
401

Copyright © 2018, IGI Global. Copying or distributing in print or electronic forms without written permission of IGI Global is prohibited.

Chapter 16

DOI: 10.4018/978-1-5225-5134-8.ch016

ABSTRACT

This chapter introduces a model-based reinforcement learning (RL) approach for continuous state
and action spaces. While most RL methods try to find closed-form policies, the approach taken here
employs numerical online optimization of control action sequences following the strategy of nonlinear
model predictive control. First, a general method for reformulating RL problems as optimization tasks
is provided. Subsequently, particle swarm optimization (PSO) is applied to search for optimal solu-
tions. This PSO policy (PSO-P) is effective for high dimensional state spaces and does not require a
priori assumptions about adequate policy representations. Furthermore, by translating RL problems
into optimization tasks, the rich collection of real-world-inspired RL benchmarks is made available for
benchmarking numerical optimization techniques. The effectiveness of PSO-P is demonstrated on two
standard benchmarks mountain car and cart-pole swing-up and a new industry-inspired benchmark,
the so-called industrial benchmark.

Particle Swarm Optimization
for Model Predictive

Control in Reinforcement
Learning Environments

Daniel Hein
Technische Universität München, Germany

Alexander Hentschel
AxiomZen, Canada

Thomas A. Runkler
Siemens AG, Germany

Steffen Udluft
Siemens AG, Germany

402

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments
﻿

INTRODUCTION

This chapter focuses on a general reinforcement learning (RL) setting with continuous state and action
spaces. In this domain, the policy performance often strongly depends on the algorithms for policy gen-
eration and the chosen policy representation (Sutton & Barto, 1998). In the authors’ experience, tuning
the policy learning process is generally challenging for industrial RL problems. Specifically, it is hard to
assess whether a trained policy has unsatisfactory performance due to inadequate training data, unsuit-
able policy representation, or an unfitting training algorithm. Determining the best problem-specific RL
approach often requires time-intensive trials with various policy configurations and training algorithms.
In contrast, it is often significantly easier to train a well-performing system model from observational
data, compared to directly learning a policy and assessing its performance.

The main purpose of the present contribution is to provide a heuristic for solving RL problems which
employs numerical online optimization of control action sequences. As an initial step, a neural system
model is trained from observational data with standard methods. However, the presented method also
works with any other model type, e.g., Gaussian process or first principal models. The resulting problem
of finding optimal control action sequences based on model predictions is solved with particle swarm
optimization (PSO), because PSO is an established algorithm for non-convex optimization. Specifically,
the presented heuristic iterates over the following steps. (1) PSO is employed to search for an action
sequence that maximizes the expected return when applied to the current system state by simulating its
effects using the system model. (2) The first action of the sequence with the highest expected return is
applied to the real-world system. (3) The system transitions to the subsequent state and the optimization
process are repeated based on the new state (go to step 1).

As this approach can generate control actions for any system state, it formally constitutes an RL
policy. This PSO policy (PSO-P) deviates fundamentally from common RL approaches. Most methods
for solving RL problems try to learn a closed-form policy (Sutton & Barto, 1998). The most significant
advantages of PSO-P are the following. (1) Closed-form policy learners generally select a policy from
a user-parameterized (potentially infinite) set of candidate policies. For example, when learning an
RL policy based on tile coding (Sutton, 1996), the user must specify partitions of the state space. The
partition’s characteristics directly influence how well the resulting policy can differentiate the effect
of different actions. For complex RL problems, policy performances usually vary drastically depend-
ing on the chosen partitions. In contrast, PSO-P does not require a priori assumptions about problem-
specific policy representations, because it directly optimizes action sequences. (2) Closed-form RL
policies operate on the state space and are generally affected by the curse of dimensionality (Bellman,
Adaptive Control Processes: A Guided Tour, 1962). Simply put, the number of data points required for
a representative coverage of the state space grows exponentially with the state space’s dimensionality.
Common RL methods, such as tile coding, quickly become computationally intractable with increas-
ing dimensionality. Moreover, for industrial RL problems it is often very expensive to obtain adequate
training data prohibiting data-intensive RL methods. In comparison, PSO-P is not affected by the state
space dimensionality because it operates in the space of action sequences.

From a strictly mathematical standpoint, PSO-P follows a known strategy from nonlinear model pre-
dictive control (MPC): employing online numerical optimization in search for the best action sequences.
While MPC and RL target almost the same class of control optimization problems with different meth-
ods, the mathematical formalisms in both communities are drastically different. Particularly, the authors
find that the presented approach is rarely considered in the RL community. The main contribution of

403

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments
﻿

this chapter is to provide a hands-on guide for employing online optimization of action sequences in
the mathematical RL framework and demonstrate its effectiveness for solving RL problems. On the
one hand, PSO-P generally requires significantly more computation time to determine an action for a
given system state compared to closed-form RL policies. On the other hand, the authors found PSO-P
particularly useful for determining the optimization potential of various industrial control optimization
problems and for benchmarking other RL methods.

In the Sections ‘Formulation of Reinforcement Learning as Optimization Problem’ and ‘The PSO-Policy
Framework’, the methodology is developed, starting by formulating RL as a non-convex optimization
problem and subsequently employing PSO as a solver. The results of the conducted benchmark experi-
ments are presented in the Section ‘Experiments, Results, and Analysis’. Future research opportunities
are proposed in Section ‘Future Research Directions’ followed by the discussion of the experimental
results and current limitations of PSO-P in the final Section ‘Conclusion’.

BACKGROUND

RL is an area of machine learning inspired by biological learning. Formally, a software agent interacts
with a system in discrete time steps. At each time step, the agent observes the system’s state s and ap-
plies an action a . Depending on s and a , the system transitions into a new state and the agent receives
a real-valued reward r ∈ � . The agent’s goal is to maximize its expected cumulative reward, called
return R . The solution to an RL problem is a policy, i.e., a map that generates an action for any given
state. (Sutton & Barto, Reinforcement learning: An introduction, 1998)

To bypass the challenges of learning a closed-form RL policy, the authors adapted an approach from
MPC (Rawlings & Mayne, 2009; Camacho & Alba, 2007), which employs only a system model. The
general idea behind MPC is deceptively simple: given a reliable system model, one can predict the fu-
ture evolution of the system and determine a control strategy that results in the desired system behavior.
However, complex industry systems and plants commonly exhibit nonlinear system dynamics (Schaefer,
Schneegass, Sterzing, & Udluft, 2007; Piche, et al., 2000). In such cases, closed-form solutions to the
optimal control problem often do not exist or are computationally hard to find (Findeisen & Allgoewer,
2002; Magni & Scattolini, 2004). Therefore, MPC tasks for nonlinear systems are typically solved by
numerical online optimization of sequences of control actions (Gruene & Pannek, 2011). Unfortunately,
the resulting optimization problems are generally non-convex (Johansen, 2011) and no universal method
for tackling nonlinear MPC tasks has yet been found (Findeisen, Allgoewer, & Biegler, 2007; Rawlings,
Tutorial overview of model predictive control, 2000). Moreover, one might argue, based on theoretical
considerations, that such a universal optimization algorithm does not exist (Wolpert & Macready, 1997).

PSO and evolutionary algorithms are established heuristics for solving non-convex optimization
problems. Both have been applied in the context of RL, however, almost exclusively to optimize policies
directly. Moriarty, Schultz, & Grefenstette (1999) give a comprehensive overview of the various ap-
proaches, using evolutionary algorithms to tackle RL problems. Methods, which apply PSO to generate
policies for specific system control problems, were studied in (Feng, 2005), (Solihin & Akmeliawati,
2010), and (Montazeri-Gh, Jafari, & Ilkhani, 2012).

Recently, several combinations of swarm optimization and MPC have been proposed in the literature.
In (Van Heerden, Fujimoto, & Kawamura, 2014) the nonlinear and underactuated Acrobot problem was
solved by adapting PSO to run in parallel on graphics hardware, yielding a real-time MPC controller. Ou,

404

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments
﻿

Kang, Kim, & Julius (2015) investigated the use of a single control signal and a PSO-MPC algorithm for
controlling the movement of multiple magnetized cells while avoiding obstacles. In (Xu, Chen, Gong, &
Mei, 2016) the authors tackled the problem of real-time application of nonlinear MPC by implementing
it on a field-programmable gate array that employs a PSO algorithm. By using a parallelized PSO imple-
mentation, good computational performance and satisfactory control performance were achieved. Lee &
Myung (2015) significantly reduced the computational cost of collision avoidance for a class of mobile
robots. By applying PSO instead of traditional optimization techniques, such as sequential quadratic
programming, they achieved a significant speedup during the optimization phase. They also verified
the effectiveness of the proposed RHPSO-based formation control by means of numerical simulations.

However, none of the reviewed approaches generalizes to RL, as expert-designed objective functions,
that already contain detailed knowledge about the optimal solution to the respective control problem,
are used. In contrast, in the present chapter, the general RL problem is reformulated as an optimization
problem. This representation allows searching for optimal action sequences on a system model, even if
no expert knowledge about the underlying problem dynamics is available.

FORMULATION OF REINFORCEMENT LEARNING
AS OPTIMIZATION PROBLEM

In this chapter, the problem of optimizing the behavior of a physical system, that is observed in discrete,
equally spaced time steps t ∈ � , is considered. The current time is denoted as t = 0 . Hence, t = 1 and
t = −1 represent one step into the future and one step into the past, respectively. At each time step t ,
the system is described by its Markovian state s

t
∈ S , from the state space S . The agent’s action a

t
 is

represented by a vector of I different control parameters, i.e., a
t

I∈ ⊂A � . Based on the system’s
state and the applied action, the system transitions into the state s

t+1
 and the agent receives the reward

r
t
.
In the following, deterministic systems, which are described by a state transition function

m : S A S× → ×� with m s a s r
t t t t

(,) (,)= +1
, are considered.

The goal is to find an action sequence x = …+ + −(, , ,)a a a
t t t T1 1

 that maximizes the expected return
R . The search space is bounded by x

min
 and x

max
 which are defined as:

x
min minj j I

a j I T= ∀ = … ⋅ −
(mod)

, ,0 1 	 (1)

and

x
max maxj j I

a j I T= ∀ = … ⋅ −
(mod)

, ,0 1 ,	 (2)

where a
min

 (a
max

) are the lower (upper) bounds of the control parameters.

405

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments
﻿

To incorporate the increasing uncertainty when planning actions further and further into the future,
the simulated reward r

t k+ for k time steps into the future is weighted by γk , where γ ∈ [,]0 1 is referred
to as the discount factor.

A common strategy is to simulate the system evolution only for a finite number of T ≥ 1 steps. The
return is (Sutton & Barto, 1998)

R(,) , (,) (,).s r s r m s a
t

k

k

T

t k t k t k t k t k
x = =

=

−

+ + + + + +∑ γ
0

1

1
with 	 (3)

The authors chose γ such that at the end of the time horizon T , the last reward accounted for is
weighted by the user-defined constant q ∈ [,]0 1 , which implies γ = −q T1 1/() .

Solving the RL problem corresponds to finding the optimal action sequence x� by maximizing

x x
x

� ∈
∈

argmax (),
AT t
f
s

	 (4)

with respect to the fitness function f
s

I T

t
: � �⋅ → with f s

s tt
() (,)x x= R . Figure 1 illustrates the process

of computing f
st
()x .

Figure 1. Model-based computation of the fitness function, i.e., return function, from the system’s current
state s

t
 and an action sequence x . The accumulated rewards, predicted by the model, yield the fitness

value f
st

, which is then used to drive the optimization.

406

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments
﻿

THE PSO-POLICY FRAMEWORK

The PSO algorithm is a population-based, stochastic optimization heuristic for solving non-convex op-
timization problems (Kennedy & Eberhart, 1995). Generally, PSO can operate on any search space that
is a bounded sub-space of a finite-dimensional vector space (Engelbrecht, 2005). The PSO algorithm
performs a search using a population (swarm) of individuals (particles) that are updated from iteration
to iteration.

In this chapter, PSO is used to solve Eq. (4), i.e., the particles move through the search space of ac-
tion sequences AT . Consequently, a particle’s position represents a candidate action sequence
x = …+ + −(, , ,)a a a

t t t T1 1
, which is initially chosen at random.

At each iteration, particle i remembers its local best position y
i
 that it has visited so far (including

its current position). Furthermore, particle i also knows the neighborhood best position

y z
z y

�
i

p j
p f

j i

() argmax (),
{ () }

+ ∈
∈ ∈

1
N

	 (5)

found so far by any particle in its neighborhood N
i
 (including itself). The neighborhood relations be-

tween particles are determined by the swarm’s population topology and are generally fixed, irrespective
of the particles’ positions.

In the experiments presented in Section ‘Experiments, Results, and Analysis’ the authors use the ring
topology (Eberhart, Simpson, & Dobbins, 1996).

From iteration p to p + 1 the particle position update rule is

x x v
i i i
p p p() () ().+ = + +1 1 	 (6)

The components of the velocity vector v are calculated as

v p wv p c r p y p x p
ij ij j ij ij
() () ()[() ()]+ = + −1

1 1

cognitive componentt social com
� ���������� ����������

+ −c r p y p x p
j ij ij2 2
()[ˆ () ()]

pponent
� ���������� ����������

, 	 (7)

where w is the inertia weight factor, v p
ij
() and x p

ij
() are the velocity and the position of particle i in

dimension j , c
1
 and c

2
 are positive acceleration constants used to scale the contribution of the cogni-

tive and the social components y p
ij
() and ˆ ()y p

ij
, respectively. The factors r p

j1
() , r p U

j2
0 1() ~ (,) are

random values, sampled from a uniform distribution to introduce a stochastic element to the algorithm.
Shi and Eberhart (2000) proposed to set the values to w = 0 7298. and c c1 2 1 49618 = = . .

Even though a sequence of T actions is optimized, only the first action is applied to the real-world
system and an optimization of a new action sequence is performed for the subsequent system state s

t+1
.

This approach follows the widely applied control theory methods known as MPC, receding horizon
control, or moving horizon method (Kwon, Bruckstein, & Kailath, 1983; Rawlings & Mayne, Model
predictive control theory and design, 2009; Camacho & Alba, 2007). Most often the dynamic models
in MPC are realized by empirical models obtained by system identification. Thereby, mathematical

407

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments
﻿

models �m are learned by measured data from the real dynamical system m . Since this data is already
available in batch RL problems considered herein, applying an MPC-like approach like PSO-P appears
likely to succeed for such problems, too.

Despite the fact that empirical models �m are likely to be inaccurate in their predictions, i.e.,
� � �m s a s r s r m s a

t t t t t t t t
, , , ,() = () ≠ () = ()+ +1 1

 in Eq. (3), the experiments presented in Section ‘Experi-
ments, Results, and Analysis’ verify that very stable control results can still be achieved. The reason for
this advantageous behavior lies in the fact, that applying only the first action of the optimized action
trajectory to the system, and subsequently initializing PSO-P with the resulting real system state s

t+1
,

resets the agent to the underlying true environmental conditions after each time step. Subsequently, the
optimization starts with the correct initialization from scratch.

Implementation details can be found in Appendix 2.

EXPERIMENTS, RESULTS, AND ANALYSIS

The authors applied the PSO-P framework to three different RL problems. Two standard problems are
the mountain car (MC) (Sutton & Barto, 1998) and the cart-pole (CP) swing-up benchmark (Fantoni &
Lozano, 2002), which are used to illustrate the framework’s capability of solving RL problems in general.
The third problem is an industry inspired benchmark, the so-called industrial benchmarks (IB) (Hein, et
al., 2017b), which evaluates the framework’s performance on high-dimensional and stochastic dynamics.

For each benchmark, a neural network (NN) has been trained as the system model m using standard
techniques (Montavon, Orr, & Müller, 2012). NNs are well suited for data-driven black-box models as
they are universal approximators (Hornik, Stinchcombe, & White, 1989). In addition, the authors found
that the resulting models generalize well to new data in many real-world applications.

The authors have chosen this approach instead of working directly with benchmark simulations
because in many real-world scenarios physical simulations are either unavailable or strongly idealized.
However, PSO-P works with other model types as well, such as first principle or Gaussian process models
(Rasmussen & Williams, 2006).

Mountain Car Benchmark

In the MC benchmark an underpowered car is driven up to the top of a hill (Figure 2). This is done by
building up momentum with the help of driving in the opposite direction to gain enough potential energy.

In the present implementation, the hill landscape is equivalent to sin()3ρ . The task for the RL agent
is to find a sequence of force actions a a a

t t t
, , , [,]+ + …∈ −1 2

1 1 that drive the car up the hill, which is
achieved when reaching a position ρ π> 6 .

At the start of each episode the car’s state is (,) (/ , .)ρ ρ π� = − 6 0 0 . The agent receives a reward of
r() sin()ρ ρ= −3 1 after every action-state update. When the car reaches the goal position, the car’s
position is fixed, and the agent receives the maximum reward in every following time step, regardless
of the applied actions.

Using the parameters given in Table 1, PSO-P is able to solve this RL problem. Details of the algo-
rithm and the determination of suitable algorithmic parameters are summarized in Appendix 1.

408

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments
﻿

To confirm that finding the optimal way of driving the car up the mountain is represented as a non-
convex optimization problem, the performance of PSO has been compared with a standard simplex
algorithm (NM) published by (Nelder & Mead, 1965) applied to Eq. (4). The NM algorithm was allowed
to utilize the exact same number of fitness evaluations during the optimization as the PSO (100 particles
and 100 PSO iterations corresponding to 10,000 fitness evaluations).

The results presented in Figure 3 show that on average PSO yields a significantly better control
performance than NM. This result was expected, since the problem is assumed to be highly non-convex
and NM is likely to get stuck in local optima. Nevertheless, the majority of runs using NM managed to
drive the car up the hill in less than 1,000 time steps, even though it took NM significantly more time
steps on average (Figure 4).

Figure 2. Mountain car task. The system can be described completely by its Markov state variables ρ
and �ρ , which represent the car’s position and velocity, respectively (Sutton & Barto, 1998)

Table 1. PSO-P setup parameters and achieved experiment results for the MC benchmark

Particles 100

Iterations 100

Topology (each particle with 5 neighbors, including itself)

(, ,)w c c
1 2

(0.72981, 1.49618, 1.49618)

(,)T q (100, 0.05)

Model approximation m RNN trained with 10,000 randomly generated state transitions

Benchmark start states 100 times s = = −(,) (/ , .)ρ ρ π� 6 0 0

Return (1,000 steps) median: -350, min: -644, max: -197

409

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments
﻿

Cart-Pole Swing-Up Benchmark

The objective of the CP benchmark is to apply forces to a cart moving on a one-dimensional track to
bring a pole hinged to the cart in an upright position (Fantoni & Lozano, 2002). The four Markov state
variables are the pole’s angle θ , the pole’s angular velocity �θ , the cart’s position ρ , and the cart’s ve-
locity �ρ , as illustrated in Figure 5.

The start settings for the experiments are: θ π= , �θ = 0 , ρ = 0 , and �ρ = 0 , i.e., the pole is hang-
ing down with the cart at rest. The goal is to find force actions a a a

t t t
, , , [,]+ + …∈ −1 2

1 1 , that swing the
pole up and subsequently prevent the pole from falling over while keeping the cart close to ρ = 0 for
a possibly infinite period of time. The closer the CP gets to the desired position (θ = 0 ,ρ = 0) the

higher are the rewards r(,) (/ .) (/ .)ρ θ ρ θ= − +1 4 0 32 2 for the corresponding transitions.
Using the parameters given in Table 2, the authors show that PSO-P is able to solve this RL problem.

To find the best setting for the user-defined parameters, the authors again followed their recipe from
Appendix 1.

Similar to the MC benchmark, the authors compared the resulting performance of PSO to NM when
solving Eq. (4). While the MC optimization problem is simple enough for NM to solve it in less than
1,000 time steps, NM completely failed to stabilize the cart’s pole in 1,000 time steps. In Figure 6 the

Figure 3. Visualization of the average return of PSO and NM computed from 100 experiments per setup.
Applying the exact same number of fitness function evaluations, PSO outperforms NM on the MC bench-
mark. On each box, the central mark is the median, the box edges are the 25th and 75th percentiles, and
the whiskers extend to the most extreme data points not considered outliers. An average return point g
is categorized as an outlier (+) if g q q q> + −

3 3 1
1 5. () or g q q q< − −

1 3 1
1 5. () , for q

1
 the 25th and

q
3

 the 75th percentile.

410

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments
﻿

average return values of PSO and NM are compared. The best and worst out of 100 generated trajectories
with PSO and NM optimizations are compared in Figure 7. It is evident that PSO significantly outper-
forms NM, which indicates that solving CP is a hard optimization problem for deterministic algorithms
such as NM.

Industrial Benchmark

The (Hein, et al., 2017a; Hein, et al., 2017b) (source code available at http://github.com/siemens/in-
dustrialbenchmark) was designed to emulate several challenging aspects eminent in many industrial
applications. It is not designed to be an approximation of any specific real-world system, but to pose a
comparable hardness and complexity found in many industrial applications.

State and action spaces are continuous. Moreover, the state space is high-dimensional and only par-
tially observable. The actions consist of three continuous components and affect three control inputs.
Moreover, the IB includes stochastic and delayed effects. The optimization task is multi-criterial in the
sense that there are two reward components that show opposite dependencies on the actions. The dynami-
cal behavior is heteroscedastic with state-dependent observation noise and state-dependent probability

Figure 4. Mountain car experiments. Applying PSO always resulted in well-performing and successful
action trajectories, while using NM sometimes did not generate action sequences driving the car up the
hill in less than 1,000 time steps.

411

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments
﻿

distributions, based on latent variables. Furthermore, it depends on an external driver that cannot be
influenced by the actions.

The IB is designed such that the optimal policy will not approach a fixed operation point in the three
control inputs, i.e., constantly changing the control inputs with regard to past observations, resulting in
significantly higher return. Note that any specific design choice is driven by experience with industrial
challenges.

At any time step t the RL agent can influence the IB via actions a
t
 that are three dimensional vec-

tors in −

1 1
3

, . Each action can be interpreted as three proposed changes to three observable state

Figure 5. Cart-pole system

Table 2.PSO-P setup parameters and achieved experiment results for the CP benchmark

Particles 100

Iterations 100

Topology (each particle with 5 neighbors, including itself)

(, ,)w c c
1 2

(0.72981, 1.49618, 1.49618)

(,)T q (150, 0.05)

Model approximation m RNN trained with 10,000 randomly generated state transitions

Benchmark start states 100 times s = =(, , ,) (, , ,)θ θ ρ ρ π� � 0 0 0

Return (1,000 steps) median: -860, min: -918, max: -823

412

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments
﻿

control variables. Those variables are: velocity v , gain g , and shift h . Each variable is limited to 0 100,



and calculated as follows:

a v g h
t t t t
= ()∆ ∆ ∆, , ,	 (8)

v v d v
t t t+ = +()()1

0 100max ,min , v∆ ,	 (9)

g g d g
t t t+ = +()()1

0 100max ,min , g∆ ,	 (10)

h h d h
t t t+ = +()()1

0 100max ,min , h∆ ,	 (11)

with scaling factors d v = 1 , d g = 10 , and d h = 5 75. .

Figure 6. Visualization of the average return of PSO and NM computed from 100 experiments per setup.
Applying the exact same number of fitness function evaluations, PSO outperforms NM on the CP bench-
mark. On each box, the central mark is the median, the box edges are the 25th and 75th percentiles, and
the whiskers extend to the most extreme data points not considered outliers.

413

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments
﻿

After applying the action a
t
, the environment transitions to the next time step t + 1 , yielding the

internal state s
t+1

. State s
t
 and successor state s

t+1
 are the Markovian states of the environment, which

are only partially observable by the agent. In addition to the three control variables velocity v , gain g ,
and shift h , an operator defined load p

t
 is applied to the system. Load p

t
 simulates an external force

like the demanded load in a power plant or the wind speed actuating a wind turbine, which cannot be
controlled by the agent, but still has a major influence on the system’s dynamics. Depending on load p

t

and the control values a
t
, the system suffers from detrimental fatigue f

t
 and consumes resources such

as power, fuel, etc., represented by consumption c
t
. Both, p

t
 and a

t
, are external drivers for the IB

dynamics. In response, the IB generates output values for c
t+1

 and f
t+1

, which are part of the internal
state s

t+1
. The reward is solely determined by s

t+1
 as follows:

r c f
t t t
= − −+ +1 1

3 	 (12)

In the real-world tasks that motivated the design of the IB, the reward function has always been known
explicitly. Therefore, it is assumed that the reward function of the IB is also known and consumption

Figure 7. Cart-pole experiments. Even the worst PSO runs produced action sequences, capable of
swinging up the pole and balancing it upright. In contrary the best NM sequences still yielded an overall
unstable system control policy.

414

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments
﻿

and fatigue are observable. However, except for the values of the steerings, the remaining part of the
Markov state s

t
 remains unobservable. This yields an observation vector o s

t t
⊂ consisting of:

•	 The current control variables: velocity v
t
, gain g

t
, and shift h

t
,

•	 The external driver: set point p
t
,

•	 And the reward relevant variables: consumption c
t
 and fatigue f

t
.

In Section ‘Formulation of Reinforcement Learning as Optimization Problem’ the optimization task,
which is solved during PSO-P runtime, is described as working on the Markovian state s of the system
dynamics. Since this state is not observable in the IB environment s

t
 is approximated by a sufficient

amount of historic observations o o o
t H t H t− − +(),

, ,
1
… with time horizon H . Given a system model

m o o o a o r
t H t H t t t t

(, , , ,) ,− − + += ()1 1
… with H = 30 an adequate prediction performance could be achieved

during IB experiments. Note that observation size o = 6 in combination with time horizon H = 30
results in a 180-dimensional approximation vector of the Markovian state. Since the size of the solution
space of an RL problem grows exponentially with each additional feature describing the state (Kaelbling,
Littman, & Moore, 1996), finding closed-form policies is rather difficult for common RL approaches.
Belman (1957) described this problem as curse of dimensionality. With PSO-P no closed-form RL
policy is trained, instead the complexity of learning state-action dependencies is transferred to the su-
pervised system identification yielding system model m . Recent research has shown that this approach
can result in significantly better system control performance for problems with high-dimensional state
space compared to standard close-form RL methods (Hein, et al., 2017a).

The t a sk fo r t he PSO-P RL agen t i s to f ind a sequence o f ac t ions
x = + + + + − + − + −(, , , , , , , , ,∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆ ∆v g h v g h v g h

t t t t t t t T t T t T1 1 1 1 1 1
…)) which changes the control

variables in a way that return R is as high as possible for a given time horizon T .
Using the parameters given in Table 3, the authors were able to produce excellent control results on

the IB task in terms of average per-step-rewards. Moreover, PSO-P has shown that the policy performance
is robust even against highly stochastic benchmark dynamics as present in the IB. Figure 8 compares the
average per-step-reward-values of 10 independent IB runs on set point p = 100 . Even though NM
performed the exact same number of function evaluations during the optimization phase, it produced a
far less satisfying average performance. In Figure 9 the best and worst trajectories of PSO and NM
optimization runs are depicted.

FUTURE RESEARCH DIRECTIONS

The experiments with the IB demonstrate that there are stochastic systems which PSO-P can success-
fully control using a deterministic system model. It is expected that this is not possible in general for
stochastic RL environments. To overcome this problem, modeling techniques that can provide a measure
of uncertainty along with their predictions are a very promising area of research. Possible modeling
candidates are Bayesian NNs, which are approximators with prior distributions on their network weights
(Depeweg, Hernández-Lobato, Doshi-Velez, & Udluft, 2016; Neal, 1996), or Gaussian processes (Ras-

415

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments
﻿

Table 3. PSO-P setup parameters and achieved experiment results for the IB benchmark

Particles 100

Iterations 100

Topology (each particle with 5 neighbors, including itself)

(, ,)w c c
1 2

(0.72981, 1.49618, 1.49618)

(,)T q (100, 0.05)

Model approximation m RNN trained with 100,000 state transitions generated by random
trajectories

Benchmark start states 10 times IB initialized with set point p = 100

Return (1,000 steps) median: -223, min: -224, max: -222

Figure 8. Visualization of the average reward of PSO and NM computed from 10 experiments per setup.
Applying the exact same number of fitness function evaluations, PSO outperforms NM on the IB bench-
mark. On each box, the central mark is the median, the box edges are the 25th and 75th percentiles, and
the whiskers extend to the most extreme data points not considered outliers.

416

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments
﻿

mussen & Williams, 2006; Damianou, Titsias, & Lawrence, 2016), where every point in a continuous
input space is associated with a normally distributed random variable. Together with noise-resistant
PSO (Bartz-Beielstein, Blum, & Branke, 2007) the evaluation of these techniques is a promising future
research direction for PSO-P application in stochastic environments.

Recent breakthroughs in the area of applying deep NNs on image, video, speech or text data (Lecun,
Bengio, & Hinton, 2015) could bring model-based RL methods like PSO-P into new domains of appli-
cation. Modeling environments in these domains is an emerging trend, promising human-level control
through deep RL (Mnih, et al., 2015).

Another open research topic is the real-time application of PSO-P on systems with time-critical
constraints. The implementation of a parallelized PSO and the system model directly on hardware could
enable achieving this goal for a broad set of different industry relevant applications (Van Heerden, Fu-
jimoto, & Kawamura, 2014; Xu, Chen, Gong, & Mei, 2016).

Figure 9. Industrial benchmark experiments. Depicted are the best and the worst performing trajectories
for PSO and NM. Note that the performance can easily break down in the IB if suboptimal actions are
applied. On the other hand, applying PSO shows clearly that it is possible to find well performing actions
even under the presence of latent stochastic effects and state-dependent observation noise.

417

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments
﻿

CONCLUSION

The presented results show that PSO-P is capable of providing RL agents with high-quality state-to-
action mappings. In essence, PSO-P performs an online optimization of an action sequence, each time
an action for a given system state is requested. Compared to learning a functional policy representation,
whose actions are recalled later on, PSO-P has the following advantages:

•	 PSO-P does not require a priori assumptions about adequate policy representations. Hence, no
bias with respect to a specific policy behavior is introduced.

•	 PSO-P is effective for high-dimensional state spaces, as the optimization runs in the space of ac-
tion sequences, which are independent of the state space’s dimensionality.

•	 The reward function can be changed after each system transition, as the optimization process starts
from scratch for each new system state.

The drawback compared to closed-form policies is the significantly higher computational load for
computing actions using PSO-P. Implementing parallelized PSO on hardware or using cloud-based
computational resources will enable MPC policy solutions like PSO-P to become feasible for more and
more applications. Furthermore, in many real-world industrial applications high-level system control is
implemented by changing control parameters in terms of seconds or minutes which, in many cases, is a
sufficient amount of time to compute the next action using PSO-P.

PSO-P is a complementary approach for solving RL because it searches in the action space, while
established RL methods generally work in the value function space or the policy space (Sutton & Barto,
1998). Therefore, a promising application is to use PSO-P for benchmarking other RL methods. More-
over, PSO-P can be used for reward function design or tuning, i.e., for the process of designing a reward
function that induces a desired policy behavior.

Furthermore, the presented method for formulating RL problems as optimization tasks makes the
rich class of real-world inspired RL benchmarks accessible for benchmarking gradient-free optimization
algorithms. The fitness landscapes of RL problems are generally non-convex and high-dimensional.
Since each point in this space corresponds to an action trajectory, the optimization process can be visu-
alized as a sequence of such action trajectories, which may be used to interpret the behavior of different
optimization algorithms.

ACKNOWLEDGMENT

The project this report is based on was supported with funds from the German Federal Ministry of Edu-
cation and Research under project number 01IB15001. The sole responsibility for the report’s contents
lies with the authors.

418

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments
﻿

REFERENCES

Bartz-Beielstein, T., Blum, D., & Branke, J. (2007). Particle swarm optimization and sequential sam-
pling in noisy environments. In K. F. Doerner, M. Gendreau, P. Greistorfer, W. Gutjahr, R. F. Hartl, &
M. Reimann (Eds.), Metaheuristics: Progress in Complex Systems Optimization (pp. 261–273). Boston,
MA: Springer US. doi:10.1007/978-0-387-71921-4_14

Bellman, R. E. (1957). Dynamic Programming. Princeton University Press.

Bellman, R. E. (1962). Adaptive Control Processes: A Guided Tour. Princeton University Press.

Camacho, F., & Alba, C. (2007). Model predictive control. London: Springer. doi:10.1007/978-0-85729-
398-5

Damianou, A. C., Titsias, M. K., & Lawrence, N. D. (2016). Variational inference for latent variables
and uncertain inputs in Gaussian processes. Journal of Machine Learning Research, 17(1), 1425–1486.

Depeweg, S., Hernández-Lobato, J. M., Doshi-Velez, F., & Udluft, S. (2016). Learning and policy search
in stochastic dynamical systems with Bayesian neural networks. arXiv preprint arXiv:1605.07127

Eberhart, R., & Shi, Y. (2000). Comparing inertia weigths and constriction factors in particle swarm
optimization. Proceedings of the IEEE Congress on Evolutionary Computation, (1), 84–88.

Eberhart, R., Simpson, P., & Dobbins, R. (1996). Computational intelligence PC tools. San Diego, CA:
Academic Press Professional, Inc.

Engelbrecht, A. (2005). Fundamentals of computational swarm intelligence. Wiley.

Fantoni, I., & Lozano, R. (2002). Non-linear control for underactuated mechanical systems. London:
Springer. doi:10.1007/978-1-4471-0177-2

Feng, H.-M. (2005). Particle swarm optimization learning fuzzy systems design. Third International
Conference on Information Technology and Applications, 1, 363-366. doi:10.1109/ICITA.2005.206

Findeisen, R., & Allgoewer, F. (2002). An introduction to nonlinear model predictive control. 21st
Benelux Meeting on Systems and Control, 1-23.

Findeisen, R., Allgoewer, F., & Biegler, L. (2007). Assessment and future directions of nonlinear model
predictive control. Berlin: Springer-Verlag. doi:10.1007/978-3-540-72699-9

Gruene, L., & Pannek, J. (2011). Nonlinear model predictive control. London: Springer. doi:10.1007/978-
0-85729-501-9

Hein, D., Depeweg, S., Tokic, M., Udluft, S., Hentschel, A., Runkler, T. A., & Sterzing, V. (2017b). A
benchmark environment motivated by industrial control problems. arXiv preprint arXiv:1709.09480

Hein, D., Udluft, S., Tokic, M., Hentschel, A., Runkler, T. A., & Sterzing, V. (2017a). Batch reinforce-
ment learning on the industrial benchmark: First experiences. Proceedings of the IEEE International
Joint Conference on Neural Networks, 4214-4221. doi:10.1109/IJCNN.2017.7966389

http://dx.doi.org/10.1007/978-0-387-71921-4_14
http://dx.doi.org/10.1007/978-0-85729-398-5
http://dx.doi.org/10.1007/978-0-85729-398-5
http://dx.doi.org/10.1007/978-1-4471-0177-2
http://dx.doi.org/10.1109/ICITA.2005.206
http://dx.doi.org/10.1007/978-3-540-72699-9
http://dx.doi.org/10.1007/978-0-85729-501-9
http://dx.doi.org/10.1007/978-0-85729-501-9
http://dx.doi.org/10.1109/IJCNN.2017.7966389

419

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments
﻿

Hornik, K., Stinchcombe, M., & White, H. (1989). Multilayer feedforward networks are universal ap-
proximators. Neural Networks, 2(5), 359–366. doi:10.1016/0893-6080(89)90020-8

Johansen, T. (2011). Introduction to nonlinear model predictive control and moving horizon estimation.
In Selected Topics on Constrained and Nonlinear Control. Bratislava: STU Bratislava/NTNU Trondheim.

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1996). Reinforcement Learning: A Survey. Journal
of Artificial Intelligence Research, 4(1), 237–285.

Kennedy, J., & Eberhart, R. (1995). Particle swarm optimization. Proceedings of IEEE International
Conference on Neural Networks, 1942–1948. doi:10.1109/ICNN.1995.488968

Kwon, W. H., Bruckstein, A. M., & Kailath, T. (1983). Stabilizing state-feedback design via the moving
horizon method. International Journal of Control, 37(3), 631–643. doi:10.1080/00207178308932998

Lecun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. doi:10.1038/
nature14539 PMID:26017442

Lee, S.-M., & Myung, H. (2015). Receding horizon particle swarm optimisation-based formation control
with collision avoidance for non-holonomic mobile robots. IET Control Theory & Applications, 9(14),
2075–2083. doi:10.1049/iet-cta.2015.0071

Magni, L., & Scattolini, R. (2004). Stabilizing model predictive control of nonlinear continuous time
systems. Annual Reviews in Control, 28(1), 1–11. doi:10.1016/j.arcontrol.2004.01.001

Mnih, V., Kavukcuoglu, K., Silver, D., Rusu, A. A., Veness, J., Bellemare, M. G., & Hassabis, D.
et al. (2015). Human-level control through deep reinforcement learning. Nature, 518(7540), 529–533.
doi:10.1038/nature14236 PMID:25719670

Montavon, G., Orr, G., & Müller, K. (2012). Neural networks: Tricks of the trade. Berlin: Springer.
doi:10.1007/978-3-642-35289-8

Montazeri-Gh, M., Jafari, S., & Ilkhani, M. (2012). Application of particle swarm optimization in gas
turbine engine fuel controller gain tuning. Engineering Optimization, 44(2), 225–240. doi:10.1080/03
05215X.2011.576760

Moriarty, D., Schultz, A., & Grefenstette, J. (1999). Evolutionary algorithms for reinforcement learning.
Journal of Artificial Intelligence Research, 11, 241–276.

Neal, R. M. (1996). Bayesian learning for neural networks (Vol. 118). New York: Springer-Verlag.
doi:10.1007/978-1-4612-0745-0

Nelder, J., & Mead, R. (1965). A simplex method for function minimization. The Computer Journal,
7(4), 308–313. doi:10.1093/comjnl/7.4.308

Ou, Y., Kang, P., Jun, K. M., & Julius, A. A. (2015). Algorithms for simultaneous motion control of
multiple T. pyriformis cells: Model predictive control and particle swarm optimization. 2015 IEEE Inter-
national Conference on Robotics and Automation (ICRA), 3507-3512. doi:10.1109/ICRA.2015.7139684

Piche, S., Keeler, J., Martin, G., Boe, G., Johnson, D., & Gerules, M. (2000). Neural network based
model predictive control. Advances in Neural Information Processing Systems, 1029–1035.

http://dx.doi.org/10.1016/0893-6080(89)90020-8
http://dx.doi.org/10.1109/ICNN.1995.488968
http://dx.doi.org/10.1080/00207178308932998
http://dx.doi.org/10.1038/nature14539
http://dx.doi.org/10.1038/nature14539
http://www.ncbi.nlm.nih.gov/pubmed/26017442
http://dx.doi.org/10.1049/iet-cta.2015.0071
http://dx.doi.org/10.1016/j.arcontrol.2004.01.001
http://dx.doi.org/10.1038/nature14236
http://www.ncbi.nlm.nih.gov/pubmed/25719670
http://dx.doi.org/10.1007/978-3-642-35289-8
http://dx.doi.org/10.1080/0305215X.2011.576760
http://dx.doi.org/10.1080/0305215X.2011.576760
http://dx.doi.org/10.1007/978-1-4612-0745-0
http://dx.doi.org/10.1093/comjnl/7.4.308
http://dx.doi.org/10.1109/ICRA.2015.7139684

420

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments
﻿

Rasmussen, C., & Williams, C. (2006). Gaussian processes for machine learning. MIT Press.

Rawlings, J. (2000). Tutorial overview of model predictive control. IEEE Control Systems Magazine,
20(3), 38–52. doi:10.1109/37.845037

Rawlings, J., & Mayne, D. (2009). Model predictive control theory and design. Nob Hill Publishing.

Schaefer, A., Schneegass, D., Sterzing, V., & Udluft, S. (2007). A neural reinforcement learning approach
to gas turbine control. IEEE International Conference on Neural Networks - Conference Proceedings,
1691-1696. doi:10.1109/IJCNN.2007.4371212

Solihin, M., & Akmeliawati, R. (2010). Particle swam optimization for stabilizing controller of a self-
erecting linear inverted pendulum. International Journal of Electrical and Electronic Systems Research,
2, 13–23.

Sutton, R. (1996). Generalization in reinforcement learning: Successful examples using sparse coarse
coding. Advances in Neural Information Processing Systems, 8, 1038–1044.

Sutton, R., & Barto, A. (1998). Reinforcement learning: An introduction. Cambridge, MA: MIT Press.

Van Heerden, K., Fujimoto, Y., & Kawamura, A. (2014). A combination of particle swarm optimization
and model predictive control on graphics hardware for real-time trajectory planning of the under-actuated
nonlinear acrobot. 2014 IEEE 13th International Workshop on Advanced Motion Control (AMC), 464-469.

Wolpert, D., & Macready, W. (1997). No free lunch theorems for optimization. IEEE Transactions on
Evolutionary Computation, 1(1), 67–82. doi:10.1109/4235.585893

Xu, F., Chen, H., Gong, X., & Mei, Q. (2016). Fast nonlinear model predictive control on FPGA using
particle swarm optimization. IEEE Transactions on Industrial Electronics, 63(1), 310–321. doi:10.1109/
TIE.2015.2464171

KEY TERMS AND DEFINITIONS

Benchmark: A computer program used to assess the performance of different methods.
Model Predictive Control: A method of process control using a system model with finite time-

horizon, where at each time step only the next control action is applied to the real system.
Neural Network: A technical computing system inspired by biological brains. It consists of con-

nected nodes (neurons) arranged in layers, where the output of each neuron is computed from the inputs
using activation functions.

Policy: A mapping from state to action space, which is the result of a reinforcement learning training.
Reinforcement Learning: Software agents are trained to take optimal actions in a given environment

in order to maximize a cumulative reward.
System Model: An approximation of the input-to-output behavior of a real system trained from

observational data by supervised machine learning. It may be used for policy evaluation or selection.
Trajectory: A time-ordered set of states or actions.

http://dx.doi.org/10.1109/37.845037
http://dx.doi.org/10.1109/IJCNN.2007.4371212
http://dx.doi.org/10.1109/4235.585893
http://dx.doi.org/10.1109/TIE.2015.2464171
http://dx.doi.org/10.1109/TIE.2015.2464171

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments

421

APPENDIX 1

Given a sufficiently trained model of the real system, the conducted experiments show that the following
recipe successfully finds appropriate parameters for the PSO-P:

0. 	 Start with the ring topology and an initial guess of the swarm size, depending on the intended
computational effort.

1. 	 Evaluate the problem dependent time horizon T .
2. 	 Compare different topologies for both convergence properties; speed and quality of the found

solutions.
3. 	 Determine the number of particles which leads to the best rewards, given a fixed level of compu-

tational effort.

In the following, an exemplary PSO-P parameter evaluation for the CP benchmark is described. The first
step is to find a suitable time horizon for the RL problem. On the one hand, this horizon should be as short
as possible to keep computational effort low. On the other hand, it has to be long enough to recognize
all possible future effects of the current action. Figure 10 shows the results for time horizons of length
100, 150, 200 and 250 time steps. A time horizon length of 100 yields a relatively low average return
compared to the horizon lengths 150, 200 and 250. The reason for this is that it is much harder for the

Figure 10. The data has been produced evaluating 100 independent trial runs with the goal of swinging
up and stabilizing the cart-pole. Each trial contains 1,000 applied actions

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments

422

PSO-P to determine whether an action sequence leads to constantly good results in the future if the time
horizon is below 150 in the CP benchmark. The increase of the horizon above 150 did not yield better
results, so the horizon of 150 seems to be a good compromise between stable results and fast computing.
In the second step, the influence of the PSO topology on the CP task is evaluated. Three topologies have
been tested: star (global PSO), ring with three neighbors, and ring with five neighbors (including the
particle itself). While the two ring topologies produced similar results, the global PSO performed slightly
worse. Probably, the swarm prematurely collapses to suboptimal solutions. In Figure 11 - Figure 12 the
average performance of 100 PSO optimizations on the CP start state is shown in relation to the number
of function calls. A smaller neighborhood seems to be a much better approach to the CP task, which in
essence limits the communication of good positions through the swarm. Thereby, a smaller neighborhood
size favors exploration over exploitation. Since the topology ring with five neighbors produced the best
median result the experiments are continued using this topology.
In the last step, the influences of the number of particles and PSO iterations are investigated. In the ex-
periments, the runtime of the optimization has been fixed by limiting the PSO to a total of 10,000 fitness
evaluations. Consequently, a swarm of 200 particles can run 50 PSO iterations, while a swarm of 100
Particles can perform 100 iterations using the same computation time. The results in Figure 13 - Figure
14 show that a swarm of size 100 particles finds better solutions in 100 PSO iteration steps than 50 par-
ticles in 200 iterations, or 200 particles in 50 iterations. However, if the time frame allowed only 5000
fitness function calls to compute the next action, it would be significantly better to use the combination
of 50 particles in 200 PSO iterations than any other ratio evaluated in the experiment.

Figure 11. Results of the comparison of the three PSO topologies, ring with three neighbors for each
particle, ring with five neighbors for each particle, and the star topology. Illustrated are the average
convergence speeds of 100 PSO runs searching for an optimal action sequence for the initial state.

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments

423

Figure 13. Results of the comparison of three numbers of particles to PSO iteration ratios. The graphs
illustrate the average convergence speed of 100 PSO runs searching for an optimal action sequence for
the initial state

Figure 12. Depicted are the average results on a complete PSO-P run of 1,000 steps

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments

424

Figure 14. Depicted are the average results on a complete PSO-P run of 1,000 steps

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments

425

APPENDIX 2

Table 4.

Policy Framework

// s
0

 benchmark start state

// g s a(,) real-world system
// I action dimensionality
Begin

 s s←
0

Repeat

 x�← PSO-P(s) // call PSO-P procedure and determine best
 // action sequence

 a I← −x� �[, ,]0 1 // extract first action vector of the sequence
 (,) (,)s r g s a← // apply action on the real system
 Until (termination conditions achieved)
End

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments

426

Table 5.

PSO-P

// i particle index
// j search space dimension

// x
i

 position vector

// v
i

 velocity vector

// y
i

 best position

// y�i best position in particle i ’s neighborhood

// x
min

 minimum position (Eq. (1))

// x
max

 maximum position (Eq. (2))

// v
min

 minimum position, v x x
min max minj j j
= − ⋅ −0 1. ()

// v
max

 maximum position, v x x
max max minj j j
= ⋅ −0 1. ()

// P applied PSO iterations
// Input:
// s optimization start state
// Output:

// x� optimized action sequence
Begin
 // Initialization
 p ← 0
x x x
i
p U() ~ (,)

min max
// set random positions

 v v v
i
p U() ~ (,)

min max
// set random velocities

 // Iteration
 For p P<
 f p s p

i i
(()) (, ())x mbc x← // compute fitness of all particles

 Update best positions y
i
p()

 Update best neighborhood positions y�i p() // Eq. (5)

 Update velocity vectors v
i
p()+ 1 // Eq. (7)

 Bound velocity vectors in between v
min

 and v
min

 Update positions x
i
p()+ 1 // Eq. (6)

 Bound positions in between x
min

 and x
max

 p p← + 1
End

 x�← best overall particle position // Eq. (4)
End

Particle Swarm Optimization for Model Predictive Control in Reinforcement Learning Environments

427

Table 6.

mbc - Model-Based Computation

// m s a(,) model approximation of the real-world system g s a(,)
// γ discount factor
// I action dimensionality
// Input:
// s model start state
// x action sequence
// Output:
// R return prediction
Begin
 R ← 0
s s

t
←

k ← 0
For k T<
 a k I k I I← ⋅ ⋅ + −x[, ,]� 1 // extract action
 (,) (,)s r m s a← // perform one step on the model

 R R← + ⋅γk r // discount reward and accumulate
 k k← + 1
End
End

