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ABSTRACT

The Graph Signal Processing (GSP) methods are widely used to solve structured
data analysis problems, assuming that the data structure is fixed. In the recent
GSP community, anomaly detection on datasets with the time-varying structure is
an open challenge. To address the anomaly detection problem for datasets with a
spatial-temporal structure, in this work, we propose a novel graph multi-domain
splitting framework, called GMDS, by integrating the time, vertex, and frequency
features to locate the anomalies. Firstly, by introducing the discrete wavelet trans-
form into vertex function, we design a splitting approach for separating the graph
sequences into several sub-sequences adaptively. Then, we specifically design an
adjacency function in the vertex domain to generate the adjacency matrix adap-
tively. At last, by utilizing the learned graphs to the spectral graph wavelet trans-
form, we design a module to extract vertices features in the frequency domain. To
validate the effectiveness of our framework, we apply GMDS in the anomaly de-
tection of actual traffic flow and urban datasets and compare its performances with
acknowledged baselines. The experimental results show that our proposed frame-
work outperforms all the baselines, which distinctly demonstrate the validity of
GMDS.

1 INTRODUCTION

In the analysis of spatial-temporal structured data, graph signal processing (GSP) is an important
type of method, taking advantages of graph model to represent the structure. Graph has abundant
features, which should be captured by appropriate rules. These methods can be divided into 2 cat-
egories by whether graph structure is variable or not.The first, in the applications with invariant
graph structure, there are no temporal differences on graph to consider. For instance, in traffic flow
forecasting proposed by Yu et al. (2018), the road map is regarded as the graph structure (adjacency
matrix), which is generated by fixed longitude and latitude without temporal features. The second,
in the tasks that consider spatial-temporal structured datasets, the graph structure must be influenced
by time lapse, such as, traffic (Guo et al. (2020)), urban, Covid-19, etc. Thus, in the tasks belong to
second category, it is inevitable to consider the graph structure as time-varying. Also, time-varying
data structures could be more common than the invariant cases in real world.
Then, anomaly detection is of great importance in modern data science, as singular or anomaly data
is ubiquitous among real-world datasets, which are time-series collected from distributed sensor
or receiver networks. Especially, detecting the anomalies in the time-varying structure is then be-
comes an open challenge Atluri et al. (2018), Bergman & Hoshen (2020). The applications include
traffic events detection, neighbors discovery, pandemic spreading analysis and social network clus-
tering. Significantly, the applications in traffic are the most considered task Zhang et al. (2020). The
meticulous and effective analysis of graph structure are important for valuable detecting of anoma-
lies of vertices Djenouri et al. (2019). However, how to divide graph sequence into appropriate
sub-sequences adaptively is the key point in the challenge of temporal dynamic graph structure cap-
turing.
Therefore, to break the limitation of time-varying structure analysis, the time-vertex-frequency
multi-domain graph splitting framework, called GMDS, which is proposed to capture the time-
varying graph structure. The first part is an augmented dickey-fuller (ADF) test based data prepro-
cessing. The second is the discrete wavelet transform based graph time-series local splitting. Based
on ARIMA, the third part of the GMDS is the graph generation to capture the variable graph struc-
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ture that segmented by the second part. The last part is the global detection, which is designed as
anomaly detection to extract the dependencies and eigenvalues among graph. The output of last part
is the anomalies. And the implementations of our framework without training part are accessible at
https://github.com/Zehua-Yu/TVF-anomaly-detection.
Our contributions are summarized as follows:
• A novel framework based on the appropriate temporal splitting in multi-domain called GMDS is
proposed for time-varying graph structure anomaly detection.
• Through the dynamic adaptive partition graph, our framework can analyze the data of different
periods more carefully and accurately. It breaks the limitation of global unified graph generation
and prevents local features from being submerged in the global scope.
• The experiments show that GMDS has the generalization to different types of traffic data.

2 RELATED WORK

There are many methods with abundant mechanisms and modules that have been applied to anomaly
detection. Zhang et al. (2020) has done a survey of urban anomaly analysis approaches, including
description, detection and prediction. These methods can be divided into sets by different standards.
Djenouri et al. (2019) summarize the anomalies detection algorithms that are applicated in urban
traffic. All the methods are divided into 2 categories: flow outlier detection and trajectory outlier
detection. The front category includes statistical, similarity, and pattern mining methods. The latter
one includes offline and online processing.
However, the above methods consider little about the spatial-temporal and interaction topology anal-
ysis among data. Graph is a widly used structure, which is good at modeling the data with compli-
cated multi-meta to capture the saptial-temporal topology and other types linkages among vertices.
Sofuoglu & Aviyente (2021) introduce low-rank matrix recovery on graphs into low-rank tensor
recovery to imply the anomaly detection in spatial-temporal data. Tasneem et al. (2019) presents
numerous examples and proofs to illustrate the validity of the theorems of using antimagic graph
labeling for splitting. Then, Ioannidis et al. (2021) present GraphSAC to effectively detect anomaly
vertices in graph with complicated dependency features. ITGCN have been proposed by Yu et al.
(2021) to capture the interactions among vertices, and performed well in Covid-19 daily confirmed
cases forecasting.

3 PRELIMINARIES

In this section, we recap the preliminaries in graph signal, ARIMA, discrete wavelet transform
(DWT) and graph wavelet transform.

3.1 GRAPH SIGNAL

In our works, the graph signals are defined on the graphs, which are weighted, connected and
undirected. Following the Zheng et al. (2019), the graphs considered in this work are denoted as
G = (V,E,A), where V = v0, v1, ..., vN−1 is the set of vertices that contain features, E is the
set of edges, A ∈ RN×N is the adjacency matrix that represent weights. The adjacency matrix is
symmetric, shown as A(i, j) = A(j, i), where A(i, j) ∈ R denotes the weight assigned to the edge
e(i, j) between the vertices vi and vj . The degree matrix D of the graph G is defined as a diagonal
matrix whose D(i, i) is given by the degree of vertex i, i.e., D(i, i) = deg(vi), where deg(vi) is the
degree of vertex i. All the graphs considered in this work are undirected weighted graph without
self-loops as shown in Fig. 1. The linkages between vertices are all nonnegative.

3.2 ARIMA

Auto regressive integrated moving average (ARIMA) is widly used in sequences modeling or fore-
casting tasks. No significant difference with stationarity and with a rapidly decreasing autocorre-
lation function are two satisfied requirements for ARMA modeling. Thus, for the data without the
requirements above, the difference is introduced to solve this problem in ARIMA. Let d be a nonneg-
ative integer, {Xt} isARIMA(p, d, q), if Yt , (1−B)dXt is the causalARMA(p, q) process, the
{X} satisfies φ∗(B)Xt ≡ φ(B)(1 − B)dXt = θ(B)Zt, {Zt} ∼ WN(0, σ2) where φ(z) and θ(z)
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are p-order and q-order polynomials respectively,B is the coefficient setted by mission requirement,
d is the differences order.

3.3 DISCRETE WAVELET TRANSFORM

Signals defined on time are discrete. At the same time, the scale parameter a and time shift parameter
b are also processed by discretion (a = 2j , b = k2j , (j, k ∈ Z)). Under this definition, mother
wavelet and other wavelets are all discrete, represented by φ(n) and φj,k(n) respectively, where
φj,k(n) is defined as φj,k(n) = 2−j/2φ(2−jn−k), (j, k ∈ Z) where j, k are calculated according
to the specific data. Let f(n) be the input, the DWT of f(n) according to φj,k(n) is Cj,k ,
DWTφf(2j , k2j) =

∑∞
n=−∞ f(n) ¯φj,k(n) = 2−j/2

∑∞
n=−∞ f(n)φ̄(2−jn − k), (j, k, n ∈ Z)

where n is the total number of discrete time.

3.4 SPECTRAL GRAPH WAVELET TRANSFORM

Following the definition of Graph Fourier Transform Hammond et al. (2011), the spectral graph
wavelet transform can be defined as follow. The transform will be determined by the choice
of a kernel function g : R+ → R+, which is analogous to Fourier domain wavelet ψ̂∗ in
(T sδa)(x) = 1/sψ∗(a − x/s) This kernel g should behave as a band-pass filter, i.e. it satisfies
g(0) = 0 and limx→∞g(x) = 0. We will defer the exact specification of the kernel g that we use
until later.
The spectral graph wavelet transform is generated by wavelet operators that are operator-valued
functions of the Laplacian L, which is L = 1 − D−1/2AD1/2. L is a real symmetric matrix, it
has a complete set of orthonormal eigenvector denoted by χl for l = 0, ..., N − 1, with associated
eigenvalues λl. A measureable function of a bounded self-adjoint linear operator on a Hilbert space
using the continuous functional calculus is defined to achieved using the spectral representation of
the operator, which is equivalent to the graph Fourier transform defined in Hammond et al. (2011).
In particular, for spectral graph wavelet kernel g, the wavelet operator Tg = g(L) acts on a given
function f by modulating each Fourier mode as ˆTgf(l) = g(λl)f̂(l). Employing the inverse Fourier
transform yields (Tgf)(m) =

∑N−1
l=0 g(λl)f̂(l)χl(m). The wavelet operators at scale t is then de-

fined by T tg = g(tL). The spectral graph wavelets are then realized through localizing these opertors
by applying them to the impulse on a single vertex, i.e. ψt,n = T tgδn. Using the orthonormality of
the χl, it can be seen that the wavelet coefficients can also be achieved directly from the wavelet
opertors, as Wf (t, n) = (T tgf)(n) =

∑N−1
l=0 g(tλl)f̂(l)χl(n). The above is the main part of the

application of SGWT in our method. See Hammond et al. (2011) for other notes and proofs.
Then in next section, following the definition above, we will introduce the details of our method.

4 GMDS FRAMEWORK

In this section, the multi-domain splitting framework for graph structure is proposed, and we de-
scribe the detailed architecture of it shown in Figure 1. Firstly, we use preprocessing module to
clean the original data, and form them into the appropriate format of next layer. Secondly, the Local
Splitting is used to split the graph time-series that follow our framework order by local DWT anal-
ysis. Then, after the splitting, we use graph generation module to generate the adjacency matrix of
each splitted graph time-series. In the last layer, we use spectral graph wavelet transform (SGWT) to
implement the frequency domain global detection. And the output of our framework is the detection
results that involve in the anomaly vertices finding, vertices classification and related application
analysis. Furthermore, the local part is detection in each splitted period, the global part stands for
splitting on whole time-series.

4.1 PREPROCESSING

With much of invalid eigenvalues and monitor stations, original data is used to construct the graph
time-series model. Thus, we design Algorithm 1 that contains the discard of invalid points, vertices
choosing and sequences stationary analysis to implement the preprocessing. According to the data
characteristic requirements of the designed framework, we have formulated the following principles
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Figure 1: The flow chart of GMDS

Algorithm 1 Preprocessing

Input: Time-series;
Output: Graph Time-series;

1: Removing invalid vertices (unqualified ver-
tices);

2: Extracting the target features from datasets;

3: Sampling the crucial vertices;
4: Stationarity and Validation Testing(3 re-

quirements);
5: Calculating m;
6: return Gunderpre,m;

for preprocessing.
1) Remove the vertices that with incompleted time-series.
2) Remove the vertices with below anomaly records that caused by the collecting: individual values
are too large or too small relative to the whole, compared with other series, and the value of the
whole series does not change with time.
3) Remove the vertices that are determined to be non-stationary and cannot be uniformly stabilized.
The output of this layer is the graph time-series that needs splitting.

4.2 LOCAL SPLITTING

Algorithm 2 Local Splitting

Input: Preprocessed Graph Time-series;
Output: Splitted Graph Time-series;

1: Extracting the target features from datasets;
2: Generate Virtual Vertex;
3: DWT analysis
4: for j = 1; j <= vertices; j + + do
5: Discrete Wavelet Transform(DWT) for

vertex j time-series;
6: end for
7: Estimate Boundary
8: for j = 1; j <= vertices; j + + do

9: Find the max wavelet time among vertex
j;

10: end for
11: Set limitation value(Here, we have obtained

that the number of splitted segments is from
the experimental experience. Then, take the
first n points with the largest wavelet coef-
ficients, and the wavelet coefficient value of
the nth point is the boundary.);

12: Splitting the graph time-series follow the
boundaries.

13: return Splitted graph time-series;

Algorithm 2 is designed to implement the Local Splitting module. Due to the graph wavelet trans-
form needs a center vertex, we first generate the virtual vertex as the overall situation of the graph,
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the generation equation is

FvN (t) =
1

N

N−1∑
i=0

Fvi(t), t = 1, 2, 3, ... (1)

where FvN (t) is the feature of virtual vertex at t, N is the amount of vertices, Fvi(t) is the
feature of ith vertex among graph at t. So, the feature vector of virtual vertex is FvN ={
FvN (1), FvN (2), ..., FvN (t)

}
. Then, analyzing the graph time-series by discrete wavelet transform.

Each vertex of the graph is chosen as a local part, the time-series of that vertex are the eigenvalues.
By discrete wavelet transformation, we can map the features of input from time domain to spec-
tral domain. Then, each local part will be represented by a spectral signal. Secondly, considering
the peaks of each spectral, the module calculates the splitting boundary and position by training. At
last, the method votes the best trainable splitting position. The graph time-series is splitted to several
parts, which have obvious different features compare to others.

4.3 GRAPH GENERATION

Algorithm 3 Graph Generation

Input: Splitted Graph Time-series, Road Map
Matrix;

Output: Adjacency Matrix;
1: i=1
2: while i <= n do
3: t− s = Xm

i,t−n+1+m, ..., X
m
i,t;

4: ui = ARMA(t− s, order = (p, q));
5: i+ +;
6: end while
7: //ui = (φ1, ..., φp, θ1, ..., θq), Gx =

(X1, ..., Xn)

8: for j = 1; j <= n; j + + do
9: for k = 1; k <= n; k + + do

10: Diste(Xk, Xj) = ‖αk − αj‖2;
11: end for
12: end for
13: for i = 1; i <= n× n; i+ + do
14: Calculating the adjacency matrix A by

equation;
15: end for
16: return A;

Algorithm 3 is designed to implement the graph generation part. Adjacency matrix is the repre-
sentation of the relation of graph between vertices. Thus, it is important to capture the most fitted
representation of graph. This module combines physical relationships of graph and interaction co-
efficients to generate the adjacency matrix that plays an important role in the hole framework. The
distance matrix comes from the road network, calculated by fixed Latitude and longitude coordi-
nates of each station. This part captures the spatial relationships among graph.
The ARIMA progress is to capture the hidden interaction among vertices set. ARMA(p, q) is used
to generate the parameters vector Φi of each time-series, which represent the vertices uniquely in
the Euclidean space.
The vectors are like, uk = (Φk,Θk) = (φ1, ..., φp, θ1, ..., θq) = (α1, ..., αp+q), k =
1, 2, ..., n; p, q = 1, 2, ... where p is the order of modeling, φ is the AR parameter, θ is the MA
parameter. Basing on the uk and Hannan & Rissanen (1982), we define a multivariate equation
f(uk) as,

f(uk) = |
p,q∑

i=1,j=1

(φixt−i + θjεt−j)− (xt − εt − C)|

=


|
∑p,q
i=1,j=1(αixt−i + αj+pεt−j)− (xt − εt − C)|,

p, q 6= 0

|
∑p
i=1(αixt−i)− (xt − C)|, q = 0, p 6= 0

|
∑q
j=1(αjεt−j) + (εt + C)|, p = 0, q 6= 0

(2)

where, xt is the time sequence, ε is noise. C is constant, which consists the expectation of xt.
The goodness-of-fit between the uk and the real model of time-series is inversely correlated with

the value of f(uk). Then, the equation of Uk is, Uk = arg min
uk

{
f(uk)|∃u∗k : lim

uk→u∗
k

f(uk) = 0

}
.
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Ideally, we can find a u∗k, which make f(u∗k) = 0. However, in experiments, we have to find the
most approximate value. In a graph with n nodes, each node has a unique Uk. The Euclidean
distance between any pair of vertices uk and ul, Diste(Uk, Ul) is given by, Diste(Uk, Ul) =√∑p+q

j=1(αk,j − αl,j)2 = ‖αk − αl‖2 k, l = 1, 2, ..., n. Here, if the data consists of features and
spatial road map matrix R, the adjacency matrix is A = DisteR. If the data without the physical
road map or fixed spatial matrix, the adjacency matrix is A = Diste.

4.4 GLOBAL DETECTION

Algorithm 4 Global Detection

Input: Adjacency Matrix A;
Output: Detection Results(Anomaly Vertices);

1: Generate Graph Wavelet Coefficient;
2: Setting adaptive boundary of classification

of different anomaly levels by magnitude;

3: Detecting the anomaly vertex and classify
them into different level categories.

4: return Detecting results;

After generating the adjacency matrix of each graph, global detection layer is needed to detect the
anomaly vertices and classify the target set of vertices into different groups by training. The details
are in Algorithm 4. In this module, we use SGWT to calculate the graph wavelet coefficients, the
specific process have been mentioned in section 2. Finally, our framework is trained by using the
binary cross-entropy loss functionTrinh et al. (2019), and optimized by Adam.

5 EXPERIMENTS AND PERFORMANCES

In this section, we will deploy our framework in traffic and urban datasets. We set 3 parts of ex-
periments to illustrate the performances and precision of our method. Firstly, we elaborate the
performances by 5 metrics, among GMDS and baselines on the NYC urban datasets. Then, based
on the PeMSD dataset, a small-scale dataset is sampled from PeMSD 3 to verify the effectiveness
and rationality of our framework by visualization. At last, we apply GMDS to PeMSD 3 datasets to
detect the anomaly vertices in different important period with landmark events. The details of our
experiments are as follows.

5.1 DATASETS AND SETTINGS

PeMSD : In our experiments, the traffic datasets are collected from California highway by the
Caltrans Performance Measurement System(PeMS) PeM in the rate of one sampling every 5 min-
utes. The eigenvalues in traffic experiments are the total flows. We collected 70 points in PeMSD3
(district 3) by preprocessing module of our framework. Then, we resample 6 vertices among them
for the small-scale experiment. The time range of data is from Jan/1st/2020 to Jun/30th/2020. Due
to the less of recognized anomalies ground truth for this dataset, all the trainable parameters are set
by experience.
NYC urban : This dataset consists of 2 parts. One is generated by the bike sharing system in
NYC, which has 340 bike stations and about 7,000 bikes. The labels include time, bike ID, station
ID, and an indication of check-out or return. The location of each station is also disclosed to the
public. Another is generated by over 14,000 taxicabs in NYC. Labels include pick-up and drop-off
locations and times, the duration and distance of each trip, taxi ID and the number of passengers for
each trip. The aim of introducing this dataset in our experiments is to evaluate the performances
of GMDS, thus the settings and preprocessing method come from Zheng et al. (2015). And we
separate the data into 30%, 30% and 40% for training, validation and test.
All experiments are compiled by Python, and tested on a Windows10 workstation (CPU: Intel(R)
i7-10700 GPU: NVIDIA RTX 2070 RAM: 32G).
There are 2 kinds of parameters that need to be set in this experiment. The first category of
parameters can be trained according to the characteristics of the data. Such as, the difference order
m in the preprocessing stage, the wavelet coefficient bounds of the local splitting module, the
number of splitting periods. Others are needed to set by experience, such as the ARMA order in the
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generation of adjacency matrix, and the wavelet scale and order of the wavelet coefficients of the
graph.
In evaluation experiments, the settings of our method are the same to the experiments below, except
for the boundary of splitting is 100, and the anomaly limitations are trained in detection.
In PeMSD 3 anomaly detection, we set the number of time interval splitting to less than 15, and
choose the splitting boundary according to the order of wavelet coefficients from large to small. In
PeMSD 3, the splitting limit is 170. In the generation of adjacency matrix, we set ARMA (5,0). For
the whole time series stabilization, we use first-order difference. In the global detection part, we
use the generated virtual vertex as the center, set the wavelet scale to 3 and the order of Chebyshev
polynomial to 20.

5.2 BASELINES AND METRICS

We compare our method with 4 classical and widely used anomaly detection methods on NYC urban
datasets. The baselines are as follows:
Ind + int: An One-Class Support Vector Machine(SVM) based two-step method, which use a
similarity-based algorithm and an one-class SVM based algorithm Zhang et al. (2018).
EE: Data is used to fit an elliptic envelope first. And Mahalanobis distance is introduced as the
anomaly score Rousseeuw & Driessen (1999).
Neighbor: Use the Euclidean distance between the values of a vertex and the mean value of its
nearby vertices as the anomaly score.
LRT: Fit a Poisson distribution on historical data and use likelihood ratio test as the anomaly score.
For evaluating the performances of our framework and baselines, we introduced 5 metrics into de-
tection results analyzing. Before demonstrating of metrics, some basic statistics are needed explain.
TP is true positive, FP is false positove, TN is true negative, FN is false negative. Positive means
the anomaly vertices among detection results, negative means the normal vertices among detection
results. True means the anomaly vertices in ground truth, false means the normal vertices in ground
truth.
Therefore, the metrics are Precision = TP

TP+FP , Recall = TP
ALL , F1 − measure = 2×P×R

P+R ,
FPR = FP

FP+TN and TPR = TP
TP+FN , where P is precision, R is recall, ALL is all the sample

features of vertices, TPR is the proportion of real positive samples in all positive samples currently
assigned to positive samples, FPR is the proportion of real negative samples in the total number of
negative samples in the category of positive samples wrongly assigned.

5.3 PERFORMANCES EVALUATION

Table 1 demonstrates the comparison between our method and baselines on NYC urban data in
metrics that introduced above. Hit rate here is Hitevents

Allevents . Following the same procedure in Zheng
et al. (2015), a detected anomaly is regarded as a correct recall if the anomaly has an overlap with
a reported event in spatial-temporal space. The results show that our method outperforms all other
baselines.

Table 1: Results on Urban data anomaly detection

Method P F1-M FPR TPR Hit Rate

ind + int 0.24 0.34 0.76 0.60 60%(12/20)
EE 0.15 0.19 0.90 0.25 25%(5/20)

Neighbor 0.21 0.14 0.56 0.10 10%(2/20)
LRT 0.16 0.20 0.90 0.25 25%(5/20)

GMDS(proposed) 0.88 0.81 0.07 0.75 75%(15/20)

After the evaluation comparison with baslines, for more intuitive and persuasive verification, we
next deploy our method in a small-scale real-world traffic data that are sampled from PeMSD3. And
we illustrate the splitting results, adjacency matrix, and detection results by visualization. Also,
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in order to show the structure of the framework more comprehensively, we will show the phased
results of each step of our method in this experiment.

The yellow semi-transparent area in the Figure 4 is used to mark the area involved in the selected
station (In our method, a virtual vertex is generated, but it is not identified in the image. Because
it has no specific physical location). According to our method, after the data preprocessing, local
splitting is the step to divided graph time-series into different parts in time domain.
Figure 2 in appendix shows the result of local splitting. This group of figures is the time-frequency
information of two vertices, which as the splitting time voting vertices. Among them, Figure 2(a)(b)
are the time domain characteristic values of two vertices selected as splitting time position after
DWT respectively. Figure 2(c)(d) are the DWT spectrums of 2 vertices. In order to demonstrate
the difference in the frequency spectrum more clearly, we have performed numerical significance
processing on it, and the results are Figure 2(e)(f). It is possible to clearly find the moments with
abnormal numerical characteristics, and these abnormal moments are the splitting points of voting.
We mark these moments by black line in Figure 2(e)(f), by red line in Figure 2(c)(d), and by black
box in Figure 2(a)(b). Figure 2(g) is the schematic diagram of all time domain splitting. Different
colors represent different time periods. The red line in Figure 2(g) is the trained bound (DWT co-
efficient) of voting. According to the experiment of this module, it can be seen that the splitting of
our method is effective, and the anomaly time can be accurately located.
The next step of the proposed method is to generate the adjacency matrix corresponding to each
period, that is, to generate the representation of the graph structure. In this regard, in order to in-
tuitively show the necessity and effect of splitting, Figure 3 in appendix shows the visual matrix
of adjacency matrix. It can be seen from the figure that the graph in different periods has different
detail characteristics.
As a comparison, Figure 3(d) shows the adjacency matrix that takes all half year data as a whole
without splitting. It can be seen from the first three subgraphs that different periods have their own
characteristics, but the results without splitting cannot show these different details. Splitting can
locate the details of different periods, which is more conducive to accurate analysis.
The last step is global anomaly detection. The detection results are shown in Figure 4(a)(b)(c) in
appendix, correspond to the 3 piecewise adjacency matrices in Figure 3. Here, we first divide the 6
vertices into 2 categories according to the magnitude of the graph wavelet coefficients. The red area
is great change, and the yellow area is small change. In these 2 regions, we mark vertices with the
biggest change in red, and it is detected as an anomaly vertex. For a more comprehensive compar-
ison, Figure 5 in appendix shows the sequence diagram of the time domain, frequency domain and
frequency domain saliency processing of the virtual vertex and the other 3 vertices.
According to the detection results, our method can locate the anomaly vertices in each time pe-
riod, and can classify them accurately. At the same time, comparing with the results without split-
ting(Figure 4(d)), we can detect the events at each time in more details.
The above experiments are carried out on 2 different types of datasets. The first is to compare our
method with baselines on multiple metrics. In addition, another is performed to visualize detection
process of our method on PeMSD3. The results above have proven that GMDS has detection accu-
racy, rationality, generality and usability. Next, we will apply our framework to traffic flow historical
data analysis in the Sacramental, CA, US.

6 DISCUSSION

Figure 6 demonstrates the anomaly results of detection among PeMSD 3. The results show the traffic
flow change in different periods. The colors in the figure, red, green, blue and yellow represent the
degree of change from high to low. But, in different period, the same color does not represent the
same degree. The colorful oval areas represent the average degree of change of traffic flow. The
level of colors are the same to above. It has to be noticed that, the detected anomalies represent
that the numerical variation of anomaly vertices are larger than other data entities. Following this
criterion, the sudden expansion and decrease of traffic flow are all the anomaly phenomenon. And
the ellipse areas are all the diagram of vertices without classification.

Basing on the events collected from official websites cag NAV in table 2, the analysis of our
detection results are as follows. The events we select including holidays, Covid-19 containment
measurements and traffic events. The traffic events consist of incidences, alerts and news. Due to
the large amount of traffic events, we only list the numbers of events in each period. Because of
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Table 2: The list of traffic, Covid-19 and holiday events in Sacramental, CA from 01/01/2020 to
06/30/2020.

No. Time Amount Events category

1 Jan 1 1 New Year’s Day
2 Jan 1 – Jan 15 42 Traffic archive
3 Jan 20 1 Martin Luther King, Jr. Day
4 Jan 16 – Jan 31 33 Traffic archive
5 Feb 17 1 Washington’s Birthday
6 Feb 39 Traffic archive
7 Mar 1– Mar 20 2 Traffic archive
8 Mar 20 – May18 56 Covid-19 related
9 Mar 21– Mar 31 13 Traffic archive

10 Apr 16 Traffic archive
11 May 1 – May 18 9 Traffic archive
12 May 25 1 Memorial Day
13 May 19 – Jun 30 69 Covid-19 related
14 May 19– Jun 30 57 Traffic archive

the direct affection to the traffic flow, the holidays and traffic events are selected. Covid-19 is a
big event, which can indirectly affect the traffic flow. Therefore, we collected these 3 categories of
events.
In Figure 6, our method splits the time into 4 periods in the first half of 2020. Then, as another scale
representation, Figure 6(e) is the result without splitting. In this range of time, our results illustrate
that the state of traffic flow start to change in the period 1. And in period 1, the changeable center
is the center of sacramental. Then, in period 2, the traffic flow variation range is gradually spread
to a wider range, based on the urban center. In period 3, the maximum variation value and range
indicates that there are many events affecting the change of traffic flow during this period. In the last
period, the anomaly area has been sightly away from the center, showing a state of divergence from
the center to the periphery. With the events in table 2, the data apparently shows that in period 3,
the traffic related events and alerts are the least among 4 periods, but the Covid-19 related news and
reports are the most. All these demonstrate that the travels of people are the least in this period, this
conclusion is confirmed to our detection results. Besides, in period 1, the traffic events are the most
without the Covid-19 reports. So, the people’s travels are a normal and frequent situation, which
are the same to history. Therefore, there are not many anomaly vertices in this period. From second
period, the Covid-19 reports start appearing guadually, the traffic flow is indirectly affected by the
gradually released containment policies and the gradually increasing number of Covid-19 infected
cases, and the overall trend is decreasing.
Our method efficiently locates the specific vertices with anomaly changes of different levels. The
significance of our method is that it can quikly locate the problem area in a more sensitive period
and carry out relevant downstream tasks analysis. For example, the summary of historical traffic
conditions is convenient for setting and alerting new traffic facilities and policies in the area where
key vertices are located, and changing according to the time period.

7 CONCLUSION

In this paper, basing on the appropriate temporal splitting, a novel framework called GMDS is pro-
posed to solve the problem of temporal variant graph structure capturing. Our framework consists
4 parts, data preprocessing, DWT based splitting, ARIMA based adjacency matrix generation and
graph wavelet transform based global detection. In order to demonstrate the rationality and effec-
tiveness of GMDS, we utilize our method in traffic task that consider time-varying graph structure
seriously. The experimental results show that our proposed outperforms all the baselines. And the
analysis of traffic flow illustrates that our method has the ability to locate detail events, and can
effectively detect anomaly events.
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A APPENDIX

(a) Time-series of vertex 1 (b) Time-series of vertex 5

(c) Spectral of vertex 1 (d) Spectral of vertex 5

(e) Enhance spectral of vertex 1 (f) Enhance spectral of vertex 5

(g) Splitting on timeline

Figure 2: Time-series and spectral of voting vertices, splitting schematic diagram in PeMSD3 ex-
periment.

(a) Period 1 (b) Period 2 (c) Period 3 (d) ALL

Figure 3: Visualization results of adjacency matrix in PeMSD3 experiment.
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(a) 01/01/2020 – 02/13/2020

(b) 02/13/2020 – 05/09/2020

(c) 05/09/2020 – 06/30/2020

(d) 01/01/2020 – 06/30/2020

Figure 4: The results of 6 vertices verification experiment show that the yellow represents the min-
imum fluctuation of the sequence, and the red represents the maximum fluctuation of the sequence.
(The translucent areas in figure are all diagram without classification.)
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(a) Time-series of vertex 2 (b) Time-series of virtual vertex

(c) Time-series of vertex 3 (d) Time-series of vertex 4

(e) Spectral of vertex 2 (f) Spectral of virtual vertex

(g) Spectral of vertex 3 (h) Spectral of vertex 4

(i) Splitting result on vertex 2 (j) Splitting result on virtual vertex

(k) Splitting result on vertex 3 (l) Splitting result on vertex 4

Figure 5: Time-series, spectral and splitting result of vertex 2, 3, 4 and virtual vertex in PeMSD3
experiment.
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(a) Period 1: 01/01/2020 – 01/13/2020 (b) Period 2: 01/13/2020 – 03/20/2020

(c) Period 3: 03/20/2020 – 05/18/2020 (d) Period 4: 05/18/2020 – 06/30/2020

(e) ALL: 01/01/2020 – 06/30/2020

Figure 6: The results of 70 vertices verification experiment show that the yellow represents the min-
imum fluctuation of the sequence, and the red represents the maximum fluctuation of the sequence.
(The ellipses in figure are all diagram without classification.)
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