Abstract:
In this paper, we focus on the problem of scale imbalance in 6-DoF grasp detection and propose a novel approach to address the difficulty in dealing with small-scale samples. A Multi-scale Cylinder Grouping (MsCG) module is presented to enhance local geometry representation by combining multi-scale cylinder features and global context. Moreover, a Scale Balanced Learning (SBL) loss and an Object Balanced Sampling (OBS) strategy are designed, where SBL enlarges the gradients of the samples whose scales are in low frequency by apriori weights while OBS captures more points on small-scale objects with the help of an auxiliary segmentation network. They alleviate the influence of the uneven distribution of grasp scales in training and inference respectively. In addition, Noisy-clean Mix (NcM) data augmentation is introduced to facilitate training, synthesizing clean point-clouds and mixes them with noisy input, enabling the model to sufficiently make use of small-scale samples in the presence of depth sensor noise. Extensive experiments are conducted on the GraspNet-1Billion benchmark and competitive results are reached with a significant gain on small-scale cases.

Keywords: grasp detection, point-cloud representation, deep learning

1 Introduction
Grasping is a fundamental task in robotic manipulation, and grasp detection aims to generate rich gripper configurations on objects for stable lift. It is expected to deal with objects varying in shape, size, appearance, material, pose etc. Traditional methods usually work with 3D models of objects and policies are manually designed [1, 2, 3]. However, these methods highly rely on the accuracy of pose estimation and are not applicable to unseen objects, limiting their use in real world scenarios. With the innovation of depth sensors and the development of deep learning, data-driven methods have been greatly advanced [4, 5, 6], offering the advantage in generalization. More recently, several studies have extended 6-DoF grasp detection to a more difficult case, investigating diverse grasping poses for objects in clutter [7, 8, 9]. Although such attempts deliver promising results, they incline to large- and medium-scale objects or parts. There exist quite a number of hard examples. As shown in Fig. 1 (a), there are many qualified grasps detected on the large red box in (1), but very few for the bolt in (2) and the fork in (3). For the bottle in (4), there exist several valid grasps on the body while none is on the red head.

Indeed, grasping on small objects (e.g. the bolt in (2) and the fork in (3) in Fig. 1 (a)) or small parts of large- and medium-scale objects (e.g. the red head of the bottle in (4) in Fig. 1 (a)) is still in low precision and recall. Here, we formally define the scale of a grasp as the minimal width between two fingers of the gripper, which is determined by the pose of the grasp and the shape of the region. To illustrate the correlation between the grasp scale and quality, we visualize the scale distribution of the objects and their corresponding grasp performance by the baseline method on the GraspNet-1Billion benchmark [8]. As depicted in Fig. 1 (b), current grasp detection method performs well...
on the objects which seldom have small-scale ground truth grasps. On the contrary, for the objects with a large proportion of small-scale ground truth grasps, the baseline method tends to fail.

Figure 1: (a) Grasping objects of varying scales by GraspNet [8]. (b) Grasping AP and the percentage of small scale grasps for different objects.

It is really challenging to improve the results of such hard cases towards scale-balanced grasp detection. First, for a small region, the ambiguity of its geometry increases considering the diversity as information conveyed is scarce. [8, 10, 11] extract local geometry features through specific modules, but due to fixed receptive fields, they are not so competent to distinguish similar but different shapes. Second, the scale distribution of grasps for daily objects in cluttered scenes is imbalance. Large- and medium-scale grasps dominate and thus suppress the learning on small scale ones. To the best of our best knowledge, it has not been investigated in 6-DoF grasp detection before. Third, the noise of mainstream depth sensors (e.g. Intel RealSense and MS Kinect) is serious, which degrades shape description, in particular for small regions. Point completion [12] and point denoising [13] provide alternatives; unfortunately, the former generally does not work for unseen objects and the latter struggles with complicated noise patterns in the real world.

This paper proposes a novel approach to 6-DoF grasp detection, which addresses the difficulties aforementioned in a unified framework. Specifically, a Multi-scale Cylinder Grouping (MsCG) module is introduced, where multi-scale cylinder features are combined to a global feature with additional context embedded for more comprehensive description of local shapes. Furthermore, a Scale Balanced Learning (SBL) loss and an Object Balanced Sampling (OBS) strategy are designed for the training and inference phases respectively. SBL enlarges the gradients of the samples whose scales are in low frequency (i.e. small) by apriori weights while OBS captures more points on small-scale objects with the help of an auxiliary segmentation network. They both alleviate the influence of the uneven distribution of grasp scales. Additionally, a data augmentation method, namely Noisy-clean Mix (NcM), is presented to facilitate training. NcM synthesizes clean point-clouds and mixes them with noisy input, enabling the model to sufficiently make use of small-scale samples in the presence of depth sensor noise.

In summary, our contributions are as follows: (1) we introduce an MsCG module to enhance the representation of small local shapes for grasp detection; (2) we design an SBL training loss and an OBS inference strategy to mitigate the imbalanced scale distribution of grasps in cluttered scenes; (3) we present NcM data augmentation by blending point-clouds with and without noise to improve model training; and (4) we do extensive experiments on the largest grasping benchmark and reach competitive results with a significant gain on small-scale grasps.
2 Related work

Grasping is a long-standing task in robotic manipulation. Recently, there has been a trend to 6-DoF grasp detection in cluttered scenes. [7] proposes a pioneering framework with point-cloud input, which first samples grasp candidates and then scores them by using a Convolutional Neural Network (CNN). [9] employs a point-based neural network to score grasp candidates for improvements. Due to the fact that grasp candidate sampling is time-consuming and prone to objects (or parts) of thin shapes, a number of studies [14, 15, 8, 10, 16] handle this task in an end-to-end manner. [14] introduces a variational auto-encoder to generate grasp poses from single object point-clouds. To directly regress grasping in clutter, [15] builds a single-shot grasp proposal network. [8] provides a large benchmark with dense grasp labels distributed in whole scenes. For more accurate and robust grasps, [16] defines graspsness as the quality metric to determine where to grasp and [10] focuses on capturing local features from points inside grasp regions. Although the methods above have made large progresses, they generally work well on objects (or parts) of large- and medium-scales and have difficulty in tackling small-scale ones, leading to imbalanced grasping detection performance.

As the overwhelming majority of the studies on 6-DoF grasping take point-clouds as input and such data often contain noise of depth sensors, there exists another line to ameliorate scene representation of point-clouds for grasping. [17, 18] bring additional clues to complement description where [17] uses multiple frames to map raw input to a Truncated Signed Distance Function (TSDF) to smooth noise and [18] integrates texture maps to deliver multi-modal features. Besides, [19] introduces implicit representations to model scenes and employs 3D reconstruction as an auxiliary task to refine data. Such solutions either require more information in inference or highly correlate to the model used, suggesting the necessity of a plug and play alternative.

3 Methodology

The pipeline of the scale balanced grasp detection approach is demonstrated in Fig. 2. During training, we first conduct Noisy-clean Mix (NcM) augmentation, synthesizing the clean point-clouds and mix them with the raw noisy ones. The new point-cloud $\mathbb{R}^{N \times 3}$ is employed as input, where N is the number of points. After that, M candidates are sampled by Farthest Point Sampling (FPS) and represented as seed features $\mathbb{R}^{M \times C}$ by a transformer based point encoder [20]. We predict whether these candidates can be grasped and the approach directions of positive candidates using an approach head. To regress other grasp configurations, Multi-scale Cylinder Grouping (MsCG) is built to extract local features for positive candidates from original point-clouds. An operation head is employed to predict the plane rotation, width and score of the grasp. During inference, Object Balanced Sampling (OBS) is used to explore more positive samples in different scales, where a 3D
instance segmentation network is integrated to predict the 3D masks $\in (0, 1)^{N \times K}$ (K is the number of instances) and new positions $\in \mathbb{R}^{M \times 3}$ are sampled evenly in each mask. The new seed features of these new samples are interpolated from the initial seed features in scenes and used for successive grasp configuration prediction.

3.1 Multi-scale Cylinder Grouping

Considering grasps correspond to detailed local geometries, it is rather rough to choose a Receptive Field (RF) for shape representation of grasp regions. As Fig. 3 (a) displays, a fixed RF tend to incur ambiguity for the small-scale grasp in position A and miss crucial cues for the large-scale one in position B. To enhance geometric representations for shapes in different sizes, we propose the MsCG module, which captures local features of a position with varying RFs and combines them to deliver a hierarchical description. Specifically, we set up several cylinders with different radii and crop related points. Radii are evenly distributed within the maximum width of the gripper. Multi-layer Perceptrons (MLPs) and max pooling are employed to encode the points from different cylinders. To further improve the semantics, we introduce the corresponding seed features as guidance for local feature fusion in different scales. A gate module is applied to screen information in seed features. Fig. 3 (b) shows the structure of the MsCG module. With the help of this module, our network achieves more accurate local geometric descriptions for grasps in different scales.

![Figure 3: (a) Grasp regions of different scales for local feature extraction. (b) Structure of the Multi-scale Cylinder Grouping module.](image)

3.2 Grasp Scale Balancing

We analyze the scale distribution of grasps in cluttered scenes on the training set of the GraspNet-1Billion benchmark [8]. We sample 1,024 points by FPS in each scene and for each sample, we search for the grasp with the highest score in the $SO(3)$ space, whose gripper width is considered as the scale of the sample. Through this, for all the scenes in the training set, we draw the grasp scale distribution, as shown in Fig. 4 (a). It is observed that the medium- and large-scale grasps are much more than the small-scale ones. The imbalance issue degrades grasp detection in two aspects. First, in training, the model is prone to fit medium- and large-scale grasps whose percentage is high and suppress the learning of small-scale grasps. Second, in inference, few small-scale grasps can be sampled by current evenly sampling techniques in the 3D space such as FPS and voxel sampling. Simply enlarging the number of samples can indeed ease this problem, but memory and run-time both sharply increase, making it not practical.

To address the imbalance issue in training, we design a Scale Balanced Learning (SBL) loss to weight the errors of the samples in different scales, inspired by the widely used Cost-Sensitive Learning [21], where weights are calculated based on the frequency of the classes of samples. Different from the imbalance in the discrete classification problem, grasping scale is continuous and we thus divide the max width of the gripper into K bins. For sample i in the scene, its weight W_i is calculated by:

$$W_i = 1 - \log \frac{N_i}{N_{max}}$$ (1)
where N_i is the number of grasps which are of the same scale with sample i and N_{max} is the maximum of the K scale bins. For negative samples where no successful grasp is in its $SO(3)$ space, we assign $W_n = 1$. With the loss in [8], we add the weight to the approach head and operation head:

$$L = W_i(L^{\text{Approach}}(c_i, s_{ij}) + \alpha L^{\text{Rotation}}(R_{ij}, S_{ij}, W_{ij}))$$

(2)

To handle the imbalance issue in inference, we propose an Object Balanced Sampling (OBS) strategy, which adjusts the number of samples on different objects so that sufficient samples are obtained on them. In this case, we first employ a 3D instance segmentation network, a modified version of [22], only with point-clouds as input to generate masks for objects. We then uniformly carry out FPS on each foreground mask and each object has $\frac{M}{N}$ samples, where M is the number of total samples and N is the number of objects. The features of new sampled positions are linearly interpolated by three nearest neighbors from the original seed features in scenes. With the OBS strategy, we are able to explore more grasp candidates on small-scale objects, benefiting small-scale grasp detection.

To overcome this downside, we propose a Noise-clean Mix (NcM) data augmentation method. We introduce the clean version of the input point-clouds to increase the number of valid small-scale grasp samples. However, Sim-to-Real raises another challenge when only using synthetic clean point-clouds during training. Therefore, we mix noise and clean data into a new scene, which reduces the domain gap between training and inference. Fig. 4 (b) shows the process of NcM. With object 3D models and poses, we synthesize corresponding clean scenes by composing them to full point-clouds. We use original point-clouds captured by the depth sensor as noisy scenes. For the missing parts in noisy scenes caused by camera poses and occlusions, we also remove the points in the same region of the clean point-clouds to keep the consistency. The mixed input is constructed by randomly replacing the objects in noisy scenes with the clean counterparts. With the mixed input, more valid samples are produced, facilitating the learning of small-scale grasps.

Figure 4: (a) Grasp scale distribution in scenes. (b) Pipeline of the noisy-clean mix augmentation.

3.3 Noisy-clean Mix

The noise of point-clouds affects the quality of grasping detection, especially for small-scale cases. On the one hand, the noise destroys the geometry structure, which makes it hard to detect. The attempts on point-cloud completion or denoising partially solve this problem during inference but numerous unseen objects and complicate noise patterns in the real world prevent their further use. On the other hand, the noise degrades the training of grasp detection where the network struggles in learning the mapping from the ambiguous shapes to grasp labels. Compared to larger geometries, the distortion on small geometries is more serious, decreasing the contribution in training.

To overcome this downside, we propose a Noise-clean Mix (NcM) data augmentation method. We introduce the clean version of the input point-clouds to increase the number of valid small-scale grasp samples. However, Sim-to-Real raises another challenge when only using synthetic clean point-clouds during training. Therefore, we mix noise and clean data into a new scene, which reduces the domain gap between training and inference. Fig. 4 (b) shows the process of NcM. With object 3D models and poses, we synthesize corresponding clean scenes by composing them to full point-clouds. We use original point-clouds captured by the depth sensor as noisy scenes. For the missing parts in noisy scenes caused by camera poses and occlusions, we also remove the points in the same region of the clean point-clouds to keep the consistency. The mixed input is constructed by randomly replacing the objects in noisy scenes with the clean counterparts. With the mixed input, more valid samples are produced, facilitating the learning of small-scale grasps.
4 Experiments

4.1 Benchmark and Metric

We do all experiments on the GraspNet-1Billion benchmark [8], which includes 190 cluttered scenes captured in the real world by Realsense/Kinect cameras in 256 views. For each point on the object surface, grasps are annotated densely in its $SO(3)$ space by force closure estimation. The whole dataset has nearly 1 billion grasp annotations, offering rich data to explore the grasp scale distribution in scenes.

To evaluate the grasps detected in a cluttered scenes, the precision of top-k ranked grasps is adopted. In [8], they calculate AP_μ as the metric, which represents the average $Precision@k$ for k ranges from 1 to 50 with friction μ. AP is computed by the average of AP_μ, where μ ranges from 0.2 to 1.2.

The original metric does not directly reflect the quality of grasps in different scales because the top ranked grasps mostly distribute on simple and large geometry objects (or parts). We thus give a new metric to better evaluate the scale-aware grasping quality in scene. The max width of the gripper (10cm in benchmark) is divided to three intervals, where widths in 0cm-4cm are small-scale grasps, 4cm-7cm are medium-scale, and 7cm-10cm are large-scale. With such width masks, we evaluate AP_S, AP_M and AP_L for grasps in small-, medium- and large-scale respectively.

4.2 Ablation Study

First, we validate the effectiveness of the proposed MsCG module, SBL loss, OBS strategy, and NcM augmentation, and the results are listed in Table 1. All the studies are conducted on the real world scenes captured by Intel RealSenseD435. We evaluate AP_S, AP_M and AP_L, and calculate the mean to reflect the grasp quality in all the scales. According to Table 1, the MsCG module achieves significant improvements in all the metrics, which shows the importance of enhanced shape representation. For the SBL loss, the performance of small scale grasps is boosted by increasing the weights for small-scale samples in training with comparable scores on medium- and large-scale grasps. NcM augmentation brings additional gains for almost all the evaluation settings, which demonstrates its necessity in reducing ambiguities during training. For fair validation of the advantage of the OBS strategy, we keep the same number of samples (1,024 in our experiment) and take Foreground Sampling (FS) as comparison, where we do FPS in foreground point-clouds. Compared to FS, OBS delivers an improvement of 2.37% for small-scale grasps in the seen set with stable results of medium- and large-scale grasps. We also note that OBS does not show an improvement on small-scale grasps in the novel set (but still comparable), and it is mainly caused by the inferior performance of the segmentation network for unseen objects.

<table>
<thead>
<tr>
<th>Model</th>
<th>Seen</th>
<th>Similar</th>
<th>Novel</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>AP_S</td>
<td>AP_M</td>
<td>AP_L</td>
</tr>
<tr>
<td>Baseline</td>
<td>9.44</td>
<td>45.99</td>
<td>54.13</td>
</tr>
<tr>
<td>Ours</td>
<td>13.47</td>
<td>48.12</td>
<td>61.81</td>
</tr>
<tr>
<td>wo/MsCG</td>
<td>9.14</td>
<td>42.65</td>
<td>52.75</td>
</tr>
<tr>
<td>wo/SBL loss</td>
<td>10.50</td>
<td>47.20</td>
<td>63.26</td>
</tr>
<tr>
<td>wo/NcM</td>
<td>12.69</td>
<td>46.25</td>
<td>61.78</td>
</tr>
<tr>
<td>Ours + FS</td>
<td>15.92</td>
<td>52.73</td>
<td>64.56</td>
</tr>
<tr>
<td>Ours + OBS</td>
<td>18.29</td>
<td>52.60</td>
<td>64.34</td>
</tr>
</tbody>
</table>

Table 1: Ablation study of the proposed modules on scenes captured by Intel RealSenseD435.

4.3 Analysis on Different Scales

We discuss how the proposed methods influence the number and success rate of grasps in different scales. For each object in scenes, we select the top-10 ranked grasps for statistics and choose the friction $\mu = 0.8$ for grasp successful checking. Results are shown in Figure 5.
For small-scale samples, MsCG, SBL, and OBS all increase the number and the success rate of detected grasps. Note that NcM reduces many small-scale grasps but improves the success rate. By introducing more valid small-scale samples in learning, our network avoids to generate grasps in the region where the shape is seriously corrupted by noise. For medium- and large-scale samples, MsCG still shows a significant improvement for the success rate.

4.4 Visualizations

We visualize some grasps generated by our approach on the objects that the baseline method does not perform well. The results are shown in Fig. 6. Gripper poses in red are good grasps while those in purple and blue are collision and bad grasps respectively. Objects in (1-3) are small-scale objects and our approach detects more successful grasps on them. The scissors in (4) and the bottle in (5) consist of several geometric parts in different size. Benefiting from the ability to detect grasps in various scales, our approach deliver diverse grasps for individual parts, which is helpful to downstream manipulation tasks.

4.5 Comparison with the State-of-the-art

We make fair comparison with the state-of-the-art methods on RealSense camera, including [7, 6, 23, 9, 8, 18, 24, 16] and the results are displayed in Table 2. For more results, please refer to the supplementary material.

Although we focus on scale balanced grasp detection in particular dealing with small-scale cases, the proposed approach achieves an AP of 63.83% on seen objects, 58.46% on similar objects and 24.63% on novel objects, which outperforms most of the counterparts on GraspNet-1billion.
<table>
<thead>
<tr>
<th>Model</th>
<th>Seen AP</th>
<th>Seen AP_{0.8}</th>
<th>Seen AP_{0.4}</th>
<th>Similar AP</th>
<th>Similar AP_{0.8}</th>
<th>Similar AP_{0.4}</th>
<th>Novel AP</th>
<th>Novel AP_{0.8}</th>
<th>Novel AP_{0.4}</th>
</tr>
</thead>
<tbody>
<tr>
<td>chu et al. [23]</td>
<td>15.97</td>
<td>23.66</td>
<td>10.80</td>
<td>15.41</td>
<td>20.21</td>
<td>7.06</td>
<td>7.64</td>
<td>8.69</td>
<td>2.52</td>
</tr>
<tr>
<td>PointnetGPD [9]</td>
<td>25.96</td>
<td>33.01</td>
<td>15.37</td>
<td>22.68</td>
<td>29.15</td>
<td>10.76</td>
<td>9.23</td>
<td>9.89</td>
<td>2.74</td>
</tr>
<tr>
<td>GraspNet-baseline [8]</td>
<td>27.56</td>
<td>33.43</td>
<td>16.95</td>
<td>26.11</td>
<td>34.18</td>
<td>14.23</td>
<td>10.55</td>
<td>11.25</td>
<td>3.98</td>
</tr>
<tr>
<td>gou et al. [18]</td>
<td>27.98</td>
<td>33.47</td>
<td>17.75</td>
<td>27.23</td>
<td>36.34</td>
<td>15.60</td>
<td>12.25</td>
<td>12.45</td>
<td>5.62</td>
</tr>
<tr>
<td>GSNet [16]</td>
<td>65.70</td>
<td>76.25</td>
<td>61.08</td>
<td>53.75</td>
<td>65.04</td>
<td>45.97</td>
<td>23.98</td>
<td>29.93</td>
<td>14.05</td>
</tr>
<tr>
<td>GSNet [16] + CD</td>
<td>67.12</td>
<td>78.46</td>
<td>60.90</td>
<td>54.81</td>
<td>66.72</td>
<td>46.17</td>
<td>24.31</td>
<td>30.52</td>
<td>14.23</td>
</tr>
<tr>
<td>Ours</td>
<td>58.95</td>
<td>68.18</td>
<td>54.88</td>
<td>52.97</td>
<td>63.24</td>
<td>46.99</td>
<td>22.63</td>
<td>28.53</td>
<td>12.00</td>
</tr>
<tr>
<td>Ours + CD</td>
<td>63.83</td>
<td>74.25</td>
<td>58.66</td>
<td>58.46</td>
<td>70.05</td>
<td>51.32</td>
<td>24.63</td>
<td>31.05</td>
<td>12.85</td>
</tr>
</tbody>
</table>

Table 2: Comparison to the State-of-the-art on Graspnet-1Billion (RealSense).

GSNet [16] shows better performance on seen objects mainly because they design an efficient cascaded graspness model to detect grasps on position which has more successful grasps in its SO(3) space. However, GSNet tends to have negative impact on the diversity of grasps to some extent because grasps on low graspness positions are not taken into consideration.

5 Limitations

Our approach still has two limitations. First, as shown in Figure 7 (a), our model fails on a very complicated object, which is composed of some small geometrical components. Second, for small-scale flat objects laying on the plane, few grasps are detected, as in Figure 7 (b). We speculate that the noise is the major reason in the two cases, which requires more discussion on high-precision sensor selection and efficient data refinement in the future.

![Figure 7: Failure cases: (a) a complicated object and (b) a flat object on the plane.](image)

6 Conclusion

In this paper, we work towards scale balanced 6-DoF grasp detection. An MsCG module is proposed to capture hierarchical local description for grasps in different scales. To mitigate the imbalanced scale distribution of grasp labels, we design an SBL loss to adjust the weight of grasp samples in training and an OBS strategy to sample more points on small-scale objects in inference. We also present NcM data augmentation to reduce the influence of sensor noise. Extensive experiments show the advantages of our approach in grasp detection, especially for small-scale samples which are not well handled in previous work.
References

