training and validation split, where 80% of the data is used for
training and 20% of the data is used for validation.

Results and Analysis Our experiments show the utility of our proposed method compared to well-
established baselines. We conduct 100 Federated Learning rounds for 8 clients where each client is
trained for 1 local epoch. Through our experiments, we demonstrate the generalization capability of
our method in different federated learning settings. The results from our experiments are summarized
in Table 1, where we show a comparison of the best mean performance of the Naive Clients, including
Precision, Recall, and Accuracy, relative to the Optimal Client on the validation datasets. Each
two-row combination represents a comparison of the mean performance achieved by all naive clients
in the federated learning setup relative to the best performance of the Optimal Client achieved after
training on the complete local training dataset, Dk, post the federated learning rounds.

Fig. 6 shows the mean validation accuracy of the Naive Clients relative to the Optimal Client, after
each server aggregation during the federated learning rounds. The final validation accuracy of the
Optimal Client is plotted as a separate line which shows the best validation accuracy attained by the
Optimal Client by training on its entire local dataset after the federated learning rounds. It can be
observed that the Optimal Client produces lower performance relative to the naive client during the
federated learning rounds. This phenomenon is illustrated in Fig. 7 and attributed to the fact that
during the federated learning rounds the Optimal Client utilizes a smaller proportion of the local
dataset relative to all other clients. Fig. 7(a) shows normalized actions and Fig. 7(b) shows weighted
metric actions, taken by the RL policy in comparison to naive data selection using 80/20 train test split.
During the federated learning phase, the RL policy determines the minimum viable amount of data
necessary for local training. However, after the federated learning rounds finish, the Optimal Client is
trained on its entire local dataset until it converges. During this phase of local training, the Optimal
Client exhibits superior performance. In addition to the performance improvement of the Optimal
Client post federated learning rounds, we also observe a considerable increase in convergence speed
which can be ascribed to the fact that the Optimal Client resumes local training using the aggregated
parameters from the final federated learning round.

Ablation Study. As part of our ablation study, we conduct experiments using naive actions for every
client. Naive actions correspond to each client’s dataset being split using the 80/20 split. The results

7
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Cifar 10 FashionMNIST CIFAR 100

Precision Recall Accuracy Precision Recall Accuracy Precision Recall Accuracy

FedAvg 50.28 38.15 29.65 73.41 52.58 37.47 16.88 16.15 13.01

FedAvg + Our Method 52.41 48.28 43.22 67.23 58.19 53.31 20.17 17.99 24.90

FedAvgM 50.27 38.00 31.10 76.04 55.24 38.14 16.90 16.13 13.26

FedAvgM + Our Method 53.96 48.85 43.36 67.24 58.69 51.25 20.87 18.61 26.10

FedMedian 44.20 35.48 31.81 75.42 56.45 42.67 15.84 15.40 13.21

FedMedian + Our Method 53.72 47.28 42.58 64.45 59.29 49.74 20.82 19.02 25.75

FedProx 50.84 39.10 31.20 75.92 54.93 37.64 16.73 16.00 13.27

FedProx + Our Method 53.51 48.50 42.94 65.90 57.66 50.18 21.34 18.42 26.14

FedCDA 46.52 34.42 30.69 76.38 55.54 38.56 13.44 12.95 12.10

FedCDA + Our Method 57.03 50.61 43.64 66.19 56.99 49.87 21.54 19.50 26.47

Table 1: Performance comparison with baseline methods. Each two-row combination shows the mean
performance of naive clients, over the complete federated learning rounds, relative to the performance
of the Optimal Client, after the federated learning rounds, from training on the complete local dataset.
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Figure 6: Mean accuracy in FL rounds. The blue line represents the mean accuracy of all naive
clients. The green line represents the accuracy of the Optimal Client. The dark green line represents
the accuracy of the Optimal Client in each epoch after federated learning rounds.
of our ablation experiments are summarized in Table 2. It is evident from the results that learning a
RL policy to partition the local dataset, during the federated learning rounds, followed by training on
the complete local dataset, yields improved overall performance for the Optimal Client.

Precision Recall Accuracy
FedAvg (original) 78.96 59.10 41.21

FedAvg (with optimal client) 73.41 52.58 37.47

FedAvgM (original) 77.45 56.49 38.86
FedAvgM (with optimal client) 76.04 55.24 38.14

FedMedian (original) 76.68 56.92 41.28
FedMedian (with optimal client) 75.42 56.54 42.67

FedProx (original) 78.70 58.68 40.62
FedProx (with optimal client) 75.92 54.93 37.64

FedCDA (original) 73.92 52.74 37.19
FedCDA (with optimal client) 76.38 55.54 38.56

Table 2: Effects of the optimal client on other naive clients.
All experiment was conducted on the local dataset using 80/20
training and validation split.

Discussion. Our experimental
findings show that training a
client on a subset of its own local
data allows the client to improve
its performance during the feder-
ated learning rounds, and benefit
considerably by training on the
complete dataset after the feder-
ated learning rounds. Utilizing
RL, a parameterized policy can
be learned and optimized, on the
client’s local performance, as the
client interacts with the server.
This enables the client to dynam-
ically create subsets of its local
training data. During federated
learning, the client benefits from
aggregation while post federated
learning the client leverages information from unused samples to further improve its performance.
We note that training on a smaller subset of data can make the Optimal Client marginally lag in
performance relative to other clients. This sets up our motivation to further investigate potential
solutions for maintaining competitive performance during the federated learning rounds.

6 RELATED WORKS.

Since our work prioritizes improving client performance in a federated learning setting, we provide
an overview of related methods and techniques that address data heterogeneity issues and improve
client personalization. These areas form the cross-section of technologies that enable our research.
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(a) Normalized vs. Naive Actions (b) Weighted Metric vs. Naive Actions

Figure 7: Optimal actions taken by the RL agent in different federated learning rounds, versus Naive
Actions taken by each client. The legend displays actions taken by the RL agent.

Data Heterogeneity Issues. Data Heterogeneity can potentially have an adverse impact on model
convergence as well as final model performance (Kim et al., 2023; Yu et al., 2023; Heinbaugh et al.,
2023; Li et al., 2020; Karimireddy et al., 2020). To address this issue, many variants of FL aggregation
algorithms, since FedAVG McMahan et al. (2017) have been proposed. FedProx Li et al. (2020) add
a proximal term to get the local models to be closer to the global model. FedDC Gao et al. (2022)
addresses data heterogeneity through a local drift variable which improves model consistency and
performance, resulting in faster convergence across diverse tasks. FedCDA Wang et al. (2024a)
addresses this issue in a cross-round setting by selecting and aggregating local models that minimize
divergence from the global model. Tang et al. (2024) improve client updates in an attempt to improve
the global model performance. Huang et al. (2024) introduce two compressed FL algorithms that
attain improved performance under arbitrary data heterogeneity. (Wang et al., 2024b; Li et al., 2024)
study data heterogeneity in an asynchronous setting and propose methods for caching local client
updates to measure each client’s contribution to the global model as well as reducing staleness of
clients in global model updates.

Personalization and Optimization. Due to device as well as data heterogeneity, training client
models on local data can potentially result in better outcomes relative to participating in federated
learning (Wu et al., 2020). Personalization (Xu et al., 2023; Tan et al., 2022) attempts to circumvent
this shortcoming by improving client performance while taking local data distribution of a client
into consideration (Jiang et al., 2024). Huang et al. (2021) propose a method, FedAMP, by which
they enable a message passing mechanism between similar clients in a federated setting to improve
performance amongst them. FedALA Zhang et al. (2023) achieves better personalization by adapting
to the local objective through element-wise aggregation of the global and the local model. FedPAC
Scott et al. (2024) implements a regularization term to account for the label distribution shift scenario
amongst clients, and learns shared feature extraction layers in deep neural networks across clients as
well as shared classification heads in clients with similar data distributions. (Wang et al., 2024c; Kim
et al., 2024; Cheng et al., 2024) study hyperparameter optimization and momentum to gain faster
convergence whereas (Fan et al., 2024) study client fairness based on contribution. Chanda et al.
(2024) strive for improved performance by training clients on coresets of their local training data, by
assigning a weight vector to each client, which acts as the coreset weight.

7 CONCLUSION

In our work, we propose a novel method to train clients for improved personalization through efficient
usage of the client’s own local data. In doing so, we leverage deep reinforcement learning’s planning
and sequential decision making capabilities. Our method shows that efficient utilization of local data
can enable clients to have better performance compared to naive training on the local dataset during
federated learning. Additionally, we show that a learned RL policy, by designing an adequate reward
function, can aid the client in optimizing its performance. We note that utilizing a smaller subset of
local data can result in lower performance during the federated learning rounds and to remedy this we
establish a theoretical upper bound on client performance, and present a trade-off between improving
performance during federated learning rounds versus improving performance post federated learning.
Overall, we hope that our work encourages more research interest in utilizing RL to orchestrate client
training in a federated setting and future works extend the ideas presented in our work to multiple
clients using multi-agent as well as model-based RL systems.
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A APPENDIX

A.1 PRECISION, RECALL, AND F1-SCORES

Based on the formulations in (Japkowicz & Shah, 2011), given a classifier f , Precision (P), Recall
(R), and Fα-Scores (Fα) are defined as:

P(f) =
TP

TP + FP

R(f) =
TP

TP + FN

Fα(f) =
(1− α)(P(f) ∗ R(f))

αP + R

As a variant of F-Scores, with α = 1, F1-Score (F1) is defined as:

F1(f) =
2(P(f) ∗ R(f))

P + R
Where TP, FP, and FN, are True Positives, False Positives, and False Negatives, respectively.
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A.2 VALIDATION PLOTS

The validation accuracy plots for each dataset including Fashion Mnist, CIFAR 10, and CIFAR 100
are presented below.
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(a) Validation Accuracy - CIFAR10
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(b) Validation Accuracy - FashionMNIST
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(c) Validation Accuracy - CIFAR100

A.3 EXPERIMENT HYPERPARAMETERS

The hyperparameters for the federated learning procedure are given below:

NUM_CLIENTS = 8
LOCAL_TRAINING_EPOCHS = 1
LOCAL_LEARNING_RATE = 1e-5
LOSS_ESTIMATION_WAITING_PERIOD = 5
LOCAL_TRAINING_BATCH_SIZE = 16

DATASETS = [
{

’name’: ’cifar100’,
’num_classes’: 100,
’input_shape’: 224,
’training_periods’: 100,
’optimizer_config’:

{
’learning_rate’: 0.001,
’learning_rate_decay’: 0.1,
’learning_rate_decay_period’: 30,
’weight_decay’: 1e-4,

},
},
{

’name’: ’cifar10’,
’num_classes’: 10,
’input_shape’: 224,
’training_periods’: 100,
’optimizer_config’:

{
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’learning_rate’: 0.001,
’learning_rate_decay’: 0.1,
’learning_rate_decay_period’: 30,
’weight_decay’: 1e-4,

},
},
{

’name’: ’fashion_mnist’,
’num_classes’: 10,
’input_shape’: 224,
’training_periods’: 100,
’optimizer_config’:

{
’learning_rate’: 0.0001,
’learning_rate_decay’: 0.1,
’learning_rate_decay_period’: 30,
’weight_decay’: 1e-4,

},
}

]

#retraining the Optimal Client after the federated learning rounds
RETRAINING_LEARNING_RATE = 1e-6

A.4 RL TRAINING

RL training is conducted, in an episodic manner, using DDPG (Deep Deterministic Policy Gradient)
(Lillicrap et al., 2016) adapted to continuous actions using (Lapan, 2020). In the actor and the
critic networks we use Softplus activation. Both networks are optimized using Stochastic Gradient
Descent (SGD) (Ruder, 2016) with a Cosine Annealing Learning Rate scheduler (Loshchilov &
Hutter, 2016). Hyperparameters for the training procedure are presented below:

GAMMA = 0.99 #reward discount factor
REWARD_STEPS = 4
EPISODE_LENGTH = 4

#number of hidden neurons in the actor and critic networks
HID_SIZE = 128

#SGD learning rate
ACTOR_LEARNING_RATE = 0.02
CRITIC_LEARNING_RATE = 0.05

A.5 ENVIRONMENT AND LIBRARIES.

Our experiments are implemented in Python. Additionaly, we use scientific programming libraries
including scikit-learn Buitinck et al. (2013), Numpy Harris et al. (2020), Flower Beutel et al. (2020),
Scipy Virtanen et al. (2020), and PyTorch Paszke et al. (2019). All plots are generated using Matplotlib
Hunter (2007) and Plotly Inc. (2015). The experiments are conducted using 3 NVIDIA GeForce RTX
3080 GPUs.
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