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ABSTRACT

Many modern machine learning applications, such as multi-task learning, require finding1

optimal model parameters to trade-off multiple objective functions that may conflict with2

each other. The notion of the Pareto set allows us to focus on the set of (often infinite number3

of) models that cannot be strictly improved. But it does not provide an actionable procedure4

for picking one or a few special models to return to practical users. In this paper, we5

consider optimization in Pareto set (OPT-in-Pareto), the problem of finding Pareto models6

that optimize an extra reference criterion function within the Pareto set. This function can7

either encode a specific preference from the users, or represent a generic diversity measure8

for obtaining a set of diversified Pareto models that are representative of the whole Pareto9

set. Unfortunately, despite being a highly useful framework, efficient algorithms for OPT-10

in-Pareto have been largely missing, especially for large-scale, non-convex, and non-linear11

objectives in deep learning. A naive approach is to apply Riemannian manifold gradient12

descent on the Pareto set, which yields a high computational cost due to the need for eigen-13

calculation of Hessian matrices. We propose a first-order algorithm that approximately14

solves OPT-in-Pareto using only gradient information, with both high practical efficiency15

and theoretically guaranteed convergence property. Empirically, we demonstrate that our16

method works efficiently for a variety of challenging multi-task-related problems.17

1 INTRODUCTION18

Although machine learning tasks are traditionally framed as optimizing a single objective. Many modern19

applications, especially in areas like multitask learning, require finding optimal model parameters to minimize20

multiple objectives (or tasks) simultaneously. As the different objective functions may inevitably conflict21

with each other, the notion of optimality in multi-objective optimization (MOO) needs to be characterized by22

the Pareto set: the set of model parameters whose performance of all tasks cannot be jointly improved.23

Focusing on the Pareto set allows us to filter out models that can be strictly improved. However, the Pareto24

set typically contains an infinite number of parameters that represent different trade-offs of the objectives.25

For m objectives `1, . . . , `m, the Pareto set is often an (m− 1) dimensional manifold. It is both intractable26

and unnecessary to give practical users the whole exact Pareto set. A more practical demand is to find some27

user-specified special parameters in the Pareto set, which can be framed into the following optimization in28

Pareto set (OPT-in-Pareto) problem:29

Finding one or a set of parameters inside the Pareto set of `1, . . . , `m that minimize a reference criterion F .30

Here the criterion function F can be used to encode an informative user-specific preference on the objectives31

`1, . . . , `m, which allows us to provide the best models customized for different users. F can also be an32

non-informative measure that encourages, for example, the diversity of a set of model parameters. In this33
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case, optimizing F in Pareto set gives a set of diversified Pareto models that are representative of the whole34

Pareto set, from which different users can pick their favorite models during the testing time.35

OPT-in-Pareto provides a highly generic and actionable framework for multi-objective learning and opti-36

mization. However, efficient algorithms for solving OPT-in-Pareto have been largely lagging behind in deep37

learning where the objective functions are non-convex and non-linear. Although has not been formally studied,38

a straightforward approach is to apply manifold gradient descent on F in the Riemannian manifold formed by39

the Pareto set (Hillermeier, 2001; Bonnabel, 2013). However, this casts prohibitive computational cost due40

to the need for eigen-computation of Hessian matrices of {`i}. In the optimization and operation research41

literature, there has been a body of work on OPT-in-Pareto viewing it as a special bi-level optimization42

problem (Dempe, 2018). However, these works often heavily rely on the linearity and convexity assumptions43

and are not applicable to the non-linear and non-convex problems in deep learning; see for examples in Ecker44

& Song (1994); Jorge (2005); Thach & Thang (2014); Liu & Ehrgott (2018); Sadeghi & Mohebi (2021) (just45

to name a few). In comparison, the OPT-in-Pareto problem seems to be much less known and under-explored46

in the deep learning literature.47

In this work, we provide a practically efficient first-order algorithm for OPT-in-Pareto, using only gradient48

information of the criterion F and objectives {`i}. Our method, named Pareto navigation gradient descent49

(PNG), iteratively updates the parameters following a direction that carefully balances the descent on F and50

{`i}, such that it guarantees to move towards the Pareto set of {`i} when it is far away, and optimize F in a51

neighborhood of the Pareto set. Our method is simple, practically efficient and has theoretical guarantees.52

In empirical studies, we demonstrate that our method works efficiently for both optimizing user-specific53

criteria and diversity measures. In particular, for finding representative Pareto solutions, we propose an54

energy distance criterion whose minimizers distribute uniformly on the Pareto set asymptotically (Hardin55

& Saff, 2004), yielding a principled and efficient Pareto set approximation method that compares favorably56

with recent works such as Lin et al. (2019); Mahapatra & Rajan (2020). We also apply PNG to improve the57

performance of JiGen (Carlucci et al., 2019b), a multi-task learning approach for domain generalization, by58

using the adversarial feature discrepancy as the criterion objective.59

Related Work There has been a rising interest in MOO in deep learning, mostly in the context of multi-task60

learning. But most existing methods can not be applied to the general OPT-in-Pareto problem. A large body61

of recent works focus on improving non-convex optimization for finding some model in the Pareto set, but62

cannot search for a special model satisfying a specific criterion (Chen et al., 2018; Kendall et al., 2018; Sener63

& Koltun, 2018; Yu et al., 2020; Chen et al., 2020; Wu et al., 2020; Fifty et al., 2020; Javaloy & Valera, 2021).64

One exception is Mahapatra & Rajan (2020); Kamani et al. (2021), which searches for models in the Pareto65

set that satisfy a constraint on the ratio between the different objectives. The problem they study can be66

viewed as a special instance of OPT-in-Pareto. However, their approaches are tied with special properties of67

the ratio constraint and do not apply to the general OPT-in-Pareto problem.68

There has also been increasing interest in finding a compact approximation of the Pareto set. Navon et al.69

(2020); Lin et al. (2020) use hypernetworks to approximate the map from linear scalarization weights to70

the corresponding Pareto solutions; these methods could not fully profile non-convex Pareto fronts due71

to the limitation of linear scalarization (Boyd et al., 2004), and the use of hypernetwork introduces extra72

optimization difficulty. Another line of works (Lin et al., 2019; Mahapatra & Rajan, 2020) approximate73

the Pareto set by training models with different user preference vectors that rank the relative importance74

of different tasks; these methods need a good heuristic design of preference vectors, which requires prior75

knowledge of the Pareto front. Ma et al. (2020) leverages manifold gradient to conduct a local random walk76

on the Pareto set but suffers from the high computational cost. Deist et al. (2021) approximates the Pareto set77

by maximizing hypervolume, which requires prior knowledge for choosing a good reference vector.78

Multi-task learning can also be applied to improve the learning in many other domains including domain79

generalization (Dou et al., 2019; Carlucci et al., 2019a; Albuquerque et al., 2020), domain adaption (Sun80
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et al., 2019; Luo et al., 2021), model uncertainty (Hendrycks et al., 2019; Zhang et al., 2020; Xie et al., 2021),81

adversarial robustness (Yang & Vondrick, 2020) and semi-supervised learning (Sohn et al., 2020). All of82

those applications utilize a linear scalarization to combine the multiple objectives and it is thus interesting to83

apply the proposed OPT-in-Pareto framework, which we leave for future work.84

2 BACKGROUND ON MULTI-OBJECTIVE OPTIMIZATION85

We introduce the background on multi-objective optimization (MOO) and Pareto optimality. For notation,86

we denote by [m] the integer set {1, 2, ....,m}, and R+ the set of non-negative real numbers. Let Cm =87 {
ω ∈ Rm+ ,

∑m
i=1 ωi = 1

}
be the probability simplex. We denote by ‖·‖ the Euclidean norm.88

Let θ ∈ Rn be a parameter of interest (e.g., the weights in a deep neural network). Let `(θ) =89

[`1(θ), . . . , `m(θ)] be a set of objective functions that we want to minimize. For two parameters θ, θ′ ∈ Rn,90

we write `(θ) � `(θ′) if `i(θ) ≥ `i(θ
′) for all i ∈ [m]; and write `(θ) � `(θ′) if `(θ) � `(θ′) and91

`(θ) 6= `(θ′). We say that θ is Pareto dominated (or Pareto improved) by θ′ if `(θ) � `(θ′). We say that θ is92

Pareto optimal on a set Θ ⊆ Rn, denoted as θ ∈ Pareto(Θ), if there exists no θ′ ∈ Θ such that `(θ) � `(θ′).93

The Pareto global optimal set P∗∗ := Pareto(Rn) is the set of points (i.e., θ) which are Pareto optimal on94

the whole domain Rn. The Pareto local optimal set of `, denoted by P∗, is the set of points which are Pareto95

optimal on a neighborhood of itself:96

P∗ := {θ ∈ Rn : there exists a neighborhood Nθ of θ, such that θ ∈ Pareto(Nθ)} .

The (local or global) Pareto front is the set of objective vectors achieved by the Pareto optimal points, e.g.,97

the local Pareto front is F∗ = {`(θ) : θ ∈ P∗}. Because finding global Pareto optimum is intractable for98

non-convex objectives in deep learning, we focus on Pareto local optimal sets in this work; in the rest of the99

paper, terms like “Pareto set” and “Pareto optimum” refer to Pareto local optimum by default.100

Pareto Stationary Points Similar to the case of single-objective optimization, Pareto local optimum implies
a notion of Pareto stationarity defined as follows. Assume ` is differentiable on Rn. A point θ is called Pareto
stationary if there must exists a set of non-negative weights ω1, . . . , ωm with

∑m
i=1 ωi = 1, such that θ is a

stationary point of the ω-weighted linear combination of the objectives: `ω(θ) :=
∑m
i=1 ωi`i(θ). Therefore,

the set of Pareto stationary points, denoted by P , can be characterized by

P := {θ ∈ Θ : g(θ) = 0} , g(θ) := min
ω∈Cm

||
m∑
i=1

ωi∇`i(θ)||2, (1)

where g(θ) is the minimum squared gradient norm of `ω among all ω in the probability simplex Cm on [m].101

Because g(θ) can be calculated in practice, it provides an essential way to access Pareto local optimality.102

Finding Pareto Optimal Points A main focus of the MOO literature is to find a (set of) Pareto optimal103

points. The simplest approach is linear scalarization, which minimizes `ω for some weight ω (decided, e.g.,104

by the users) in Cm. However, linear scalarization can only find Pareto points that lie on the convex envelop105

of the Pareto front (see e.g., Boyd et al., 2004), and hence does not give a complete profiling of the Pareto106

front when the objective functions (and hence their Pareto front) are non-convex.107

Multiple gradient descent (MGD) (Désidéri, 2012) is an gradient-based algorithm that can converge to a
Pareto local optimum that lies on either the convex or non-convex parts of the Pareto front, depending on the
initialization. MGD starts from some initialization θ0 and updates θ at the t-th iteration by

θt+1 ← θt − ξvt, vt := arg max
v∈Rn

{
min
i∈[m]

∇`i(θt)>v −
1

2
‖v‖2

}
, (2)
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where ξ is the step size and vt is an update direction that maximizes the worst descent rate among all108

objectives, since ∇`i(θt)>v ≈ (`i(θt)− `i(θt − ξv))/ξ approximates the descent rate of objective `i when109

following direction v. When using a sufficiently small step size ξ, MGD ensures to yield a Pareto improvement110

(i.e, decreasing all the objectives) on θt unless θt is Pareto (local) optimal; this is because the optimization in111

Equation (2) always yields mini∈[m]∇`i(θt)>vt ≤ 0 (otherwise we can simply flip the sign of vt).112

Using Lagrange strong duality, the solution of Equation (2) can be framed into

vt =

m∑
i=1

ωi,t∇`i(θt), where {ωi,t}mi=1 = arg min
ω∈Cm

‖∇θ`ω(θt)‖ . (3)

It is easy to see from Equation (3) that the set of fixed points of MDG (which satisfy vt = 0) coincides with113

the Pareto stationary set P∗.114

A key disadvantage of MGD, however, is that the Pareto point that it converges to depends on the initialization115

and other algorithm configurations in a rather implicated and complicated way. It is difficult to explicitly116

control MGD to make it converge to points with specific properties.117

3 OPTIMIZATION IN PARETO SET118

The Pareto set typically contains an infinite number of points. In the optimization in Pareto set (OPT-in-119

Pareto) problem, we are given an extra criterion function F (θ) in addition to the objectives `, and we want to120

minimize F in the Pareto set of `, that is,121

min
θ∈P∗

F (θ). (4)

For example, one can find the Pareto point whose loss vector `(θ) is the closest to a given reference point122

r ∈ Rm by choosing F (θ) = ‖`(θ)− r‖2. We can also design F to encourages `(θ) to be proportional to r,123

i.e., `(θ) ∝ r; a constraint variant of this problem was considered in Mahapatra & Rajan (2020).124

We can further generalize OPT-in-Pareto to allow the criterion F to depend on an ensemble of Pareto points125

{θ1, ..., θN} jointly, that is,126

min
θ1,...,θN∈P∗

F (θ1, ..., θN ). (5)

For example, if F (θ1, . . . , θN ) measures the diversity among {θi}Ni=1, then optimizing it provides a set of
diversified points inside the Pareto set P∗. An example of diversity measure is

F (θ1, . . . , θN ) = E(`(θ1), . . . , `(θN )), with E(`1, . . . , `N ) =
∑
i 6=j

‖`i − `j‖−2 , (6)

where E is known as an energy distance in computational geometry, whose minimizer can be shown to give127

an uniform distribution asymptotically when N →∞ (Hardin & Saff, 2004). This formulation is particularly128

useful when the users’ preference is unknown during the training time, and we want to return an ensemble of129

models that well cover the different areas of the Pareto set to allow the users to pick up a model that fits their130

needs regardless of their preference. The problem of profiling Pareto set has attracted a line of recent works131

(e.g., Lin et al., 2019; Mahapatra & Rajan, 2020; Ma et al., 2020; Deist et al., 2021), but they rely on specific132

criterion or heuristics and do not address the general optimization of form Equation (5).133

Manifold Gradient Descent One straightforward approach to OPT-in-Pareto is to deploy manifold gradient134

descent (Hillermeier, 2001; Bonnabel, 2013), which conducts steepest descent of F (θ) in the Riemannian135

manifold formed by the Pareto set P∗. Initialized at θ0 ∈ P∗, manifold gradient descent updates θt at the t-th136

iteration along the direction of the projection of∇F (θt) on the tangent space T (θt) at θt in P∗,137

θt+1 = θt − ξProjT (θt)
(∇F (θt)).
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By using the stationarity characterization in Equation (1), under proper regularity conditions, one can138

show that the tangent space T (θt) equals the null space of the Hessian matrix ∇2
θ`ωt(θt), where ωt =139

arg minω∈Cm ‖∇θ`ω(θt)‖. However, the key issue of manifold gradient descent is the high cost for calculating140

this null space of Hessian matrix. Although numerical techniques such as Krylov subspace iteration (Ma141

et al., 2020) or conjugate gradient descent (Koh & Liang, 2017) can be applied, the high computational cost142

(and the complicated implementation) still impedes its application in large scale deep learning problems. See143

Section 1 for discussions on other related works.144

4 PARETO NAVIGATION GRADIENT DESCENT FOR OPT-IN-PARETO145

We now introduce our main algorithm, Pareto Navigating Gradient Descent (PNG), which provides a practical146

approach to OPT-in-Pareto. For convenience, we focus on the single point problem in Equation (4) in the147

presentation. The generalization to the multi-point problem in Equation (5) is straightforward. We first148

introduce the main idea and then present theoretical analysis in Section 4.1.149

Main Idea We consider the general incremental updating rule of form

θt+1 ← θt − ξvt,
where ξ is the step size and vt is an update direction that we shall choose to achieve the following desiderata150

in balancing the decent of {`i} and F :151

i) When θt is far away from the Pareto set, we want to choose vt to give Pareto improvement to θt, moving it152

towards the Pareto set. The amount of Pareto improvement might depend on how far θt is to the Pareto set.153

ii) If the directions that yield Pareto improvement are not unique, we want to choose the Pareto improvement154

direction that decreases F (θ) most.155

iii) When θt is very close to the Pareto set, e.g., having a small g(θ), we want to fully optimize F (θ).156

We achieve the desiderata above by using the vt that solves the following optimization:

vt = arg min
v∈Rn

{
1

2
‖∇F (θt)− v‖2 s.t. ∇θ`i(θt)>v ≥ φt, ∀i ∈ [m]

}
, (7)

where we want vt to be as close to ∇F (θt) as possible (hence decrease F most), conditional on that the157

decreasing rate ∇θ`i(θt)>vt of all losses `i are lower bounded by a control parameter φt. A positive φt158

enforces that ∇θt`i(θ)>vt is positive for all `i, hence ensuring a Pareto improvement when the step size is159

sufficiently small. The magnitude of φt controls how much Pareto improvement we want to enforce, so we160

may want to gradually decrease φt when we move closer to the Pareto set. In fact, varying φt provides an161

intermediate updating direction between the vanilla gradient descent on F and MGD on {`i}:162

i) If φt = −∞, we have vt = ∇F (θt) and it conducts a pure gradient descent on F without considering {`i}.163

ii) If φt → +∞, then vt approaches to the MGD direction of {`i} in Equation (2) without considering F .164

In this work, we propose to choose φt based on the minimum gradient norm g(θt) in Equation (1) as a
surrogate indication of Pareto local optimality. In particular, we consider the following simple design:

φt =

{
−∞ if g(θt) ≤ e,
αtg(θt) if g(θt) > e,

(8)

where e is a small tolerance parameter and αt is a positive hyper-parameter. When g(θt) > e, we set φt to be165

proportional to g(θt), to ensure Pareto improvement based on how far θt is to Pareto set. When g(θt) ≤ e,166

we set φt = −∞ which “turns off” the control and hence fully optimizes F (θ).167

In practice, the optimization in Equation (7) can be solved efficiently by its dual form as follows.168
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Theorem 1. The solution vt of Equation (7), if it exists, has a form of

vt = ∇F (θt) +

m∑
t=1

λi,t∇`i(θt), (9)

with {λi,t}mt=1 the solution of the following dual problem

max
λ∈Rm+

−1

2
||∇F (θt) +

m∑
i=1

λt∇`i(θt)||2 +

m∑
i=1

λiφt. (10)

The optimization in Equation (10) can be solved efficiently for a small m (e..g, m ≤ 10), which is the case169

for typical applications. We include the details of the practical implementation in Appendix B.170

4.1 THEORETICAL PROPERTIES171

We provide a theoretical quantification on how PNG guarantees to i) move the solution towards the Pareto172

set (Theorem 2); and ii) optimize F in a neighborhood of Pareto set (Theorem 3). To simplify the result and173

highlight the intuition, we focus on the continuous time limit of PNG, which yields a differentiation equation174

dθt = −vtdt with vt defined in Equation (7), where t ∈ R+ is a continuous integration time.175

Assumption 1. Let {θt : t ∈ R+} be a solution of dθt = −vtdt with vt in Equation (7); φk in Equation (8);176

e > 0; and αt ≥ 0,∀t ∈ R+. Assume F and ` are continuously differentiable on Rn, and lower bounded177

with F ∗ := infθ∈Rn F (θ) > −∞ and `∗i := infθ∈Rn `i(θ) > −∞. Assume supθ∈Rn ‖∇F (θ)‖ ≤ c.178

Technically, dθt = −vtdt is a piecewise smooth dynamical system whose solution should be taken in the179

Filippov sense using the notion of differential inclusion (Bernardo et al., 2008). The solution always exists180

under mild regularity conditions although it may not be unique. Our results below apply to all solutions.181

Pareto Optimization on ` We now show that the algorithm converges to the vicinity of Pareto set quantified
by a notion of Pareto closure. For ε ≥ 0, let Pε be the set of Pareto ε-stationary points: Pε = {θ ∈
Rn : g(θ) ≤ ε}. The Pareto closure of a set Pε, denoted by Pε is the set of points that perform no worse than
at least one point in Pε, that is,

Pε := ∪θ∈Pε{θ}, {θ} = {θ′ ∈ Rn : `(θ′) � `(θ)}.

Therefore, Pε is better than or at least as good as Pε in terms of Pareto efficiency.182

Theorem 2 (Pareto Improvement on `). Under Assumption 1, assume θ0 6∈ Pe, and te is the first time when
θte ∈ Pe, then for any time t < te,

d

dt
`i(θt) ≤ −αtg(θt), min

s∈[0,t]
g(θs) ≤

mini∈[m](`i(θ0)− `∗i )∫ t
0
αsds

.

Therefore, the update yields Pareto improvement on ` when θt 6∈ Pe and αtg(θt) > 0.183

Further, if
∫ t
0
αsds = +∞, then for any ε > e, there exists a finite time tε ∈ R+ on which the solution enters184

Pε and stays within Pε afterwards, that is, we have θtε ∈ Pε and θt ∈ Pε for any t ≥ tε.185

Here we guarantee that θt must enter Pε for some time (in fact infinitely often), but it is not confined in Pε.186

On the other hand, θt does not leave Pε after it first enters Pε thanks to the Pareto improvement property.187

Optimization on F We now show that PNG finds a local optimum of F inside the Pareto closure Pε in an188

approximate sense. We first show that a fixed point θ of the algorithm that is locally convex on F and ` must189

be a local optimum of F in the Pareto closure of {θ}, and then quantify the convergence of the algorithm.190
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Lemma 1. Under Assumption 1, assume θt 6∈ Pe is a fixed point of the algorithm, that is, dθt
dt = −vt = 0,191

and F , ` are convex in a neighborhood θt, then θt is a local minimum of F in the Pareto closure {θt}, that is,192

there exists a neighborhood of θt in which there exists no point θ′ such that F (θ′) < F (θt) and `(θ′) � `(θt).193

On the other hand, if θt ∈ Pe, we have vt = ∇F (θt), and hence a fixed point with dθt
dt = −vt = 0 is an194

unconstrained local minimum of F when F is locally convex on θt.195

Theorem 3. Let ε > e and assume gε := supθ{g(θ) : θ ∈ Pε} < +∞ and supt≥0 αt < ∞. Under
Assumption 1, when we initialize from θ0 ∈ Pε, we have

min
s∈[0,t]

∥∥∥∥dθs
ds

∥∥∥∥2 ≤ F (θ0)− F ∗

t
+

1

t

∫ t

0

αs (αsgε + c
√
gε) ds.

In particular, if we have αt = α = const, then mins∈[0,t] ‖dθs/ds‖
2

= O
(
1/t+ α

√
gε
)
.196

If
∫∞
0
αγt dt < +∞ for some γ ≥ 1, we have mins∈[0,t] ‖dθs/ds‖

2
= O(1/t+

√
gε/t

1/γ).197

Combining the results in Theorem 2 and 3, we can see that the choice of sequence {αt : t ∈ R+} controls how198

fast we want to decrease ` vs. F . Large αt yields faster descent on `, but slower descent on F . Theoretically,199

using a sequence that satisfies
∫
αtdt = +∞ and

∫
αγt dt < +∞ for some γ > 1 allows us to ensure that200

both mins∈[0,t] g(θs) and mins∈[0,t] ‖dθ/ds‖
2 converge to zero. If we use a constant sequence αt = α, it201

introduces an O(α
√
gε) term that does not vanish as t→ +∞. However, we can expect that gε is small when202

ε is small for well-behaved functions. In practice, we find that constant αt works sufficiently well.203

5 EMPIRICAL RESULTS204

We introduce three applications of OPT-in-Pareto with PNG: Singleton Preference, Pareto approximation and205

improving multi-task based domain generalization method. We also conduct additional study on how the206

learning dynamics of PNG changes with different initialization and hyper-parameters (αt and e), which are207

included in Appendix C.3. Other additional results that are related to the experiments in Section 5.1 and 5.2208

and are included in the Appendix will be introduced later in their corresponding sections.209

5.1 FINDING PREFERRED PARETO MODELS210

We consider the synthetic example used in Lin et al. (2019); Mahapatra & Rajan (2020), which consists of211

two losses: `1(θ) = 1− exp(−‖θ − η‖2) and `2(θ) = 1− exp(−‖θ + η‖2), where η = n−1/2 and n = 10212

is dimension of the parameter θ.213

Ratio-based Criterion We first show that PNG can solve the search problem under the ratio constraint of214

objectives in Mahapatra & Rajan (2020), i.e., finding a point θ ∈ P∗ ∩Ω with Ω = {θ : r1`1(θ) = r2`2(θ) =215

... = rm`m(θ)}, given some preference vector r = [r1, ..., rm]. We apply PNG with the non-uniformity216

score defined in Mahapatra & Rajan (2020) as the criterion, and compare with their algorithm called exact217

Pareto optimization (EPO). We show in Figure 1(a)-(b) the trajectory of PNG and EPO for searching models218

with different preference vector r, starting from the same randomly initialized point. Both PNG and EPO219

converge to the correct solutions but with different trajectories. This suggests that PNG is able to achieve220

the same functionality of finding ratio-constraint Pareto models as Mahapatra & Rajan (2020); Kamani et al.221

(2021) do but being versatile to handle general criteria. We refer readers to Appendix C.1.1 for more results222

with different choices of hyper-parameters and the experiment details.223

Other Criteria We demonstrate that PNG is able to find solutions for general choices of F . We consider224

the following designs of F : 1) weighted `2 distance w.r.t. a reference vector r ∈ Rm+ , that is, Fwd(θ) =225
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Figure 1: (a)-(b): the trajectory of finding Pareto models that satisfy different ratio constraints (shown in
different colors) on the two objectives `1, `2 using EPO and PNG; we can see that PNG can achieve the
same goal as EPO (with different trajectories) while being a more general approach. (c)-(d): the trajectory of
finding Pareto models that minimize the weighted distance and complex cosine criterion using PNG. The
green dots indicate the converged models. We can see that PNG can successfully locate the correct Pareto
models that minimize different criteria.∑m
i=1(`i(θ)− ri)2/ri; and 2) complex cosine: in which F is a complicated function related to the cosine226

of task objectives, i.e., Fcs = − cos (π(`1(θ)− r1)/2) + (cos(π(`(θ2)− r2)) + 1)2. Here the weighted `2227

distance can be viewed as finding a Pareto model that has the losses close to some target value r, which can be228

viewed as an alternative approach to partition the Pareto set. The design of complex cosine aims to test whether229

PNG is able to handle a very non-linear criterion function. In both cases, we take r1 = [0.2, 0.4, 0.6, 0.8] and230

r2 = 1− r1. We show in Fig 1(c)-(d) the trajectory of PNG. As we can see, PNG is able to correctly find the231

optimal solutions of OPT-in-Pareto. We also test PNG on a more challenging ZDT2-variant used in Ma et al.232

(2020) and a larger scale MTL problem (Liu et al., 2019). We refer readers to Appendix C.1.2 and C.1.3 for233

the setting and results.234

5.2 FINDING DIVERSE PARETO MODELS235

Setup We consider the problem of finding diversified points from the Pareto set by minimizing the energy236

distance criterion in Equation (6). We use the same setting as Lin et al. (2019); Mahapatra & Rajan (2020).237

We consider three benchmark datasets: (1) MultiMNIST, (2) MultiFashion, and (3) MultiFashion+MNIST.238

For each dataset, there are two tasks (classifying the top-left and bottom-right images). We consider LeNet239

with multihead and train N = 5 models to approximate the Pareto set. For baselines, we compare with linear240

scalarization, MGD (Sener & Koltun, 2018), and EPO (Mahapatra & Rajan, 2020). For the MGD baseline,241

we find that naively running it leads to poor performance as the learned models are not diversified and thus we242

initialize the MGD with 60-epoch runs of linear scalarization with equally distributed preference weights and243

runs MGD for the later 40 epoch. We refer the reader to Appendix C.2.1 for more details of the experiments.244

Metric and Result We measure the quality of how well the found models {θ1, . . . , θN} approximate the245

Pareto set using two standard metrics: Inverted Generational Distance Plus (IGD+) (Ishibuchi et al., 2015)246

and hypervolume (HV) (Zitzler & Thiele, 1999); see Appendix C.2.2 for their definitions. We run all the247

methods with 5 independent trials and report the averaged value and its standard deviation in Table 1. We248

report the scores calculated based on loss (cross-entropy) and accuracy on the test set. The bolded values249

indicate the best result with p-value less than 0.05 (using matched pair t-test). In most cases, PNG improves250

the baselines by a large margin. We include ablation studies in Appendix C.2.3 and additional comparisons251

with the second-order approach proposed by Ma et al. (2020) in Appendix C.2.4.252

5.3 APPLICATION TO MULTI-TASK BASED DOMAIN GENERALIZATION ALGORITHM253

JiGen (Carlucci et al., 2019b) learns a domain generalizable model by learning two tasks based on linear254

scalarization, which essentially searches for a model in the Pareto set and requires choosing the weight of255
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Data Method Loss Acc
HV↑ (10−2) IGD+↓ (10−2) HV↑ (10−2) IGD+↓ (10−2)

Multi-MNIST

Linear 7.48± 0.11 0.14± 0.034 9.27± 0.024 0.036± 0.0084
MGD 7.69± 0.10 0.051± 0.011 9.27± 0.023 0.0078± 0.0010
EPO 7.87±0.16 0.069± 0.028 9.17± 0.032 0.065± 0.018
PNG 7.86±0.11 0.042±0.012 9.39±0.036 0.0056±0.0022

Multi-Fashion

Linear 0.38± 0.059 0.13± 0.013 4.76± 0.019 0.064± 0.012
MGD 0.42± 0.064 0.046± 0.016 4.77± 0.019 0.023±0.0030
EPO 0.36± 0.058 0.31± 0.11 4.78± 0.030 0.21± 0.020
PNG 0.47±0.066 0.016±0.0022 4.81±0.021 0.023±0.0031

Fashion-MNIST

Linear 5.01± 0.057 0.167± 0.054 8.46± 0.046 0.110± 0.035
MGD 5.09± 0.069 0.060± 0.029 8.40± 0.045 0.049±0.011
EPO 4.60± 0.166 0.233± 0.054 8.12± 0.041 0.385± 0.077
PNG 5.27±0.054 0.048±0.027 8.53±0.047 0.046±0.022

Table 1: Results of approximating the Pareto set by different methods on three MNIST benchmark datasets.
The numbers in the table are the averaged value and the standard deviation. Bolded values indicate the
statistically significant best result with p-value less than 0.5 based on matched pair t-test.

PACS art paint cartoon sketches photo Avg
D-SAM 0.7733 0.7243 0.7783 0.9530 0.8072
DeepAll 0.7785 0.7486 0.6774 0.9573 0.7905

JiGen 0.8009± 0.004 0.7363± 0.007 0.7046± 0.013 0.9629±0.002 0.8012± 0.002
JiGen+adv 0.7923± 0.006 0.7402± 0.004 0.7188± 0.005 0.9617± 0.001 0.8033± 0.001

JiGen+PNG 0.8014±0.005 0.7538±0.001 0.7222±0.006 0.9627±0.002 0.8100±0.005

Table 2: Comparing different methods for domain generalization on PACS using ResNet-18. The values in
table are the testing accuracy with its standard deviation. The bolded values are the best models with p-value
less than 0.1 based on match-pair t-test.

linear scalarization carefully. It is thus natural to study whether there is a better mechanism that dynamically256

adjusts the weights of the two losses so that we eventually learn a better model. Motivated by the adversarial257

feature learning (Ganin et al., 2016), we propose to improve JiGen such that the latent feature representations258

of the two tasks are well aligned. This can be framed into an OPT-in-Pareto problem where the criterion is259

the discrepancy of the latent representations (implemented using an adversarial discrepancy module in the260

network) of the two tasks. PNG is applied to solve the optimization. We evaluate the methods on PACS (Li261

et al., 2017), which covers 7 object categories and 4 domains (Photo, Art Paintings, Cartoon, and Sketches).262

The model is trained on three domains and tested on the rest of them. Our approach is denoted as JiGen+PNG263

and we also include JiGen + adv, which simply adds the adversarial loss as regularization and two other264

baseline methods (D-SAM (D’Innocente & Caputo, 2018) and DeepAll (Carlucci et al., 2019b)). For the three265

JiGen based approaches, we run 3 independent trials and for the other two baselines, we report the results in266

their original papers. Table 2 shows the result using ResNet-18, which demonstrates the improvement by the267

application of the OPT-in-Pareto framework. We also include the results using AlexNet in the Appendix. We268

refer readers to Appendix C.4 for the additional results and more experiment details.269

6 CONCLUSION270

This paper studies the OPT-in-Pareto, a problem that has been studied in operation research with restrictive271

linear or convexity assumption but largely under-explored in deep learning literature, in which the objectives272

are non-linear and non-convex. Applying algorithms such as manifold gradient descent requires eigen-273

computation of the Hessian matrix at each iteration and thus can be expensive. We propose a first-order274

approximation algorithm called Pareto Navigation Gradient Descent (PNG) with theoretically guaranteed275

descent and convergence property to solve OPT-in-Pareto.276
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A THEORETICAL ANALYSIS407

Theorem 1 [Dual of Equation (7)] The solution vt of Equation (7), if it exists, has a form of

vt = ∇F (θt) +

m∑
i=1

λi,t∇`i(θt),

with {λi,t}mi=1 the solution of the following dual problem

max
λ∈Rm+

−1

2

∥∥∥∥∥∇F (θt) +

m∑
i=1

λt∇`i(θt)

∥∥∥∥∥
2

+

m∑
i=1

λiφt,

where Rm+ is the set of nonnegative m-dimensional vectors, that is, Rm+ = {λ ∈ Rm : λi ≥ 0, ∀i ∈ [m]}.408

Proof. By introducing Lagrange multipliers, the optimization in Equation (7) is equivalent to the following409

minimax problem:410

min
v∈Rn

max
λ∈Rm+

1

2
‖∇F (θt)− v‖2 +

m∑
i=1

λi
(
φt −∇`i(θt)>v

)
.

With strong duality of convex quadratic programming (assuming the primal problem is feasible), we can
exchange the order of min and max, yielding

max
λ∈Rm+

{
Φ(λ) := min

v∈Rn
1

2
‖∇F (θt)− v‖2 +

m∑
i=1

λi
(
φt −∇`i(θt)>v

)}
.

It is easy to see that the minimization w.r.t. v is achieved when v = ∇F (θt) +
∑m
i=1 λi∇`i(θt). Correspond-411

ingly, the Φ(λ) has the following dual form:412

max
λ∈Rm+

−1

2

∥∥∥∥∥∇F (θt) +

m∑
i=1

λi∇`i(θt)

∥∥∥∥∥
2

+

m∑
i=1

λiφt.

This concludes the proof.413

Theorem 2 [Pareto Improvement on `] Under Assumption 1, assume θ0 6∈ Pe, and te is the first time
when θte ∈ Pe, then for any time t < te,

d

dt
`i(θt) ≤ −αtg(θt), min

s∈[0,t]
g(θt) ≤

mini∈[m](`i(θ0)− `∗i )∫ t
0
αsds

.

Therefore, the update yields Pareto improvement on ` when θt 6∈ Pe and αtg(θt) > 0.414

Further, if
∫ t
0
αsds = +∞, then for any ε > e, there exists a finite time tε ∈ R+ on which the solution enters415

Pε and stays within Pε afterwards, that is, we have θtε ∈ Pε and θt ∈ Pε for any t ≥ tε.416

Proof. i) When t < te, we have g(θt) > e and hence

d

dt
`i(θt) = −∇`i(θt)>vt ≤ −φt = −αtg(θt), (11)

where we used the constraint of∇`i(θt)>vt ≥ φt in Equation (7). Therefore, we yield strict decent on all the417

losses {`i} when αtg(θt) > 0.418
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ii) Integrating both sides of Equation (11):

min
s∈[0,t]

g(θs) ≤
∫ t
0
αsg(θs)ds∫ t
0
αsds

≤ `i(θ0)− `i(θt)∫ t
0
αsds

≤ `i(θ0)− `∗∫ t
0
αsds

.

This yields the result since it holds for every i ∈ [m].419

If
∫∞
0
αtdt = +∞, then we have mins∈[0,t] g(θs) → 0 when t → +∞. Assume there exists an ε > e,420

such that θt never enters Pε at finite t. Then we have g(θt) ≥ ε for t ∈ R+, which contradicts with421

mins∈[0,t] g(θs)→ 0.422

iii) Assume there exists a finite time t′ ∈ (tε,+∞) such that θt′ 6∈ Pε. Because ε > e and g is continuous, Pe423

is in the interior of Pε ⊆ Pε. Therefore, the trajectory leading to θt′ 6∈ Pε must pass through Pε \Pe at some424

point, that is, there exists a point t′′ ∈ [tε, t
′), such that {θt : t ∈ [t′′, t′]} 6∈ Pe. But because the algorithm can425

not increase any objective `i outside of Pe, we must have `(θt′) � `(θt′′), yielding that θt′ ∈ {θt′′} ⊆ Pε,426

where {θt′′} is the Pareto closure of {θt′′}; this contradicts with the assumption.427

Lemma 1 Under Assumption 1, assume θt 6∈ Pe is a fixed point of the algorithm, that is, dθt
dt = −vt = 0,428

and F , ` are convex in a neighborhood θt, then θt is a local minimum of F in the Pareto closure {θt},429

that is, there exists a neighborhood of θt in which there exists no point θ′ such that F (θ′) < F (θt) and430

`(θ′) � `(θt).431

Proof. Note that minimizing F in {θt} can be framed into a constrained optimization problem:

min
θ
F (θ) s.t. `i(θ) ≤ `i(θt), ∀i ∈ [m].

In addition, by assumption, θ = θt satisfies vt = ∇F (θt) +
∑m
i=1 λi,t∇`i(θt) = 0, which is the KKT432

stationarity condition of the constrained optimization. It is also obvious to check that θ = θt satisfies the433

feasibility and slack condition trivially. Combining this with the local convexity assumption yields the434

result.435

Theorem 3 [Optimization of F ] Let ε > e and assume gε := supθ{g(θ) : θ ∈ Pε} < +∞ and
supt≥0 αt <∞. Under Assumption 1, when we initialize from θ0 ∈ Pε, we have

min
s∈[0,t]

∥∥∥∥dθs
ds

∥∥∥∥2 ≤ F (θ0)− F ∗

t
+

1

t

∫ t

0

αs (αsgε + c
√
gε) ds.

In particular, if we have αt = α = const, then mins∈[0,t] ‖dθs/ds‖
2

= O
(
1/t+ α

√
gε
)
.436

If
∫∞
0
αγt dt < +∞ for some γ ≥ 1, we have mins∈[0,t] ‖dθs/ds‖

2
= O(1/t+

√
gε/t

1/γ).437

Proof. i) The slack condition of the constrained optimization in Equation (7) says that

λi,t
(
∇`i(θt)>vt − φt

)
= 0, ∀i ∈ [m]. (12)

This gives that

‖vt‖2 =

(
∇F (θt) +

m∑
i=1

λi,t∇`i(θt)

)>
vt

= ∇F (θt)
>vt +

m∑
i=1

λi,tφt //plugging Equation (12). (13)
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If θt 6∈ Pe, we have φt = αtg(θt) and this gives

d

dt
F (θt) = −∇F (θt)

>vt = −‖vt‖2 +

m∑
i=1

λi,tφt = −
∥∥∥∥dθt

dt

∥∥∥∥2 +

m∑
i=1

λi,tαtg(θt)

If θt is in the interior of Pe, then we run typical gradient descent of F and hence has

d

dt
F (θt) = −‖vt‖2 = −

∥∥∥∥dθt
dt

∥∥∥∥2 .
If θt is on the boundary of Pe, then by the definition of differential inclusion, dθ/dt belongs to the convex
hull of the velocities that it receives from either side of the boundary, yielding that

d

dt
F (θt) = −

∥∥∥∥dθt
dt

∥∥∥∥2 + β

m∑
i=1

λi,tαtg(θt) ≤ −
∥∥∥∥dθt

dt

∥∥∥∥2 +

m∑
i=1

λi,tαtg(θt),

where β ∈ [0, 1]. Combining all the cases gives

d

dt
F (θt) ≤ −

∥∥∥∥dθt
dt

∥∥∥∥2 +
m∑
i=1

λi,tαtg(θt).

Integrating this yields

min
s∈[0,t]

∥∥∥∥dθs
ds

∥∥∥∥2 ≤ 1

t

∫ t

0

∥∥∥∥dθs
ds

∥∥∥∥2 ds ≤ F (θ0)− F ∗

t
+

1

t

∫ t

0

m∑
i=1

λi,sαsg(θs)ds

≤ F (θ0)− F ∗

t
+

1

t

∫ t

0

αs (αsgε + c
√
gε) ds,

where the last step used Lemma 2 with φt = αtg(θt):
m∑
i=1

λi,tαtg(θt) ≤ α2
t g(θt) + cαt

√
g(θt) ≤ α2

t gε + cαt
√
gε,

and here we used g(θt) ≤ gε because the trajectory is contained in Pε following Theorem 2.438

The remaining results follow Lemma 4.439

A.0.1 TECHNICAL LEMMAS440

Lemma 2. Assume Assumption 1 holds. Define g(θ) = minω∈Cm ‖
∑m
i=1 ωi∇`i(θ)‖

2, where Cm is the
probability simplex on [m]. Then for the vt and λi,t defined in Equation (7) and Equation (10), we have

m∑
i=1

λi,tg(θt) ≤ max
(
φt + c

√
g(θt), 0

)
.

Proof. The slack condition of the constrained optimization in Equation (7) says that441

λi,t
(
∇`i(θ)>vt − φt

)
= 0, ∀i ∈ [m].

Sum the equation over i ∈ [m] and note that vt = ∇F (θt) +
∑m
i=1 λi,t∇`i(θt). We get∥∥∥∥∥

m∑
i=1

λi,t∇`i(θt)

∥∥∥∥∥
2

+

(
m∑
i=1

λi,t∇`i(θt)

)>
∇F (θ)−

m∑
i=1

λi,tφt = 0. (14)
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Define

xt =

∥∥∥∥∥
m∑
i=1

λi,t∇`i(θt)

∥∥∥∥∥
2

, λ̄t =

m∑
i=1

λi,t, gt = g(θt) = min
ω∈Cm

∥∥∥∥∥
m∑
i=1

ωi∇`i(θt)

∥∥∥∥∥
2

.

Then it is easy to see that xt ≥ λ̄2t gt. Using Cauchy-Schwarz inequality,∣∣∣∣∣∣
(

m∑
i=1

λi,t∇`i(θ)

)>
∇F (θt)

∣∣∣∣∣∣ ≤ ‖∇F (θt)‖

∥∥∥∥∥
m∑
i=1

λi,t∇`i(θ)

∥∥∥∥∥ ≤ c√xt,
where we used ‖∇F (θt)‖ ≤ c by Assumption 1. Combining this with Equation (14), we have∣∣xt − λ̄tφt∣∣ ≤ c√xt.
Applying Lemma 3 yields the result.442

Lemma 3. Assume φ ∈ R, and x, λ, c, g ∈ R+ are non-negative real numbers and they satisfy

|x− λφ| ≤ c
√
x, x ≥ λ2g.

Then we have λg ≤ max(0, φ+ c
√
g).443

Proof. Square the first equation, we get

f(x) := (x− λφ)2 − c2x ≤ 0,

where f is a quadratic function. To ensure that f(x) ≤ 0 has a solution that satisfies x ≥ λ2g, we need to
have f(λ2g) ≤ 0, that is,

f(λ2g) = (λ2g − λφ)2 − c2λ2g ≤ 0.

This can hold under two cases:444

Case 1: λ = 0;445

Case 2: |λg − φ| ≤ c√g, and hence φ− c√g ≤ λg ≤ φ+ c
√
g.446

Under both case, we have
λg ≤ max(0, φ+ c

√
g).

447

Lemma 4. Let {αt : t ∈ R+} ⊆ R+ be a non-negative sequence with A :=
(∫∞

0
αγt dt

)1/γ
< ∞, where

γ ≥ 1, and B = supt αt <∞. Then we have

1

t

∫ t

0

(
α2
s + αs

)
ds ≤ (B + 1)At−1/γ .

Proof. Let η = γ
γ−1 , so that 1/η + 1/γ = 1. We have by Holder’s inequality,∫ t

0

αsds ≤
(∫ t

0

αγsds

)1/γ (∫ t

0

1ηds

)1/η

≤ At1/η = At1−1/γ .

and hence
1

t

∫ t

0

(
α2
s + αs

)
ds ≤ B + 1

t

∫ t

0

αsds ≤ (B + 1)At−1/γ .

448
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Algorithm 1 Pareto Navigating Gradient Descent
1: Initialize θ0; decide the step size ξ, and the control function φ in Equation (8) (including the threshold
e > 0 and the descending rate {αt}).

2: for iteration t do

θt+1 ← θt − ξvt, vt = ∇F (θt) +

m∑
i=1

λi,t∇`i(θt), (15)

where λi,t = 0, ∀i ∈ [m] if g(θt) ≤ e, and {λi,t}mt=1 is the solution of Equation (10) with φ(θt) =
αtg(θt) when g(θt) > e.

3: end for

B PRACTICAL IMPLEMENTATION449

Hyper-parameters Our algorithm introduces two hyperparameters {αt} and e over vanilla gradient descent.450

We use constant sequence αt = α and we take α = 0.5 unless otherwise specified. We choose e by451

e = γe0, where e0 is an exponentially discounted average of 1
m

∑m
i=1 ‖∇`i(θt)‖

2 over the trajectory so that452

it automatically scales with the magnitude of the gradients of the problem at hand. In the experiments of this453

paper, we simply fix γ = 0.1 unless specified.454

Solving the Dual Problem Our method requires to calculate {λi,t}mt=1 with the dual optimization problem455

in Equation (10), which can be solved with any off-the-shelf convex quadratic programming tool. In this456

work, we use a very simple projected gradient descent to approximately solve Equation (10). We initialize457

{λi,t}mt=1 with a zero vector and terminate when the difference between the last two iterations is smaller than458

a threshold or the algorithm reaches the maximum number of iterations (we use 100 in all experiments).459

The whole algorithm procedure is summarized in Algorithm 1.460

C EXPERIMENTS461

C.1 FINDING PREFERRED PARETO MODELS462

C.1.1 RATIO-BASED CRITERION463

The non-uniformity score from (Mahapatra & Rajan, 2020) that we use in Figure 1 is defined as

FNU(θ) =
m∑
t=1

ˆ̀
t(θ) log

(
ˆ̀
t(θ)

1/m

)
, ˆ̀

t(θ) =
rt`t(θ)∑

s∈[m] rs`s(θ)
. (16)

We fix the other experiment settings the same as Mahapatra & Rajan (2020) and use γ = 0.01 and α = 0.25464

for this experiment reported in the main text. We defer the ablation studies on the hyper-parameter α and γ to465

Section C.3.466

C.1.2 ZDT2-VARIANT467

We consider the ZDT2-Variant example used in Ma et al. (2020) with the same experiment setting, in468

which the Pareto set is a cylindrical surface, making the problem more challenging. We consider the469

same criteria, e.g. weighted distance and complex cosine used in the main context with different choices470

of r1 = [0.2, 0.4, 0.6, 0.8]. We use the default hyper-parameter set up, choosing α = 0.5 and r = 0.1.471
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Figure 2: Trajectories of solving OPT-in-Pareto with weighted distance and complex cosine as criterion using
PNG. The green dots are the final converged models. PNG is able to successfully locate the correct models in
the Pareto set.

For complex cosine, we use MGD updating for the first 150 iterations. Figure 2 shows the trajectories,472

demonstrating that PNG works pretty well for the more challenging ZDT2-Variant tasks.473

C.1.3 GENERAL CRITERIA: THREE-TASK LEARNING ON THE NYUV2 DATASET474

We show that PNG is able to handle large-scale multitask learning problems by deploying it on a three-475

task learning problem (segmentation, depth estimation, and surface normal prediction) on NYUv2 dataset476

(Silberman et al., 2012). The main goal of this experiment is to show that: 1. PNG is able to handle477

OPT-in-Pareto in a large-scale neural network; 2. With a proper design of criteria, PNG enables to do478

targeted fine-tuning that pushes the model to move towards a certain direction. We consider the same479

training protocol as Liu et al. (2019) and use the MTAN network architecture. Start with a model trained480

with equally weighted linear scalarization and our goal is to further improve the model’s performance481

on segmentation and surface normal estimation while allowing some sacrifice on depth estimation. This482

can be achieved by many different choices of criterion and in this experiment, we consider the following483

design: F (θ) = (`seg(θ)× `surface(θ))/(0.001 + `depth(θ)). Here `seg, `surface and `depth are the loss functions484

for segmentation, surface normal prediction and depth estimation, respectively. The constant 0.001 in the485

denominator is for numeric stability. We point out that our design of criterion is a simple heuristic and might486

not be an optimal choice and the key question we study here is to verify the functionality of the proposed487

PNG. As suggested by the open-source repository of Liu et al. (2019), we reproduce the result based on the488

provided configuration. To show that PNG is able to move the model along the Pareto front, we show the489

evolution of the criterion function and the norm of the MGD gradient during the training in Figure 3. As we490

can see, PNG effectively decreases the value of criterion function while the norm of MGD gradient remains491

the same. This demonstrates that PNG is able to minimize the criterion by searching the model in the Pareto492

set. Table 3 compares the performances on the three tasks using standard training and PNG, showing that493

PNG is able to improve the model’s performance on segmentation and surface normal prediction tasks while494

satisfying a bit of the performance in depth estimation based on the criterion.495

C.2 FINDING DIVERSE PARETO MODELS496

C.2.1 EXPERIMENT DETAILS497

19



Under review as a conference paper at ICLR 2022

Algorithm
Segmentation Depth Surface Normal

(Higher Better) (Lower Better) Angle Distance
(Lower Better) Within t◦

mIoU Pix Acc Abs Err Rel Err Mean Median 11.25 22.5 30
Standard 27.09 56.36 0.6143 0.2618 31.46 27.37 19.51 41.71 54.61

PNG 28.23 56.66 0.6161 0.2632 31.06 26.50 21.06 43.41 55.93

Table 3: Comparing the multitask performance of standard training using linear scalarization with equally
weighted losses and the targeted fine-tuning based on PNG.

Itertions

V
al

ue
s

Criterion
Norm of MGD Grad

Figure 3: The evolution of Criterion F and the norm
of MGD gradient when trained using PNG on NYUv2
dataset with MTAN network. PNG effectively de-
creases the criterion while ensuring the model is within
the Pareto set, since the norm of MGD gradient remains
unchanged.

We train the model for 100 epochs using Adam op-498

timizer with batch size 256 and 0.001 learning rate.499

To encourage diversity of the models, following the500

setting in Mahapatra & Rajan (2020), we use equally501

distributed preference vectors for linear scalarization502

and EPO. Note that the stochasticity of using mini-503

batches is able to improve the performance of Pareto504

approximation for free by also using the intermedi-505

ate checkpoints to approximate P . To fully exploit506

this advantage, for all the methods, we collect check-507

points every epoch to approximate P , starting from508

epoch 60.509

C.2.2 EVALUATION METRIC DETAILS510

We introduce the definition of the used metric for511

evaluation. Given a set P̂ = {θ1, . . . , θN} that we512

use to approximate P , its IGD+ score is defined as:513

IGD+(P̂) =

∫
P∗
q(θ, P̂)dµ(θ), q(θ, P̂) = min

θ̂∈P̂

∥∥∥∥(`(θ̂)− `(θ)
)
+

∥∥∥∥ ,
where µ is some base measure that measures the importance of θ ∈ P and (t)+ := max(t, 0), applied on514

each element of a vector. Intuitively, for each θ, we find a nearest θ̂ ∈ P̂ that approximates θ best. Here515

the (·)+ is applied as we only care the tasks that θ̂ is worse than θ. In practice, a common choice of µ can516

be a uniform counting measure with uniformly sampled (or selected) models from P . In our experiments,517

since we can not sample models from P , we approximate P by combining P̂ from all the methods, i.e.,518

P ≈ ∪m∈{Linear,MGD,EPO,PNG}P̂m, where P̂m is the approximation set produced by algorithm m.519

This approximation might not be accurate but is sufficient to compare the different methods,520

The Hypervolume score of P̂ , w.r.t. a reference point `r ∈ Rm+ , is defined as521

HV(P̂) = µ
({

` = [`1, ..., `m] ∈ Rm | ∃θ ∈ P̂, s.t. `t(θ) ≤ `t ≤ `rt ∀t ∈ [m]
})

,

where µ is again some measure. We use `r = [0.6, 0.6] for calculating the Hypervolume based on loss and522

set µ to be the common Lebesgue measure. Here we choose 0.6 as we observe that the losses of the two tasks523

are higher than 0.6 and 0.6 is roughly the worst case. When calculating Hypervolume based on accuracy, we524

simply flip the sign.525
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Loss Acc
Hv↑ (10−2) IGD↓ (10−2) Hv↑ (10−2) IGD↓ (10−2)

γ = 0.1
α = 0.25 7.89± 0.11 0.041± 0.012 9.39± 0.038 0.0056± 0.002
α = 0.5 7.86± 0.12 0.043± 0.012 9.39± 0.038 0.0056± 0.002
α = 0.75 7.84± 0.11 0.045± 0.013 9.38± 0.037 0.0057± 0.002

α = 0.5
γ = 0.01 7.86± 0.12 0.042± 0.012 9.39± 0.038 0.0056± 0.002
γ = 0.1 7.86± 0.12 0.043± 0.012 9.39± 0.038 0.0056± 0.002
γ = 0.25 7.85± 0.11 0.042± 0.012 9.39± 0.036 0.0056± 0.002

Table 4: Ablation study based on Multi-Mnist dataset with different choice of α and γ.

C.2.3 ABLATION STUDY526

We conduct ablation study to understand the effect of α and γ using the Pareto approximation task on527

Multi-Mnist. We compare PNG with α = 0.25, 0.5, 0.75 and γ = 0.01, 0.1, 0.25. Figure 4 summarizes the528

result. Overall, we observe that PNG is not sensitive to the choice of hyper-parameter.529

C.2.4 COMPARING WITH THE SECOND ORDER APPROACH530

We give a discussion on comparing our approach with the second order approaches proposed by Ma et al.531

(2020). In terms of algorithm, Ma et al. (2020) is a local expansion approach. To apply Ma et al. (2020),532

in the first stage, we need to start with several well distributed models (i.e., the ones obtained by linear533

scalarization with different preference weights) and Ma et al. (2020) is only applied in the second stage to534

find the neighborhood of each model. The performance gain comes from the local neighbor search of each535

model (i.e. the second stage).536

In comparison, PNG with energy distance is a global search approach. It improves the well-distributedness537

of models in the first stage (i.e. it’s a better approach than simply using linear scalarization with different538

weights). And thus the performance gain comes from the first stage. Notice that we can also apply Ma et al.539

(2020) to PNG with energy distance to add extra local search to further improve the approximation.540

In terms of run time comparison. We compare the wall clock run time of each step of updating the 5 models541

using PNG and the second order approach in Ma et al. (2020). We calculate the run time based on the542

multi-MNIST dataset using the average of 100 steps. PNG uses 0.3s for each step while Ma et al. 2020 uses543

16.8s. PNG is 56x faster than the second order approach. And we further argue that, based on time complexity544

theory, the gap will be even larger when the size of the network increases.545

C.3 UNDERSTANDING PNG DYNAMICS546

We draw more analysis to understand the training dynamics of PNG.547

Different Staring Points We give analysis on PNG with different initializations showing that PNG is548

more robust to the initialization than other approaches such as Lin et al. (2019). We consider the Pareto set549

approximation tasks and reuse synthetic example introduced in Section 5.1. We consider learning 5 models to550

approximate the Pareto front staring from two different bad starting points. Specifically, in the upper row of551

Figure 4, we consider initializing the models using linear scalarization. Due to the concavity of the Pareto552

front, linear scalarization can only learns models at the two extreme end of the Pareto front. The second row553

uses MGD for initialization and the models is scattered at an small region of the Pareto front. Different from554

the algorithm proposed by Lin et al. (2019) which relies on a good initialization, using the proposed energy555

21



Under review as a conference paper at ICLR 2022

0.0 0.2 0.4 0.6 0.8 1.0 l1

0.0

0.2

0.4

0.6

0.8

1.0
l 2

Pareto Front

Models

0.0 0.2 0.4 0.6 0.8 1.0 l1

0.0

0.2

0.4

0.6

0.8

1.0

l 2

0.0 0.2 0.4 0.6 0.8 1.0 l1

0.0

0.2

0.4

0.6

0.8

1.0

l 2

0.0 0.2 0.4 0.6 0.8 1.0 l1

0.0

0.2

0.4

0.6

0.8

1.0

l 2

0.0 0.2 0.4 0.6 0.8 1.0 l1

0.0

0.2

0.4

0.6

0.8

1.0

l 2

0.0 0.2 0.4 0.6 0.8 1.0 l1

0.0

0.2

0.4

0.6

0.8

1.0

l 2

0.0 0.2 0.4 0.6 0.8 1.0 l1

0.0

0.2

0.4

0.6

0.8

1.0

l 2

0.0 0.2 0.4 0.6 0.8 1.0 l1

0.0

0.2

0.4

0.6

0.8

1.0

l 2

Figure 4: Evolution of models from different initialization. Upper row uses initialization with linear
scalarization and lower row uses initialization from MDG. From left to right: the evolution of models during
training. PNG is robust to initializations. In both two cases of very poor initialization, PNG is still able to
move the models so that they are eventually well distributed on the Pareto set.

distance function, PNG pushes the models to be equally distributed on the Pareto Front without the need of556

any prior information of the Pareto front even with extremely bad starting point.557

Trajectory Visualization with Different Hyper-parameters We also give more visualization on the PNG558

trajectory when using different hyper-parameters. We reuse synthetic example introduced in Section 5.1559

for studying the hyper-parameters α and γ. We fix α = 0.25 and vary γ = 0.1, 0.05, 0.01, 0.1; and fix560

γ = 0.01 and vary α = 0.1, 0.25, 0.5, 0.75. Figure 5 plots the trajectories. As we can see, when γ is properly561

chosen, with different α, PNG finds the correct models with different trajectories. Different α determines the562

algorithm’s behavior of balancing the descent of task losses or criterion objectives. On the other hand, with563

too large γ, the algorithm fails to find a model that is close to P∗, which is expected.564

C.4 IMPROVING MULTITASK BASED DOMAIN GENERALIZATION565

We argue that many other deep learning problems also have the structure of multitask learning when multiple566

losses presents and thus optimization techniques in multitask learning can also be applied to those domains.567

In this paper we consider the JiGen (Carlucci et al., 2019b). JiGen learns a model that can be generalized to568

unseen domain by minimizing a standard cross-entropy loss `class for classification and an unsupervised loss569

`jig based on Jigsaw Puzzles:570

`(θ) = (1− ω)`class(θ) + ω`jig(θ).

The ratio between two losses, i.e. ω, is important to the final performance of the model and requires a571

careful grid search. Notice that JiGen is essentially searching for a model on the Pareto front using the linear572

scalarization. Instead of using a fixed linear scalarization to learn a model, one natural questions is that573
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Figure 5: Ablation study on OPT-in-Pareto with different ratio constraint of objectives. Upper row, from
left to right: fixing α = 0.25, γ = 0.1, 0.05, 0.01, 0.001; Lower row, from left to right: fixing γ = 0.01,
α = 0.1, 0.25, 0.5, 0.75. By comparing the figures in the first row, we find that choosing a too large γ make
the final converged model be far away from the Pareto set, which is as expected. By comparing the figures in
the second row, we find that changing α make PNG give different priority in making Pareto improvement or
descent on F . When α is larger (the right figures), PNG will first move the model to Pareto set and start to
decrease F after that.
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whether it is possible to design a mechanism that dynamically adjusts the ratio of the losses so that we can574

achieve to learn a better model.575

We give a case study here. Motivated by the adversarial feature learning (Ganin et al., 2016), we propose576

to improve JiGen such that the latent feature representations of the two tasks are well aligned. Specifically,577

suppose that Φclass(θ) = {φclass(xi, θ)}ni=1 and Φjig(θ) = {φjig(xi, θ)}ni=1 is the distribution of latent feature578

representation of the two tasks, where xi is the i-th training data. We consider FPD as some probability metric579

that measures the distance between two distributions, we consider the following problem:580

min
θ∈P∗

FPD[Φclass(θ),Φjig(θ)].

With PD as the criterion function, our algorithm automatically reweights the ratio of the two tasks such that581

their latent space is well aligned.582

Setup We fix all the experiment setting the same as Carlucci et al. (2019b). We use the Alexnet and Resnet-18583

with multihead pretrained on ImageNet as the multitask network. We evaluate the methods on PACS (Li et al.,584

2017), which covers 7 object categories and 4 domains (Photo, Art Paintings, Cartoon and Sketches). Same to585

Carlucci et al. (2019b), we trained our model considering three domains as source datasets and the remaining586

one as target. We implement FPD that measures the discrepancy of the feature space of the two tasks using587

the idea of Domain Adversarial Neural Networks (Ganin & Lempitsky, 2015) by adding an extra prediction588

head on the shared feature space to predict the whether the input is for the classification task or Jigsaw task.589

Specifically, we add an extra linear layer on the shared latent feature representations that is trained to predict590

the task that the latent space belongs to, i.e.,591

FPD(Φclass(θ),Φjig(θ)) = min
w,b

1

n

n∑
i=1

log(σ(w>φclass(xi, θ))) + log(1− σ(w>φclass(xi, θ))).

Notice that the optimal weight and bias for the linear layer depends on the model parameter θ, during the592

training, both w, b and θ are jointly updated using stochastic gradient descent. We follow the default training593

protocol provided by the source code of Carlucci et al. (2019b).594

Baselines Our main baselines are JiGen (Carlucci et al., 2019b); JiGen + adv, which adds an extra domain595

adversarial loss on JiGen; and our PNG with domain adversarial loss as criterion function. In order to run596

statistical test for comparing the methods, we run all the main baselines using 3 random trials. We use the597

released source code by Carlucci et al. (2019b) to obtained the performance of JiGen. For JiGen+adv, we use598

an extra run to tune the weight for the domain adversarial loss. Besides the main baselines, we also includes599

TF (Li et al., 2017), CIDDG (Li et al., 2018b), MLDG (Li et al., 2018a) , D-SAM (D’Innocente & Caputo,600

2018) and DeepAll (Carlucci et al., 2019b) as baselines with the author reported performance for reference.601

Result The result is summarized in Table 5 with bolded value indicating the statistical significant best methods602

with p-value based on matched-pair t-test less than 0.1. Combining Jigen and PNG to dynamically reweight603

the task weights is able to implicitly regularizes the latent space without adding an actual regularizer which604

might hurt the performance on the tasks and thus improves the overall result.605
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Method Art paint Cartoon Sketches Photo Avg
AlexNet

TF 0.6268 0.6697 0.5751 0.8950 0.6921
CIDDG 0.6270 0.6973 0.6445 0.7865 0.6888
MLDG 0.6623 0.6688 0.5896 0.8800 0.7001
D-SAM 0.6387 0.7070 0.6466 0.8555 0.7120
DeepAll 0.6668 0.6941 0.6002 0.8998 0.7152

JiGen 0.6855± 0.004 0.6889±0.002 0.6831±0.011 0.8946± 0.008 0.7380± 0.002
JiGen + adv 0.6857± 0.004 0.6837± 0.003 0.6753± 0.008 0.8980± 0.001 0.7357± 0.003
Jigen + PNG 0.6914±0.005 0.6903±0.002 0.6855±0.007 0.9044±0.003 0.7429±0.002

ResNet-18
D-SAM 0.7733 0.7243 0.7783 0.9530 0.8072
DeepAll 0.7785 0.7486 0.6774 0.9573 0.7905

JiGen 0.8009± 0.004 0.7363± 0.007 0.7046± 0.013 0.9629±0.002 0.8012± 0.002
JiGen + adv 0.7923± 0.006 0.7402± 0.004 0.7188± 0.005 0.9617± 0.001 0.8033± 0.001

JiGen + PNG 0.8014±0.005 0.7538±0.001 0.7222±0.006 0.9627±0.002 0.8100±0.005

Table 5: Comparing different algorithms for domain generalization using dataset PACS and two network
architectures.
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