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Abstract

Automated interpretability research has recently attracted attention as a poten-
tial research direction that could scale explanations of neural network behavior to
large models. Existing automated circuit discovery work applies activation patch-
ing to identify subnetworks responsible for solving specific tasks (circuits). In this
work, we show that a simple method based on attribution patching outperforms all
existing methods while requiring just two forward passes and a backward pass. We
apply a linear approximation to activation patching to estimate the importance of
each edge in the computational subgraph. Using this approximation, we prune the
least important edges of the network. We survey the performance and limitations
of this method, finding that averaged over all tasks our method has greater AUC
from circuit recovery than other methods.1

1 Introduction

Mechanistic interpretability is a subfield of AI interpretability that focuses on attributing model be-
haviors to its components, thus reverse engineering the network [1]. This field aims to identify
subnetworks (circuits) within the model which are responsible for solving specific tasks [2]. Prior
attempts at finding circuits in language models have led to finding networks of attention heads and
multi-layer perceptrons (MLPs) that partially or fully explain model behaviors at tasks such as in-
direct object identification, modular arithmetic, completion of docstrings, and predicting successive
dates [3, 4, 5, 6]. However, almost all previous work has been limited to relatively small models
since manually applying mechanistic interpretability methods has not currently scaled to end-to-end
circuits in larger models [7].

It may be important to scale interpretability to large models as these are the neural networks most
widely deployed and used by a wide range of people. Currently, we have little understanding into
these models work and failure modes are not always found ahead of deployment. If successful,
scaled interpretability could address a wide variety of concerns about the lack of transparency of
language models [8], in addition to speculative risks about the alignment of machine learning sys-
tems [9].

Automated Circuit Discovery (ACDC; [10]) attempts to automate a large portion of the mechanistic
interpretability workflow — the pruning of edges between attention heads and MLPs that do not
affect the task being studied. ACDC begins with a computational graph, and recursively calculates
the importance of an edge in the graph for a specific task. In our work, we use edges to refer to
activations inside models between two components (Section 2 describes this motivation further).
ACDC’s pruning algorithm applies activation patching. (Note that activation patching is not
attribution patching. Both are defined in full in Section 3.3.) At a high level, activation patching
edits a specific activation in a model forward pass and measures a model statistic (e.g loss) under this

1Our code is available at https://github.com/Aaquib111/acdcpp
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intervention. Activation patching is inefficient for circuit discovery because getting each statistic
about model activations requires another forward pass. Our work uses attribution patching to
recover circuits more efficiently (Section 3.3).

Our main contributions are:

1. Introducing a method for using attribution patching on all computational graph edges for
automated circuit discovery (Edge Attribution Patching, Section 3.3).

2. Benchmarking Edge Attribution Patching vs existing circuit discovery methods (Section 4).
3. Finding and explaining some limitations with Edge Attribution Patching (Section 5).

2 Related Work

Automated Circuit Discovery refers to finding the important subgraph of models’ computational
graphs for performance on particular tasks [10]. Existing algorithms include efficient heuristics [11]
and gradient-descent based methods [12, 13]. ACDC is related to pruning [14] and other compres-
sion techniques [15], but differs in how the compressed networks are reflective of the circuits that
model uses to compute outputs to certain tasks and the goal of ACDC is not to speed up forward
passes (all techniques studied in this work slow forward passes).

Activation Patching is a technique for analyzing the role of individual components in a model. It in-
volves targeted manipulations of activations during a forward pass (further explained in Section 3.1).
Previous works applied this technique under various names, such as Interchange Interventions [16],
Causal Mediation Analysis [8] and Causal Tracing [17]. We adapt the terminology used by Conmy
et al. [10].

Transformer Circuits. Our work builds upon the framework for understanding transformers for
interpretability as introduced by Elhage et al. [18]. The important details include how they formulate
forward passes of transformer models. Individual attention heads and MLPs (collectively called
nodes) read and write information to a central communication channel, also called the residual
stream. In these terms we can examine dependencies of nodes with the output of earlier nodes, i.e
we can measure the effect of attention heads in layer 0 on the attention heads in layer 2. In the
following, we view these dependencies as edges between nodes, building on existing work using
this perspective [5, 6, 3].

3 Edge Attribution Patching

We present Edge Attribution Patching (EAP) as a technique to identify relevant model components
for solving a specific task. In the following, we view language models as directed, acyclic graphs.
In these terms, we aim to find small subgraphs that retain good performance on narrow tasks. We
determine the importance of a specific edge through targeted manipulation of activations during a
forward pass. We compare two approaches, Attribution Patching and Activation Patching, in order
to motivate EAP.

3.1 Activation Patching

Activation patching refers to replacing the activations from one model forward pass with the activa-
tions from a different forward pass. This method is typically applied to measure the counterfactual
importance of model components, i.e. to measure a statistic L(x) from model outputs under the acti-
vation patching, where x is an input prompt. For example, L often represents loss or logit difference
[3].

Following existing work (Section 2), we study the effect of activation patching on specific model
edges by setting these equal to activations from different forward passes. Concretely, suppose that
an edge E in the computational graph has activation ecorr on some corrupted prompt. In this work,
we use the change in metric under activation patching

|L(xclean| do(E = ecorr))− L(xclean)| (1)
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(a) Attribution Patching (Section 3.3) approximates the dif-
ference in metric L caused by corrupting edges.
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Figure 1: Edge Attribution Patching (EAP)

to measure the impact of edge E. We use do-notation from causality [19] to emphasise that activation
patching is a causal intervention.

3.2 Attribution Patching

Activation patching slows ACDC since each measurement (like Equation (1)) requires another for-
ward pass. Attribution patching [20] is a technique for estimating Equation (1) for many different
edges E using only two forward passes and one backward pass.2 It linearly approximates the metric
difference after corrupting a single edge in the computational graph (Figure 1) by expanding L as a
function of the edge activation as a Taylor series with terms up to the first order:

L(xclean| do(E = ecorr)) ≈ L(xclean) + (ecorr − eclean)
⊤ ∂

∂eclean
L(xclean| do(E = eclean))︸ ︷︷ ︸

Call this ∆eL, the attribution score.

. (2)

A simple rearrangement implies that Equation (1) is approximately equal to |∆eL| (3) which we call
the absolute attribution score for the rest of this paper. In this work we always compute this score
across a set of (xclean, xcorr) pairs and take the mean.

In practice, all gradients needed to calculate the attribution scores come from intermediate terms
computed in one ordinary backwards pass3 in PyTorch [21], hence attribution patching is extremely
efficient.

3.3 Edge Attribution Patching

We can use the insights from Section 3.2 to build an automated circuit discovery algorithm. This
takes two steps: i) use Equation (2) to obtain absolute attribution scores for the importance of all
edges in the computational graph and then ii) sort these scores and keep the top k edges in a circuit.
We use Edge Attribution Patching (EAP) to refer to this algorithm. In the rest of the work we
report results for all k values when we evaluate EAP (similar to HISP in [10]).

Note that one limitation of attribution patching is that it will not work when the gradient of the metric
is the zero vector. Conmy et al. [10] recommended the use of KL divergence as a metric, which is
i) equal to 0 when we run the model without ablations and ii) a non-negative metric. Therefore the
zero point is a global minimum and hence all gradients are the zero vector at this point. In this work
we use the ‘task-specific metrics’ (not KL divergence) from [10] so avoid this issue.

2Attribution patching (like activation patching) also applies to nodes and other model internal components
that aren’t edges, but we only use edges in this work.

3In Appendix F we show how only one backwards pass is required.
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4 Results

4.1 Edge Attribution Patching vs Activation Patching vs ACDC

We compare Edge Attribution Patching (EAP) and ACDC on the Indirect Object Identification (IOI),
Docstring, and Greater-Than tasks. For each of these tasks, previous studies identified a subgraph
(circuit) relevant for solving the task. We use their results as a ground truth for benchmarking both
methods. We also compare using ACDC with the task-specific metrics (e.g logit difference) and KL
Divergence (which was originally recommended). For the docstring task, we also include repeated
activation patching as another point of reference for performance comparisons. We applied repeated
activation patching by running the same circuit discovery method described in Section 3.3 but using
Equation (1) rather than absolute attribution scores. Activation patching was not included in the
other tasks as it was too computationally expensive to run on the GPT-2 small models used by IOI
and Greater-Than. Subnetworks found using EAP for all three tasks are shown in Appendix A.
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Figure 2: ROC Curves comparing EAP, ACDC with task metric, and ACDC with KL Divergence.
The Docstring plot also compares to Activation Patching.

The ROC curves in Figure 2 suggest the performance of EAP is better than ACDC overall: it has the
maximal AUC in Figure 2a-2b, while ACDC used with the KL Divergence metric outperforms EAP
in Figure 2c. ACDC outperformed the existing methods HISP and Subnetwork Probing methods
[10]. We conclude EAP outperforms all previous methods for circuit discovery, since it is competi-
tive with ACDC on recovering circuits while significantly reducing the computational demand: EAP
only takes a constant number of forward and backwards passes while the number of forward passes
required by ACDC is scaling exponentially with the number of nodes.

4.2 Validating EAP Attribution Scores

In this section, we look at the approximate metric change (attribution score) EAP assigns to each
edge in the model. We aim to understand the relation between the attribution score and the function
of the edge in the task being studied. First, we look at the distribution of scores for edges in the
circuit compared to edges not in the circuit for each of the three tasks.

Figure 3 shows the distribution of attribution scores for the IOI task. The distributions for the
remaining tasks can be found in Appendix B. Qualitatively, attribution scores for edges in the circuit
tend to be spread further from zero. Furthermore, there are only 6 edges outside of the interval
[−0.25, 0.25] that aren’t part of the IOI circuit. We further explore the attribution scores for the IOI
circuit’s classes of heads in Appendix E.

5 Limitations

We introduced edge activation patching as an approximation to activation patching. However, we
found that edge activation patching outperformed ACDC, a technique based on activation patching
(Section 4). In this section, we investigate whether attribution patching’s success is due to extremely
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accurate approximations (in Section 5.1 we find that the answer is no), and whether there is any
further use for ACDC (in Section 5.2 we find that the answer is yes). We use the docstring task as a
case study due to the small model size used.

5.1 How faithful are Attribution Patching’s approximations?

To study how faithful the approximation Equation (2) is, we plot the attribution patching scores
(Equation (2)) against the activation patching scores (Equation (1)) in Figure 4a. Surprisingly, we
find a fairly weak correlation between activation and attribution patching scores (R2 = 0.27). Fur-
ther, the line of best fit has gradient 0.531, suggesting that attribution patching estimates the effect
of activation patching as twice as important as it really is.

Moreover, we can gain some sense for the discrepancy between activation and attribution patching
by studying the continuous transition between clean (eclean) and corrupted (ecorr) activations in Equa-
tion (1), i.e studying the values |L(xclean| do(E = λecorr+(1−λ)eclean))−L(xclean)| for 0 ≤ λ ≤ 1.
We can compare this to the linear approximations of Attribution Patching λ∆eL. Figure 4b shows
the result for one edge in the docstring circuit where the linear approximation to activation patching
is not accurate.
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Figure 4: Visualizing Edge Attribution Patching.

We find that interpolating towards the corrupted input creates a concave curve (Figure 4b) such
that the linear approximation at λ = 0 overestimates the effect of activation patching this edge. In
Appendix D we show that this also holds for the other outlier edges in the ellipse in Figure 4a.
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5.2 Is there any further use for ACDC?

In Section 5.1 above, we found that EAP overestimates activation patching in cases where the at-
tribution score is concave. This suggests the potential to refine the result by running ACDC on the
pruned subgraph returned by EAP. We ran EAP first, then ACDC on the resulting subgraph for the
Docstring task, varying pruning thresholds for EAP and ACDC independently. Figure 5 compares
the TPR and FPR for the combined methods with the ROC curve of EAP only. The combined
methods show increased performance compared to EAP only.

Figure 5: Comparing statistics of the combined EAP + ACDC methods with EAP only. The inset
shows a zoom to the significant area of the statistics of the combined method.

Finally, one further limitation of this research is that the metrics used for interpretability do not
precisely capture meaningful human understanding. Recovering a subgraph that humans previously
recovered is limited because i) we can’t evaluate this metric for interpretability tasks that we don’t
yet understand and ii) human-found circuits are imperfect, increasing the noise in this measurement.

6 Conclusion

We provide evidence that Edge Attribution Patching (EAP) outperforms ACDC in identifying cir-
cuits while being substantially faster to compute. This result is surprising, as EAP is an approx-
imation for activation patching, the method applied by ACDC. However, running ACDC on the
prepruned subnetwork found by EAP can improve the identification of relevant edges. Therefore,
we suggest future circuit discovery experiments to run EAP first and then apply ACDC.

7 Author Contributions

Aaquib Syed and Can Rager proposed combining ACDC with attribution patching methods and
implemented initial prototypes. Arthur Conmy advised working on attributing edges rather than
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authors worked on the paper’s figures, experiments and code.
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Figure 6: Resulting subnetworks after EAP at the given thresholds.
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B Distribution of EAP Attribution Scores
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Figure 7: Distribution of Attribution Scores for the Docstring and Greater-Than tasks

C Further investigation into combining EAP with ACDC

Figure 8: Youdens-J statistic (maximum TPR minus FPR value) for combining EAP and ACDC
methods on the docstring task. We applied ACDC to the pruned subgraph returned by EAP.

D Further failures of attribution patching approximation

In Figure 9 we show further cases where in the docstring task attribution patching can be misleading.
These cases all involve an edge that comes from the model’s embeddings (positional and tokens).
Our interpretation is that weighted averages of embeddings are anomalous inputs to the model and
cause the concave change in docstring logit diff which doesn’t occur when edges ae between non-
embedding model components.
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Figure 9: Visualizing Edge Attribution Patching in two further cases where the concave activation
patching curve means the linear fit is poor.

E Edges Roles in IOI

We further explore the attribution scores for the IOI circuit. The IOI circuit is comprised of different
attention head classes such as Induction heads, S-Inhibition heads, etc. [3]. Figure 10 shows the
distributions of scores stratified by the roles of the edges. The edge roles are defined according to the
role of their origin node. While edge roles such as Previous Token, Duplicate Token, Induction, and
S-Inhibition edges have attribution scores centered around zero, we see a bias in edge scores given
to name mover and negative name mover edges. As the name mover edges are directly responsible
for the model outputting the indirect object, the attribution scores are largely negative since ablating
these edges removes the model’s ability to output the indirect object, lowering the logit difference.
Similarly, the negative name movers have attribution scores that are largely positive since ablating
these edges improves the logit difference. This matches the intuitive function of the edges.
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Figure 10: Distribution of Attribution Scores for each Edge Role in the IOI Task.
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F Only one backwards pass is required for EAP

Note: it may be easier to understand our implementation https://github.com/Aaquib111/
acdcpp/blob/main/utils/prune_utils.py#L249 rather than read this explanation. Alterna-
tively, this derivation uses essentially the same arguments as Nanda [20]4 though with an updated
codebase.

There are only two types of edges iterated over in ACDC: i) residual edges where the result is added
at its endpoint, and ii) edges between the residual stream and the query, key and value calculations.5
Clearly for all edges like ii) we can compute the gradient terms in Equation (2) in one backwards
pass.

Interestingly, for all ∆eL terms where e is a type i) edge (i.e added at the endpoint), we only
need calculate the gradient with respect to the endpoint of the edge! For example, suppose we’re
calculating the effect of L0H0 on L1H0Q. If we represent the input to L1H0Q as a node V in the
computational graph then

∂

∂eclean
L(xclean| do(E = eclean)) =

∂

∂vclean
L(xclean| do(V = vclean)) (3)

due to how V is just the sum of all the edges entering V . This allows efficient calculation of all the
∆eL values since gradients with respect to nodes in computational graphs are calculated by default
in backwards passes.

4Specifically, this section: https://www.neelnanda.io/mechanistic-interpretability/
attribution-patching#how-to-think-about-activation-patching=:~:text=axes%20of%
20variation.-,Path%20patching,-The%20core%20intuition

5It may be worth looking at some ACDC outputs from [10]. See https://colab.research.google.
com/github/ArthurConmy/Automatic-Circuit-Discovery/blob/main/notebooks/colabs/ACDC_
Implementation_Demo.ipynb for an explanation of this design choice.
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