
Attribution Patching Outperforms
Automated Circuit Discovery

Aaquib Syed
University of Maryland, College Park

asyed04@umd.edu

Can Rager
Independent

canrager@gmail.com

Arthur Conmy
Independent

arthurconmy@gmail.com

Abstract

Automated interpretability research has recently attracted attention as a poten-
tial research direction that could scale explanations of neural network behavior to
large models. Existing automated circuit discovery work applies activation patch-
ing to identify subnetworks responsible for solving specific tasks (circuits). In this
work, we show that a simple method based on attribution patching outperforms all
existing methods while requiring just two forward passes and a backward pass. We
apply a linear approximation to activation patching to estimate the importance of
each edge in the computational subgraph. Using this approximation, we prune the
least important edges of the network. We survey the performance and limitations
of this method, finding that averaged over all tasks our method has greater AUC
from circuit recovery than other methods.1

1 Introduction

Mechanistic interpretability is a subfield of AI interpretability that focuses on attributing model be-
haviors to its components, thus reverse engineering the network [1]. This field aims to identify
subnetworks (circuits) within the model which are responsible for solving specific tasks [2]. Prior
attempts at finding circuits in language models have led to finding networks of attention heads and
multi-layer perceptrons (MLPs) that partially or fully explain model behaviors at tasks such as in-
direct object identification, modular arithmetic, completion of docstrings, and predicting successive
dates [3, 4, 5, 6]. However, almost all previous work has been limited to relatively small models
since manually applying mechanistic interpretability methods has not currently scaled to end-to-end
circuits in larger models [7].

It may be important to scale interpretability to large models as these are the neural networks most
widely deployed and used by a wide range of people. Currently, we have little understanding into
these models work and failure modes are not always found ahead of deployment. If successful,
scaled interpretability could address a wide variety of concerns about the lack of transparency of
language models [8], in addition to speculative risks about the alignment of machine learning sys-
tems [9].

Automated Circuit Discovery (ACDC; [10]) attempts to automate a large portion of the mechanistic
interpretability workflow — the pruning of edges between attention heads and MLPs that do not
affect the task being studied. ACDC begins with a computational graph, and recursively calculates
the importance of an edge in the graph for a specific task. In our work, we use edges to refer to
activations inside models between two components (Section 2 describes this motivation further).
ACDC’s pruning algorithm applies activation patching. (Note that activation patching is not
attribution patching. Both are defined in full in Section 3.3.) At a high level, activation patching
edits a specific activation in a model forward pass and measures a model statistic (e.g loss) under this

1Our code is available at https://github.com/Aaquib111/acdcpp

37th Conference on Neural Information Processing Systems (NeurIPS 2023) ATTRIB Workshop.

https://github.com/Aaquib111/acdcpp

intervention. Activation patching is inefficient for circuit discovery because getting each statistic
about model activations requires another forward pass. Our work uses attribution patching to
recover circuits more efficiently (Section 3.3).

Our main contributions are:

1. Introducing a method for using attribution patching on all computational graph edges for
automated circuit discovery (Edge Attribution Patching, Section 3.3).

2. Benchmarking Edge Attribution Patching vs existing circuit discovery methods (Section 4).
3. Finding and explaining some limitations with Edge Attribution Patching (Section 5).

2 Related Work

Automated Circuit Discovery refers to finding the important subgraph of models’ computational
graphs for performance on particular tasks [10]. Existing algorithms include efficient heuristics [11]
and gradient-descent based methods [12, 13]. ACDC is related to pruning [14] and other compres-
sion techniques [15], but differs in how the compressed networks are reflective of the circuits that
model uses to compute outputs to certain tasks and the goal of ACDC is not to speed up forward
passes (all techniques studied in this work slow forward passes).

Activation Patching is a technique for analyzing the role of individual components in a model. It in-
volves targeted manipulations of activations during a forward pass (further explained in Section 3.1).
Previous works applied this technique under various names, such as Interchange Interventions [16],
Causal Mediation Analysis [8] and Causal Tracing [17]. We adapt the terminology used by Conmy
et al. [10].

Transformer Circuits. Our work builds upon the framework for understanding transformers for
interpretability as introduced by Elhage et al. [18]. The important details include how they formulate
forward passes of transformer models. Individual attention heads and MLPs (collectively called
nodes) read and write information to a central communication channel, also called the residual
stream. In these terms we can examine dependencies of nodes with the output of earlier nodes, i.e
we can measure the effect of attention heads in layer 0 on the attention heads in layer 2. In the
following, we view these dependencies as edges between nodes, building on existing work using
this perspective [5, 6, 3].

3 Edge Attribution Patching

We present Edge Attribution Patching (EAP) as a technique to identify relevant model components
for solving a specific task. In the following, we view language models as directed, acyclic graphs.
In these terms, we aim to find small subgraphs that retain good performance on narrow tasks. We
determine the importance of a specific edge through targeted manipulation of activations during a
forward pass. We compare two approaches, Attribution Patching and Activation Patching, in order
to motivate EAP.

3.1 Activation Patching

Activation patching refers to replacing the activations from one model forward pass with the activa-
tions from a different forward pass. This method is typically applied to measure the counterfactual
importance of model components, i.e. to measure a statistic L(x) from model outputs under the acti-
vation patching, where x is an input prompt. For example, L often represents loss or logit difference
[3].

Following existing work (Section 2), we study the effect of activation patching on specific model
edges by setting these equal to activations from different forward passes. Concretely, suppose that
an edge E in the computational graph has activation ecorr on some corrupted prompt. In this work,
we use the change in metric under activation patching

|L(xclean| do(E = ecorr))− L(xclean)| (1)

2

eclean

ecorr

(x, y): Activation

z: L

(a) Attribution Patching (Section 3.3) approximates the dif-
ference in metric L caused by corrupting edges.

(b) Removing the least important
edges.

Figure 1: Edge Attribution Patching (EAP)

to measure the impact of edge E. We use do-notation from causality [19] to emphasise that activation
patching is a causal intervention.

3.2 Attribution Patching

Activation patching slows ACDC since each measurement (like Equation (1)) requires another for-
ward pass. Attribution patching [20] is a technique for estimating Equation (1) for many different
edges E using only two forward passes and one backward pass.2 It linearly approximates the metric
difference after corrupting a single edge in the computational graph (Figure 1) by expanding L as a
function of the edge activation as a Taylor series with terms up to the first order:

L(xclean| do(E = ecorr)) ≈ L(xclean) + (ecorr − eclean)
⊤ ∂

∂eclean
L(xclean| do(E = eclean))︸ ︷︷ ︸

Call this ∆eL, the attribution score.

. (2)

A simple rearrangement implies that Equation (1) is approximately equal to |∆eL| (3) which we call
the absolute attribution score for the rest of this paper. In this work we always compute this score
across a set of (xclean, xcorr) pairs and take the mean.

In practice, all gradients needed to calculate the attribution scores come from intermediate terms
computed in one ordinary backwards pass3 in PyTorch [21], hence attribution patching is extremely
efficient.

3.3 Edge Attribution Patching

We can use the insights from Section 3.2 to build an automated circuit discovery algorithm. This
takes two steps: i) use Equation (2) to obtain absolute attribution scores for the importance of all
edges in the computational graph and then ii) sort these scores and keep the top k edges in a circuit.
We use Edge Attribution Patching (EAP) to refer to this algorithm. In the rest of the work we
report results for all k values when we evaluate EAP (similar to HISP in [10]).

Note that one limitation of attribution patching is that it will not work when the gradient of the metric
is the zero vector. Conmy et al. [10] recommended the use of KL divergence as a metric, which is
i) equal to 0 when we run the model without ablations and ii) a non-negative metric. Therefore the
zero point is a global minimum and hence all gradients are the zero vector at this point. In this work
we use the ‘task-specific metrics’ (not KL divergence) from [10] so avoid this issue.

2Attribution patching (like activation patching) also applies to nodes and other model internal components
that aren’t edges, but we only use edges in this work.

3In Appendix F we show how only one backwards pass is required.

3

4 Results

4.1 Edge Attribution Patching vs Activation Patching vs ACDC

We compare Edge Attribution Patching (EAP) and ACDC on the Indirect Object Identification (IOI),
Docstring, and Greater-Than tasks. For each of these tasks, previous studies identified a subgraph
(circuit) relevant for solving the task. We use their results as a ground truth for benchmarking both
methods. We also compare using ACDC with the task-specific metrics (e.g logit difference) and KL
Divergence (which was originally recommended). For the docstring task, we also include repeated
activation patching as another point of reference for performance comparisons. We applied repeated
activation patching by running the same circuit discovery method described in Section 3.3 but using
Equation (1) rather than absolute attribution scores. Activation patching was not included in the
other tasks as it was too computationally expensive to run on the GPT-2 small models used by IOI
and Greater-Than. Subnetworks found using EAP for all three tasks are shown in Appendix A.

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curve (IOI)

EAP Only; (AUC = 0.904)
ACDC w/ IOI Metric; (AUC = 0.588)
ACDC w/ KL Divergence Metric; (AUC = 0.868)

(a) IOI task

0.0 0.2 0.4 0.6 0.8 1.0
False Positive Rate

0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e
ROC Curve (Greaterthan)

EAP Only; (AUC = 0.896)
ACDC w/ GreaterThan Metric; (AUC = 0.458)
ACDC w/ KL Divergence Metric; (AUC = 0.849)

(b) Greater-Than task

0.0 0.2 0.4 0.6 0.8 1.0

False Positive Rate
0.0

0.2

0.4

0.6

0.8

1.0

Tr
ue

 P
os

iti
ve

 R
at

e

ROC Curve (Docstring)

EAP Only; (AUC = 0.976)
Activation Patching; (AUC = 0.978)
ACDC w/ Docstring Metric; (AUC = 0.972)
ACDC w/ KL Divergence metric; (AUC = 0.982)

(c) Docstring task

Figure 2: ROC Curves comparing EAP, ACDC with task metric, and ACDC with KL Divergence.
The Docstring plot also compares to Activation Patching.

The ROC curves in Figure 2 suggest the performance of EAP is better than ACDC overall: it has the
maximal AUC in Figure 2a-2b, while ACDC used with the KL Divergence metric outperforms EAP
in Figure 2c. ACDC outperformed the existing methods HISP and Subnetwork Probing methods
[10]. We conclude EAP outperforms all previous methods for circuit discovery, since it is competi-
tive with ACDC on recovering circuits while significantly reducing the computational demand: EAP
only takes a constant number of forward and backwards passes while the number of forward passes
required by ACDC is scaling exponentially with the number of nodes.

4.2 Validating EAP Attribution Scores

In this section, we look at the approximate metric change (attribution score) EAP assigns to each
edge in the model. We aim to understand the relation between the attribution score and the function
of the edge in the task being studied. First, we look at the distribution of scores for edges in the
circuit compared to edges not in the circuit for each of the three tasks.

Figure 3 shows the distribution of attribution scores for the IOI task. The distributions for the
remaining tasks can be found in Appendix B. Qualitatively, attribution scores for edges in the circuit
tend to be spread further from zero. Furthermore, there are only 6 edges outside of the interval
[−0.25, 0.25] that aren’t part of the IOI circuit. We further explore the attribution scores for the IOI
circuit’s classes of heads in Appendix E.

5 Limitations

We introduced edge activation patching as an approximation to activation patching. However, we
found that edge activation patching outperformed ACDC, a technique based on activation patching
(Section 4). In this section, we investigate whether attribution patching’s success is due to extremely

4

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75
Change in Logit Difference

100

101

102

103

104

Lo
g

Co
un

t

Histogram of Edge Scores (IOI Task)
In IOI:
mean=-0.0080, std=0.1063
Not In IOI:
mean=0.0000, std=0.0061

Figure 3: Distribution of Attribution Scores for the IOI Task (Logit Diff)

accurate approximations (in Section 5.1 we find that the answer is no), and whether there is any
further use for ACDC (in Section 5.2 we find that the answer is yes). We use the docstring task as a
case study due to the small model size used.

5.1 How faithful are Attribution Patching’s approximations?

To study how faithful the approximation Equation (2) is, we plot the attribution patching scores
(Equation (2)) against the activation patching scores (Equation (1)) in Figure 4a. Surprisingly, we
find a fairly weak correlation between activation and attribution patching scores (R2 = 0.27). Fur-
ther, the line of best fit has gradient 0.531, suggesting that attribution patching estimates the effect
of activation patching as twice as important as it really is.

Moreover, we can gain some sense for the discrepancy between activation and attribution patching
by studying the continuous transition between clean (eclean) and corrupted (ecorr) activations in Equa-
tion (1), i.e studying the values |L(xclean| do(E = λecorr+(1−λ)eclean))−L(xclean)| for 0 ≤ λ ≤ 1.
We can compare this to the linear approximations of Attribution Patching λ∆eL. Figure 4b shows
the result for one edge in the docstring circuit where the linear approximation to activation patching
is not accurate.

3 2 1 0 1 2 3 4 5 EAP

2

1

0

1

2

Ac
tiv

at
io

n
Pa

tc
hi

ng

Docstring Logit Diff change when Ablating Edges

Edge in circuit
Edge not in circuit
Line of Best Fit:
y = 0.531x + -0.049;
 R^2: 0.27

(a) Distribution of attribution scores for edges from
activation patching and attribution patching. Circled:
outlier EAP point studied in Figure 4b.

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation towards corruption

0

1

2

3

4

Ch
an

ge
 in

 D
oc

st
rin

g
Lo

gi
t D

iff

Clean edge
Corrupted edge

Input to L1H4K
EAP linear approximation
Interpolated activation patching
EAP value

(b) Visualizing the rightmost point in Figure 4a. Note
that corrupting this edge (surprisingly) slightly in-
creases the logit difference on the Docstring task
(higher logit difference is better). However, EAP
overestimates how large this increase is.

Figure 4: Visualizing Edge Attribution Patching.

We find that interpolating towards the corrupted input creates a concave curve (Figure 4b) such
that the linear approximation at λ = 0 overestimates the effect of activation patching this edge. In
Appendix D we show that this also holds for the other outlier edges in the ellipse in Figure 4a.

5

5.2 Is there any further use for ACDC?

In Section 5.1 above, we found that EAP overestimates activation patching in cases where the at-
tribution score is concave. This suggests the potential to refine the result by running ACDC on the
pruned subgraph returned by EAP. We ran EAP first, then ACDC on the resulting subgraph for the
Docstring task, varying pruning thresholds for EAP and ACDC independently. Figure 5 compares
the TPR and FPR for the combined methods with the ROC curve of EAP only. The combined
methods show increased performance compared to EAP only.

Figure 5: Comparing statistics of the combined EAP + ACDC methods with EAP only. The inset
shows a zoom to the significant area of the statistics of the combined method.

Finally, one further limitation of this research is that the metrics used for interpretability do not
precisely capture meaningful human understanding. Recovering a subgraph that humans previously
recovered is limited because i) we can’t evaluate this metric for interpretability tasks that we don’t
yet understand and ii) human-found circuits are imperfect, increasing the noise in this measurement.

6 Conclusion

We provide evidence that Edge Attribution Patching (EAP) outperforms ACDC in identifying cir-
cuits while being substantially faster to compute. This result is surprising, as EAP is an approx-
imation for activation patching, the method applied by ACDC. However, running ACDC on the
prepruned subnetwork found by EAP can improve the identification of relevant edges. Therefore,
we suggest future circuit discovery experiments to run EAP first and then apply ACDC.

7 Author Contributions

Aaquib Syed and Can Rager proposed combining ACDC with attribution patching methods and
implemented initial prototypes. Arthur Conmy advised working on attributing edges rather than
nodes and Aaquib made the first findings that this outperformed Automatic Circuit Discovery. All
authors worked on the paper’s figures, experiments and code.

8 Acknowledgements

We would like to thank Callum McDougall for organising ARENA and providing a great intro-
duction to interpretability, and Rusheb Shah and Lucy Farnik for collaboration on the ARENA
hackathon prototype which this work is based on. We would like to thank Neel Nanda for a help-
ful discussion and János Kramár, Stephen Casper and Euan Ong for suggestions based on a earlier
version of this work.

6

References
[1] Chris Olah. Mechanistic Interpretability, Variables, and the Importance of Interpretable

Bases. 2022. URL: https://www.transformer-circuits.pub/2022/mech-interp-
essay.

[2] Chris Olah, Nick Cammarata, Ludwig Schubert, Gabriel Goh, Michael Petrov, and Shan
Carter. “Zoom In: An Introduction to Circuits”. In: Distill (2020). DOI: 10.23915/distill.
00024.001.

[3] Kevin Ro Wang, Alexandre Variengien, Arthur Conmy, Buck Shlegeris, and Jacob Steinhardt.
“Interpretability in the Wild: a Circuit for Indirect Object Identification in GPT-2 Small”. In:
The Eleventh International Conference on Learning Representations. 2023. URL: https:
//openreview.net/forum?id=NpsVSN6o4ul.

[4] Neel Nanda, Lawrence Chan, Tom Lieberum, Jess Smith, and Jacob Steinhardt. “Progress
measures for grokking via mechanistic interpretability”. In: The Eleventh International Con-
ference on Learning Representations. 2023. URL: https://openreview.net/forum?id=
9XFSbDPmdW.

[5] Stefan Heimersheim and Jett Janiak. A circuit for Python docstrings in a 4-layer attention-
only transformer. 2023. URL: https : / / www . alignmentforum . org / posts /
u6KXXmKFbXfWzoAXn / a - circuit - for - python - docstrings - in - a - 4 - layer -
attention-only.

[6] Michael Hanna, Ollie Liu, and Alexandre Variengien. How does GPT-2 compute greater-
than?: Interpreting mathematical abilities in a pre-trained language model. 2023. arXiv:
2305.00586 [cs.CL].

[7] Tom Lieberum, Matthew Rahtz, János Kramár, Neel Nanda, Geoffrey Irving, Rohin Shah,
and Vladimir Mikulik. Does Circuit Analysis Interpretability Scale? Evidence from Multiple
Choice Capabilities in Chinchilla. 2023. arXiv: 2307.09458 [cs.LG].

[8] Jesse Vig, Sebastian Gehrmann, Yonatan Belinkov, Sharon Qian, Daniel Nevo, Simas Sake-
nis, Jason Huang, Yaron Singer, and Stuart Shieber. Causal Mediation Analysis for Interpret-
ing Neural NLP: The Case of Gender Bias. 2020. arXiv: 2004.12265 [cs.CL].

[9] Evan Hubinger. An overview of 11 proposals for building safe advanced AI. 2020. arXiv:
2012.07532 [cs.LG].

[10] Arthur Conmy, Augustine N. Mavor-Parker, Aengus Lynch, Stefan Heimersheim, and Adrià
Garriga-Alonso. “Towards Automated Circuit Discovery for Mechanistic Interpretability”. In:
Thirty-seventh Conference on Neural Information Processing Systems. 2023. arXiv: 2304.
14997 [cs.LG].

[11] Paul Michel, Omer Levy, and Graham Neubig. “Are Sixteen Heads Really Better than
One?” In: Advances in Neural Information Processing Systems 32: Annual Conference
on Neural Information Processing Systems 2019, NeurIPS 2019, December 8-14, 2019,
Vancouver, BC, Canada. Ed. by Hanna M. Wallach, Hugo Larochelle, Alina Beygelz-
imer, Florence d’Alché-Buc, Emily B. Fox, and Roman Garnett. 2019, pp. 14014–
14024. URL: https : / / proceedings . neurips . cc / paper / 2019 / hash /
2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html.

[12] Christos Louizos, Max Welling, and Diederik P. Kingma. “Learning Sparse Neural Networks
through L0 Regularization”. In: 6th International Conference on Learning Representations,
ICLR 2018, Vancouver, BC, Canada, April 30 - May 3, 2018, Conference Track Proceedings.
OpenReview.net, 2018. URL: https://openreview.net/forum?id=H1Y8hhg0b.

[13] Steven Cao, Victor Sanh, and Alexander Rush. “Low-Complexity Probing via Finding Sub-
networks”. In: Proceedings of the 2021 Conference of the North American Chapter of the
Association for Computational Linguistics: Human Language Technologies. Association for
Computational Linguistics, 2021, pp. 960–966. DOI: 10.18653/v1/2021.naacl-main.74.

[14] Davis W. Blalock, Jose Javier Gonzalez Ortiz, Jonathan Frankle, and John V. Guttag. “What
is the State of Neural Network Pruning?” In: Proceedings of Machine Learning and Systems
2020, MLSys 2020, Austin, TX, USA, March 2-4, 2020. Ed. by Inderjit S. Dhillon, Dimitris S.
Papailiopoulos, and Vivienne Sze. mlsys.org, 2020. URL: https://proceedings.mlsys.
org/book/296.pdf.

[15] Xunyu Zhu, Jian Li, Yong Liu, Can Ma, and Weiping Wang. A Survey on Model Compression
for Large Language Models. 2023. arXiv: 2308.07633 [cs.CL].

7

https://www.transformer-circuits.pub/2022/mech-interp-essay
https://www.transformer-circuits.pub/2022/mech-interp-essay
https://doi.org/10.23915/distill.00024.001
https://doi.org/10.23915/distill.00024.001
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=NpsVSN6o4ul
https://openreview.net/forum?id=9XFSbDPmdW
https://openreview.net/forum?id=9XFSbDPmdW
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://www.alignmentforum.org/posts/u6KXXmKFbXfWzoAXn/a-circuit-for-python-docstrings-in-a-4-layer-attention-only
https://arxiv.org/abs/2305.00586
https://arxiv.org/abs/2307.09458
https://arxiv.org/abs/2004.12265
https://arxiv.org/abs/2012.07532
https://arxiv.org/abs/2304.14997
https://arxiv.org/abs/2304.14997
https://proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html
https://proceedings.neurips.cc/paper/2019/hash/2c601ad9d2ff9bc8b282670cdd54f69f-Abstract.html
https://openreview.net/forum?id=H1Y8hhg0b
https://doi.org/10.18653/v1/2021.naacl-main.74
https://proceedings.mlsys.org/book/296.pdf
https://proceedings.mlsys.org/book/296.pdf
https://arxiv.org/abs/2308.07633

[16] Atticus Geiger, Hanson Lu, Thomas Icard, and Christopher Potts. Causal Abstractions of
Neural Networks. 2021. URL: https://arxiv.org/abs/2106.02997.

[17] Kevin Meng, David Bau, Alex J Andonian, and Yonatan Belinkov. “Locating and editing
factual associations in GPT”. In: Advances in Neural Information Processing Systems. 2022.

[18] Nelson Elhage, Neel Nanda, Catherine Olsson, Tom Henighan, Nicholas Joseph, Ben Mann,
Amanda Askell, Yuntao Bai, Anna Chen, Tom Conerly, Nova DasSarma, Dawn Drain, Deep
Ganguli, Zac Hatfield-Dodds, Danny Hernandez, Andy Jones, Jackson Kernion, Liane Lovitt,
Kamal Ndousse, Dario Amodei, Tom Brown, Jack Clark, Jared Kaplan, Sam McCandlish, and
Chris Olah. “A Mathematical Framework for Transformer Circuits”. In: Transformer Circuits
Thread (2021). URL: https://transformer-circuits.pub/2021/framework/index.
html.

[19] Judea Pearl. “Causal diagrams for empirical research”. In: Biometrika 82.4 (1995), pp. 669–
688.

[20] Neel Nanda. Attribution Patching: Activation Patching At Industrial Scale. 2023. URL:
https://www.neelnanda.io/mechanistic- interpretability/attribution-
patching.

[21] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan,
Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas
Kopf, Edward Yang, Zachary DeVito, Martin Raison, Alykhan Tejani, Sasank Chilamkurthy,
Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. “PyTorch: An Imperative Style,
High-Performance Deep Learning Library”. In: Advances in Neural Information Processing
Systems 32. Curran Associates, Inc., 2019, pp. 8024–8035. URL: http://papers.neurips.
cc / paper / 9015 - pytorch - an - imperative - style - high - performance - deep -
learning-library.pdf.

8

https://arxiv.org/abs/2106.02997
https://transformer-circuits.pub/2021/framework/index.html
https://transformer-circuits.pub/2021/framework/index.html
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf

A EAP Subnetworks

<m10>

<resid_post>

<a10.10>

<a11.10>

<a10.7><a10.6> <a10.3> <a10.1> <a10.0> <a10.2>

<m0>

<a9.9> <m9>

<a11.2>

<a5.5> <a5.9><m5>

<m4>

<m1>

<m3> <a3.0>

<a7.9><m7>

<m6><a6.9>

<m2> <a2.11>

<a0.1><a0.10>

<a8.10>

<a0.5>

<a9.8> <a9.7><a9.6>

<a8.6>

<a7.1>

<a6.6>

<a5.6>

<a4.11><a4.7> <a4.3><a4.4>

<a3.7><a3.3> <a3.4>

embed

<m8>

<a7.3>

<a6.0>

<a2.9> <a2.2>

(a) IOI Subnetwork, Threshold=0.077

<a1.4>

<a2.2> <a2.0>

<a3.6><a3.0>

<a1.5> <a1.2> <a1.0>

embed

<a0.5><a0.0><a0.1> <a0.6><a0.3><a0.2><a0.7><a0.4>

<a2.5> <a2.3>

<a3.7>

<resid_post>

(b) Docstring Subnetwork, Threshold=0.244

<a7.10> <m7>

<resid_post>

<m8>

<m9>

<a8.10>

<m2>

<m3>

<a9.1>

<a6.9><a6.1>

<m1>

<m11>

embed

<m0> <a0.1>

<m10> <a10.7>

<m4>

<m5> <a5.8>

<a8.8>

<a0.5> <a0.10>

<a8.11>

(c) Greaterthan Subnetwork, Threshold=0.009

Figure 6: Resulting subnetworks after EAP at the given thresholds.

9

B Distribution of EAP Attribution Scores

3 2 1 0 1 2 3 4

Change in Logit Difference

100

101

102

103

Lo
g

Co
un

t
Histogram of Edge Scores (Docstring Task)

In Docstring: mean=-0.6777, std=0.8054
Not In Docstring: mean=0.0170, std=0.2127

(a) Distribution of Attribution Scores for the Docstring
Task

0.20 0.15 0.10 0.05 0.00 0.05

Change in Probability Difference

100

101

102

103

104

Lo
g

Co
un

t

Histogram of Edge Scores
(Greaterthan Task)

In Greaterthan:
mean=-0.0061, std=0.0237
Not In Greaterthan:
mean=-0.0000, std=0.0005

(b) Distribution of Attribution Scores for the Greater-
Than Task

Figure 7: Distribution of Attribution Scores for the Docstring and Greater-Than tasks

C Further investigation into combining EAP with ACDC

Figure 8: Youdens-J statistic (maximum TPR minus FPR value) for combining EAP and ACDC
methods on the docstring task. We applied ACDC to the pruned subgraph returned by EAP.

D Further failures of attribution patching approximation

In Figure 9 we show further cases where in the docstring task attribution patching can be misleading.
These cases all involve an edge that comes from the model’s embeddings (positional and tokens).
Our interpretation is that weighted averages of embeddings are anomalous inputs to the model and
cause the concave change in docstring logit diff which doesn’t occur when edges ae between non-
embedding model components.

10

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation towards corruption

0.0

0.5

1.0

1.5

2.0

2.5

Ch
an

ge
 in

 D
oc

st
rin

g
Lo

gi
t D

iff

Clean edge Corrupted edge

Input to L3H0K
EAP linear approximation
Interpolated activation patching
EAP value

0.0 0.2 0.4 0.6 0.8 1.0
Interpolation towards corruption

0.00

0.25

0.50

0.75

1.00

1.25

1.50

1.75

Ch
an

ge
 in

 D
oc

st
rin

g
Lo

gi
t D

iff

Clean edge Corrupted edge

Input to L3H6K
EAP linear approximation
Interpolated activation patching
EAP value

Figure 9: Visualizing Edge Attribution Patching in two further cases where the concave activation
patching curve means the linear fit is poor.

E Edges Roles in IOI

We further explore the attribution scores for the IOI circuit. The IOI circuit is comprised of different
attention head classes such as Induction heads, S-Inhibition heads, etc. [3]. Figure 10 shows the
distributions of scores stratified by the roles of the edges. The edge roles are defined according to the
role of their origin node. While edge roles such as Previous Token, Duplicate Token, Induction, and
S-Inhibition edges have attribution scores centered around zero, we see a bias in edge scores given
to name mover and negative name mover edges. As the name mover edges are directly responsible
for the model outputting the indirect object, the attribution scores are largely negative since ablating
these edges removes the model’s ability to output the indirect object, lowering the logit difference.
Similarly, the negative name movers have attribution scores that are largely positive since ablating
these edges improves the logit difference. This matches the intuitive function of the edges.

0.2 0.1 0.0 0.1

100

101

Lo
g

Co
un

t

Previous Token Edge Scores
mean=0.0015
std=0.0566

0.05 0.00 0.05 0.10 0.15 0.20

100

2 × 100

3 × 100

4 × 100

6 × 100

Duplicate Token Edge Scores
mean=0.0011
std=0.0441

0.3 0.2 0.1 0.0 0.1 0.2 0.3

100

101

Induction Edge Scores
mean=-0.0094
std=0.0739

0.10 0.05 0.00 0.05
Change in Logit Difference

100

2 × 100

3 × 100

4 × 100

Lo
g

Co
un

t

S-inhibition Edge Scores
mean=-0.0167
std=0.0364

0.0 0.2 0.4 0.6
Change in Logit Difference

10 1

100

101

Negative Name Mover Edge Scores
mean=0.2372
std=0.2807

1.0 0.8 0.6 0.4 0.2 0.0
Change in Logit Difference

100

2 × 100

3 × 100

4 × 100

6 × 100

Name Mover Edge Scores
mean=-0.0713
std=0.2194

Figure 10: Distribution of Attribution Scores for each Edge Role in the IOI Task.

11

F Only one backwards pass is required for EAP

Note: it may be easier to understand our implementation https://github.com/Aaquib111/
acdcpp/blob/main/utils/prune_utils.py#L249 rather than read this explanation. Alterna-
tively, this derivation uses essentially the same arguments as Nanda [20]4 though with an updated
codebase.

There are only two types of edges iterated over in ACDC: i) residual edges where the result is added
at its endpoint, and ii) edges between the residual stream and the query, key and value calculations.5
Clearly for all edges like ii) we can compute the gradient terms in Equation (2) in one backwards
pass.

Interestingly, for all ∆eL terms where e is a type i) edge (i.e added at the endpoint), we only
need calculate the gradient with respect to the endpoint of the edge! For example, suppose we’re
calculating the effect of L0H0 on L1H0Q. If we represent the input to L1H0Q as a node V in the
computational graph then

∂

∂eclean
L(xclean| do(E = eclean)) =

∂

∂vclean
L(xclean| do(V = vclean)) (3)

due to how V is just the sum of all the edges entering V . This allows efficient calculation of all the
∆eL values since gradients with respect to nodes in computational graphs are calculated by default
in backwards passes.

4Specifically, this section: https://www.neelnanda.io/mechanistic-interpretability/
attribution-patching#how-to-think-about-activation-patching=:~:text=axes%20of%
20variation.-,Path%20patching,-The%20core%20intuition

5It may be worth looking at some ACDC outputs from [10]. See https://colab.research.google.
com/github/ArthurConmy/Automatic-Circuit-Discovery/blob/main/notebooks/colabs/ACDC_
Implementation_Demo.ipynb for an explanation of this design choice.

12

https://github.com/Aaquib111/acdcpp/blob/main/utils/prune_utils.py#L249
https://github.com/Aaquib111/acdcpp/blob/main/utils/prune_utils.py#L249
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching#how-to-think-about-activation-patching=:~:text=axes%20of%20variation.-,Path%20patching,-The%20core%20intuition
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching#how-to-think-about-activation-patching=:~:text=axes%20of%20variation.-,Path%20patching,-The%20core%20intuition
https://www.neelnanda.io/mechanistic-interpretability/attribution-patching#how-to-think-about-activation-patching=:~:text=axes%20of%20variation.-,Path%20patching,-The%20core%20intuition
https://colab.research.google.com/github/ArthurConmy/Automatic-Circuit-Discovery/blob/main/notebooks/colabs/ACDC_Implementation_Demo.ipynb
https://colab.research.google.com/github/ArthurConmy/Automatic-Circuit-Discovery/blob/main/notebooks/colabs/ACDC_Implementation_Demo.ipynb
https://colab.research.google.com/github/ArthurConmy/Automatic-Circuit-Discovery/blob/main/notebooks/colabs/ACDC_Implementation_Demo.ipynb

	Introduction
	Related Work
	Edge Attribution Patching
	Activation Patching
	Attribution Patching
	Edge Attribution Patching

	Results
	Edge Attribution Patching vs Activation Patching vs ACDC
	Validating EAP Attribution Scores

	Limitations
	How faithful are Attribution Patching's approximations?
	Is there any further use for ACDC?

	Conclusion
	Author Contributions
	Acknowledgements
	EAP Subnetworks
	Distribution of EAP Attribution Scores
	Further investigation into combining EAP with ACDC
	Further failures of attribution patching approximation
	Edges Roles in IOI
	Only one backwards pass is required for EAP

