
401

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter  16

DOI: 10.4018/978-1-5225-5134-8.ch016

ABSTRACT

This chapter introduces a model-based reinforcement learning (RL) approach for continuous state 
and action spaces. While most RL methods try to find closed-form policies, the approach taken here 
employs numerical online optimization of control action sequences following the strategy of nonlinear 
model predictive control. First, a general method for reformulating RL problems as optimization tasks 
is provided. Subsequently, particle swarm optimization (PSO) is applied to search for optimal solu-
tions. This PSO policy (PSO-P) is effective for high dimensional state spaces and does not require a 
priori assumptions about adequate policy representations. Furthermore, by translating RL problems 
into optimization tasks, the rich collection of real-world-inspired RL benchmarks is made available for 
benchmarking numerical optimization techniques. The effectiveness of PSO-P is demonstrated on two 
standard benchmarks mountain car and cart-pole swing-up and a new industry-inspired benchmark, 
the so-called industrial benchmark.
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INTRODUCTION

This chapter focuses on a general reinforcement learning (RL) setting with continuous state and action 
spaces. In this domain, the policy performance often strongly depends on the algorithms for policy gen-
eration and the chosen policy representation (Sutton & Barto, 1998). In the authors’ experience, tuning 
the policy learning process is generally challenging for industrial RL problems. Specifically, it is hard to 
assess whether a trained policy has unsatisfactory performance due to inadequate training data, unsuit-
able policy representation, or an unfitting training algorithm. Determining the best problem-specific RL 
approach often requires time-intensive trials with various policy configurations and training algorithms. 
In contrast, it is often significantly easier to train a well-performing system model from observational 
data, compared to directly learning a policy and assessing its performance.

The main purpose of the present contribution is to provide a heuristic for solving RL problems which 
employs numerical online optimization of control action sequences. As an initial step, a neural system 
model is trained from observational data with standard methods. However, the presented method also 
works with any other model type, e.g., Gaussian process or first principal models. The resulting problem 
of finding optimal control action sequences based on model predictions is solved with particle swarm 
optimization (PSO), because PSO is an established algorithm for non-convex optimization. Specifically, 
the presented heuristic iterates over the following steps. (1) PSO is employed to search for an action 
sequence that maximizes the expected return when applied to the current system state by simulating its 
effects using the system model. (2) The first action of the sequence with the highest expected return is 
applied to the real-world system. (3) The system transitions to the subsequent state and the optimization 
process are repeated based on the new state (go to step 1).

As this approach can generate control actions for any system state, it formally constitutes an RL 
policy. This PSO policy (PSO-P) deviates fundamentally from common RL approaches. Most methods 
for solving RL problems try to learn a closed-form policy (Sutton & Barto, 1998). The most significant 
advantages of PSO-P are the following. (1) Closed-form policy learners generally select a policy from 
a user-parameterized (potentially infinite) set of candidate policies. For example, when learning an 
RL policy based on tile coding (Sutton, 1996), the user must specify partitions of the state space. The 
partition’s characteristics directly influence how well the resulting policy can differentiate the effect 
of different actions. For complex RL problems, policy performances usually vary drastically depend-
ing on the chosen partitions. In contrast, PSO-P does not require a priori assumptions about problem-
specific policy representations, because it directly optimizes action sequences. (2) Closed-form RL 
policies operate on the state space and are generally affected by the curse of dimensionality (Bellman, 
Adaptive Control Processes: A Guided Tour, 1962). Simply put, the number of data points required for 
a representative coverage of the state space grows exponentially with the state space’s dimensionality. 
Common RL methods, such as tile coding, quickly become computationally intractable with increas-
ing dimensionality. Moreover, for industrial RL problems it is often very expensive to obtain adequate 
training data prohibiting data-intensive RL methods. In comparison, PSO-P is not affected by the state 
space dimensionality because it operates in the space of action sequences.

From a strictly mathematical standpoint, PSO-P follows a known strategy from nonlinear model pre-
dictive control (MPC): employing online numerical optimization in search for the best action sequences. 
While MPC and RL target almost the same class of control optimization problems with different meth-
ods, the mathematical formalisms in both communities are drastically different. Particularly, the authors 
find that the presented approach is rarely considered in the RL community. The main contribution of 
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this chapter is to provide a hands-on guide for employing online optimization of action sequences in 
the mathematical RL framework and demonstrate its effectiveness for solving RL problems. On the 
one hand, PSO-P generally requires significantly more computation time to determine an action for a 
given system state compared to closed-form RL policies. On the other hand, the authors found PSO-P 
particularly useful for determining the optimization potential of various industrial control optimization 
problems and for benchmarking other RL methods.

In the Sections ‘Formulation of Reinforcement Learning as Optimization Problem’ and ‘The PSO-Policy 
Framework’, the methodology is developed, starting by formulating RL as a non-convex optimization 
problem and subsequently employing PSO as a solver. The results of the conducted benchmark experi-
ments are presented in the Section ‘Experiments, Results, and Analysis’. Future research opportunities 
are proposed in Section ‘Future Research Directions’ followed by the discussion of the experimental 
results and current limitations of PSO-P in the final Section ‘Conclusion’.

BACKGROUND

RL is an area of machine learning inspired by biological learning. Formally, a software agent interacts 
with a system in discrete time steps. At each time step, the agent observes the system’s state s  and ap-
plies an action a . Depending on s  and a , the system transitions into a new state and the agent receives 
a real-valued reward r ∈ � . The agent’s goal is to maximize its expected cumulative reward, called 
return R . The solution to an RL problem is a policy, i.e., a map that generates an action for any given 
state. (Sutton & Barto, Reinforcement learning: An introduction, 1998)

To bypass the challenges of learning a closed-form RL policy, the authors adapted an approach from 
MPC (Rawlings & Mayne, 2009; Camacho & Alba, 2007), which employs only a system model. The 
general idea behind MPC is deceptively simple: given a reliable system model, one can predict the fu-
ture evolution of the system and determine a control strategy that results in the desired system behavior. 
However, complex industry systems and plants commonly exhibit nonlinear system dynamics (Schaefer, 
Schneegass, Sterzing, & Udluft, 2007; Piche, et al., 2000). In such cases, closed-form solutions to the 
optimal control problem often do not exist or are computationally hard to find (Findeisen & Allgoewer, 
2002; Magni & Scattolini, 2004). Therefore, MPC tasks for nonlinear systems are typically solved by 
numerical online optimization of sequences of control actions (Gruene & Pannek, 2011). Unfortunately, 
the resulting optimization problems are generally non-convex (Johansen, 2011) and no universal method 
for tackling nonlinear MPC tasks has yet been found (Findeisen, Allgoewer, & Biegler, 2007; Rawlings, 
Tutorial overview of model predictive control, 2000). Moreover, one might argue, based on theoretical 
considerations, that such a universal optimization algorithm does not exist (Wolpert & Macready, 1997).

PSO and evolutionary algorithms are established heuristics for solving non-convex optimization 
problems. Both have been applied in the context of RL, however, almost exclusively to optimize policies 
directly. Moriarty, Schultz, & Grefenstette (1999) give a comprehensive overview of the various ap-
proaches, using evolutionary algorithms to tackle RL problems. Methods, which apply PSO to generate 
policies for specific system control problems, were studied in (Feng, 2005), (Solihin & Akmeliawati, 
2010), and (Montazeri-Gh, Jafari, & Ilkhani, 2012).

Recently, several combinations of swarm optimization and MPC have been proposed in the literature. 
In (Van Heerden, Fujimoto, & Kawamura, 2014) the nonlinear and underactuated Acrobot problem was 
solved by adapting PSO to run in parallel on graphics hardware, yielding a real-time MPC controller. Ou, 
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Kang, Kim, & Julius (2015) investigated the use of a single control signal and a PSO-MPC algorithm for 
controlling the movement of multiple magnetized cells while avoiding obstacles. In (Xu, Chen, Gong, & 
Mei, 2016) the authors tackled the problem of real-time application of nonlinear MPC by implementing 
it on a field-programmable gate array that employs a PSO algorithm. By using a parallelized PSO imple-
mentation, good computational performance and satisfactory control performance were achieved. Lee & 
Myung (2015) significantly reduced the computational cost of collision avoidance for a class of mobile 
robots. By applying PSO instead of traditional optimization techniques, such as sequential quadratic 
programming, they achieved a significant speedup during the optimization phase. They also verified 
the effectiveness of the proposed RHPSO-based formation control by means of numerical simulations.

However, none of the reviewed approaches generalizes to RL, as expert-designed objective functions, 
that already contain detailed knowledge about the optimal solution to the respective control problem, 
are used. In contrast, in the present chapter, the general RL problem is reformulated as an optimization 
problem. This representation allows searching for optimal action sequences on a system model, even if 
no expert knowledge about the underlying problem dynamics is available.

FORMULATION OF REINFORCEMENT LEARNING 
AS OPTIMIZATION PROBLEM

In this chapter, the problem of optimizing the behavior of a physical system, that is observed in discrete, 
equally spaced time steps t ∈ � , is considered. The current time is denoted as t = 0 . Hence, t = 1  and 
t = −1  represent one step into the future and one step into the past, respectively. At each time step t , 
the system is described by its Markovian state s

t
∈ S , from the state space S . The agent’s action a

t
 is 

represented by a vector of I  different control parameters, i.e., a
t

I∈ ⊂A � . Based on the system’s 
state and the applied action, the system transitions into the state s

t+1
 and the agent receives the reward 

r
t
.
In the following, deterministic systems, which are described by a state transition function 

m : S A S× → ×�  with m s a s r
t t t t

( , ) ( , )= +1
, are considered.

The goal is to find an action sequence x = …+ + −( , , , )a a a
t t t T1 1

 that maximizes the expected return 
R . The search space is bounded by x

min
 and x

max
 which are defined as: 

x
min minj j I

a j I T= ∀ = … ⋅ −
( mod )

, ,0 1 	 (1)

and

x
max maxj j I

a j I T= ∀ = … ⋅ −
( mod )

, ,0 1 ,	 (2)

where a
min

 (a
max

) are the lower (upper) bounds of the control parameters.
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To incorporate the increasing uncertainty when planning actions further and further into the future, 
the simulated reward r

t k+  for k  time steps into the future is weighted by γk , where γ ∈ [ , ]0 1  is referred 
to as the discount factor. 

A common strategy is to simulate the system evolution only for a finite number of T ≥ 1  steps. The 
return is (Sutton & Barto, 1998)

R( , ) , ( , ) ( , ).s r s r m s a
t

k

k

T

t k t k t k t k t k
x = =

=

−

+ + + + + +∑ γ
0

1

1
with 	 (3)

The authors chose γ  such that at the end of the time horizon T , the last reward accounted for is 
weighted by the user-defined constant q ∈ [ , ]0 1 , which implies γ = −q T1 1/( ) .

Solving the RL problem corresponds to finding the optimal action sequence x�  by maximizing

x x
x

� ∈
∈

argmax ( ),
AT t
f
s

	 (4)

with respect to the fitness function f
s

I T

t
: � �⋅ →  with f s

s tt
( ) ( , )x x= R . Figure 1 illustrates the process 

of computing f
st
( )x .

Figure 1. Model-based computation of the fitness function, i.e., return function, from the system’s current 
state s

t
 and an action sequence x . The accumulated rewards, predicted by the model, yield the fitness 

value f
st

, which is then used to drive the optimization.
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THE PSO-POLICY FRAMEWORK

The PSO algorithm is a population-based, stochastic optimization heuristic for solving non-convex op-
timization problems (Kennedy & Eberhart, 1995). Generally, PSO can operate on any search space that 
is a bounded sub-space of a finite-dimensional vector space (Engelbrecht, 2005). The PSO algorithm 
performs a search using a population (swarm) of individuals (particles) that are updated from iteration 
to iteration.

In this chapter, PSO is used to solve Eq. (4), i.e., the particles move through the search space of ac-
tion sequences AT . Consequently, a particle’s position represents a candidate action sequence 
x = …+ + −( , , , )a a a

t t t T1 1
, which is initially chosen at random. 

At each iteration, particle i  remembers its local best position y
i
 that it has visited so far (including 

its current position). Furthermore, particle i  also knows the neighborhood best position 

y z
z y

�
i

p j
p f

j i

( ) argmax ( ),
{ ( ) }

+ ∈
∈ ∈

1
# N

	 (5)

found so far by any particle in its neighborhood N
i
 (including itself). The neighborhood relations be-

tween particles are determined by the swarm’s population topology and are generally fixed, irrespective 
of the particles’ positions. 

In the experiments presented in Section ‘Experiments, Results, and Analysis’ the authors use the ring 
topology (Eberhart, Simpson, & Dobbins, 1996).

From iteration p  to p + 1  the particle position update rule is 

x x v
i i i
p p p( ) ( ) ( ).+ = + +1 1 	 (6)

The components of the velocity vector v  are calculated as

v p wv p c r p y p x p
ij ij j ij ij
( ) ( ) ( )[ ( ) ( )]+ = + −1

1 1

cognitive componentt social com
� ���������� ����������

+ −c r p y p x p
j ij ij2 2
( )[ˆ ( ) ( )]

pponent
� ���������� ����������

, 	 (7)

where w  is the inertia weight factor, v p
ij
( )  and x p

ij
( )  are the velocity and the position of particle i  in 

dimension j , c
1
 and c

2
 are positive acceleration constants used to scale the contribution of the cogni-

tive and the social components y p
ij
( )  and ˆ ( )y p

ij
, respectively. The factors r p

j1
( ) , r p U

j2
0 1( ) ~ ( , )  are 

random values, sampled from a uniform distribution to introduce a stochastic element to the algorithm. 
Shi and Eberhart (2000) proposed to set the values to w   = 0 7298.  and c c1 2 1 49618    = = . .

Even though a sequence of T  actions is optimized, only the first action is applied to the real-world 
system and an optimization of a new action sequence is performed for the subsequent system state s

t+1
. 

This approach follows the widely applied control theory methods known as MPC, receding horizon 
control, or moving horizon method (Kwon, Bruckstein, & Kailath, 1983; Rawlings & Mayne, Model 
predictive control theory and design, 2009; Camacho & Alba, 2007). Most often the dynamic models 
in MPC are realized by empirical models obtained by system identification. Thereby, mathematical 
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models �m  are learned by measured data from the real dynamical system m . Since this data is already 
available in batch RL problems considered herein, applying an MPC-like approach like PSO-P appears 
likely to succeed for such problems, too.

Despite the fact that empirical models �m  are likely to be inaccurate in their predictions, i.e., 
� � �m s a s r s r m s a

t t t t t t t t
, , , ,( ) = ( ) ≠ ( ) = ( )+ +1 1

 in Eq. (3), the experiments presented in Section ‘Experi-
ments, Results, and Analysis’ verify that very stable control results can still be achieved. The reason for 
this advantageous behavior lies in the fact, that applying only the first action of the optimized action 
trajectory to the system, and subsequently initializing PSO-P with the resulting real system state s

t+1
, 

resets the agent to the underlying true environmental conditions after each time step. Subsequently, the 
optimization starts with the correct initialization from scratch.

Implementation details can be found in Appendix 2.

EXPERIMENTS, RESULTS, AND ANALYSIS

The authors applied the PSO-P framework to three different RL problems. Two standard problems are 
the mountain car (MC) (Sutton & Barto, 1998) and the cart-pole (CP) swing-up benchmark (Fantoni & 
Lozano, 2002), which are used to illustrate the framework’s capability of solving RL problems in general. 
The third problem is an industry inspired benchmark, the so-called industrial benchmarks (IB) (Hein, et 
al., 2017b), which evaluates the framework’s performance on high-dimensional and stochastic dynamics.

For each benchmark, a neural network (NN) has been trained as the system model m  using standard 
techniques (Montavon, Orr, & Müller, 2012). NNs are well suited for data-driven black-box models as 
they are universal approximators (Hornik, Stinchcombe, & White, 1989). In addition, the authors found 
that the resulting models generalize well to new data in many real-world applications.

The authors have chosen this approach instead of working directly with benchmark simulations 
because in many real-world scenarios physical simulations are either unavailable or strongly idealized. 
However, PSO-P works with other model types as well, such as first principle or Gaussian process models 
(Rasmussen & Williams, 2006).

Mountain Car Benchmark

In the MC benchmark an underpowered car is driven up to the top of a hill (Figure 2). This is done by 
building up momentum with the help of driving in the opposite direction to gain enough potential energy. 

In the present implementation, the hill landscape is equivalent to sin( )3ρ . The task for the RL agent 
is to find a sequence of force actions a a a

t t t
, , , [ , ]+ + …∈ −1 2

1 1  that drive the car up the hill, which is 
achieved when reaching a position ρ π> 6 .

At the start of each episode the car’s state is ( , ) ( / , . )ρ ρ π� = − 6 0 0 . The agent receives a reward of 
r( ) sin( )ρ ρ= −3 1  after every action-state update. When the car reaches the goal position, the car’s 
position is fixed, and the agent receives the maximum reward in every following time step, regardless 
of the applied actions.

Using the parameters given in Table 1, PSO-P is able to solve this RL problem. Details of the algo-
rithm and the determination of suitable algorithmic parameters are summarized in Appendix 1.
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To confirm that finding the optimal way of driving the car up the mountain is represented as a non-
convex optimization problem, the performance of PSO has been compared with a standard simplex 
algorithm (NM) published by (Nelder & Mead, 1965) applied to Eq. (4). The NM algorithm was allowed 
to utilize the exact same number of fitness evaluations during the optimization as the PSO (100 particles 
and 100 PSO iterations corresponding to 10,000 fitness evaluations).

The results presented in Figure 3 show that on average PSO yields a significantly better control 
performance than NM. This result was expected, since the problem is assumed to be highly non-convex 
and NM is likely to get stuck in local optima. Nevertheless, the majority of runs using NM managed to 
drive the car up the hill in less than 1,000 time steps, even though it took NM significantly more time 
steps on average (Figure 4).

Figure 2. Mountain car task. The system can be described completely by its Markov state variables ρ  
and �ρ , which represent the car’s position and velocity, respectively (Sutton & Barto, 1998)

Table 1. PSO-P setup parameters and achieved experiment results for the MC benchmark

Particles 100

Iterations 100

Topology (each particle with 5 neighbors, including itself)

( , , )w c c
1 2

(0.72981, 1.49618, 1.49618)

( , )T q (100, 0.05)

Model approximation m RNN trained with 10,000 randomly generated state transitions

Benchmark start states 100 times s = = −( , ) ( / , . )ρ ρ π� 6 0 0

Return (1,000 steps) median: -350, min: -644, max: -197
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Cart-Pole Swing-Up Benchmark

The objective of the CP benchmark is to apply forces to a cart moving on a one-dimensional track to 
bring a pole hinged to the cart in an upright position (Fantoni & Lozano, 2002). The four Markov state 
variables are the pole’s angle θ , the pole’s angular velocity �θ , the cart’s position ρ , and the cart’s ve-
locity �ρ , as illustrated in Figure 5.

The start settings for the experiments are: θ π= , �θ = 0 , ρ = 0 , and �ρ = 0 , i.e., the pole is hang-
ing down with the cart at rest. The goal is to find force actions a a a

t t t
, , , [ , ]+ + …∈ −1 2

1 1 , that swing the 
pole up and subsequently prevent the pole from falling over while keeping the cart close to ρ = 0  for 
a possibly infinite period of time. The closer the CP gets to the desired position (θ = 0 ,ρ = 0 ) the 

higher are the rewards r( , ) ( / . ) ( / . )ρ θ ρ θ= − +1 4 0 32 2  for the corresponding transitions.
Using the parameters given in Table 2, the authors show that PSO-P is able to solve this RL problem. 

To find the best setting for the user-defined parameters, the authors again followed their recipe from 
Appendix 1.

Similar to the MC benchmark, the authors compared the resulting performance of PSO to NM when 
solving Eq. (4). While the MC optimization problem is simple enough for NM to solve it in less than 
1,000 time steps, NM completely failed to stabilize the cart’s pole in 1,000 time steps. In Figure 6 the 

Figure 3. Visualization of the average return of PSO and NM computed from 100 experiments per setup. 
Applying the exact same number of fitness function evaluations, PSO outperforms NM on the MC bench-
mark. On each box, the central mark is the median, the box edges are the 25th and 75th percentiles, and 
the whiskers extend to the most extreme data points not considered outliers. An average return point g  
is categorized as an outlier (+) if g q q q> + −

3 3 1
1 5. ( )  or g q q q< − −

1 3 1
1 5. ( ) , for q

1
 the 25th and 

q
3

 the 75th percentile.
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average return values of PSO and NM are compared. The best and worst out of 100 generated trajectories 
with PSO and NM optimizations are compared in Figure 7. It is evident that PSO significantly outper-
forms NM, which indicates that solving CP is a hard optimization problem for deterministic algorithms 
such as NM.

Industrial Benchmark

The (Hein, et al., 2017a; Hein, et al., 2017b) (source code available at http://github.com/siemens/in-
dustrialbenchmark) was designed to emulate several challenging aspects eminent in many industrial 
applications. It is not designed to be an approximation of any specific real-world system, but to pose a 
comparable hardness and complexity found in many industrial applications.

State and action spaces are continuous. Moreover, the state space is high-dimensional and only par-
tially observable. The actions consist of three continuous components and affect three control inputs. 
Moreover, the IB includes stochastic and delayed effects. The optimization task is multi-criterial in the 
sense that there are two reward components that show opposite dependencies on the actions. The dynami-
cal behavior is heteroscedastic with state-dependent observation noise and state-dependent probability 

Figure 4. Mountain car experiments. Applying PSO always resulted in well-performing and successful 
action trajectories, while using NM sometimes did not generate action sequences driving the car up the 
hill in less than 1,000 time steps.
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distributions, based on latent variables. Furthermore, it depends on an external driver that cannot be 
influenced by the actions.

The IB is designed such that the optimal policy will not approach a fixed operation point in the three 
control inputs, i.e., constantly changing the control inputs with regard to past observations, resulting in 
significantly higher return. Note that any specific design choice is driven by experience with industrial 
challenges.

At any time step t  the RL agent can influence the IB via actions a
t
 that are three dimensional vec-

tors in −

1 1
3

, . Each action can be interpreted as three proposed changes to three observable state 

Figure 5. Cart-pole system

Table 2.PSO-P setup parameters and achieved experiment results for the CP benchmark

Particles 100

Iterations 100

Topology (each particle with 5 neighbors, including itself)

( , , )w c c
1 2

(0.72981, 1.49618, 1.49618)

( , )T q (150, 0.05)

Model approximation m RNN trained with 10,000 randomly generated state transitions

Benchmark start states 100 times s = =( , , , ) ( , , , )θ θ ρ ρ π� � 0 0 0

Return (1,000 steps) median: -860, min: -918, max: -823
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control variables. Those variables are: velocity v , gain g , and shift h . Each variable is limited to 0 100,

  

and calculated as follows:

a v g h
t t t t
= ( )∆ ∆ ∆, , ,	 (8)

v v d v
t t t+ = +( )( )1

0 100max ,min , v∆ ,	 (9)

g g d g
t t t+ = +( )( )1

0 100max ,min , g∆ ,	 (10)

h h d h
t t t+ = +( )( )1

0 100max ,min , h∆ ,	 (11)

with scaling factors d v = 1 , d g = 10 , and d h = 5 75. .

Figure 6. Visualization of the average return of PSO and NM computed from 100 experiments per setup. 
Applying the exact same number of fitness function evaluations, PSO outperforms NM on the CP bench-
mark. On each box, the central mark is the median, the box edges are the 25th and 75th percentiles, and 
the whiskers extend to the most extreme data points not considered outliers.
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After applying the action a
t
, the environment transitions to the next time step t + 1 , yielding the 

internal state s
t+1

. State s
t
 and successor state s

t+1
 are the Markovian states of the environment, which 

are only partially observable by the agent. In addition to the three control variables velocity v , gain g , 
and shift h , an operator defined load p

t
 is applied to the system. Load p

t
 simulates an external force 

like the demanded load in a power plant or the wind speed actuating a wind turbine, which cannot be 
controlled by the agent, but still has a major influence on the system’s dynamics. Depending on load p

t
 

and the control values a
t
, the system suffers from detrimental fatigue f

t
 and consumes resources such 

as power, fuel, etc., represented by consumption c
t
. Both, p

t
 and a

t
, are external drivers for the IB 

dynamics. In response, the IB generates output values for c
t+1

 and f
t+1

, which are part of the internal 
state s

t+1
. The reward is solely determined by s

t+1
 as follows:

r c f
t t t
= − −+ +1 1

3 	 (12)

In the real-world tasks that motivated the design of the IB, the reward function has always been known 
explicitly. Therefore, it is assumed that the reward function of the IB is also known and consumption 

Figure 7. Cart-pole experiments. Even the worst PSO runs produced action sequences, capable of 
swinging up the pole and balancing it upright. In contrary the best NM sequences still yielded an overall 
unstable system control policy.
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and fatigue are observable. However, except for the values of the steerings, the remaining part of the 
Markov state s

t
 remains unobservable. This yields an observation vector o s

t t
⊂  consisting of:

•	 The current control variables: velocity v
t
, gain g

t
, and shift h

t
,

•	 The external driver: set point p
t
,

•	 And the reward relevant variables: consumption c
t
 and fatigue f

t
.

In Section ‘Formulation of Reinforcement Learning as Optimization Problem’ the optimization task, 
which is solved during PSO-P runtime, is described as working on the Markovian state s  of the system 
dynamics. Since this state is not observable in the IB environment s

t
 is approximated by a sufficient 

amount of historic observations o o o
t H t H t− − +( ),

, ,
1
…  with time horizon H . Given a system model 

m o o o a o r
t H t H t t t t

( , , , , ) ,− − + += ( )1 1
…  with H = 30  an adequate prediction performance could be achieved 

during IB experiments. Note that observation size o = 6  in combination with time horizon H = 30  
results in a 180-dimensional approximation vector of the Markovian state. Since the size of the solution 
space of an RL problem grows exponentially with each additional feature describing the state (Kaelbling, 
Littman, & Moore, 1996), finding closed-form policies is rather difficult for common RL approaches. 
Belman (1957) described this problem as curse of dimensionality. With PSO-P no closed-form RL 
policy is trained, instead the complexity of learning state-action dependencies is transferred to the su-
pervised system identification yielding system model m . Recent research has shown that this approach 
can result in significantly better system control performance for problems with high-dimensional state 
space compared to standard close-form RL methods (Hein, et al., 2017a).

The  t a sk  fo r  t he  PSO-P  RL agen t  i s  to  f ind  a  sequence  o f  ac t ions 
x = + + + + − + − + −( , , , , , , , , ,∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆v g h v g h v g h

t t t t t t t T t T t T1 1 1 1 1 1
… ))  which changes the control 

variables in a way that return R  is as high as possible for a given time horizon T .
Using the parameters given in Table 3, the authors were able to produce excellent control results on 

the IB task in terms of average per-step-rewards. Moreover, PSO-P has shown that the policy performance 
is robust even against highly stochastic benchmark dynamics as present in the IB. Figure 8 compares the 
average per-step-reward-values of 10 independent IB runs on set point p = 100 . Even though NM 
performed the exact same number of function evaluations during the optimization phase, it produced a 
far less satisfying average performance. In Figure 9 the best and worst trajectories of PSO and NM 
optimization runs are depicted.

FUTURE RESEARCH DIRECTIONS

The experiments with the IB demonstrate that there are stochastic systems which PSO-P can success-
fully control using a deterministic system model. It is expected that this is not possible in general for 
stochastic RL environments. To overcome this problem, modeling techniques that can provide a measure 
of uncertainty along with their predictions are a very promising area of research. Possible modeling 
candidates are Bayesian NNs, which are approximators with prior distributions on their network weights 
(Depeweg, Hernández-Lobato, Doshi-Velez, & Udluft, 2016; Neal, 1996), or Gaussian processes (Ras-
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Table 3. PSO-P setup parameters and achieved experiment results for the IB benchmark

Particles 100

Iterations 100

Topology (each particle with 5 neighbors, including itself)

( , , )w c c
1 2

(0.72981, 1.49618, 1.49618)

( , )T q (100, 0.05)

Model approximation m RNN trained with 100,000 state transitions generated by random 
trajectories

Benchmark start states 10 times IB initialized with set point p = 100

Return (1,000 steps) median: -223, min: -224, max: -222

Figure 8. Visualization of the average reward of PSO and NM computed from 10 experiments per setup. 
Applying the exact same number of fitness function evaluations, PSO outperforms NM on the IB bench-
mark. On each box, the central mark is the median, the box edges are the 25th and 75th percentiles, and 
the whiskers extend to the most extreme data points not considered outliers.
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mussen & Williams, 2006; Damianou, Titsias, & Lawrence, 2016), where every point in a continuous 
input space is associated with a normally distributed random variable. Together with noise-resistant 
PSO (Bartz-Beielstein, Blum, & Branke, 2007) the evaluation of these techniques is a promising future 
research direction for PSO-P application in stochastic environments.

Recent breakthroughs in the area of applying deep NNs on image, video, speech or text data (Lecun, 
Bengio, & Hinton, 2015) could bring model-based RL methods like PSO-P into new domains of appli-
cation. Modeling environments in these domains is an emerging trend, promising human-level control 
through deep RL (Mnih, et al., 2015).

Another open research topic is the real-time application of PSO-P on systems with time-critical 
constraints. The implementation of a parallelized PSO and the system model directly on hardware could 
enable achieving this goal for a broad set of different industry relevant applications (Van Heerden, Fu-
jimoto, & Kawamura, 2014; Xu, Chen, Gong, & Mei, 2016).

Figure 9. Industrial benchmark experiments. Depicted are the best and the worst performing trajectories 
for PSO and NM. Note that the performance can easily break down in the IB if suboptimal actions are 
applied. On the other hand, applying PSO shows clearly that it is possible to find well performing actions 
even under the presence of latent stochastic effects and state-dependent observation noise.
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CONCLUSION

The presented results show that PSO-P is capable of providing RL agents with high-quality state-to-
action mappings. In essence, PSO-P performs an online optimization of an action sequence, each time 
an action for a given system state is requested. Compared to learning a functional policy representation, 
whose actions are recalled later on, PSO-P has the following advantages:

•	 PSO-P does not require a priori assumptions about adequate policy representations. Hence, no 
bias with respect to a specific policy behavior is introduced.

•	 PSO-P is effective for high-dimensional state spaces, as the optimization runs in the space of ac-
tion sequences, which are independent of the state space’s dimensionality.

•	 The reward function can be changed after each system transition, as the optimization process starts 
from scratch for each new system state.

The drawback compared to closed-form policies is the significantly higher computational load for 
computing actions using PSO-P. Implementing parallelized PSO on hardware or using cloud-based 
computational resources will enable MPC policy solutions like PSO-P to become feasible for more and 
more applications. Furthermore, in many real-world industrial applications high-level system control is 
implemented by changing control parameters in terms of seconds or minutes which, in many cases, is a 
sufficient amount of time to compute the next action using PSO-P.

PSO-P is a complementary approach for solving RL because it searches in the action space, while 
established RL methods generally work in the value function space or the policy space (Sutton & Barto, 
1998). Therefore, a promising application is to use PSO-P for benchmarking other RL methods. More-
over, PSO-P can be used for reward function design or tuning, i.e., for the process of designing a reward 
function that induces a desired policy behavior.

Furthermore, the presented method for formulating RL problems as optimization tasks makes the 
rich class of real-world inspired RL benchmarks accessible for benchmarking gradient-free optimization 
algorithms. The fitness landscapes of RL problems are generally non-convex and high-dimensional. 
Since each point in this space corresponds to an action trajectory, the optimization process can be visu-
alized as a sequence of such action trajectories, which may be used to interpret the behavior of different 
optimization algorithms.
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KEY TERMS AND DEFINITIONS

Benchmark: A computer program used to assess the performance of different methods.
Model Predictive Control: A method of process control using a system model with finite time-

horizon, where at each time step only the next control action is applied to the real system.
Neural Network: A technical computing system inspired by biological brains. It consists of con-

nected nodes (neurons) arranged in layers, where the output of each neuron is computed from the inputs 
using activation functions.

Policy: A mapping from state to action space, which is the result of a reinforcement learning training.
Reinforcement Learning: Software agents are trained to take optimal actions in a given environment 

in order to maximize a cumulative reward.
System Model: An approximation of the input-to-output behavior of a real system trained from 

observational data by supervised machine learning. It may be used for policy evaluation or selection.
Trajectory: A time-ordered set of states or actions.
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APPENDIX 1

Given a sufficiently trained model of the real system, the conducted experiments show that the following 
recipe successfully finds appropriate parameters for the PSO-P:

0. 	 Start with the ring topology and an initial guess of the swarm size, depending on the intended 
computational effort.

1. 	 Evaluate the problem dependent time horizon T .
2. 	 Compare different topologies for both convergence properties; speed and quality of the found 

solutions.
3. 	 Determine the number of particles which leads to the best rewards, given a fixed level of compu-

tational effort.

In the following, an exemplary PSO-P parameter evaluation for the CP benchmark is described. The first 
step is to find a suitable time horizon for the RL problem. On the one hand, this horizon should be as short 
as possible to keep computational effort low. On the other hand, it has to be long enough to recognize 
all possible future effects of the current action. Figure 10 shows the results for time horizons of length 
100, 150, 200 and 250 time steps. A time horizon length of 100 yields a relatively low average return 
compared to the horizon lengths 150, 200 and 250. The reason for this is that it is much harder for the 

Figure 10. The data has been produced evaluating 100 independent trial runs with the goal of swinging 
up and stabilizing the cart-pole. Each trial contains 1,000 applied actions
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PSO-P to determine whether an action sequence leads to constantly good results in the future if the time 
horizon is below 150 in the CP benchmark. The increase of the horizon above 150 did not yield better 
results, so the horizon of 150 seems to be a good compromise between stable results and fast computing.
In the second step, the influence of the PSO topology on the CP task is evaluated. Three topologies have 
been tested: star (global PSO), ring with three neighbors, and ring with five neighbors (including the 
particle itself). While the two ring topologies produced similar results, the global PSO performed slightly 
worse. Probably, the swarm prematurely collapses to suboptimal solutions. In Figure 11 - Figure 12 the 
average performance of 100 PSO optimizations on the CP start state is shown in relation to the number 
of function calls. A smaller neighborhood seems to be a much better approach to the CP task, which in 
essence limits the communication of good positions through the swarm. Thereby, a smaller neighborhood 
size favors exploration over exploitation. Since the topology ring with five neighbors produced the best 
median result the experiments are continued using this topology.
In the last step, the influences of the number of particles and PSO iterations are investigated. In the ex-
periments, the runtime of the optimization has been fixed by limiting the PSO to a total of 10,000 fitness 
evaluations. Consequently, a swarm of 200 particles can run 50 PSO iterations, while a swarm of 100 
Particles can perform 100 iterations using the same computation time. The results in Figure 13 - Figure 
14 show that a swarm of size 100 particles finds better solutions in 100 PSO iteration steps than 50 par-
ticles in 200 iterations, or 200 particles in 50 iterations. However, if the time frame allowed only 5000 
fitness function calls to compute the next action, it would be significantly better to use the combination 
of 50 particles in 200 PSO iterations than any other ratio evaluated in the experiment.

Figure 11. Results of the comparison of the three PSO topologies, ring with three neighbors for each 
particle, ring with five neighbors for each particle, and the star topology. Illustrated are the average 
convergence speeds of 100 PSO runs searching for an optimal action sequence for the initial state.
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Figure 13. Results of the comparison of three numbers of particles to PSO iteration ratios. The graphs 
illustrate the average convergence speed of 100 PSO runs searching for an optimal action sequence for 
the initial state

Figure 12. Depicted are the average results on a complete PSO-P run of 1,000 steps
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Figure 14. Depicted are the average results on a complete PSO-P run of 1,000 steps
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APPENDIX 2

Table 4.

Policy Framework

// s
0

 benchmark start state

// g s a( , )  real-world system
// I  action dimensionality
Begin

 s s←
0

Repeat

 x�←  PSO-P(s ) // call PSO-P procedure and determine best 
 // action sequence 

 a I← −x� �[ , , ]0 1 // extract first action vector of the sequence 
 ( , ) ( , )s r g s a← // apply action on the real system
 Until (termination conditions achieved)
End
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Table 5.

PSO-P

// i  particle index
// j  search space dimension

// x
i

 position vector

// v
i

 velocity vector

// y
i

 best position

// y�i  best position in particle i ’s neighborhood

// x
min

 minimum position (Eq. (1))

// x
max

 maximum position (Eq. (2))

// v
min

 minimum position, v x x
min max minj j j
= − ⋅ −0 1. ( )

// v
max

 maximum position, v x x
max max minj j j
= ⋅ −0 1. ( )

// P  applied PSO iterations
// Input:  
// s optimization start state
// Output:  

// x� optimized action sequence
Begin 
 // Initialization 
 p ← 0
x x x
i
p U( ) ~ ( , )

min max
// set random positions

 v v v
i
p U( ) ~ ( , )

min max
// set random velocities

 // Iteration 
 For p P<
 f p s p

i i
( ( )) ( , ( ))x mbc x← // compute fitness of all particles

 Update best positions y
i
p( )

 Update best neighborhood positions y�i p( )  // Eq. (5)

 Update velocity vectors v
i
p( )+ 1  // Eq. (7)

 Bound velocity vectors in between v
min

 and v
min

 Update positions x
i
p( )+ 1  // Eq. (6)

 Bound positions in between x
min

 and x
max

 p p← + 1
End 

 x�←  best overall particle position // Eq. (4)
End
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Table 6. 

mbc - Model-Based Computation

// m s a( , )  model approximation of the real-world system g s a( , )
// γ  discount factor
// I  action dimensionality
// Input:  
// s model start state
// x action sequence
// Output:  
// R return prediction
Begin
 R ← 0
s s

t
←

k ← 0
For k T<
 a k I k I I← ⋅ ⋅ + −x[ , , ]� 1 // extract action
 ( , ) ( , )s r m s a← // perform one step on the model

 R R← + ⋅γk r // discount reward and accumulate
 k k← + 1
End
End


