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ABSTRACT

The generation of high-quality 3D assets is essential for applications in virtual re-
ality, robotics, and industrial systems. Existing methods can be sorted into three
categories based on different prior. The first lines lift 2D diffusion as prior into
3D representations. The second lines adopt ground truth multi-view images as
prior to directly regress 3D assets. The third lines tend to model the probabilistic
distribution of 3D assets, which adopt 3D distribution as their prior. However,
those three types of prior are in semantic level. They can represent semantic in-
formation but ignore the structural concept (describing the topological structures),
which is crucial in the physical world applications. To address this limitation,
we propose a novel 3D generation paradigm, called Prism (a paradigm driven by
structural concept), which leverages structural concept as prior. First, our method
encodes structural concept which is fused with real-world images to form prior
representations, enabling the model to integrate high-level structural concept prior
while guaranteeing shape details from real-world images. Then we adopt a pre-
trained VAE encoder to provide embeddings of real 3D models. After that, we
employ consistency loss in the latent space to align our prior with real 3D models
to achieve mapping between concept space and 3D space, ensuring the generated
3D assets are structurally coherent, aligned with affordance, and visually realis-
tic. Prism provides a high shape quality and structure controllable solution for
3D synthesis. We validate our method on both vision and robotics aspects with
state-of-the-art algorithms. Our code will be public available.

1 INTRODUCTION

The emergence of research such as robotics, virtual and augmented reality has increasingly brought
the 3D assets generation into the spotlight of academic and industrial research. However, manual
3D assets creation is time-consuming, costly, and offers limited reusability. Consequently, the gen-
eration of 3D assets, often from a single image or a textual prompt, has become an active research
field.

Existing 3D assets generation methods can be categorized into three paradigms. The first|Poole et al.
(2023)); ILin et al.| (2023); [Tang et al.[ (2024) employs pre-trained 2D diffusion models with Score
Distillation Sampling (SDS) to optimize Neural Radiance Fields(NeRF) Mildenhall et al.| (2021).
The second chooses to directly regress assets from sparse-view images |Chan et al.| (2022); |Hong
et al.| (2024). The third is native 3D generation |Li et al.| (2025); [Chen et al.| (2025a); | Xiang et al.
(2025), which models the distribution of 3D assets directly, conditioned on text or images. Although
these methods can produce visually realistic results, they lack structural concept prior, which can
reflect the topological structures. As illustrated in[I] these methods are able to generate assets with
good appearance, but they are difficult to highly control the topological structures.

We argue that a complete 3D asset should simultaneously capture two essential dimensions: fine-
grained appearance and structural concept. Fine-grained appearance ensures realism and visual
plausibility, while structural concept ensures controllable topological structure and functional us-
ability, especially in downstream tasks involving interaction, such as robotic manipulation. Previous
methods mainly focus on the appearance and do not pay much attention to the structural concept.

From a cognitive perspective [Biederman|(1987), objects can be described not only by their external
appearance but also through basic geometry shape and topological structure. Inspired by this idea,
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Figure 1: Comparison with our methods and previous 3D generation routes. (a)Previous types
of prior are difficult in topological structures controlling. (b)Comparison between and previous
methods, our method can control both shape details and topological structures (three evenly sized
posts on the back of the chair), along with Affordance Knowledge described in procedures.

Analytic Concept [Sun et al.| (2024b) has been introduced to represent the structural concept by
procedures, including topological structures and affordance knowledge which is illustrated in Figure
[2) (details is described in Appendix[A.3).

To this end, we propose a novel generation paradigm named Prism (a 3D generation paradigm
driven by structural concept prior) that integrates structural concept prior based on Analytic Concept
and shape detail prior based on real-world images, enabling the synthesis of 3D assets that are
structurally coherent, visually realistic, and aligned in affordance knowledge with Analytic Concept.
This paradigm faces three challenges: First, how to form prior representations based on Analytic
Concept, which is novel in 3D generation. Second, how to control the topological structures of
generated 3D assets while maintaining the shape details. Third, how to learn the mapping between
the novel prior representations and 3D space.

To tackle these issues, we propose three core components: Prior Representation Construction, Shape
Encoding, and 3D Space Mapping. For Prior Representation Construction, we construct prior rep-
resentations based on Analytic Concept along with real-world images to control both topological
structures and shape details. Specifically, the prior representations consists of vision features and
language features integrated by cross attention, where the vision features is a fusion of conceptual
image features and real-world image features via AdaLLN |Perez et al.| (2018)) modulation and the
language features is extracted from the language descriptions of Analytic Concept.

For the Shape Encoding, a pre-trained VAE encoder is employed to encode the geometry of real
3D models into latent 3D space. Specifically, the geometry is represented by coarse shape obtained
through uniform points sampling and geometric details captured via sharp points sampling, which
are subsequently integrated through cross-attention to derive latent features.

For the 3D Space Mapping, we employ the 3D shape latents produced in the Shape Encoding pro-
cess as supervision to learn a mapping between prior representations and 3D space. It should be
noted that learning such a mapping process is essential because previous methods did not employ
structural concept as their prior, which means that they cannot achieve such a mapping from prior
representations to 3D space.

Through these three core components, Prism can generate 3D models that not only achieve high
visual fidelity but also preserve structural concept prior, breaking through the limitations of previous
approaches that mainly focused on semantic information. In summary, Prism establishes a novel
paradigm that generates 3D models with both visual fidelity and structural concept, setting a solid
foundation for applicability in both visual understanding tasks and real-world interactive scenarios.
We believe this work opens a new avenue for controllable topological structures generation in the
3D domain.

Our work makes the following key contributions: (1) We propose a novel structural concept driven
3D generation paradigm, leveraging Analytic Concept as topological structures controllable prior.
To the best of our knowledge, we are the first to employ structural concept as prior in 3D assets
generation, ensuring structural controllable and potential affordance knowledge of the outputs. (2)
To achieve the mapping between concept space and 3D space, we construct a novel prior represen-
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Figure 2: Illustration of Analytic Concept, which depicts topological structures and affordance
knowledge in procedures. in procedures language. And can render into corresponding 3D model,
render into image by camera parameters, or transfer into nature language description.

tations which has a one-to-one correspondence with the concept space, and then train a DiT to learn
the mapping from prior representations to 3D space supervised by real 3D models. (3) To control
both topological structures and shape details, we propose a multi-modal prior representation which
consists of both vision and language features. And we employ AdaLN modulation and cross atten-
tion to merge the multi-modal features as our final prior representations. (4) We provide qualitative
and quantitative evaluations to validate the benefits of Prism on both 3D generation and robotic
aspects. The results demonstrate that our method can control both shape details and topological
structures, while possess affordance knowledge described in Analytic Concept.

2 RELATED WORK

2.1 3D ASSETS GENERATION

3D assets generation methods are typically categorized into three paradigms: SDS-based optimiza-
tion, sparse-view reconstruction, and native 3D generative models.

The first paradigm score-based optimization methods iteratively refine implicit 3D representations,
most often instantiated as Neural Radiance Fields (NeRFs) Mildenhall et al.| (2021)), using super-
vision from pre-trained vision-language or diffusion models. DreamFusion |Poole et al.| (2023) and
Magic3D |Lin et al.[(2023)) apply Score Distillation Sampling (SDS) with 2D diffusion prior to opti-
mize NeRFs. They improve visual fidelity and multi-view consistency but are slow and sometimes
produce geometric artifacts . The second paradigm sparse-view reconstruction models reconstruct
3D assets from a small number of images Siddiqui et al.| (2024); Xie et al.[(2024]));|Wang et al.|(2023)).
Instant3D |Li et al.| (2024) uses a transformer-based reconstructor to reconstruct NeRF from a small
set of structural 2D views, enabling real-time generation with comparable quality. MVDream |Shi
et al.| (2024)) employs a multi-view diffusion model to generate coherent views from a single prompt,
enhancing consistency when combined with score distillation sampling. The last native 3D genera-
tive models paradigm directly learn conditional mappings from text or images to 3D shape represen-
tations using paired data|Zheng et al.| (2023); [Chen et al.|(2025b)). For instance, CLIP-Forge |Sanghi
et al.| (2022) adopts an invertible normalizing flow to transform CLIP embeddings into shape em-
beddings. Dora|Chen et al.|(2025a)) enhances reconstruction by prioritizing sharp-edge regions and
employs dual cross-attention for fine detail preservation in autoencoding pipelines. Trellis | Xiang
et al.| (2025), trained on a large dataset of diverse objects, yields a generalizable 3D generation
model capable of producing multiple mainstream 3D formats for various applications.

Despite the remarkable performance of these 3D generation methods, they focus mainly on object’s
geometry with semantic prior, which leads to insufficient control ability of topological structures
during generation.
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2.2  MANIPULATION TASK

Object manipulation encompasses a range of tasks centered on enabling embodied agents to interact
appropriately with objects. Pick-and-place is a fundamental task in manipulation. Some methods
concentrate on pose estimation of known objects, while others choose to create universal policies
for novel objects. Besides this, some researchers focus on improving the intelligence of robots to
handle more complex tasks, such as manipulating deformable and articulated objects. For instance,
Where2Act Mo et al.| (2021) predicts per-pixel action likelihoods and manipulation proposals to
guide interaction. Where2Explore [Ning et al.[(2023)) adopts few-shot learning for object manipula-
tion, which measures affordance similarity across object categories to transfer affordance knowledge
to novel objects. Additionally, GAPartNet Geng et al.|(2023) with semantic and affordance labels
has been released, accompanied by a manipulation pipeline that leverages the concept of actionable
parts. The effectiveness of manipulation using these methods is largely contingent on the depth of
understanding regarding affordances in objects.

3 METHOD

In Section[3.1] we will present an overview of our method. In Section [3.2] we will elaborate on the
proposed structural-concept-prior-driven paradigm and introduce our motivation. In Section[3.3] we
will describe our each component of Prism’s framework respectively. In Section [3.4] we illustrate
the training and inference process of Prism respectively.

3.1 OVERVIEW

Previous methods mainly employ semantic prior to generate 3D assets, which are considered to
exhibit less control over the topological structures. To tackle this problem, we propose a novel
3D generation paradigm, namely Prism(a paradigm driven by structural concept prior). Figure [3]
shows an overview framework. We propose three core components in Prism: Prior Representation
Construction, Shape Encoding, and 3D Space Mapping, with details described below.

3.2 3D ASSETS GENERATION PARADIGM DRIVEN BY STRUCTURAL CONCEPT PRIOR

Diffusion models have brought impressive impacts to generative tasks in 2D domain, but they still
lag behind in the field of 3D generation. Pre-trained 3D generative models can generate 3D models
of a certain quality in appearance. However, these methods can not well control the topological
structures of generated 3D assets. This is because during the training process, these methods are
trained on the semantic level, without sufficient information related to structural concept.

Different from traditional controllable 3D generation methods which mainly focus on the appearance
of generated results, we aim to provide a method for 3D generation that ensures good topological
structures while also containing high-quality shape details. So we propose Prism, which adopts
structural concept prior to control topological structures and real-world images to control the shape
details.

Inspired by Analytic Concept Sun et al.| (2024b), which explicitly expresses the topological struc-
tures and affordance knowledge of objects by procedure language, we propose multi-modal rep-
resentations which integrate structural concept prior from Analytic Concept and visual prior from
real-world images to form our prior representations, enabling the generated 3D models simultane-
ously possess good appearance, good topological structures and consistent affordance knowledge
with Analytic Concept. Additionally, during the training process, we use the real 3D models as
supervision, enabling our model learn the mapping from prior representations to 3D space.

It should be noted that our prior representations hold a one-to-one correspondence with structural
concept described in Analytic Concept, ensuring the mapping from the concept space to the 3D
space when learning the transfer from prior representations to 3D latents.

Compared with previous 3D generation methods, our generative 3D assets have high-quality appear-
ance, contain rich structural concept information and can align well in affordance knowledge which
described in procedure in Analytic Concepts.
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Figure 3: Overall architecture for our method. Blue arrows mean those processes only perform in
training stage. (a) In Prior Representation Construction, we learn a novel prior representation which
integrated structural concept and shape details by AdaLN Modulation and cross attention. (b) In
Shape Encoding, we sample uniform points and salient points from real 3D models and integrate
them by cross attention. Then we adopt pre-trained VAE encoder to get the shape latents, serving.
(c) In 3D Space Mapping, we fed prior representations into DiT as condition and map it into 3D
latent space supervised by shape latents produced in (b). Then we adopt pre-trained VAE decoder
to generate 3D assets controllable topological structure and high-quality 3D shape from the latent
features produced in DiT.

3.3 PRISM FRAMEWORK
3.3.1 PRIOR REPRESENTATION CONSTRUCTION

Prior Representation Construction aims to learn better representations that can integrate prior of
both structural concept (which can describe the topological structures) and shape details. To achieve
this, we employ Analytic Concept to control topological structures and real-world images to control
shape details.

Specifically, regarding the structural concept described by Analytic Concept as C, we convert C
into the corresponding conceptual 3D models C,,, and select the appropriate camera parameters
to render them into conceptual images denoted as C;. Moreover, we convert the procedures into
language descriptions via Large Language Model (LLM) which are represented as C;, thereby ob-
taining conceptual image-text pairs {C;, C;}. Such multi-modal representations allow for a more
comprehensive description of structural concept, enabling the model to learn better prior represen-
tations. It should be noted that Cy, Cy,,, C;, and C' are in one-to-one correspondence, each serving
as a description of the structural concept.

Besides, we inject real-world images R; into visual prior to control the shape details of generated
3D assets. The real-world images R; are first fed into a pre-trained image encoder ; to obtain
corresponding features F.:

F. =7i(R;). (D

To well integrate the shape prior with the structural concept prior, we employ an AdalLN (adaptive
layer normalization) modulation introduced in (2024). We apply this modulation to each
attention sub-layer of the pre-trained image encoder ; when encoding C;, and the modulation layers
are optimized during training to better fusion these two types of prior. Therefore, the prior of our
visual modality consist of two parts: structured concept and shape details, which can be written as
follow:

F, = 71(CI7MOdLN(FT))v 2
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where ModLN represents the modulation mentioned above. After obtaining the features of the
visual modality, we employ a pre-trained text encoder ~; to get the language features:

Fy = 3(Cy), 3)

where C; is the language descriptions of the structural concept. Then we calculate the features F,,
of F, and F; via cross attention to form our final prior representations:

F,, = CrossAttn(F}, F,, F,). )

So far, we have obtained the final prior representations F,,, which can control not only the structural
concept but also the the shape details of generated 3D assets.

3.3.2 SHAPE ENCODING

Shape Encoding aims to construct 3D shape latents from real 3D models. Specifically, to better
represent the appearance of real 3D models, we employ uniform points sampling to capture the
coarse shape and sharp points sampling strategy to capture the geometric details in the form of
point clouds. Then we employ the frontier embedder to map these two point clouds into coarse
shape latents and detail shape latents respectively. After that, we adopt cross attention to integrate
the coarse shape latents and detail shape latents and conduct self attention to obtain final 3D shape
latents. The detail process is described in[A.4]

3.3.3 3D SPACE MAPPING

In this section, we employ a learnable DiT |Peebles & Xie| (2023)) to map the prior representations
into 3D latent space. We use the 3D shape latents produced in Shape Encoding as supervision and
employ consistency loss to align it with the latents produced by DiT, enabling the diffusion model
to generate 3D latents that conform to the 3D latent space.

Finally, we leverage the rendering capability of the pre-trained VAE decoder, which decodes the
shape latents to generate 3D meshes, thereby achieving the generation of 3D assets from structural
concept.

In this way, we can generate high-quality 3D assets. These 3D assets not only have good visual
appearance but also possess consistent topological structures along with the affordance knowledge
described in Analytic Concept, thanks to the encoded multi-modal prior representations.

3.4 TRAINING AND INFERENCE PROCESS

Training Process. During the training process, we only train the diffusion model and freeze the
pre-trained VAE.

We use the shape latents GG obtained in the Shape Encoding process as supervision to train the DiT
with fusion features F},, as conditional prior, enabling the latent variables generated by the DiT align
with the 3D shape latents. This allows our DiT learn the ability to map from prior representations to
the 3D latent space. The conditional DiT is learned in the following way:

Loit = Eg,y,enon ¢ |lle = €0 (Geot, F)3] 5)

where €y represents the DiT, which is built on a UNet-like transformer, ¢ is sampled from {1, ..., T},
and G} is the noisy version of Gj.

In addition, we adopt the classifier-free guidance (CFG) Ho & Salimans| (2022) training strategy,
randomly dropping conditions during training to improve the diversity of generation results.

Inference Process. During the inference stage, we only utilize the trained diffusion model and the
decoder structure of the pre-trained VAE. The decoder decodes the latent features produced by the
diffusion model to predict the occupancy field and then converts it to meshes. Since we froze the
pre-trained VAE model during training, the decoder’s original rendering capability remains intact.

Moreover, the consistency constraint ensures that the output of DiT is consistent with the 3D latent
features output by the encoder. This enables the model to convert our prior presentations into 3D
space. The resulting 3D assets can possess good appearance, topological structures, and affordance
knowledge.
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Figure 4: Qualitative comparisons with baseline methods on generation results.

4 EXPERIMENTS

4.1 IMPLEMENTATION DETAILS

We evaluate Prism on PartNet dataset with Analytic Concept as annotations, and
randomly split the dataset into a training set and a test set at a 3:1 ratio. We adopt Dora-VAE
as the pre-trained model which contains 1.3 billion parameters. We freeze the VAE
model during training. Our DiT has comprising 1.04 billion parameters and conditions on image fea-
tures extracted by DINOv2|Oquab et al.[(2023) and text features extracted by CLIP(ViT-L-14)
(2021). Our training is conducted on 4 A100 GPUs for two days with a batch size of
32 and a learning rate of 5e-5. We set CFG with a drop rate of 0.1 and set CFG strength to 3 and
sampling steps to 50 at inference stage. We employ Flash-Attention-v2, mixed-precision training
with FP16 and gradient checkpointing to optimize memory usage and training efficiency. For ma-
nipulation experiments, we adopt SAPIEN [Xiang et al (2020) as simulation environment, using a
Franka Panda gripper as the robot actuator. More implementation details can be found in Appendix.

4.2 MAIN RESULTS

We evaluate the quality of our generated 3D models from three aspects: appearance, topological
structure consistency, and affordance knowledge alignment. Our model is inherently generative
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Method Concept prior  Semantic prior | FID], CDJ]  Uni3D?t
InstantMesh X v 2372 0.0316 0.20
CraftsMan X 4 17.61 0.0227 0.25

Trellis X v 13.35 0.0183 0.27

Prism v v 9.15 0.0092 0.34

Table 1: Quantitative comparison with baseline methods on Partnet dataset.
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Figure 5: Visualization results of generated 3D models with Analytic Concept. Our methods can
highly control the topological structures along with part pose, grasp area, and grasp pose described
in Analytic Concept.

rather than reconstructive, so it is inappropriate to directly compare our outputs with ground truth
in the same way that is standard for reconstruction models. So for appearance quality, we choose
Fréchet Inception Distance (FID) and Chamfer Distance (CD) to compare the distributions of our
generative 3D models and the real 3D models. Then, we evaluate the topological structure consis-
tency using the Uni3D score. For affordance knowledge alignment, we present
visualization results on four dimensions (semantic, part pose, grasp area and grasp pose) between
Analytic Concept and the generated results.

Our primary focus is on the qualitative quality of the 3D generation results through a variety of
results and we also present quantitative data for reference.

4.2.1 QUALITATIVE COMPARISON

We compare our method with state-of-the-art baselines including InstantMesh (20244),
CraftsMan [Li et al.| (2025), and Trellis Xiang et al.| (2025). We employ the Partnet Mo et al.|
dataset to evaluate the performance of Prism, which is shown in Figure ] For each category, we
choose appropriate camera parameters to better showcase the topological structures and use image
with a resolution of 256x256 as input.

Prism exhibits superior performance in controlling topological structures, while also handle shape
details well. On the contrary, InstantMesh tends to produce noisy surfaces and incorrect topological
structures. Trellis also cannot well control the topological structures, such as connection between
the body and handle of knife. CraftsMan also suffers from inaccurate topological structures, such as
the position of the switch on the faucet and the layout of legs of the table.

4.2.2 QUANTITATIVE COMPARISON

First, we adopt FID and CD to evaluate the appearance of generated results. Then, we use the Uni3D
score to calculate the features similarity between the generated 3D models and the real-world image
to evaluate the topological structure consistency.

As shown in Table [T} our approach achieves the best performance on all criteria, which illustrates
that Prism can maintain topological structures and shape details better than other state-of-the-art
baselines.
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Figure 7: Visualization results of ablation on different components of prior.

4.2.3 RESULTS ON MANIPULATION

Since Prism is an object-level generation method, we conduct experiments at the object level. We
employ SAPIEN Xiang et al.| (2020) as the simulation environment and use a random selected mug,
bottle and knife generated by Prism, with Analytic Concept as annotations to evaluate affordance
knowledge alignment.

As shown in Figure [5] the 3D models generated by Prism can align well with Analytic Concept
across four dimensions: semantic, pose, grasp area and grasp pose. The results indicate that our
generation results exhibit good consistency with Analytic Concept prior in terms of structural con-
cept and affordance knowledge. The simulation results are shown in Figure[6] for more details please
refer to Appendix [A-5.3]and supplementary materials.

4.3 ABLATION STUDY

Ablation on Prior Representation Construction. In this part, we conduct an ablation study on
different components of our prior based on conceptual images which serve as the main carrier of
structural concept. The ablation includes scenarios with only conceptual images, without language
descriptions, and without real-world images. The quantitative results is shown in Appendix[A.5.4]

The visualization results are shown in Figure [l In Figure [J(a), the generated storage furniture
only has the overall structure without shape details in door and handle. And in Figure [7(b), the
result cannot fully represent the shape details in the door area. In Figure[7(c), the result can exhibit
some shape details but cannot preserve the topological structures. In Figure [7(d), our original prior
representations achieve the best performance in both topological structures and shape details.

For more ablation study please refer to Appendix [A.5.4]

5 CONCLUSION

We present Prism, which leverages structural concept as prior in 3D generation for the first time,
aiming to better control the topological structures and shape details, which is crucial in the physical
world applications. At its core, the novelties of Prism are as follows: First, we construct novel prior
representations which have a one-to-one correspondence with structural concept and learn a mapping
between the prior representations and 3D space. Second, to control both topological structures and
shape details, we employ AdaLN modulation and cross attention to fuse features from both types
of prior, forming the final prior representations. We comprehensively evaluate the performance of
Prism from both visual and robotic aspects. The results indicate the superiority of Prism. Despite its
ability to generate high-quality 3D meshes in terms of topological structure and shape details aspects,
Prism is an object-level generation method. There is still ample room for future exploration, such as
part-level generation.
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A.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

In paper writing, we only employ LLMs for polishing.

A.2 MORE RELATED WORK

A.2.1 NEUROSYMBOLIC SYNTHESIS

Neurosymbolic Synthesis has long been used to represent graphical content, offering interpretable
parameters, stochastic variability, and high-quality outputs, but it is challenging to design from
scratch. Advances in Al have enabled neurosymbolic models to combine the strengths of Al and
symbolic programs for representing, generating, and manipulating visual data. Transformer-based
methods|Ganin et al.| (2021);|Seff et al.|(2022); Khan et al.|(2024) leverage large-scale sketch datasets
for engineering sketch generation, with advances in controllability through image or sketch condi-
tioning, codebook-based geometry/topology separation. Recent research [Ellis et al.|(2019); [Reddy
et al.[(2021); Xu et al.| (2024b) tackles inferring 2D shape programs from images or sketches using
reinforcement learning, differentiable rendering or diffusion model to capture structural regulari-
ties. Another line of work |Xu et al.|(2022); |[Hossain et al.| (2025 employs neurosymbolic models to
generate 3D shapes by leveraging transformer-based architectures specialized for CAD operations.
Although procedural models have achieved promising results across various domains, they remain
limited to shape modeling and overlook the conceptual nature of the generated objects. Our work
leverages structural concept for 3D asset generation.

A.3 MORE DETAILS ON ANALYTIC CONCEPT

Analytic Concept represents the structural concept through procedural languages, providing mod-
els with a way to perceive, reason, and interact with the physical world. As shown in Figure [§]
it explicitly expresses the topological structures and affordance knowledge of objects using mathe-
matical language Sun et al.| (2025)), thereby modeling objects in the physical world with formalized
languages.

In the fields of cognitive science and brain science Biederman|(1987), it has been found that humans’
understanding of real-world objects stems from the perception of geometric shapes, which is com-
bined with relevant common-sense knowledge for induction. Based on this, Analytic Concept has
built a library of geometric primitive templates. By calling different geometric primitive templates
in the library, the structural concept information can be described, thus constructing the topological
structures of the object itself. Then, the affordance knowledge of geometric templates are defined
through procedural languages, including grasping postures, contact points for pushing, and so on.
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Figure 8: Illustration of Analytic Concept describe in mathematical language, which takes a bucket
as example. [Left] Describe the component of bucket body, from top-to-bottom is its topological
structures definition and affordance knowledge description. [Right] Describe the component of
bucket handle, from top-to-bottom is its topological structures definition, affordance knowledge
description, and kinematic description.

Each geometric primitive template consists of two parts: one is a program to describe geometric
properties, and the other is a program to assign corresponding parameters for instantiation. The
parameters also include two parts: one is the internal parameters describing geometric properties
(such as length, width, height, and diameter), and the other is the external parameters describing the
overall shape, including the position and direction.

For each object, constraints are applied to each geometric template, which can be used to represent
the connection mode between two geometric templates. At the same time, due to the extremely
complex geometric shapes of some objects (for example, a locker with drawers may consist of
dozens of geometric shapes), the description program of the object becomes very complicated. To
simplify the representations, Analytic Concept establishes advanced primitive templates that bridge
the geometric templates and objects. Advanced primitive templates are built based on a set of basic
primitives with specific spatial layouts and their connection relationships. For example, the handles
of buckets and kettles can be represented by the same advanced primitive template.

The description of an object itself can first call the advanced primitive template to build a subclass
and pass corresponding parameters for instantiation [Sun et al| (2024a). The advanced primitive
template is a subclass inherited from the basic geometric primitive template and instantiated through
corresponding parameters, including two parts: continuous parameters describing the shape and
pose of the object, and discrete parameters describing the number of repetitions of the geometric
primitives.

A.4 MORE DETAILS ON SHAPE ENCODING.

First, we use a pre-trained VAE model to encode real 3D models, thereby obtaining latent codes
for 3D space. To better represent the appearance of real 3D models, we perform uniform points
sampling strategy on 3D models to obtain a point cloud P; that represents the coarse shape of the
objects. On this basis, we further detect and sample the sharp edges of each 3D models, so as
to obtain a point cloud P, with sufficiently rich geometric details. We believe that the geometric
details of a 3D models can be represented by sampled sharp points from sharp edges. We achieve
the sampling of sharp points through two steps:

Sharp Edge Detection. Given the mesh of an object, we determine whether an edge is a sharp edge
based on the size of the dihedral angle between two adjacent faces, because the size of the dihedral
angle can directly reflect the curvature of the mesh edge. A large dihedral angle indicates that the
edge is a sharp edge.
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For the common edge e of any two adjacent faces f1 and fo. The dihedral angle 6. is computed as

follows:
0. = arccos (w> , (6)
g g

where ny; and ngo are the normal vectors of f; and fo respectively. The set of sharp edges £
includes all edges with a dihedral angle exceeding the preset threshold 7:

E={el|b. >} @)

Let Ng¢ = |€a| denote the number of sharp edges. The threshold is a hyperparameter set as 10
degrees, and sharp edges are all edges with a dihedral angle exceeding this threshold.

Sharp Points Sampling. After obtaining the set of sharp edges, we aim to sample sharp points from
the sharp edges to get the point cloud P, represent the geometric details. Let P be the set of sharp
points, which is initially an empty set. For each sharp edge, we retain its two vertices v; and vy
and add them to the set of sharp vertices: P. = P, U {vy,v2}. After obtaining Ps, according to the
preset sharp point threshold.

When the number of sharp vertices is sufficient (Ng < Ny), we use FPS (Farthest Point Sampling)
to down-sample Pg to obtain P;. When the number of sharp vertices is insufficient (Nyy < Ny), we
include all vertices in Pg and supplement them with interpolated points P;. These additional points
are generated by uniformly sampling (N; — Ny )/Ng points on each sharp edge in £ to ensure
comprehensive coverage of the sharp features.

Therefore, we obtain uniformly sampled point clouds P; to represent the coarse shape and the sharp
sampled point clouds P, to represent the geometric details. Then we employ fourier feature embed-
ding(FFE) to get the corresponding embeddings:

E, = FFE(P,), E, = FFE(P,). (8)

We encode E; and E; through a dual cross-attention mechanism, enabling the encoder focus on
both coarse shape information and fine-grained geometric information. After obtaining dense point
cloud representations, we adopt FPS to down-sample P and Pj:

P; = FPS(P,, N,) UFPS(P,, N,), 9)

where Ny and N, are the numbers of point clouds down-sampled from P, and P, respectively,
resulting in Py. Then, we calculate cross-attention features for uniform points and sharp points
respectively:
G, = CrossAttn(Py, E, E),
Gy = CrossAttn(Py, Ey, Ey).

Finally, the two attention features are concatenated to obtain the final point cloud features, which
serve as the latent space representations of the real 3D geometric information G = G + G.
This design can focus on both coarse shape and geometric details respectively, during the feature
extraction process. And form a better representation of latent 3D space.

(10)

A.5 MORE EXPERIMENT RESULTS
A.5.1 MORE IMPLEMENTATION DETAILS

Data Processing. Due to significant noise in geometry and appearance, we exclude low-quality
meshes from our training data including those with thin structures, holes, and texture-free surfaces,
to guarantee high data quality. This process yielded a refined training dataset containing roughly 3k
objects and a test dataset with around 1k objects including 16 categories: scissor, mug, chair, Bucket,
bottle, table, faucet, knife, refrigerator, display, microwave, trash can, door, vase, dishwasher, and
storage furniture.

For mesh processing, we follow CLAY |Zhang et al.| (2024) mesh to ensure watertight 3D models.
For sharp edge sampling, we set the number of sampled points N, = Ny = 32768, and sampling
angle threshold 7 = 10 degrees.

For each mesh, we construct an image for conceptual representations using procedural language
in Analytic Concept. For details, we select an appropriate view to render the concept meshes into
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(a) Pick Mug Handle (b) Pick Mug Body  (c) Pour Cube into Mug (d) Pick Knife Handle  (e) Pick Bottle Body (f) Pick Bottle Lid

Figure 9: Results of simulation experiments in SAPIEN simulator.

€) &)y 7l ely

(a) Ground Truth (b) Angle Threshold:1 (c) Angle Threshold:10  (d) Angle Threshold:30

Figure 10: Visualization results of ablation on different dihedral angle thresholds(/degree).

images which can best represent its topological structure and fuse with real-world images to serve
as visual prior. We adopt DALL-E3 to produce real-world images based on real
3D models rendered by the same camera parameters which used to render conceptual images, and
transfer procedure language into nature language descriptions to form as the language conditions of

prior representations by GPT-40 (2024).

Evaluating Metrics. We conduct a quantitative analysis of the experimental results from two
aspects. One is to measure the visual effect of the generative model, which is used to determine
the distribution difference between generated 3D model and ground truth 3D model. The other is
to measure the consistency of topological structure between the generated 3D model and Analytic
Concept, which is used to determine whether the generated 3D model is consistent with the structural
concept.

We use FID and CD to measure the appearance between ground truth shapes and generated shapes.
We introduce the Uni3D to calculate the feature similarity between real-world images and the gen-
erated 3D models. Such a measurement can be used to measure the consistency of topological
structures between the two modalities. A higher similarity indicates a higher topological structure
consistency.

Simulation Experiment Setting. We adopt the SAPIEN [Xiang et al(2020) simulator as the simu-
lation environment for our evaluation. In each manipulation simulation, the target object is initially
placed following the annotation position and rotation in Analytic Concept within the simulator. To
interact with the target objects, we employ a Franka Panda gripper with two fingers. We consider
primitive action of pick up generated 3D models through the corresponding Analytic Concept anno-
tation to evaulate the alignment in affordance knowledge.

A.5.2 MORE QUALITATIVE COMPARISON RESULTS

We present additional examples of 3D assets generated by Prism and compare with other baselines
in Figure[TT]to Figure T3]
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Angle threshold | FID| CDJ]  Uni3D? Iérior ]C%"mPO‘gms FID, | CD} | Uni3D?t
i 7 t
1 degree 12,70 0.0109  0.34 X X 1872 [ 0.0174

30 degree | 11.64 0.0104 0.32 v X 1096 00097 | 031

v
v X v 14.86 | 0.0154
v

10 degree 9.15 0.0092 0.34 V4 v 9.15 | 0.0092 0.254

(a) Ablation on different angle thresholds; (b) Ablation on different components of prior.

Table 2: Quantitative results on ablation study. C; represents conceptual images, R; represents real-
world images, and C} represents language description of Analytic Concept.

As we can see, Prism exhibits the best topological structures and geometric details on these complex
categories such as storage furniture, refrigerator, and dishwasher, especially for the handle. Prism
integrated structural concept in the prior representations, which leads to better control ability than
previous semantic prior.

A.5.3 MORE SIMULATION RESULTS ON MANIPULATION.

For details, we use the Franka Panda gripper to pick the objects according to the grasp pose described
in Analytic Concept, including the handle and body of mugs, the handle of knives, and the lid and
body of bottles. As shown in Figure 0] we apply 6 tasks to illustrate that our generated meshes can
align well with Analytic Concept in affordance knowledge. Figure [9(a) and Figure [9(b) show that
the robot can successfully pick the generated mug, Figure [Oc) shows that the robot can pick cube
(as a replacement for water) into the mug, which means the mug is aligned with Analytic Concept.
Figure [9(d) shows that the robot can successfully pick up the knife by its handle. Figure 9fe) and
Figure [9(f) exhibit the interaction to pick up bottle by handle and body respectively.

The results indicate that Prism can generate 3D assets which are well aligned with Analytic Con-
cept in terms of affordance knowledge. The corresponding videos can be found in supplementary
materials.

A.5.4 MORE ABALTION STUDY

Ablation on Shape Encoding. In this section, we conduct an ablation study on sharp point sampling
under different dihedral angle thresholds.

The quantitative result is shown in Table [2a] when the angle threshold is set to 10, the generative
model achieves the best performance on FID, CD and Uni3D scores. And when set it to 1, the FID is
highest because sharp sample strategy cannot capture geometric details well. And when set it to 30,
the FID increases to 11.64, CD decreases to 0.0104 and Uni3D decreases to 0.32, which indicates
that the control ability in geometric details and topological structures become lower.

The visualization results are shown in Figure[I0] If the angle threshold is too small (set to 1 degree),
the sharp points sampling is difficult to capture the model’s sharp edges as the geometric detail for
the Shape Encoding module. Conversely, if the angle threshold is too large(set to 30 degree), the
sharp points sampling strategy cannot capture enough geometric details, which results in insufficient
accuracy of the geometric details generated at the joints and knobs.

Quantitative Results of Ablation on Prior Representation Construction. The quantitative results
are shown in Table [2b] We evaluate Uni3D with real-world images and generated 3D models, so the
metric is not available when w/o real-world images. As we can see, when missing real-world image,
the FID is higher because the model cannot well control the shape details. When w/o language
descriptions, the Uni3D decreases from 0.32 to 0.30, which indicates that the topological structures
control ability of such scenario is lower than our original prior representations.
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Figure 11: Qualitative comparisons with baseline methods on generation results.
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Figure 12: Qualitative comparisons with baseline methods on generation results.
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Figure 13: Qualitative comparisons with baseline methods on generation results.
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Figure 14: Qualitative comparisons with baseline methods on generation results.
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