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Abstract

Abundant evidence highlights the remarkable tool-using abilities of crows, includ-
ing their capacity to not only utilize tools but also craft them. Yet, we find ourselves
situated on an extensive and challenging journey towards equipping machines with
the same tool-use proficiency exhibited by crows. This article sets forth a tool-use
framework for robots, offering a potential solution to the complex challenge of
integrating tools into a robotic super system. However, it is evident that the re-
alization of the functions outlined within this framework necessitates significant
advancements in the domains of planning, learning and applying the affordance
model, exploration in decision-making and other aspects of work. This article
explores the promising path forward in our quest to imbue robots with crow-like
tool-use capabilities.

1 The way to crow-level tool use

The use of tools has long been considered a hallmark of human distinctiveness, setting us apart from
the rest of the animal kingdom. However, a closer examination of nature reveals that tool use is not
solely the domain of humans; other creatures, such as crows, exhibit remarkable tool-using abilities
[7, 10]. In [10], crows have been observed using sticks to extract prey from hidden locations, and even
fashioning hooks at the end of twigs to create more effective tools. Remarkably, they can transmit
these acquired skills to their fellow crows.

The aspiration for an ideal robotic system lies in its ability to utilize tools with flexibility like humans.
Yet, even realizing crow-level tool use in robots remains a formidable challenge. [6] have classified
the various facets of robotic tool use, as depicted in Fig. 1. Among these classifications, the crow’s
use of sticks for extracting prey represents an improvisatory tool use, as it involves employing an
object not originally designed for such a purpose. The transformation of a twig into a more effective
tool represents the epitome of tool creation, categorized as a form of multi-manipulation tool use is a
kind of tool manufacturing. [6] has associated the process of tool use with the concept of affordance
models. This system covers all causal tool use situations and even some combinations of them.

To achieve improvisatory tool use akin to that of crows, it becomes imperative to comprehend
the complete affordance model of the tool. This understanding must encompass not only how to
achieve desired outcomes through specific actions but also how to adapt these actions when faced
with novel tools sharing similar physical attributes to the learned ones. Furthermore, discerning
the precise features of a tool that produce specific effects is of paramount importance. The realm
of tool manufacturing introduces additional complexities, demanding more complex manipulation
skills. It transcends mere knowledge of the affordance model; it necessitates the ability to modify
the affordance of an object through actions, ultimately tailoring it to achieve the desired affordance
model.

In the explored realm of deductive tool use and multiple-manipulation tool techniques, current
research, as highlighted in [6], is notably lacking in depth, with some areas being completely devoid
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Figure 1: Tool use taxonomy. It is modified from Figure 2 of [6].

of relevant studies. Furthermore, many existing studies in this domain rely on oversimplified versions
of these concepts, underscoring the considerable gap that exists between the current state of research
and the realization of comprehensive tool-use applications.

2 A goal-directed tool-use system

While [6] offers a classification of diverse tool use scenarios, it falls short of providing a unified
framework that encompasses all these scenarios. Moreover, it does not delve into the potential
combination of various types of tool use cases. In response to this gap, we propose a framework,
which is shown in Fig. 2, that encompasses all the tool-use scenarios illustrated in Fig. 1. A robot
based on this framework may become a super system for tool-use.
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Figure 2: A unified tool-use framework represented as an and-or graph.

First and foremost, it’s essential to clarify that we’ve expanded upon the conventional notion of a
"tool" as described in [6]. In our context, a tool is not limited to a specific, predefined object; instead,
it encompasses a collection of objects that share a common affordance. A tool can comprise multiple
objects, and a single object can serve as a component of different tools.

The system we propose revolves around the achievement of specific goals, aligning with several
hypotheses that explain human behavior [2, 1]. This goal may be a partial achievement required to
complete a task, or it may be the task itself.

When confronted with a goal, our initial step is to query a planning module to devise a sequence of
events required for its attainment. These events may come with distinct temporal constraints. For
instance, sequential tool use can be achieve with sequential constraints. When facing with each event,
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we need to determine the appropriate tool sets to employ, contingent upon our comprehension and
learned knowledge of tool affordances. Various single-manipulation tool uses in Fig. 1 are involved
here, depending on whether the tool and the event exist in our prior experiences. When facing the
same event, we can have multiple tool sets as alternatives. This is where “tool selection" is located.
Employing multiple tools simultaneously necessitates skills in “combined tool use". When it comes
to acquiring the desired tool (an object with the desired affordance) from the environment, we face
the question of how to obtain it. If the choice is made to modify some objects in the surroundings to
adapt their affordance and create tools, this process is referred to as “tool manufacturing".

3 Challenges to tackle

There are many hurdles that need to be overcome in order to build such a system introduced in Sec. 2.
As it stands, there exists no comprehensive solution for each facet of this ambitious endeavor.

One of the paramount challenges in this pursuit lies in implementing effective planning after defining
a specific goal. This problem has been the subject of extensive exploration across various domains.
Several approaches necessitate the creation of a realistic simulator of the world [9], while others
advocate the use of learned world models [8, 3]. However, these methods often demand a careful
balance between precision and computational efficiency.

A critical facet of enabling robots to perform crow-like tool use is a deep understanding of affordance.
The acquisition and application of affordance models represent a crucial juncture in this journey.
Various techniques exist for learning and applying these models [5, 11], yet there remains a substantial
distance to traverse before they can be flexibly employed across a diverse range of scenarios.

Effective actions in this domain can often be scarce and elusive, making the issue of insufficient
exploration a persistent concern. This is also a central focus of the reinforcement learning community
[4].

Moreover, realizing the transfer of knowledge between agents like crows introduces additional
complexities. This endeavor might necessitate advancements in robot communication and imitation
learning, enabling seamless knowledge sharing and collaboration.

In conclusion, the road to achieving crow-level tool use in robots is fraught with obstacles. Tackling
these challenges will undoubtedly require a collaborative effort across various disciplines, pushing
the boundaries of our understanding and capabilities in the realm of robotics, whether or not the
proposed system in Sec. 2 is used.
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