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Abstract

Despite the widespread utilization of post-hoc explanation methods for graph
neural networks (GNNs) in high-stakes settings, there has been a lack of
comprehensive evaluation regarding their quality and reliability. This evaluation
is challenging primarily due to the data’s non-Euclidean nature, arbitrary size,
and complex topological structure. In this context, we argue that the consistency
of GNN explanations, denoting the ability to produce similar explanations for
input graphs with minor structural changes that do not alter their output
predictions, is a key requirement for effective post-hoc GNN explanations. To
fulfill this gap, we introduce a novel metric based on Fused Gromov–Wasserstein
distance to quantify consistency. Finally, we demonstrate that current methods
do not perform well according to this metric, underscoring the need for further
research on reliable GNN explainability methods.

1 Introduction

Graph neural networks (GNNs) [19, 17, 13] have experienced growing success across various
domains, including molecular chemistry, biological networks, and recommendation systems
[12, 14, 23, 16]. However, their ability to learn intricate functions of structured inputs often
comes at the price of limited comprehensibility of the resulting model. GNNs frequently require
millions to billions of operations to transform input graphs into predictions. In critical fields like
healthcare, where deploying these models has significant implications, their lack of interpretability
poses a significant challenge [30]. To address this issue, many post-hoc explainability methods
have been developed to explain GNNs predictions[35, 37].
As the number of proposed methods for explaining GNNs continues to increase, it is crucial to
ensure their reliability. However, the field of explainability in graph machine learning is still in its
early stages, lacking standardized evaluation strategies and dependable data resources to assess,
test, and compare GNN explanations [3, 2, 1]. Commonly used metrics such as explanation
fidelity heavily rely on implementation details of the explanation method (e.g., the perturbation
function) and do not provide a true picture of the explanation quality [3].
Although a few studies—e.g., Agarwal et al. [3]—have recognized this challenge, they often
rely on synthetic datasets with limited ground-truth explanations for their analyses. However,
depending solely on synthetic data and associated ground-truth explanations is inadequate, as
they do not represent the diverse range of real-world graph datasets [20]. Furthermore, it is
crucial to acknowledge that multiple underlying justifications can result in the same correct class
labels, leading to redundant or non-unique explanations [20]. When a GNN model is trained,
it may only capture one of these justifications or even rely on an entirely different rationale
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altogether, similar to how different humans may have different valid and correct justifications
for the same decision. Consequently, evaluating the explanation produced by a state-of-the-art
method using “the ground-truth explanation” is incorrect since the underlying GNN model may
not depend on that specific ground-truth explanation.
Given this, we argue that consistency to small structural perturbations is an essential property
that interpretability methods for GNNs should satisfy to generate meaningful explanations. At its
most intuitive level, this requirement suggests that similar graphs with identical GNN predictions
should not lead to significantly different explanations. There are two key arguments supporting
the importance of consistency as a crucial property for post-hoc GNN explainability methods.
Firstly, for an explanation to be considered valid in a particular context, it should remain relatively
stable in its immediate surroundings, regardless of how it is represented (e.g., as saliency, a score
function, or a linear model). On the other hand, if we aim to obtain an explanation that holds
predictive power, then the consistency of the simplified model suggests that it can serve as an
approximate substitute for the full complex GNN, at least within a small neighborhood.
In this context, the objective of this study is to examine whether widely used GNN explainability
methods adhere to the principle of consistency. To achieve this, we initially formalize the
concept of consistency that aligns with our intuitive understanding, as detailed in the following
sections. Then, we evaluate the performance of different popular GNN explainers based on this
criterion both quantitatively and qualitatively. Furthermore, we introduce a novel consistency
benchmark dataset sourced from the real-world MUTAG dataset. This dataset encompasses 18
molecules exhibiting nearly identical structures, carefully chosen to assess the consistency of GNN
explanations. Lastly, we summarize our findings and explore potential approaches to enhance
consistency in GNN explainability methods.

2 Preliminaries

Capturing the similarity between structured data is a challenging endeavor that involves harnessing
both feature and structural information [11]. This task requires finding ways to associate these two
types of information to effectively leverage their combined power. Titouan et al. [27] addresses
the problem of computing distances between structured objects, specifically undirected graphs,
by treating them as probability distributions within a specific metric space. They introduce a
transportation distance that minimizes the overall cost of transporting probability masses, thereby
revealing the underlying geometric nature of the space where structured objects reside. This
approach, known as Fused Gromov–Wasserstein (FGW) distance, stands out from metrics like
Wasserstein or Gromov–Wasserstein, which solely focus on either node attributes (by employing
a metric in the feature space) or structure (by considering structure as a metric space). Instead,
FGW distance jointly exploits both feature and structural information [14, 7, 15].

2.1 Graphs as probability measures

Let us define undirected graphs as tuples in the form of G = (V, E , ℓf , ℓs), where (V, E) represents
the set of vertices and edges of the graph. The node-attribute function ℓf : V → Ωf associates
each vertex vi ∈ V with a feature ai

def= ℓf (vi) in a feature metric space (Ωf , d). We will refer
to the collection of all the features (ai)i of the graph as the feature information. Similarly, the
function ℓs : V → Ωs maps each vertex vi in the graph to its structure representation xi

def= ℓs(vi)
in a structure space (Ωs, C) that is specific to each graph. Here, C : Ωs × Ωs → R+ is a
symmetric function that measures the similarity between nodes in the graph. However, unlike
the feature space, Ωs is implicit, and in practical terms, knowing the similarity measure C is
sufficient. For simplicity, we will use C to denote both the structure similarity measure and the
matrix that encodes this similarity between pairs of nodes in the graph (C(i, k) = C(xi, xk))i,k,
allowing for a slight abuse of notation.
The nature of the similarity measure C depends on the context. It can represent various aspects
such as the neighborhood information of the nodes, the edge information of the graph, or, more
generally, it can capture the distance between nodes, such as the shortest-path distance or the
harmonic distance [29, 27, 15]. In cases where C functions as a metric, like the shortest-path
distance, we generally consider the structure equipped with the metric space (Ωs, C). The
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collection of all structure embeddings (xi)i of the graph will be referred to as the structure
information.
Titouan et al. [27] and Chen et al. [7] propose an enrichment to the previously described graph
by introducing a histogram that indicates the relative importance of the vertices in the graph.
To achieve this, assuming the graph has n vertices, each vertex is assigned a weight (hi)i ∈ Σn.
This leads to the concept of structured data, represented by a tuple S = (G, hG), where G is the
graph as previously defined, and hG is a function that assigns a weight to each vertex. With this
definition, the entire structured data can be described by a fully supported probability measure
over the product space feature/structure, denoted by µ =

∑n
i=1 hiδ(xi,ai). This measure captures

the complete information of the structured data. When all the weights are equal (i.e., hi = 1
n ),

indicating that all vertices have the same relative importance, the structured data retains the
same information as the original graph. However, assigning different weights can encode a priori
information or biases.
Titouan et al. [27] and Chen et al. [7] propose an enrichment to the previously described graph
by introducing a histogram that indicates the relative importance of the vertices in the graph.
To achieve this, assuming the graph has n vertices, each vertex is assigned a weight (hi)i ∈ Σn.
This leads to the concept of structured data, represented by a tuple S = (G, hG), where G is the
graph as previously defined, and hG is a function that assigns a weight to each vertex. With this
definition, the entire structured data can be described by a fully supported probability measure
over the product space feature/structure, denoted by µ =

∑n
i=1 hiδ(xi,ai). This measure captures

the complete information of the structured data. When all the weights are equal (i.e., hi = 1
n ),

indicating that all vertices have the same relative importance, the structured data retains the
same information as the original graph. However, assigning different weights can encode a priori
information or biases.

2.2 Fused Gromov–Wasserstein distance

In the context of measuring the distance between two graphs G1 and G2, we describe them by their
respective probability measures, µ =

∑n
i=1 hiδ(xi,ai) and ν =

∑m
i=1 gjδ(zj ,bj), where h ∈ Σn

and g ∈ Σm are distributions. We assume, without loss of generality, that (xi, ai) ̸= (xj , aj) for
i ̸= j (similarly for zj and bj).
Let Π(h, g) be the set of all valid couplings between h and g, defined as:

Π(h, g) = {π ∈ Rn×m
+ s.t.

n∑
i=1

πi,j = hj ,

m∑
j=1

πi,j = gi}, (1)

where πi,j represents the amount of mass transferred from bin hi to gj for a particular coupling
π. The matrix π represents a probabilistic matching of the nodes between the two graphs.
MAB = (d(ai, bj))i,j is a n×m matrix that represents the distances between the features ai
and bj . The structure matrices are represented by C1 and C2. The marginals of µ and ν with
respect to the structure and feature are denoted as µX , µA (respectively, νZ , νB). To quantify
the similarity between the structures, we utilize the 4-dimensional tensor L(C1, C2). This tensor
compares pairwise distances within each graph and is defined as follows:

Li,j,k,l(C1, C2) = |C1(i, k) − C2(j, l)|. (2)

The FGW distance, regarded as an Optimal Transport discrepancy [27], is defined with a
trade-off parameter α ∈ [0, 1] as follows:

FGWq,α(µ, ν) = min
π∈Π(h,g)

Eq(MAB , C1, C2, π) (3)

where
Eq(MAB , C1, C2, π) =

〈
(1 − α)Mq

AB + αL(C1, C2)q ⊗ π, π
〉

=
∑
i,j,k,l

(1 − α)d(ai, bj)q + α|C1(i, k) − C2(j, l)|qπi,jπk,l. (4)

The FGW distance aims to find a coupling π between the vertices of the graphs that minimizes
the cost function Eq. This cost function is a linear combination of the cost d(ai, bj) associated
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with transporting a feature ai to a feature bj and the cost |C1(i, k) − C2(j, l)| associated with
transporting pairs of nodes within each structure.
The optimal coupling in FGW tends to associate pairs of features and structure points that have
similar distances within each structure pair and similar features [27]. This property allows FGW
to handle structured data with continuous-attributed or discrete-labeled nodes, thanks to the
definition of the cost function d. Additionally, FGW can be computed even when the graphs have
a different number of nodes, making it a versatile measure for comparing subgraph outputs of
GNN explainers [15].

3 Consistency of GNN explanation methods

We are interested in the concept of consistency regarding the variations in the explanation of
a GNN prediction when there are changes in the structure of the input graph leading to that
prediction. In simpler terms, if we make slight modifications to the input graph’s structure
without significantly altering the model’s prediction, we expect the subgraph explanation given
by GNN explainers for the modified graph to remain relatively unchanged. However, the crucial
finding and primary motivation of this study indicate that most current post-hoc GNN explanation
methods do not exhibit this desired consistency.
Figure 1 shows the explanations provided by three popular perturbation-based methods, SubgraphX
[36], GStarX [37], and PGEplainer [22], for the predictions of a Graph Convolutional Network
(GCN) classifier on a real-world MUTAG [35, 33] dataset. As expected, their generated subgraphs
are fairly stable when explaining non-mutagenic molecules with simpler structures, but for more
complex molecules, they yield explanations that are considerably different for very similar molecules
and are often inconsistent with each other.
The inconsistency demonstrated in Figure 1 is the phenomenon we seek to investigate. Visual
inspection of different graphs, although illustrative, is subjective and infeasible for more complex
graphs. To conclusively gauge this (lack of) consistency, we need objective tools to quantify
it. In this paper, we turn the task of evaluating the consistency of GNN explainers into a
graph-matching problem [31]. We do this by assessing the distance between subgraph outputs
relative to the distance of their input graphs. Specifically, we propose to incorporate FGW
distance as a parametric notion of consistency that measures relative changes in the generated
subgraphs with respect to the input graphs.

Definition 3.1. Let f(·) : G −→ Y be a trained GNN model that maps an input graph G ∈ G
to its predicted class y ∈ Y. The explanation model, denoted as ψexp, generates the subgraph
G∗ = ψexp(f(·), G, y) in order to explain the GNN prediction y for the input graph G.
We propose to quantify the consistency of an explanation model ψexp for each graph Gi ∈ G as

Lψexp(Gi) = 1
|N (Gi)|

∑
Gj∈Nε(Gi)

(
FGW(G(∗)

j , G
(∗)
i )

FGW(Gj , Gi) + ϵ

)
, (5)

where Nε(Gi) = {Gj ∈ G | FGW(Gj , Gi) ≤ ε ∧ p(yj) ≈ p(yi)}.

Remark 3.2. Please note that Lψexp in Definition 3.1 is a sample-dependent quantity, and there
is no unique ideal quantity that is universally desirable. The desirability of this quantity depends
on the specific application and the objective of explainability. In this context, we compare different
methods by making relative assessments.
Remark 3.3. Please note that in 5, we have the flexibility to utilize a different distance metric
instead of FGW. For instance, we also employed the Euclidean distance on the latent repre-
sentations of two graphs as an alternative baseline. However, there are several advantages to
using FGW: i) It does not introduce additional sources of bias, such as the need for additional
unsupervised/self-supervised graph learning to obtain graph representations. ii) FGW does not
necessitate equal graph sizes for calculating distances. iii) FGW can simultaneously account for
changes in both graph structure and node attributes.
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Figure 1: The GCN explainability for 14 molecules with minor structural changes from the
MUTAG dataset. Carbon, oxygen, and nitrogen atoms are highlighted in yellow, red, and blue,
respectively. The top, middle, and bottom rows display the SubgraphX, GstarX, and PGExplainer
explanations. The molecules enclosed in red boxes represent instances misclassified by the GCN.

4 Experiments

In addition to the previously mentioned SubgraphX, GStarX, and PGExplainer, we also assess
the consistency of perturbation-based GNN explanation methods, namely GNNExplainer and
GraphSVX. These evaluations utilize implementations of these methods from the DIG package
[21] and GStarX [37].
To establish a new consistency benchmark dataset, we leverage the real-world MUTAG molecule
dataset [8]. We identify 18 molecules with nearly identical structures, with 10 of them being
labeled as Mutagenic. This dataset forms the basis for our assessment. Furthermore, we extend
our analysis to evaluate the consistency of various GNN explainers using the proposed metric on
Graph-Twitter [35]. This non-molecular dataset demonstrates the generality of our evaluation
method beyond molecular data.
As a baseline to demonstrate the effectiveness of the proposed FGW-based consistency metric,
we also employ the Euclidean distance (ED) between the graph representations of the MUTAG
dataset. To achieve this, we first trained a graph contrastive learning model (graphCL) [34] on
the MUTAG dataset. Subsequently, we embed the identified subgraphs by passing them through
the pretrained graphCL encoder. Finally, we compute the Euclidean distance between these two
embedding vectors.
Note. The Lψexp metric captures the consistency based on the FGW distance between generated
subgraphs. We also calculate L(o)

ψexp based on FGW distance between G(o) = G \ G(∗) which
have been extracted by removing identified subgraphs from the input graphs.
Table 1 shows a consistency comparison among various GNN explainers for both Lψexp and
L(o)ψexp. In the context of FGW, lower values are preferred as they indicate that the generated
subgraphs are highly similar for graphs with similar input structures and the same GNN predictions.
According to this metric, SubgraphX outperforms the other baselines, possibly because it excels
in identifying connected subgraphs. Table 2 shows a similar comparison for the Graph-Twitter
dataset. These results demonstrate the effectiveness of the proposed consistency metric across
various types of graphs.
FGW is a robust metric. When comparing the ED metric to FGW, we observe that the
reliability of ED can be suboptimal in certain cases, such as non-mutagenic samples in SubgraphX.
Specifically, Figure 1 shows that SubgraphX has identified carbon–nitrogen bonds as the important
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Table 1: Consistency comparison of different perturbation-based GNN explanability methods over
the proposed MUTAG benchmark dataset based on FGW and Euclidean distance (ED).

Metric Method Mutagenic Non-mutagenic Both classes
Lψexp L

(o)
ψexp Lψexp L

(o)
ψexp Lψexp L

(o)
ψexp

SubgraphX 0.21± 0.15 82.62.93± 49.77 0.37± 0.07 99.10±18.03 0.24± 0.15 85.92± 45.72
GstarX 54.35± 23.41 261.17± 112.58 20.32± 9.59 407.83± 204.74 47.55± 25.34 290.50± 148.21

FGW (↓) PGExplainer 15.39± 11.33 112.10± 74.91 14.55± 9.49 115.13± 69.95 15.09± 10.72 113.17± 73.2
GNNexpainer 57.45± 28.57 172.17± 86.87 63.03± 28.74 169.28± 75.10 59.43± 28.76 171.15± 82.90
GraphSVX 34.22± 21.23 164.02± 58.38 31.12± 18.34 176.66± 55.05 33.12± 20.30 168.50± 57.54

SubgraphX 0.99± 0.05 0.94± 0.05 0.25± 0.20 0.77±0.10 0.84± 0.31 0.91± 0.09
GstarX 0.94± 0.07 0.98± 0.07 0.67± 0.17 0.55± 0.35 0.88± 0.14 0.89± 0.23

ED (↑) PGExplainer 0.99± 0.02 0.99± 0.03 0.99± 0.02 0.99± 0.02 0.99± 0.03 0.99± 0.02
GNNexpainer 0.90± 0.08 0.83± 0.15 0.92± 0.06 0.89± 0.09 0.91± 0.07 0.86± 0.14
GraphSVX 0.85± 0.12 0.92± 0.07 0.87± 0.13 0.95± 0.05 0.86± 0.13 0.93± 0.06

subgraphs for all non-mutagenic samples with correct GNN predictions. Therefore, we expect
to obtain high values for their similarities. However, the ED-based similarities of subgraph
embeddings for non-mutagenic samples, as identified by SubgraphX, are quite low (Table 1). We
posit that this discrepancy may be attributed to a distribution shift in the identified subgraphs.
In such cases, the identified subgraphs are quite small, and the GraphCL encoder may struggle to
correctly capture their representations due to generalizability issues. This raises questions about
the effectiveness of the ED-based metric for consistency evaluation. On the other hand, FGW
operates within the primary domain and does not suffer from out-of-distribution generalizability
issues, making it a robust metric for evaluating consistency.
Subgraph discrepancies between misclassified and correctly classified samples. We then
investigate the similarity between subgraph explanations of similar graphs which were correctly
classified versus misclassified. As described above, GNN explainers should be consistent, in that
similar graphs which were correctly classified should have similar subgraph explanations. In a
related vein, we also believe that if two graphs are similar, but one is correctly predicted, and the
other is misclassified, then the explanations should be different. To explore this, we calculate the
percentage increase in FGW distance for misclassified subgraphs compared to correctly classified
ones. Figure 2 shows that SubgraphX outperforms other GNN explainers in this regard. However,
the identified subgraphs for misclassified samples based on PGExplainer, GNNexplainer, and
GstarX are almost identical to their correctly classified counterparts.

0 50 100 150 200 250 300 350
Distance Increase Percentage (%)

SubgraphX
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GstarX
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GNNexpainer

M
Et

ho
ds

FGW

50 0 50 100 150 200 250
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Figure 2: The percentage increase in FGW distance for misclassified subgraphs with respect to
correctly classified ones for (Left) Lψexp and (Right) L(o)

ψexp
. Higher percentages are desirable

as they indicate that the explanations for two similar inputs but different GNN predictions are
different.

5 Discussion

In this study, our primary objective was to assess the consistency of widely used perturbation-based
GNN explanation frameworks when subjected to minor alterations in the input graph (assuming
that the GNN predictions remained unchanged). To evaluate this consistency, we introduced a
novel metric based on Fused Gromov–Wasserstein. Our findings demonstrate that this metric
exhibits fewer bias-related issues in comparison to distance computation methods relying on
pre-trained encoders. Our experiments have revealed that, in general, existing frameworks
lack consistency. SubgraphX demonstrates (surprisingly) greater consistency compared to its
structure-aware counterpart, GStarX. This advantage may be due to the fact that SubgraphX
explanations primarily consist of connected subgraphs, whereas the other explanation methods
tend to identify disconnected subgraphs. However, it is worth noting that this advantage of
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SubgraphX comes at the cost of higher computational complexity. Specifically, SubgraphX is 2.5
times slower than GStarX and 25 times slower than GraphSVX.

Table 2: Consistency comparison of differ-
ent perturbation-based GNN explanability
methods on Graph-Twitter dataset.

Method Lψexp L
(o)
ψexp

SubgraphX 0.00± 0.00 1.15±0.43
GstarX 0.10± 0.13 0.92± 0.39
PGExplainer 0.13± 0.12 1.18± 0.49
GNNexpainer 0.31± 0.21 0.19± 0.22
GraphSVX 0.33± 0.35 0.96± 0.41

Our results suggested that GNN explainers that gener-
ate connected subgraphs—such as SubgraphX—can
contribute to improved consistency. Several other di-
rections may also be explored in the future to produce
more consistent GNN explanations. Firstly, incorpo-
rating uncertainty quantification [24] for generated
subgraphs could enhance consistency. Secondly, ex-
planations based on the probability output of all
classes, rather than just the predicted class, could
be beneficial, especially when the model exhibits un-
certainty. As more GNN explanation methods are
developed, incorporating techniques such as the aforementioned ones to improve their consistency
may lead to better-quality explanations, toward more trustable models overall.
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A Related works

GNN explanation methods. These methods aim to produce an explanation for a GNN
prediction on a given graph, usually as a subgraph induced by important nodes or edges [32, 35].
The majority of existing methods are prediction-based. This means that they operate at the level
of a single graph/prediction pair, generating explanations to shed light on why the model made a
specific prediction for that particular input graph [37]. These methods can be roughly divided
into two categories: gradient- and perturbation-based approaches[35]. Methods in the former
category use signal from gradients or output decomposition to infer salient node features [26].
Conversely, perturbation-based methods involve querying the model around the desired prediction
to determine the relevance of input features in relation to the output [35, 30, 22]. These methods
are based on different scoring functions to identify important nodes or edges. For example, the
scoring function of GNNExplainer [32] is the mutual information between a masked graph and
the prediction on the original graph, where soft masks on edges and node features are generated
by direct parameter learning. PGExplainer [22] uses the same scoring function as GNNExplainer
but generates a discrete mask on edges by training an edge mask predictor.
SubgraphX [36] uses the Shapley value as its scoring function on subgraphs selected by Monte
Carlo Tree Search (MCTS), and GraphSVX [10] uses a least-square approximation to the Shapley
value to score nodes and their features. While SubgraphX was shown to perform better than prior
alternatives, the Shapley value they try to approximate is non-ideal as it is non-structure-aware.
To address this issue, Zhang et al. [37] propose a graph structure-aware explanation (GStarX) to
leverage the critical graph structure information to improve the GNN explanation. Specifically,
GStarX defines a scoring function based on Hamiache and Navarro (HN) value that can utilize
graph structures to attribute cooperation surplus between neighbor nodes, resembling message
passing in GNNs, so that node importance scores reflect not only the node feature importance
but also the node structural roles [37].

The (un)reliability of interpretability methods. The ability to offer explanations has emerged
as a key focus in machine learning [6]. It serves not only to enhance our understanding of a model’s
underlying reasoning but also to adhere to regulatory obligations, facilitate control, and aid in
model debugging [20, 25, 5]. Despite the numerous interpretability tools developed by machine
learning researchers, they have faced significant criticism [9, 28, 28]. These criticisms often
emphasize the need for caution when using explanations generated from these tools, highlighting
concerns such as computational limitations or the reliance on qualitative user studies as evidence
[18, 4]. Given the need for a quantitative method of comparison, several properties such as
completeness, implementation invariance, and sensitivity have been articulated as desirable to
ensure that saliency methods are reliable [18]. However, the reliability of explainability methods
has not been well studied in the graph domain and requires GNN-specific considerations to handle
the non-Euclidean nature of the data and their complex topological structures.
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