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ABSTRACT

Query-based image retrieval (QBIR) requires retrieving relevant images given di-
verse and often stylistically heterogeneous queries, such as sketches, artworks, or
low-resolution previews. While large-scale vision–language representation mod-
els (VLRMs) like CLIP offer strong zero-shot retrieval performance, they struggle
with distribution shifts caused by unseen query styles. In this paper, we propose
the Hypernetwork-driven Style-adaptive Retrieval (Hystar), a lightweight frame-
work that dynamically adapts model weights to each query’s style. Hystar em-
ploys a hypernetwork to generate singular-value perturbations (∆S) for attention
layers, enabling flexible per-input adaptation, while static singular-value offsets
on MLP layers ensure cross-style stability. To better handle semantic confu-
sions across styles, we design StyleNCE as part of Hystar, an optimal-transport-
weighted contrastive loss that emphasizes hard cross-style negatives. Exten-
sive experiments on multi-style retrieval and cross-style classification bench-
marks demonstrate that Hystar consistently outperforms strong baselines, achiev-
ing state-of-the-art performance while being parameter-efficient and stable across
styles.

1 INTRODUCTION

Query-based image retrieval (QBIR) (Thomee & Lew, 2012) is a core mechanism for accessing
visual information at scale. Given a query, the system must rapidly return images aligned with the
user’s intent from a large database (Li et al., 2022a; 2023), enabling modern image search and many
downstream applications (Isinkaye et al., 2015). In practice, user queries are highly diverse and
personalized, especially in style (Li et al., 2021b; Johnson et al., 2015). Expressing intent appro-
priately and making retrieval models adapt flexibly to heterogeneous query styles remain central
challenges for QBIR. Prior works have sought to address this through style-invariant representa-
tions (e.g., Domain-Aware SE Network; Semi3-Net (Lu et al., 2021; Lei et al., 2020)), cross-modal
alignment and domain adaptation (e.g., BDA-SketRet; Adapt and Align; Domain-Smoothing Net-
work (Chaudhuri et al., 2022; Dong et al., 2023; Wang et al., 2021)), and cross-category general-
ization (e.g., Generalising Fine-Grained SBIR (Pang et al., 2019)). However, these methods are
typically designed for style-specific datasets, limiting their scalability.

Furthermore, recent advancements in large-scale vision–language representation models (VLRMs),
such as CLIP (Radford et al., 2021; Li et al., 2022b; 2021a), have demonstrated significant capabil-
ities in discrimination and generalization abilities, enabling QBIR through the incorporation of rich
semantic priors acquired during pretraining. Nevertheless, performance tends to deteriorate when
the query style significantly diverges from those encountered during pretraining (e.g., sketch, car-
toon, or artwork), primarily due to the distributional mismatch in the shared embedding space (Sain
et al., 2023; Li et al., 2024a). A direct remedy is fine-tuning VLRMs on target retrieval datasets.
For large models, full fine-tuning is expensive and prone to catastrophic forgetting (Laurier; Kemker
et al., 2018). Parameter-efficient fine-tuning (PEFT) methods, such as LoRA (Hu et al., 2022) and
VPT (Zhou et al., 2022c; Jia et al., 2022; Zhou et al., 2022b), freeze the backbone while introduc-
ing a small number of trainable parameters. Despite their efficiency, existing PEFT approaches are
static (Chavan et al., 2023), relying on a single parameter set shared by all inputs, limiting adaptation
to diverse, unseen styles at inference (Dong et al., 2023; Li et al., 2024a).
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To tackle this issue, some methods (Li et al., 2024b; Ge et al., 2025; Yu et al., 2024; Yan et al., 2024)
consider pretraining separate style-specific units and selecting or composing them at test time. For
instance, VB-LoRA (Li et al., 2024b) utilizes a vectorized LoRA bank to select the top-k modules
based on the input. However, such approaches inevitably entail extensive annotation and a large
library of style units, struggling with unseen or cross-style scenarios. Recently, a line of work ex-
emplified by FreestyleRet (Li et al., 2024a; Tang et al., 2025) leverages style cluster priors extracted
from training data to guide prompt learning(Jia et al., 2022; Zhou et al., 2022c;b), achieving partial
style adaptation. Though these methods have shown some effectiveness, they are inherently lim-
ited by the styles observed during training and often underperform on out-of-distribution samples.
Consequently, developing methods for flexible, data-driven adaptation to unseen styles remains a
significant challenge (Wang et al., 2022; Zhou et al., 2022a; Li et al., 2025; Dong et al., 2025).

In this paper, we introduce the Hypernetwork-driven Style-adaptive Retrieval method, Hystar, a
framework for flexible and generalized QBIR that dynamically adapts to diverse styles of different
queries, including previously unseen ones. Specifically, Hystar extracts query-specific style repre-
sentations and employs a lightweight modulation mechanism, where a hypernetwork-driven module
generates instance-conditioned updates for attention layers. Rather than predicting full low-rank ma-
trices, Hystar predicts only singular-value perturbations (∆S), which reduces prediction difficulty
and improves training stability. In parallel, static learnable singular-value offsets on MLP layers
provide stable cross-style calibration. This combination of dynamic adaptation and static robustness
enables flexible yet stable style-specific retrieval.

Moreover, we introduce StyleNCE, an optimal-transport-weighted contrastive criterion that per-
forms importance-weighted global matching over positives and negatives, better modeling semantic
confusions in cross-style retrieval (Robinson et al., 2020; Jiang et al., 2023). Overall, Hystar cou-
ples an adaptable architecture with a difficulty-aware objective, emphasizing cross-style semantic
alignment while remaining lightweight and stable.

Our contributions are summarized as follows:

• Hypernetwork-driven dynamic PEFT. We introduce a hypernetwork that generates input-
conditioned SVD modulations, overcoming the rigidity of static PEFT. It enables fine-grained,
per-input adaptation on attention layers while relying on stable, precomputed offsets for MLPs,
thereby achieving both flexibility in handling diverse inputs and stability during optimization.

• Style-adaptive contrastive learning. We propose StyleNCE, an OT-weighted contrastive loss
that adaptively emphasizes hard cross-style negatives, leading to more robust retrieval under dis-
tribution shift.

• Strong empirical results. Extensive experiments on multi-style retrieval and cross-style classifi-
cation benchmarks demonstrate the effectiveness of Hystar in dynamic PEFT for style adaptation
and multimodal generalization, consistently outperforming strong baselines.

2 RELATED WORK

Query-based Image Retrieval. Query-based image retrieval (QBIR) has long been a central topic
in computer vision, with early surveys highlighting its importance for accessing large-scale visual
data (Thomee & Lew, 2012). Traditional methods often relied on handcrafted features or shallow
models (Li & Li, 2018; Kumar Verma et al., 2019), but recent advances in vision-language repre-
sentation models (VLRMs), such as CLIP (Radford et al., 2021), have enabled powerful zero-shot
retrieval by aligning images and text in a shared semantic space. Nevertheless, these models are sen-
sitive to style variations (e.g., sketches, artworks, or low-resolution previews), leading to degraded
performance under distribution shifts (Li et al., 2024a; Qiu et al., 2022).

Parameter-Efficient Fine-Tuning (PEFT). To mitigate the cost of adapting large-scale VLRMs,
parameter-efficient fine-tuning (PEFT) methods have been proposed. LoRA (Hu et al., 2022) and
VPT (Jia et al., 2022) introduce a small number of trainable parameters while freezing the backbone,
achieving efficient adaptation. However, these methods are inherently static, applying the same
parameter mapping to all inputs, which limits their ability to generalize to unseen query styles (Ha
et al., 2016). More recent approaches, such as FreestyleRet (Li et al., 2024a), leverage style-cluster
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priors to guide prompt learning and achieve partial style adaptation. Yet, their reliance on observed
style clusters hampers performance in truly out-of-distribution scenarios.

Dynamic Modulation and Hypernetworks. An alternative line of work explores dynamic adap-
tation. Some studies pretrain multiple style-specific modules and perform selection at inference (Li
et al., 2024b), but this approach requires large annotated style libraries. Others attempt dynamic
module composition (Gu et al., 2024), though they are constrained by a fixed bank of predefined
modules. Hypernetworks (Ha et al., 2016) offer a promising alternative by generating instance-
conditioned parameters, reducing the dependence on explicit style clusters. These insights motivate
our design of a dynamic-static hybrid framework that leverages hypernetwork-driven modulation for
flexible yet robust multi-style retrieval.

Contrastive Learning under Distribution Shift. Contrastive learning (Hadsell et al., 2006; Oord
et al., 2018; He et al., 2020; Chen et al., 2020) has been a cornerstone of multimodal retrieval. Stan-
dard objectives such as InfoNCE (Oord et al., 2018) treat all negatives equally, which is suboptimal
in cross-style scenarios where distinguishing between easy and hard negatives is crucial (Peyré et al.,
2019). Our proposed StyleNCE introduces an optimal-transport (Peyré et al., 2019) formulation to
explicitly reweight negatives by difficulty (Robinson et al., 2020; Jiang et al., 2023), enhancing
robustness against semantic confusion across styles.

3 METHOD

In this section, we first introduce the problem setup of QBIR under diverse style variations in
Sec. 3.1, and present the overall pipeline (Fig. 1). The core idea is to enhance the adaptability of sin-
gular value modulation through hypernetwork-driven dynamic parameterization. We then detail our
hybrid dynamic PEFT mechanism with static singular value modulation in Sec. 3.2. Sec. 3.3 further
describes our OT-weighted StyleNCE loss, which leverages optimal transport to enable flexible and
efficient optimization across heterogeneous input styles. Finally, Sec. 3.4 introduces the training
and inference procedure of our framework. Our framework is conceptually related to VLRM-based
retrieval (Radford et al., 2021; Li et al., 2022b; 2021a; Sain et al., 2023), but specifically targets
cross-style scenarios.

Figure 1: Overview of the Hystar framework. For multi-style queries, style features are first
extracted using DINOv2. These features are fed into a hypernetwork to produce dynamic singular-
value increments for attention layers, enabling style-conditioned modulation of the feature encoder.
Additionally, static singular-value increments are applied to the MLP layers, serving as a fixed
parameter modulation. Together, these mechanisms guide the encoder to produce style-diverse re-
trieval predictions.
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3.1 PROBLEM DEFINITION AND PIPELINE

We study QBIR in the presence of significant style variations, including sketches, paintings, low-
resolution images, and text queries. In this setting, queries may originate from styles different from
the target gallery (e.g., natural photos vs. sketches or artistic renderings). The goal is to retrieve
semantically aligned images despite style discrepancies. Formally, given a query q (possibly from
a disjoint style) and a candidate set {pi}, we aim to learn an embedding function fθ(·) such that
positive pairs (q, p+) are closer in the embedding space than negatives (q, p−).

Multi-style QBIR poses two main challenges:

1. Cross-style discrepancies. Distinct styles differ substantially in appearance and statistics, hin-
dering pretrained models (Radford et al., 2021; Sain et al., 2023; Zhou et al., 2022a).

2. Static PEFT limitations. Methods such as VPT (Jia et al., 2022; Zhou et al., 2022b;c) and
LoRA (Hu et al., 2022) excel on seen styles but fail to generalize to unseen styles.

To overcome these challenges, our dynamic PEFT framework leverages the pretrained DINOv2
backbone (Oquab et al., 2023) to extract style-aware features z. A lightweight hypernetwork maps
z to singular value increments ∆S for attention layers, while static singular value modulation is
applied to MLP layers, enabling style-adaptive yet stable transformations. Training is guided by
the OT-weighted StyleNCE loss, which emphasizes hard negatives while maintaining efficient opti-
mization. As shown in Fig. 1, the query is initially routed through a style extraction branch, and the
extracted style is injected into the backbone via Hyper-SVD Modulation. Thereafter, the adapted
backbone encodes the query, and the encoded feature is optimized under StyleNCE supervision.
This design achieves a balance between computational efficiency and cross-style generalization,
significantly boosting retrieval performance under heterogeneous styles.

3.2 DYNAMIC–STATIC HYBRID PARAMETER-EFFICIENT FINE-TUNING

We propose a dynamic–static hybrid PEFT method tailored for multi-style adaptation. Let W0 ∈
Rd1×d2 denote a pretrained VLRM weight matrix (e.g., attention projections or MLP weights). Our
goal is to preserve the spectral structure of W0 while introducing structured, singular value-based
updates ∆W (Lingam et al., 2024; Wang et al., 2025).

To achieve this, we decompose W0 ∈ Rd1×d2 as W0 = UΣV ⊤, where U ∈ Rd1×d1 and V ∈
Rd2×d2 are orthogonal matrices and Σ ∈ Rd1×d2 is diagonal. Rather than learning a full-rank
update, we modulate singular values such that W = W0 +∆W = U(Σ+∆Σ)V ⊤, with U , V , and
Σ frozen and only diagonal increments ∆Σ learned. Using the diagonalization operator φ(·), this
can be written as W = Uφ(s+∆s)V ⊤, where s denotes the original singular values and ∆s their
learnable increments.

This preserves pretrained spectra while enabling efficient, stable adaptation. ( A formal justifica-
tion of the stability of this modulation, based on spectral norm theory, is provided in Appendix A.)
Beyond providing stable updates, SVD modulation also offers a geometric advantage for style adap-
tation. In this formulation, U and V define the semantic subspace of the pretrained model, while Σ
determines the scaling along these spectral directions. By modulating only the singular values while
keeping U and V fixed, the model adapts through smooth, geometry-preserving deformations in the
weight manifold. The style-dependent increments ∆s drive this process, effectively rescaling the
intrinsic spectral directions according to the current style. This mechanism aligns the model’s repre-
sentation geometry with style-induced variations, enabling flexible yet stable cross-style adaptation.

Compared with conventional low-rank updates such as LoRA, SVD modulation constrains the up-
date directions within the pretrained spectral subspace. While LoRA introduces new rank compo-
nents that may interfere with the pretrained semantics, our method only rescales the principal spec-
tral directions, preserving the semantic geometry while adapting their strength to the target style.
This spectral alignment enables style-specific flexibility without disrupting the underlying repre-
sentational structure. Although LoRA introduces no decomposition stage, SVD modulation only
incurs a one-time cost during model initialization for the SVD factorization, after which U, V can
be cached and reused. Moreover, the static modulated weights can be merged into the base model
for inference, ensuring negligible runtime overhead. In return, the spectral regularity and geometry-
preserving adaptation of SVD bring clear advantages in stability and cross-style generalization.
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We decompose ∆s into dynamic and static components:

∆s = ∆sdyn +∆sstat. (1)

The static increment ∆sstat is globally shared across styles. Initialized at zero to preserve pre-
trained weights, it evolves during training to capture stable cross-style corrections, ensuring robust-
ness across heterogeneous inputs. A detailed analysis of this dynamic–static decoupling design is
provided in Appendix B. The dynamic increment ∆sdyn is style-dependent and generated by a hy-
pernetwork conditioned on the style embedding z ∈ Rd extracted from the [CLS] token of the
DINOv2 encoder output, applied to attention layers for cross-style flexibility. Appendix D.3 pro-
vides an ablation study on the choice of style extractors. Specifically, the hypernetwork H(z;ϕ)
produces

∆sdyn = H(z;ϕ) = W
(H)
2 σ

(
W

(H)
1 z + b

(H)
1

)
+ b

(H)
2 , (2)

where ϕ denotes the learnable parameters W
(H)
1 ,W

(H)
2 , b

(H)
1 , b

(H)
2 , and σ(·) is a nonlinearity

(ReLU/GELU) (Hendrycks & Gimpel, 2023; Nair & Hinton, 2010). The hypernetwork takes the
d-dimensional style embedding as input and outputs a vector of dimension r = min(d1, d2), corre-
sponding to the number of singular values modulated in each attention projection. Unless otherwise
specified, the hidden layer width is set to 2r. This decomposition allows ∆sdyn to adaptively capture
cross-style discrepancies, providing local flexibility (style adaptation), while ∆sstat ensures global
robustness (task consistency).

By jointly incorporating style-dependent and style-independent updates in the spectral domain,
our approach achieves parameter efficiency while balancing adaptability and robustness, providing
a principled new perspective for multi-style image retrieval (Li et al., 2024a; Sain et al., 2023).

3.3 STYLENCE: OT-WEIGHTED CONTRASTIVE LOSS

Figure 2: Motivation behind StyleNCE. In multi-style queries, most negatives lie far from the
query and provide little training signal, whereas hard negatives, though fewer, may be closer to the
query than positives due to style-induced abstraction. StyleNCE focuses on these hard negatives,
preventing gradients from being dominated by easy samples and ensuring effective optimization for
style-diverse retrieval.

Cross-style retrieval suffers from inherent distributional gaps, as sketches emphasize contours, art
abstracts geometry, and photos contain complex textures and backgrounds. Standard contrastive
losses (e.g., InfoNCE (Oord et al., 2018; He et al., 2020; Chen et al., 2020)) treat all negatives
equally, failing to distinguish between easy negatives (semantically distant, offering little supervi-
sion) and hard negatives (semantically similar yet stylistically different, crucial for generalization).
Overemphasis on easy negatives accelerates convergence but weakens out-of-distribution robust-
ness. We propose to reweight negatives by difficulty, amplifying the contribution of hard negatives.
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Building on the insight, we design StyleNCE, which explicitly reweights negatives according to
their difficulty. Given N multi-style queries Q = [q1, . . . , qN ] and their ground-truth positives
P = [p1, . . . , pN ], InfoNCE is:

LInfoNCE = − 1

N

N∑
i=1

log
exp

(
sim(qi, pi)/τ

)∑N
j=1 exp

(
sim(qi, pj)/τ

) , (3)

StyleNCE modifies InfoNCE by introducing difficulty-aware negative weighting (Robinson et al.,
2020; Jiang et al., 2023):

LStyleNCE = − 1

N

N∑
i=1

log
exp

(
sim(qi, pi)/τ

)
exp

(
sim(qi, pi)/τ

)
+ γ

∑
j ̸=i ωij exp

(
sim(qi, pj)/τ

) , (4)

where γ balances positives vs. negatives, and ωij encodes the difficulty of each negative sample.

To compute these difficulty-aware weights, we employ an optimal transport (OT) formulation (Peyré
et al., 2019). We define a cost matrix

Cij =

{
exp((1− sim(qi, pj))/λ), i ̸= j,

∞, i = j,
(5)

where λ > 0 controls emphasis on hard negatives.

We then solve the OT problem

min
T∈RN×N

⟨C, T ⟩, s.t. T1 = 1, T⊤1 = 1, (6)

where the row- and column-wise normalization constraints explicitly ensure

N∑
i=1

Tij = 1,

N∑
j=1

Tij = 1, ∀i, j ∈ [1, N ]. (7)

We set the difficulty-aware weights ωij = Tij and solve this efficiently using Sinkhorn (Cuturi,
2013) iterations. These OT-based weights systematically amplify hard negatives while maintain-
ing balanced contributions across the batch, allowing StyleNCE to effectively capture cross-style
discrepancies.

3.4 TRAINING AND INFERENCE

As shown in Figure 1, during training, Hystar first feeds the input image into the style-aware module
(DINOv2) to obtain a style latent vector z. This vector is then passed into the hypernetwork to
generate style-specific weight updates for the VLRM attention layers. The updated VLRM encoder
processes the input image to produce its embedding. The overall training objective is the proposed
StyleNCE loss.

We randomly select a sample from one style in the training style set as the anchor, and use its
corresponding ground-truth image as the positive. This encourages the model to learn style-invariant
representations while exposing it to diverse style variations.

During inference, embeddings are obtained in the same manner as in training, i.e., by first extract-
ing the style vector z, applying the hypernetwork to adjust the VLRM attention weights, and then
encoding the input image.
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4 EXPERIMENT

4.1 EXPERIMENTAL SETTINGS

Implementation Details. For backbone selection, we primarily use CLIP (ViT-L/14) (Radford
et al., 2021) and BLIP (COCO-pretrained) (Li et al., 2022b), while additional experiments are
conducted on ALBEF (COCO-pretrained) (Li et al., 2021a), (see Appendix E.3) to demonstrate
generality. All trainable models are trained on a single NVIDIA A6000 GPU. For our model, unless
otherwise specified, we use a batch size of 48 and train for 35 epochs. We use a learning rate of
1×10−3 for the static modulation branch and 1×10−5 for the dynamic hypernetwork to ensure sta-
ble training. An ablation on the width and depth of the hypernetwork is provided in Appendix D.2.
Dynamic style modulation is injected into the 4th, 7th, 10th, and 13th layers of the CLIP and BLIP
ViT backbones. Details on the style injection positions are provided in Appendix D.1. The hyper-
parameters of the StyleNCE loss are fixed as γ = 80 and λ = 1. The Sinkhorn algorithm is run
with a sufficiently large number of iterations (50) to ensure convergence. For additional analysis on
the effect of varying these parameters, see Appendix G. All inputs follow the default preprocessing
pipeline of the selected vision-language representation backbone.

Datasets. To validate the effectiveness of our proposed approach, we conduct systematic exper-
iments on the DSR (Li et al., 2024a) and DomainNet (Peng et al., 2019) datasets. Fine-grained
style-level retrieval on DSR serves as our primary benchmark, and we further evaluate on Domain-
Net for zero-shot category retrieval and cross-style classification to assess generalization to unseen
styles.

Baseline Methods. Baselines include CLIP, BLIP, VPT, LoRA, (IA)3 (Liu et al., 2022) , Adapt-
Former (Chen et al., 2022), , SSF (Lian et al., 2023) , FreestyleRet-CLIP , FreestyleRet-BLIP,
as well as recent multimodal models ImageBind (Girdhar et al., 2023) and LanguageBind (Zhu
et al., 2023b). (* represents the prompt-tuning version of the vanilla models. ) Following the
FreestyleRet evaluation protocol, we pretrain VPT , LoRA , (IA)3 , AdaptFormer , SSF on DSR,
while FreestyleRet methods are evaluated using their official pretrained weights. The ImageBind
and LanguageBind results are adopted from FreestyleRet and are not included in all subsequent
experiments.

4.2 QUANTITATIVE RESULTS

Fine-grained Diverse Style Retrieval (DSR). We first evaluate our approach on the DSR dataset,
which contains fine-grained categories across diverse query styles. As shown in Table 1, baseline
models such as CLIP and BLIP exhibit substantial performance degradation when faced with large
style discrepancies. For instance, CLIP only achieves 47.5% Top-1 on Sketch and 45.0% on Low-
Resolution queries. Parameter-efficient tuning methods like LoRA, VPT, (IA)3, AdaptFormer and
SSF partially mitigate this issue, improving Top-1 performance to above 70% on Sketch and 80%
on Low-Resolution. Retrieval-oriented methods such as FreestyleRet-CLIP and FreestyleRet-BLIP
achieve stronger results, surpassing 80% Top-1 on Sketch and 90% on Low-Resolution.

Our proposed Hystar consistently outperforms all baselines across all styles. For instance, Hystar-
BLIP achieves Top-1 accuracies of 75.6% on Art, 91.0% on Sketch, and 98.8% on Low-Resolution,
yielding absolute improvements of roughly 21–25% over BLIP* in these challenging settings. No-
tably, it also brings consistent gains on text queries, despite not being explicitly trained for them,
demonstrating robustness to both style variation and language-driven retrieval.

Overall, these results highlight that Hystar effectively bridges severe style gaps and sets a new state-
of-the-art on fine-grained diverse style retrieval.

Cross-style Generalization (DomainNet). We further evaluate our method’s generalization to
unseen styles via zero-shot retrieval on the DomainNet dataset. As shown in Table 2, Hystar achieves
the best zero-shot retrieval performance on the coarse-grained benchmark, surpassing all baselines
across both moderate and highly abstract styles, highlighting its strong cross-style generalization.

In contrast, existing approaches exhibit clear limitations in unseen styles. This suggests that the
static methods and the style-specific clustering priors leveraged by FreestyleRet may not general-
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Method
Query Style Art Sketch Low-Res Text

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

CLIP 58.5 93.7 47.5 77.3 45.0 75.7 66.1 94.7
CLIP* 58.2 90.4 63.6 93.6 78.8 97.1 72.2 96.4
BLIP* 51.1 85.3 67.1 90.9 77.2 95.8 74.3 95.3
LoRA 63.8 96.5 72.8 96.5 79.7 95.1 70.4 97.1
VPT 66.7 96.5 73.3 97.0 81.4 96.0 69.9 96.1
(IA)3 64.3 96.8 71.8 95.7 80.9 96.1 70.1 96.6
AdaptFormer 65.1 97.0 73.5 96.4 81.1 96.3 69.7 95.8
SSF 64.7 96.4 73.0 97.0 79.9 95.8 70.1 96.3
ImageBind 58.2 86.3 50.8 79.4 79.0 96.7 71.0 95.5
LanguageBind 67.5 92.9 63.6 89.1 78.6 94.5 79.7 98.1
FreestyleRet-CLIP 71.4 97.8 80.6 97.4 86.4 97.9 69.9 97.0
FreestyleRet-BLIP 74.5 97.4 81.2 97.1 90.5 98.5 81.6 99.2
Hystar-CLIP(Ours) 75.2 97.9 90.2 99.3 98.0 99.4 70.9 97.5
Hystar-BLIP(Ours) 75.6 98.1 91.0 99.8 98.8 99.9 82.0 99.6

Table 1: Retrieval performance on the style-diverse QBIR task. We evaluate Top-1 and Top-5
accuracy(%) on the DSR fine-grained benchmark. The two forms of our Hystar framework, Hystar-
CLIP and Hystar-BLIP, outperform in multiple scenarios with different query styles compared with
other baselines. Best results are highlighted in bold.

Method
Query Style Clipart Sketch Painting Quickdraw Infograph

Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5 Top-1 Top-5

CLIP 60.9 77.0 49.1 67.0 59.2 75.2 9.1 15.8 41.2 60.3
LoRA 63.0 74.8 54.6 66.8 54.8 67.2 13.1 21.9 28.3 40.4
VPT 71.7 81.6 62.5 73.8 61.7 73.3 14.5 22.6 40.6 54.9
FreestyleRet 69.5 80.3 60.5 73.5 63.7 75.7 12.2 18.7 43.1 58.7
Hystar(Ours) 75.7 86.4 65.8 78.1 65.5 78.3 19.0 29.9 43.7 59.3

Table 2: Zero-shot retrieval performance on unseen styles. We evaluate Top-1 and Top-5 ac-
curacy(%) on the DomainNet coarse-grained benchmark. Our proposed Hystar framework demon-
strates strong performance in zero-shot category-level retrieval under unseen style conditions. Best
results are highlighted in bold.

ize consistently to unseen styles, whereas dynamic multi-style adaptation of our method maintains
robust performance.

Overall, these findings demonstrate that while static adaptation methods and style-specific priors
struggle to generalize, our methods robustly bridge style gaps and establish SOTA performance in
zero-shot category-level retrieval.

DomainNet Classification Performance Analysis. To validate the generalizability of our
method, we performed zero-shot classification on the DomainNet dataset. Table 3 reports the zero-
shot classification performance of various methods on DomainNet across six styles. Although our
main focus is multi-style retrieval, this experiment demonstrates the generalization capability of the
proposed Hystar model. Hystar consistently achieves the highest accuracy in all styles, outperform-
ing CLIP, LoRA, VPT, and FreestyleRet, particularly in challenging styles such as Sketch (71.2%
vs. 64.9%) and Quickdraw (22.9% vs. 14.6%).
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Method Real Clipart Sketch Painting Quickdraw Infograph

CLIP 82.4 72.8 64.9 68.1 14.6 53.0
LoRA 62.4 51.7 43.1 42.8 12.8 26.1
VPT 79.9 69.8 61.9 59.2 15.7 46.0
FreestyleRet 84.9 74.1 67.3 68.8 15.9 54.1
Hystar(Ours) 85.7 79.5 71.2 71.0 22.9 54.6

Table 3: Zero-shot classification performance of different methods on DomainNet across six
styles. Accuracy (%) for each style is reported, with the best results highlighted in bold.

These results indicate that the representations learned by Hystar are not only effective for retrieval
cvalso transferable to zero-shot classification, highlighting the model’s ability to handle diverse
visual styles without additional supervision.

4.3 QUALITATIVE RESULTS

Figure 3: t-SNE visualization of feature embeddings derived by different methods on the DSR
dataset. (a)CLIP: scattered, overlapping clusters. (b)FreestyleRet: more compact but some inter-
class entanglement. (c)Hystar: clearly separable, compact clusters, showing strong cross-style
alignment.

To further investigate how different models capture cross-style semantics, we visualize the learned
embeddings on the DSR dataset using t-SNE, as shown in Figure 3. Figure 3(a) illustrates that CLIP
embeddings form scattered and overlapping clusters, reflecting poor discrimination across styles.
Figure 3(b) shows that FreestyleRet improves cluster compactness, yet several categories remain
entangled, suggesting limited separation. In contrast, Figure 3(c) demonstrates that our proposed
Hystar produces well-structured and clearly separable clusters, with minimal overlap between dif-
ferent styles. These results indicate that Hystar not only enhances retrieval accuracy quantitatively
but also achieves qualitatively superior representation learning by aligning cross-style features into
more coherent semantic manifolds.

4.4 ABLATION STUDY

Ablation of the Framework Components. In this section, we perform ablation studies to assess
the contributions of the components of Hystar, namely StyleNCE, hypernetwork-driven modula-
tion, and static modulation. As shown in Table 4, the CLIP baseline performs poorly on style-
variant queries. Both the Static-only and Hyper-only modulation modules contribute to improved
retrieval performance. The Static module provides a globally robust adaptation, effectively aligning
representations across different styles in a stable manner; however, it lacks fine-grained flexibility
for style-specific adjustments. In contrast, the hypernetwork-based dynamic modulation generates
query-specific style adjustments, offering more flexible and personalized adaptation. While this
flexibility allows Hyper to capture subtle style variations, it introduces some instability, limiting its
standalone improvement.
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Method Art Sketch Low-Res Text

CLIP 58.5 47.5 45.0 66.1
CLIP + Static 65.7 77.0 83.7 69.2
CLIP + Hyper 63.8 70.6 76.3 66.5
CLIP + Hyper + Static 70.2 85.3 94.2 69.7
CLIP + Hyper + Static + StyleNCE 75.2 90.2 98.0 70.9

Table 4: Ablation study on the DSR benchmark. Unless otherwise specified, all variants are
trained with standard InfoNCE loss. We report top-1 retrieval accuracy (%) across four query styles:
Art, Sketch, Low-Resolution, and Text. Best results are highlighted in bold.

Method Parameters(M) Additional
Params (%) Speed(ms) Inference Time

Increase (%)

CLIP 427 – 68 –
VPT 428 0.2 73 7.4
(IA)3 427 0.1 71 2.9
AdaptFormer 429 0.5 74 8.8
FreestyleRet 476 11.5 96 41.2
Hystar(Ours) 442 3.5 108 58.8

Table 5: Computation comparison between our Hystar and representative baselines. For fairness,
we only compare CLIP-based models; The percentages of additional parameters and inference-time
increase are reported with respect to the CLIP baseline.

These ablations show the two modules are complementary: the Static module provides stable global
alignment, while the Hyper module adds query-specific flexibility, and their combination yields
clear synergistic gains. Incorporating StyleNCE further improves performance by mining hard style-
negatives and boosting cross-style discriminability. Overall, static singular-value modulation secures
robust cross-style adaptation, dynamic hypernetwork modulation further improves it, and StyleNCE
strengthens handling of style diversity and hard cases—together confirming Hystar’s effectiveness
for multi-style retrieval under diverse queries.

Computation Comparison. We analyze the computational complexity of our framework com-
pared with other baselines. As shown in Table 5, Hystar achieves competitive efficiency among re-
cent retrieval models. Although it introduces a modest increase in inference latency compared with
CLIP, VPT, (IA)3 , AdaptFormer , and FreestyleRet, the overall parameter scale remains lightweight
and only slightly larger than standard vision–language encoders. This marginal computational over-
head mainly stems from the controller-guided hypernetwork module, which dynamically modulates
representations for style adaptation. Importantly, the trade-off between adaptability and efficiency
is well controlled: Hystar substantially improves robustness to visual–textual style variation while
preserving a compact and deployable architecture suitable for real-time retrieval scenarios.

5 CONCLUSION

In this paper, we present Hystar, a dynamic multi-style retrieval framework that combines
hypernetwork-driven dynamic modulation with static singular-value calibration, achieving a balance
between adaptability and stability in parameter-efficient fine-tuning. To better handle difficult nega-
tives and style discrepancies, we introduce the OT-weighted StyleNCE loss. Extensive experiments
on DSR and DomainNet show that Hystar consistently outperforms strong baselines, while ablations
confirm the complementary benefits of dynamic and static modulation. Furthermore, retrieval and
classification experiments on unseen styles demonstrate that our method improves the performance
of VLRMs under multi-style queries and ensures strong generalization to previously unseen styles.
Hystar highlights the effectiveness of dynamic PEFT for style diversity and cross-style generaliza-
tion, providing a solid foundation for multimodal applications robust to heterogeneous inputs.
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REPRODUCIBILITY STATEMENT

We have taken steps in this work to ensure the reproducibility of our results. All datasets used in
our experiments are publicly available. Our code and models will be made publicly available. In the
main paper and appendices, we provide complete details of all experimental setups, including model
architectures, training and evaluation protocols, and hyperparameters. All random seeds are fixed,
ensuring that others can replicate our results with the provided code. We believe that the measures
we have taken to ensure reproducibility will facilitate straightforward replication and verification of
our findings, as well as allow the community to build upon our results in the future.
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APPENDIX

Due to the space limitations of the main text, we provide additional results, ablations, and analysis
in this supplementary material. The appendix is organized as follows:

• Section A:Theoretical intuition of singular-value modulation.
• Section B:Analysis for dynamic attention and static MLP design.
• Section C: Cross-modal and cross-style retrieval results.
• Section D: Additional ablation of Hystar.

– Section D.1: Ablation on injection layers.
– Section D.2: Ablation on the width and depth of the hypernetwork.
– Section D.3: Ablation on the style extractor.

• Section E: Broader generalization studies.
– Section E.1: Generalization evaluation on image classification.
– Section E.2: Generalization on stylized image generation guidance.
– Section E.3: Generalization to other vision–language representation models (VL-

RMs).
Section F: Analysis of special styles .

– Section F.1: Analysis of extremely distinctive styles.
– Section F.2: Analysis of mixed-style queries.

• Section G: Additional ablation of StyleNCE loss.
– Section G.1: Effect of positive–negative balance coefficient γ.
– Section G.2: Sensitivity analysis of hard-negative weight in OT optimization.
– Section G.3:Comparison of StyleNCE and other loss functions.

• Section H: Retrieval result visualization.
– Section H.1: Retrieval result visualization on DSR.
– Section H.2: Retrieval result visualization on DomainNet.

A THEORETICAL INTUITION OF SINGULAR-VALUE MODULATION

In this section, we provide a theoretical justification for our design choice of singular-value modula-
tion. In our design, the Hypernetwork predicts low-rank updates by modulating the singular values
of LoRA weight matrices, instead of predicting the full weight increment. Let W0 ∈ Rd1×d2 denote
a pretrained weight matrix, and let its singular value decomposition be

W0 = UΣV ⊤, Σ = diag(s1, . . . , sr),

where r = min(d1, d2). Our Hypernetwork outputs a singular value increment ∆Σ, resulting in the
updated weight

W = U(Σ +∆Σ)V ⊤.

The key insight is that the spectral norm (largest singular value) of the update is directly controlled:

∥W −W0∥2 = ∥∆Σ∥2 = max
i

|∆si|.

In other words, by modulating only the singular values, we bound the maximum amplification along
any input direction, avoiding gradient explosion or collapse. Compared with predicting the full ma-
trix increment ∆W , this approach is both computationally efficient (requiring far fewer parameters)
and stable in training.

This theoretical intuition motivates our engineering choice: singular-value modulation ensures that
the Hypernetwork can provide style-adaptive updates in a controlled and lightweight manner, which
is crucial for stable multi-style retrieval.
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B ANALYSIS FOR DYNAMIC ATTENTION AND STATIC MLP DESIGN

Method Art Sketch Low-Res Text

Dynamic-All Design 63.7 69.9 74.8 66.3
Reversed Design 64.1 71.2 80.2 69.1
Original Design 75.2 90.2 98.0 70.9

Table 6: Comparison between the original (dynamic-attention and static-MLP) and reversed
(dynamic-MLP and static-attention) designs of Hystar. The table reports Top-1 accuracy (%) for
joint retrieval with different style queries combined with text. The original design achieves higher
retrieval accuracy across all style domains, validating the effectiveness of applying dynamic modu-
lation to attention layers rather than MLPs. Best results are highlighted in bold.

To verify the design rationale of employing dynamic modulation in the attention layers while keep-
ing the MLP layers static, we construct a reversed variant of Hystar. In this variant, all attention
layers are statically fine-tuned, whereas dynamic modulation is injected into the first linear layer of
the MLP blocks at the same layer indices as the original dynamic-attention setup. This design en-
sures comparable parameter counts while allowing the second linear layer to be indirectly affected.
We also include an additional variant where both the attention and MLP layers are dynamically
modulated at the same layer indices as in the original design. However, this setting introduces a
larger number of trainable parameters, making it incomparable with the other variants under a fixed
parameter budget. Moreover, applying static tuning to all layers would contradict the purpose of our
style-conditioned modulation and is therefore not considered.

As shown in Table 6, the original design achieves the highest Top-1 accuracy across all style do-
mains, demonstrating that dynamically adapting attention is most effective for cross-style gener-
alization. In contrast, the Dynamic-All configuration performs the worst, indicating that applying
dynamic modulation to all layers introduces excessive flexibility and leads to unstable training. The
reversed design also underperforms, suggesting that dynamic modulation in MLPs cannot effec-
tively capture style variations. Conceptually, attention layers govern cross-token relationships that
are directly influenced by style cues such as texture and composition, making them well-suited for
dynamic modulation. In contrast, MLP layers primarily refine semantic features within tokens;
keeping them static preserves semantic stability and prevents overfitting to transient style attributes.
These results confirm that our hybrid strategy, which employs dynamic attention for style adaptation
and static MLPs for semantic stability, achieves the best balance between adaptability and stability.

C CROSS-MODAL AND CROSS-STYLE RETRIEVAL RESULTS

Model Art+Text Sketch+Text Low-Res+Text Text

CLIP* 57.8(-14.4) 65.0(-7.2) 84.7(+12.5) 72.2
LoRA 72.2(+1.8) 79.3(+8.9) 84.7(+14.3) 70.4
VPT 70.6(+0.7) 79.0(+9.1) 84.3(+14.4) 69.9
FreestyleRet 76.6(+6.7) 82.5(+12.6) 86.7(+16.8) 69.9
Hystar(Ours) 79.9(+9.0) 91.6(+20.7) 98.2(+27.3) 70.9

Table 7: Top-1 accuracy (%) for joint retrieval with different style queries combined with
text.Values in parentheses indicate the accuracy gain over text-only queries. Best results are high-
lighted in bold.

This section presents the quantitative performance of our model on joint style–text retrieval tasks,
followed by a breakdown across different query styles. Following the evaluation protocol established
in FreestyleRet, we compute the similarity between each query (style or text) and all gallery images,
and adopt the maximum similarity as the final retrieval score.

Table 7 reports top-1 accuracy for three joint query modes (Art+Text, Sketch+Text, Low-Res+Text).
On Art+Text, our method achieves 79.9%, surpassing FreestyleRet (76.6%), CLIP (57.8%), as well
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as parameter-efficient tuning baselines such as LoRA (72.2%) and VPT (70.6%). For Sketch+Text,
the advantage becomes more pronounced: our model obtains 91.6%, substantially outperforming
FreestyleRet (82.5%) and CLIP (65.0%). Under the Low-Res+Text setting, our method reaches
98.2%, clearly ahead of FreestyleRet (86.7%) and CLIP (84.7%).

Compared to text-only queries , incorporating style queries provides significant performance gains:
+9.0% (Art), +20.7% (Sketch), and +27.3% (Low-Res), all markedly higher than those achieved
by baseline methods. Moreover, relative to style-only queries (Table 1), our joint approach also
yields further improvements (+4.7% on Art, +1.4% on Sketch, and +0.2% on Low-Res). These
results suggest that while the marginal benefit of adding text diminishes when style-only queries are
already strong, the consistent improvements across all settings highlight the complementary nature
of textual and stylistic cues, underscoring the robustness of our multimodal integration strategy.

D ADDITIONAL ABLATION OF HYSTAR

In this section, we conduct additional ablation studies to better understand the design choices of Hys-
tar. We systematically analyze how different architectural and functional components contribute to
performance and efficiency. Specifically, we examine three key aspects: (1) the selection of injection
layers for dynamic modulation, (2) the width and depth configuration of the hypernetwork, and (3)
the choice of style feature extractors used for conditioning. Together, these studies provide deeper
insights into the trade-offs between adaptability, stability, and computational cost in our framework.

D.1 ABLATION ON INJECTION LAYERS

Table 8 presents an ablation study on the choice of hypernetwork injection layers across three ma-
jor query styles (Art, Sketch, and Low-Resolution). The upper block shows results for various
middle-layer injection schemes, which constitute our main design. We observe that selectively
injecting into middle layers (e.g., {4, 6, 8, 10, 12} or {4, 7, 10, 13}) consistently yields the best
trade-off between retrieval accuracy and parameter overhead. Injecting into all intermediate lay-
ers ({4, 5, 6, . . . , 12}) yields marginal performance improvements but incurs a substantial increase
in parameter cost. Moreover, the overly aggressive style-aware adaptation introduces instability,
leading to performance degradation compared to configurations with fewer injected layers.

Injection Layers Art Sketch Low-Res Top-1 Avg ∆ Params

Middle-layer injection (main study)

{4, 5, 6, . . . , 12} 69.3 76.5 84.7 76.8 +33.1M
{4, 6, 8, 10, 12} 75.4 90.1 98.6 88.0 +18.4M
{4, 7, 10, 13} 75.2 90.2 98.0 87.8 +14.7M
{4, 8, 12} 71.4 88.3 96.8 85.5 +11.0M

Additional evidence: early / late layers

{1} 60.2 72.4 76.3 69.6 +3.7M
{16, 19, 22, 24} 63.1 75.4 81.7 73.4 +14.7M

Table 8: Ablation study on hypernetwork injection layers across three major query styles (Art,
Sketch, and Low-Resolution). We report Top-1 accuracy (%) for each style, averaged performance,
and parameter overhead (∆ Params). Best results are highlighted in bold.

The lower block provides additional evidence on early and late layers. Injection into the very
early layer ({1}) results in poor performance, indicating that low-level features captured in early
layers are less relevant for style-aware retrieval. Similarly, injecting exclusively into late layers
({16, 19, 22, 24}) produces only moderate gains, suggesting that later layers are dominated by high-
level semantic features, leaving limited room for style modulation. Overall, this ablation confirms
that the middle layers are the most effective region for hypernetwork injection, balancing accuracy
improvement and parameter efficiency.
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Network Architecture Art Sketch Low-Res Top-1 Avg ∆ Params

Width Ablation

{768 → 1024 → 1024} 70.7 84.3 90.2 81.7 +1.8M
{768 → 2048 → 1024} 75.2 90.2 98.0 87.8 +3.7M
{768 → 4096 → 1024} 75.4 90.8 98.6 88.3 +7.3M

Depth Ablation

{768 → 1024} 68.6 80.9 88.4 79.3 +0.8M
{768 → 2048 → 1024} 75.2 90.2 98.0 87.8 +3.7M
{768 → 2048 → 2048 → 1024} 74.9 90.4 97.6 87.6 +7.9M

Table 9: Ablation study on hypernetwork layer configurations. We vary the width and depth of
the hypernetwork that predicts dynamic modulation parameters for attention layers. The input di-
mension (768) corresponds to the feature output of the DINOv2 encoder, and the target dimension
(1024) corresponds to the singular-value dimension of CLIP’s attention weights. All intermediate
linear layers are followed by a ReLU activation (omitted in notation for brevity), except for the final
projection layer. We evaluate Top-1 accuracy (%) across three major query styles (Art, Sketch, and
Low-Resolution), along with the averaged performance and parameter overhead (∆ Params). Best
results are highlighted in bold.

D.2 ABLATION ON THE WIDTH AND DEPTH OF THE HYPERNETWORK

The results in Table 9 show clear trends regarding the structural design of the hypernetwork. Increas-
ing the hidden width consistently improves accuracy across all query styles, but the gain saturates
beyond a moderate expansion. Specifically, moving from 1024 to 2048 hidden units yields a large
performance boost, whereas further enlarging to 4096 offers only marginal improvement at the cost
of nearly doubling the parameters. This suggests that excessive width leads to over-parameterization
with diminishing returns. Regarding depth, extending the hypernetwork beyond two layers does not
improve accuracy and can even cause slight degradation, likely due to optimization instability and
redundant transformations. Overall, a two-layer configuration with moderate width (2× expansion)
achieves the best balance between expressivity, stability, and efficiency, and is therefore adopted as
our default design.

D.3 ABLATION ON THE STYLE EXTRACTOR

To verify that the performance gain of Hystar does not rely on a specific feature extractor such as
DINOv2, we evaluate alternative sources for deriving the style vector z. As shown in Table 10,
using pretrained visual features (either from DINOv2 , VGG (Simonyan & Zisserman, 2014) or
the CLIP backbone itself) substantially outperforms the static baseline without external style cues.
This confirms that explicit style conditioning—rather than the particular choice of extractor—is the
key factor driving improvement. Moreover, the gap between DINOv2 and CLIP-based features is
relatively small (83.6 vs. 83.0 Top-1 average), suggesting that the hypernetwork effectively adapts to
diverse feature domains and that Hystar’s benefit is not confounded by using another vision encoder.
DINOv2 slightly outperforms CLIP(self), consistent with its stronger representation of texture and
spatial statistics, but both yield similar cross-style generalization trends. These results validate that
the proposed method’s advantage arises from its adaptive mechanism, not from an unfair reliance on
external feature strength.

E BROADER GENERALIZATION STUDIES

In this section, we extend our evaluation beyond retrieval to examine how the proposed hybrid
modulation generalizes across diverse tasks and modalities. Specifically, we assess its adaptability in
two representative scenarios: (1) image classification under the base-to-new transfer setting, and (2)
few-shot stylized image generation guided by pretrained generative models. Together, these studies
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Extractor Art Sketch Low-Res Text Top-1 Avg

Static Only 65.7 77.0 83.7 69.2 73.9
VGG 73.4 88.5 96.9 70.1 82.2
DINOv2 75.2 90.2 98.0 70.9 83.6
CLIP(self) 74.1 90.0 97.5 70.3 83.0

Table 10: Ablation on style feature extractors for hypernetwork conditioning. We compare
different choices of feature sources used to derive the style vector z in Hystar on the CLIP backbone
across four query styles (Art, Sketch, Low-Resolution, and Text). We report Top-1 accuracy (%) for
each style and the average.

provide a broader view of Hystar’s generalization capability across discriminative and generative
domains.

E.1 GENERALIZATION EVALUATION ON IMAGE CLASSIFICATION

To further assess generalization, we follow the CoOp (Zhou et al., 2022c) image-classification
protocol and conduct 16-shot base-to-new experiments on ImageNet (Deng et al., 2009) and
SUN397 (Xiao et al., 2010), where each class provides 16 labeled samples for training. We com-
pare against baselines including CoOp (Zhou et al., 2022c), ProGrad (Zhu et al., 2023a), Kg-
CoOp (Yao et al., 2023), MaPLe (Khattak et al., 2023), and TCP (Yao et al., 2024). As sum-
marized in Table 11, Hystar delivers the strongest generalization on New and H (harmonic mean)
splits on ImageNet (New: 70.98, H: 73.93), indicating improved adaptation to unseen categories
while maintaining base-domain stability. On SUN397, MaPLe attains the best New score (78.70),
whereas TCP slightly leads on H (80.35); Hystar closely follows on both metrics (New: 78.41, H:
80.16), showing competitive cross-domain robustness. Averaged across datasets, Hystar achieves
the best New (74.70) and H (77.03), improving over the strongest baselines (e.g., +0.08 on New vs.
MaPLe and +0.15 on H vs. TCP), while accepting a marginal drop on Base compared to TCP (79.51
vs. 79.95). These results suggest that the proposed dynamic modulation yields a favorable trade-off
between base-domain retention and out-of-domain adaptability—precisely the balance needed for
reliable few-shot generalization.

Datasets Sets CoOp ProGrad KgCoOp MaPLe TCP Hystar(ours)

Base 76.46 77.02 75.83 76.66 77.27 77.13
ImageNet New 66.31 66.66 69.96 70.54 69.87 70.98

H 71.02 71.46 72.78 73.47 73.38 73.93
Base 80.85 81.26 80.29 80.82 82.63 81.89

SUN397 New 68.34 74.17 76.53 78.70 78.20 78.41
H 74.07 77.55 78.36 79.75 80.35 80.16
Base 78.66 79.14 78.06 78.74 79.95 79.51

Average New 67.33 70.41 73.25 74.62 74.04 74.70
H 72.56 74.52 75.58 76.62 76.88 77.03

Table 11: Generalization results on 16-shot image classification benchmarks. Each category con-
tains 16 training samples. We evaluate cross-domain generalization from base to new classes on
ImageNet and SUN397. Hystar consistently achieves the highest accuracy on New and H (harmonic
mean) splits, demonstrating strong generalization to unseen categories and styles. Best results are
highlighted in bold.

E.2 GENERALIZATION ON STYLIZED IMAGE GENERATION GUIDANCE

To further verify the generalization ability of our style-adaptive modulation framework, we follow
the few-shot image generation protocol proposed in AdAM (Zhao et al., 2022) and RICK (Zhao
et al., 2023), where a generator pretrained on a large-scale source domain is fine-tuned using a few

20



1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

samples from a stylized target domain. We select two representative targets, Sketches (Wang &
Tang, 2008) and AFHQ-Cat (Choi et al., 2020) , and employ StyleGANv2 (Karras et al., 2020b) as
the backbone. To adapt our Hystar framework to the StyleGAN2 backbone, we employ a selective
hybrid modulation scheme within the generator. Specifically, we inject dynamic modulation into
only a subset of convolutional layers that are most sensitive to style variation, while applying static
SVD-based modulation to the remaining layers to ensure semantic stability and low-rank regular-
ization. The dynamic parameters are generated by a lightweight hypernetwork conditioned on the
latent code w produced by the StyleGAN2 mapping network f(z). This selective design allows Hys-
tar to efficiently integrate style-dependent adaptation into StyleGAN2 while maintaining the stable
training behavior of the original architecture.

As shown in Table 12, our method achieves the lowest average FID among all compared baselines (
TGAN (Wang et al., 2018), TGAN+ADA (Karras et al., 2020a), FreezeD(Mo et al., 2020), EWC (Li
et al., 2020), CDC (Ojha et al., 2021), RSSA (Xiao et al., 2022), SoLAD (Mondal et al., 2024),
AdAM (Zhao et al., 2022), RICK (Zhao et al., 2023) ). These results demonstrate that dynamic
spectral modulation on the discriminator provides sufficient flexibility to capture domain-specific
stylistic cues, while the static offsets maintain semantic consistency during adaptation. To qualita-
tively illustrate the benefit of our modulation design, Figure 4 visualizes generated samples from our
model and selected baselines.

(a) Sketches

(b) AFHQ-Cat

Figure 4: Qualitative comparison of stylized image generation . Each row corresponds to one
method (from top to bottom: AdAM, RICK , Hystar) .

E.3 GENERALIZATION TO OTHER VISION-LANGUAGE REPRESENTATION MODELS
(VLRMS)

To assess the generalizability of our hypernetwork-based multi-style retrieval framework beyond
CLIP and BLIP, we further experiment with the ALBEF backbone. Since ALBEF consists of only
12 encoder layers, we proportionally select layers 2, 4, and 6 for hypernetwork injection. The results
are summarized in Table 13. For the StyleNCE loss, we adopt the same hyperparameters as used
with CLIP, without any backbone-specific tuning.
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Method Sketches AFHQ-Cat FID-Avg

TGAN 53.42 64.68 59.05

TGAN+ADA 66.99 80.16 73.58

FreezeD 46.54 63.60 55.07

EWC 64.55 74.61 69.58

CDC 47.62 176.21 111.92

RSSA 69.51 159.54 114.53

SoLAD 37.23 61.35 49.29

AdAM 42.64 58.07 50.36

RICK 35.66 53.27 44.47

Hystar(ours) 34.12 54.68 44.40

Table 12: Evaluation of generalization on stylized image generation. We report FID scores (↓) on
two stylized domains, Sketches and AFHQ-Cat, to assess the ability of each method to generalize
across appearance styles. Best results are highlighted in bold.

Method Art Sketch Low-Res Text Top-1 Avg

ALBEF 63.7 52.4 39.1 61.7 54.2
Hystar(ours) 71.0 84.5 91.5 64.3 77.8

Table 13: Multi-style retrieval performance on ALBEF backbone across four query styles (Art,
Sketch, Low-Resolution, and Text.) We report Top-1 accuracy (%) for each style and the average.
Our hypernetwork injection improves performance consistently, showing generalization beyond the
CLIP backbone and BLIP backbone.

As shown in Table 13, the proposed hypernetwork approach improves retrieval performance across
all four styles, even when applied to ALBEF without any specialized tuning. While the improve-
ments are generally smaller than those observed on CLIP and BLIP (the main experimental back-
bone), this validates the cross-architecture applicability of our method. These results indicate that
the benefits of middle-layer injection and cross-style feature learning are not limited to a single
VLRM, supporting the generality of our approach in multi-style retrieval scenarios.

F ANALYSIS OF SPECIAL STYLES

In this section, we further analyze Hystar’s behavior under challenging and unconventional visual
conditions. Specifically, we examine two aspects of style generalization beyond standard artistic
domains: (1) adaptation to extremely distinctive and unseen styles that differ drastically from the
training distribution, and (2) responses to mixed-style queries that blend multiple stylistic attributes
within a single image. These analyses reveal how Hystar maintains semantic consistency while
flexibly modeling complex or hybrid style variations.

F.1 ANALYSIS OF EXTREMELY DISTINCTIVE STYLES

To evaluate the generalization ability of our model to extremely abstract and unseen styles, we
construct an evaluation benchmark based on the DomainNet dataset. We randomly select 1,000
images from the real domain, covering 50 categories with 20 images per category, and use Stable
Diffusion (Rombach et al., 2022) to generate corresponding versions in three extreme artistic styles:
Surrealist Abstract Art, Post-Impressionist Painting, and Ink-Wash Painting. These styles are highly
abstract, visually unconventional, and entirely unseen during training. We employ Stable Diffusion
with the following textual prompts ( where {object} is a placeholder, e.g., “cat”):
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• Surrealist Abstract Art: A photo of a {object}, surrealist abstract
art, dream-like forms, distorted proportions, fluid shapes,
high contrast lighting, masterpiece.

• Post-Impressionist Painting: A photo of a {object}, post-impressionist
oil painting, visible brush strokes, vibrant color palette,
Van Gogh and Cézanne inspired, expressive texture.

• Ink-Wash Painting: A photo of a {object}, traditional Chinese
ink-wash painting, minimal color, soft brush ink diffusion,
paper texture, serene composition.

For qualitative visualization, we display two representative samples for each style(Figure 5). Under
the zero-shot setting, we test the model’s ability to retrieve the correct real-domain images given
queries from these extreme styles. All models (except the original CLIP) are pretrained only on the
DSR dataset. The quantitative results are reported in Table 14.

As shown in Table 14, all methods experience a noticeable performance drop under these extremely
abstract and out-of-distribution styles, confirming the significant domain gap between realistic and
artistic representations. Our proposed Hystar achieves the highest Top-1 accuracy across all three
challenging styles, outperforming the strongest baseline by 3.5% on average. The improvements are
especially pronounced on the most abstract Surrealist Abstract Art domain , indicating that dynam-
ically modulated attention effectively captures style-specific variations while maintaining semantic
consistency. These results highlight Hystar’s superior ability to generalize across visually divergent
and previously unseen artistic domains.

Method Surrealist
Abstract Art

Post-Impressionist
Painting

Ink-Wash
Painting Top-1 Avg

CLIP 13.7 51.4 33.5 32.9
LoRA 12.4 47.0 29.4 29.6
VPT 16.1 52.6 31.2 33.3
FreestyleRet 22.8 70.2 38.6 43.9
Hystar(ours) 25.3 76.9 40.1 47.4

Table 14: Retrieval performance under extreme styles. We evaluate multiple methods on three
highly distinctive style domains: Surrealist Abstract Art, Post-Impressionist Painting (Van Gogh-
like), and Ink-Wash Painting. Results are reported as Top-1 accuracy (%) across the three extreme
query types and their average. Best results are highlighted in bold. Our method (Hystar) achieves
consistent improvements across all style types, demonstrating superior robustness and generalization
to extreme and out-of-distribution visual styles.

(a) Surrealist Abstract Art (b) Post-Impressionist Painting (c) Ink-Wash Painting

Figure 5: Examples of images with extreme styles.

F.2 ANALYSIS OF MIXED-STYLE QUERIES

To study how Hystar responds to style mixtures, we use Stable Diffusion to synthesize three sets of
images: Sketch, Art, and their Mixture. To control semantic content, we fix the object category
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Figure 6: Style-aware feature distribution learned by Hystar. Hystar maps images from differ-
ent styles (Art, Sketch, and their Mixture) into a coherent embedding space. As shown in the t-SNE
plot, the mixed-style samples (blue) form a transitional manifold between Art (black) and Sketch
(red), demonstrating that Hystar’s representations smoothly capture style blending while maintain-
ing semantic alignment.

and generate 50 images per set. The prompts are as follows (where {object} is a placeholder,
e.g., “cat”):

• Sketch: A {object}, clean pencil sketch, line art, monochrome,
minimal shading, white background, highly detailed,
professional illustration.

• Art: A {object}, oil painting, rich brush strokes, vibrant
color palette, canvas texture, dramatic lighting, high
detail, masterpiece.

• Mixture: A {object}, hybrid style combining oil painting
and pencil sketch, partially sketched outlines, visible
graphite lines with textured brush strokes, mixed-media
look, coherent composition, highly detailed.

For each image, we forward it through Hystar and extract the visual representation from a middle
Transformer block of CLIP; we then visualize the features by projecting them to 2D with t-SNE. The
results(Figure 6) show two compact and separable clusters for Art and Sketch, while the Mixture
samples do not collapse into either cluster but instead form a continuous “bridge” between them.
The bridge shifts toward the visually dominant component style, indicating that Hystar’s mid-level
representation varies smoothly with style strength and mixture ratio while preserving semantic con-
sistency. This behavior suggests that Hystar encodes style in a continuous and interpretable manner
and maintains good style separability under stable content representations.

G ADDITIONAL ABLATION OF STYLENCE LOSS

In this section, we investigate the sensitivity of the StyleNCE loss to its key hyperparameters. Specif-
ically, we study (i) the positive–negative balance coefficient γ, which controls the relative weighting
between positive and negative pairs, (ii) the hard-negative weight λ in the OT optimization, which
regulates the contribution of difficult negatives, and (iii) a comparison between StyleNCE and other
loss functions. All analyses are conducted on the DSR dataset across three representative styles:
Art, Sketch, and Low-Resolution.
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G.1 EFFECT OF POSITIVE-NEGATIVE BALANCE COEFFICIENT γ

Figure 7 illustrates the effect of varying γ ∈ 1, 10, 30, 50, 80, 120, 200, 500. When γ is too small
(e.g., γ = 1), the contribution of negative samples becomes negligible, causing training to be domi-
nated by positives, which slows convergence and significantly degrades retrieval accuracy. Increas-
ing γ accelerates convergence and improves final performance, with the best results obtained in the
range of γ = 80 to γ = 120. Further enlarging γ (e.g., γ = 500) does not provide additional bene-
fits and instead introduces slight instability, leading to performance drops relative to the mid-range
values. These findings highlight the importance of maintaining a balanced contribution between
positive and negative samples for stable optimization.
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Figure 7: Effect of the positive–negative balance coefficient γ on DSR retrieval accuracy(%). Re-
sults are reported for three styles: Art, Sketch, and Low-Resolution. Small values of γ (e.g., 1) result
in slower convergence and lower accuracy, while moderate values (80 ≤ γ ≤ 120) achieve the best
trade-off between stability and performance.

G.2 SENSITIVITY ANALYSIS OF HARD-NEGATIVE WEIGHT IN OT OPTIMIZATION
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Figure 8: Sensitivity analysis of the hard-negative weight λ in OT optimization on DSR retrieval
accuracy(%). Results are reported for Art, Sketch, and Low-Resolution. Moderate values (1.0 ≤
λ ≤ 3.0) yield the best performance. Very small values underweight easy negatives, whereas very
large values fail to effectively exploit hard negatives, limiting performance.

Figure 8 presents a sensitivity analysis of the hard-negative weighting coefficient λ ∈
0.1, 0.3, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0. We observe that very small values (e.g., λ = 0.1) place exces-
sive emphasis on hard negatives, causing the model to largely ignore easy negatives, which desta-
bilizes training and reduces performance. Conversely, excessively large values (e.g., λ = 10.0) un-
derweight hard negatives, resulting in insufficient hard-negative mining and moderate performance
degradation. Consistently high retrieval accuracy and stable convergence are observed for interme-
diate values (λ = 1.0–3.0). These findings indicate that appropriately balancing the contribution of
hard negatives is critical for fully leveraging OT-based optimization.
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G.3 COMPARISON OF STYLENCE AND OTHER LOSS FUNCTIONS

Method Art Sketch Low-Res Top-1 Avg

Triplet loss 65.6 71.9 89.5 75.7
InfoNCE loss 70.2 85.3 94.2 83.2
Circle loss 70.4 88.8 96.1 85.1
Triplet loss + Hard Negative Sampling 69.3 80.2 93.0 80.8
InfoNCE loss + Hard Negative Sampling 72.6 88.4 96.7 85.9
StyleNCE loss(Ours) 75.2 90.2 98.0 87.8

Table 15: Ablation study of different loss functions on the CLIP backbone. Results are reported
as Top-1 accuracy (%) across the three major query types used for training (Art, Sketch, and Low-
Resolution) and their average. Best results are highlighted in bold.

From Table 15, we observe that the choice of loss function has a significant impact on retrieval per-
formance. The baseline Triplet loss achieves the lowest accuracy (75.7% on average), indicating its
limited ability to handle cross-style variation. InfoNCE and Circle loss provide clear improvements
(83.2% and 85.1%), thanks to their better optimization of inter-class separation. Incorporating hard
negative sampling further boosts performance for both Triplet and InfoNCE, but the gain is relatively
modest (+5.1 and +2.7 points, respectively), suggesting that negative mining alone cannot fully ad-
dress style discrepancies. In contrast, our proposed StyleNCE achieves the best results across all
three query types, surpassing the best baseline (InfoNCE + hard negatives) by +1.9 points on aver-
age. This demonstrates that StyleNCE not only benefits from hard negative mining but also explicitly
models style-aware feature alignment, leading to consistent gains across diverse query styles.

H RETRIEVAL RESULT VISUALIZATION

H.1 RETRIEVAL RESULT VISUALIZATION ON DSR

To provide qualitative insights into model behavior, we visualize retrieval examples on the DSR
dataset (Figure 9). Typical errors are categorized into three groups: (a) action errors, where retrieved
samples contain the correct object but incorrect actions; (b) object errors, where retrieved images
contain semantically related but incorrect objects; and (c) background errors, where retrievals con-
fuse similar contexts while missing the correct foreground. As shown in Figure 9, baseline methods
frequently suffer from these mistakes, returning visually similar but semantically wrong samples.
In contrast, our proposed Hystar consistently retrieves semantically accurate images across differ-
ent styles, demonstrating its ability to align fine-grained semantics under challenging cross-style
conditions better.

H.2 RETRIEVAL RESULT VISUALIZATION ON DOMAINNET

We further evaluate retrieval results on the more diverse DomainNet dataset, which contains unseen
styles such as Clipart, Sketch, Painting, Quickdraw, and Infograph. Figure 10 11 12 show Top-10
retrieval examples. Baseline methods often fail under large style shifts, retrieving visually close but
semantically irrelevant samples, especially in abstract styles such as Quickdraw and Infograph. In
contrast, our Hystar maintains stable cross-style alignment, retrieving semantically correct results
across multiple unseen styles. These results demonstrate the strong generalization ability of Hystar
beyond the training distribution, confirming its robustness under zero-shot cross-style retrieval.
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Figure 9: Qualitative retrieval examples on the DSR dataset. We illustrate three common error types
made by baseline methods: (a) action errors, (b) object errors, and (c) background errors. Baselines
often retrieve visually similar but semantically incorrect results, while our Hystar consistently re-
trieves the correct matches, highlighting its superior fine-grained alignment across multiple styles.
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Figure 10: Qualitative Top-10 retrieval results on the DomainNet dataset across unseen styles (Cli-
part, Sketch).In the retrieval results figure, we use the retrieval outputs from the baseline models,
CLIP, FreestyleRet, as our baseline comparison.
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Figure 11: Qualitative Top-10 retrieval results on the DomainNet dataset across unseen styles (Paint-
ing, Quickdraw).In the retrieval results figure, we use the retrieval outputs from the baseline models,
CLIP, FreestyleRet, as our baseline comparison.
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Figure 12: Qualitative Top-10 retrieval results on the DomainNet dataset across unseen styles (Info-
graph). In the retrieval results figure, we use the retrieval outputs from the baseline models, CLIP,
FreestyleRet, as our baseline comparison.
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