

000 HYSTAR: HYPERNETWORK-DRIVEN STYLE-ADAPTIVE 001 002 RETRIEVAL VIA DYNAMIC SVD MODULATION 003 004

005 **Anonymous authors**

006 Paper under double-blind review

007 008 ABSTRACT 009

011 Query-based image retrieval (QBIR) requires retrieving relevant images given di-
012 verse and often stylistically heterogeneous queries, such as sketches, artworks, or
013 low-resolution previews. While large-scale vision–language representation mod-
014 els (VLRMs) like CLIP offer strong zero-shot retrieval performance, they struggle
015 with distribution shifts caused by unseen query styles. In this paper, we propose
016 the Hypernetwork-driven Style-adaptive Retrieval (Hystar), a lightweight frame-
017 work that dynamically adapts model weights to each query’s style. Hystar em-
018 ploys a hypernetwork to generate singular-value perturbations (ΔS) for attention
019 layers, enabling flexible per-input adaptation, while static singular-value offsets
020 on MLP layers ensure cross-style stability. To better handle semantic confu-
021 sions across styles, we design StyleNCE as part of Hystar, an optimal-transport-
022 weighted contrastive loss that emphasizes hard cross-style negatives. Exten-
023 sive experiments on multi-style retrieval and cross-style classification bench-
024 marks demonstrate that Hystar consistently outperforms strong baselines, achiev-
025 ing state-of-the-art performance while being parameter-efficient and stable across
026 styles.

027 028 1 INTRODUCTION 029

031 Query-based image retrieval (QBIR) (Thomee & Lew, 2012) is a core mechanism for accessing
032 visual information at scale. Given a query, the system must rapidly return images aligned with the
033 user’s intent from a large database (Li et al., 2022a; 2023), enabling modern image search and many
034 downstream applications (Isinkaye et al., 2015). In practice, user queries are highly diverse and
035 personalized, especially in style (Li et al., 2021b; Johnson et al., 2015). Expressing intent appro-
036 priately and making retrieval models adapt flexibly to heterogeneous query styles remain central
037 challenges for QBIR. Prior works have sought to address this through style-invariant representa-
038 tions (e.g., Domain-Aware SE Network; Semi3-Net (Lu et al., 2021; Lei et al., 2020)), cross-modal
039 alignment and domain adaptation (e.g., BDA-SketRet; Adapt and Align; Domain-Smoothing Net-
040 work (Chaudhuri et al., 2022; Dong et al., 2023; Wang et al., 2021)), and cross-category general-
041 ization (e.g., Generalising Fine-Grained SBIR (Pang et al., 2019)). However, these methods are
042 typically designed for style-specific datasets, limiting their scalability.

043 Furthermore, recent advancements in large-scale vision–language representation models (VLRMs),
044 such as CLIP (Radford et al., 2021; Li et al., 2022b; 2021a), have demonstrated significant capabili-
045 ties in discrimination and generalization abilities, enabling QBIR through the incorporation of rich
046 semantic priors acquired during pretraining. Nevertheless, performance tends to deteriorate when
047 the query style significantly diverges from those encountered during pretraining (e.g., sketch, car-
048 toon, or artwork), primarily due to the distributional mismatch in the shared embedding space (Sain
049 et al., 2023; Li et al., 2024a). A direct remedy is fine-tuning VLRMs on target retrieval datasets.
050 For large models, full fine-tuning is expensive and prone to catastrophic forgetting (Laurier; Kemker
051 et al., 2018). Parameter-efficient fine-tuning (PEFT) methods, such as LoRA (Hu et al., 2022) and
052 VPT (Zhou et al., 2022c; Jia et al., 2022; Zhou et al., 2022b), freeze the backbone while introduc-
053 ing a small number of trainable parameters. Despite their efficiency, existing PEFT approaches are
static (Chavan et al., 2023), relying on a single parameter set shared by all inputs, limiting adaptation
to diverse, unseen styles at inference (Dong et al., 2023; Li et al., 2024a).

To tackle this issue, some methods (Li et al., 2024b; Ge et al., 2025; Yu et al., 2024; Yan et al., 2024) consider pretraining separate style-specific units and selecting or composing them at test time. For instance, VB-LoRA (Li et al., 2024b) utilizes a vectorized LoRA bank to select the top-k modules based on the input. However, such approaches inevitably entail extensive annotation and a large library of style units, struggling with unseen or cross-style scenarios. Recently, a line of work exemplified by FreestyleRet (Li et al., 2024a; Tang et al., 2025) leverages style cluster priors extracted from training data to guide prompt learning (Jia et al., 2022; Zhou et al., 2022c;b), achieving partial style adaptation. Though these methods have shown some effectiveness, they are inherently limited by the styles observed during training and often underperform on out-of-distribution samples. Consequently, developing methods for flexible, data-driven adaptation to unseen styles remains a significant challenge (Wang et al., 2022; Zhou et al., 2022a; Li et al., 2025; Dong et al., 2025).

In this paper, we introduce the Hypernetwork-driven Style-adaptive Retrieval method, Hystar, a framework for flexible and generalized QBIR that dynamically adapts to diverse styles of different queries, including previously unseen ones. Specifically, Hystar extracts query-specific style representations and employs a lightweight modulation mechanism, where a hypernetwork-driven module generates instance-conditioned updates for attention layers. Rather than predicting full low-rank matrices, Hystar predicts only singular-value perturbations (ΔS), which reduces prediction difficulty and improves training stability. In parallel, static learnable singular-value offsets on MLP layers provide stable cross-style calibration. This combination of dynamic adaptation and static robustness enables flexible yet stable style-specific retrieval.

Moreover, we introduce StyleNCE, an optimal-transport-weighted contrastive criterion that performs importance-weighted global matching over positives and negatives, better modeling semantic confusions in cross-style retrieval (Robinson et al., 2020; Jiang et al., 2023). Overall, Hystar couples an adaptable architecture with a difficulty-aware objective, emphasizing cross-style semantic alignment while remaining lightweight and stable.

Our contributions are summarized as follows:

- **Hypernetwork-driven dynamic PEFT.** We introduce a hypernetwork that generates input-conditioned SVD modulations, overcoming the rigidity of static PEFT. It enables fine-grained, per-input adaptation on attention layers while relying on stable, precomputed offsets for MLPs, thereby achieving both flexibility in handling diverse inputs and stability during optimization.
- **Style-adaptive contrastive learning.** We propose **StyleNCE**, an OT-weighted contrastive loss that adaptively emphasizes hard cross-style negatives, leading to more robust retrieval under distribution shift.
- **Strong empirical results.** Extensive experiments on multi-style retrieval and cross-style classification benchmarks demonstrate the effectiveness of Hystar in dynamic PEFT for style adaptation and multimodal generalization, consistently outperforming strong baselines.

2 RELATED WORK

Query-based Image Retrieval. Query-based image retrieval (QBIR) has long been a central topic in computer vision, with early surveys highlighting its importance for accessing large-scale visual data (Thomee & Lew, 2012). Traditional methods often relied on handcrafted features or shallow models (Li & Li, 2018; Kumar Verma et al., 2019), but recent advances in vision-language representation models (VLRMs), such as CLIP (Radford et al., 2021), have enabled powerful zero-shot retrieval by aligning images and text in a shared semantic space. Nevertheless, these models are sensitive to style variations (e.g., sketches, artworks, or low-resolution previews), leading to degraded performance under distribution shifts (Li et al., 2024a; Qiu et al., 2022).

Parameter-Efficient Fine-Tuning (PEFT). To mitigate the cost of adapting large-scale VLRMs, parameter-efficient fine-tuning (PEFT) methods have been proposed. LoRA (Hu et al., 2022) and VPT (Jia et al., 2022) introduce a small number of trainable parameters while freezing the backbone, achieving efficient adaptation. However, these methods are inherently static, applying the same parameter mapping to all inputs, which limits their ability to generalize to unseen query styles (Ha et al., 2016). More recent approaches, such as FreestyleRet (Li et al., 2024a), leverage style-cluster

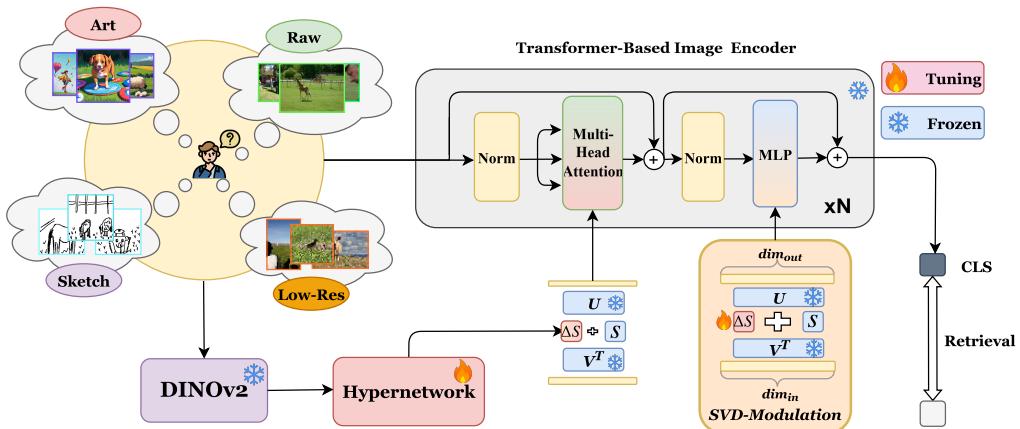
108 priors to guide prompt learning and achieve partial style adaptation. Yet, their reliance on observed
 109 style clusters hampers performance in truly out-of-distribution scenarios.
 110

111 **Dynamic Modulation and Hypernetworks.** An alternative line of work explores dynamic adap-
 112 tation. Some studies pretrain multiple style-specific modules and perform selection at inference (Li
 113 et al., 2024b), but this approach requires large annotated style libraries. Others attempt dynamic
 114 module composition (Gu et al., 2024), though they are constrained by a fixed bank of predefined
 115 modules. Hypernetworks (Ha et al., 2016) offer a promising alternative by generating instance-
 116 conditioned parameters, reducing the dependence on explicit style clusters. These insights motivate
 117 our design of a dynamic-static hybrid framework that leverages hypernetwork-driven modulation for
 118 flexible yet robust multi-style retrieval.
 119

120 **Contrastive Learning under Distribution Shift.** Contrastive learning (Hadsell et al., 2006; Oord
 121 et al., 2018; He et al., 2020; Chen et al., 2020) has been a cornerstone of multimodal retrieval. Stan-
 122 dard objectives such as InfoNCE (Oord et al., 2018) treat all negatives equally, which is suboptimal
 123 in cross-style scenarios where distinguishing between easy and hard negatives is crucial (Peyré et al.,
 124 2019). Our proposed StyleNCE introduces an optimal-transport (Peyré et al., 2019) formulation to
 125 explicitly reweight negatives by difficulty (Robinson et al., 2020; Jiang et al., 2023), enhancing
 126 robustness against semantic confusion across styles.
 127

3 METHOD

131 In this section, we first introduce the problem setup of QBIR under diverse style variations in
 132 Sec. 3.1, and present the overall pipeline (Fig. 1). The core idea is to enhance the adaptability of sin-
 133 gular value modulation through hypernetwork-driven dynamic parameterization. We then detail our
 134 hybrid dynamic PEFT mechanism with static singular value modulation in Sec. 3.2. Sec. 3.3 further
 135 describes our OT-weighted StyleNCE loss, which leverages optimal transport to enable flexible and
 136 efficient optimization across heterogeneous input styles. Finally, Sec. 3.4 introduces the training
 137 and inference procedure of our framework. Our framework is conceptually related to VLRM-based
 138 retrieval (Radford et al., 2021; Li et al., 2022b; 2021a; Sain et al., 2023), but specifically targets
 139 cross-style scenarios.
 140



155 **Figure 1: Overview of the Hystar framework.** For multi-style queries, style features are first
 156 extracted using DINOv2. These features are fed into a hypernetwork to produce dynamic singular-
 157 value increments for attention layers, enabling style-conditioned modulation of the feature encoder.
 158 Additionally, static singular-value increments are applied to the MLP layers, serving as a fixed
 159 parameter modulation. Together, these mechanisms guide the encoder to produce style-diverse re-
 160 trieval predictions.
 161

162
163

3.1 PROBLEM DEFINITION AND PIPELINE

164
165
166
167
168
169

We study QBIR in the presence of significant style variations, including sketches, paintings, low-resolution images, and text queries. In this setting, queries may originate from styles different from the target gallery (e.g., natural photos vs. sketches or artistic renderings). The goal is to retrieve semantically aligned images despite style discrepancies. Formally, given a query q (possibly from a disjoint style) and a candidate set $\{p_i\}$, we aim to learn an embedding function $f_\theta(\cdot)$ such that positive pairs (q, p^+) are closer in the embedding space than negatives (q, p^-) .

170
171

Multi-style QBIR poses two main challenges:

172
173

1. **Cross-style discrepancies.** Distinct styles differ substantially in appearance and statistics, hindering pretrained models (Radford et al., 2021; Sain et al., 2023; Zhou et al., 2022a).
2. **Static PEFT limitations.** Methods such as VPT (Jia et al., 2022; Zhou et al., 2022b;c) and LoRA (Hu et al., 2022) excel on seen styles but fail to generalize to unseen styles.

174
175
176
177
178
179
180
181
182
183
184
185

To overcome these challenges, our dynamic PEFT framework leverages the pretrained *DINOv2* backbone (Oquab et al., 2023) to extract style-aware features \mathbf{z} . A lightweight hypernetwork maps \mathbf{z} to singular value increments ΔS for attention layers, while static singular value modulation is applied to MLP layers, enabling style-adaptive yet stable transformations. Training is guided by the OT-weighted StyleNCE loss, which emphasizes hard negatives while maintaining efficient optimization. As shown in Fig. 1, the query is initially routed through a style extraction branch, and the extracted style is injected into the backbone via Hyper-SVD Modulation. Thereafter, the adapted backbone encodes the query, and the encoded feature is optimized under StyleNCE supervision. This design achieves a balance between computational efficiency and cross-style generalization, significantly boosting retrieval performance under heterogeneous styles.

186
187

3.2 DYNAMIC–STATIC HYBRID PARAMETER-EFFICIENT FINE-TUNING

188
189
190
191
192

We propose a dynamic–static hybrid PEFT method tailored for multi-style adaptation. Let $W_0 \in \mathbb{R}^{d_1 \times d_2}$ denote a pretrained VLRM weight matrix (e.g., attention projections or MLP weights). Our goal is to preserve the spectral structure of W_0 while introducing structured, singular value-based updates ΔW (Lingam et al., 2024; Wang et al., 2025).

193
194
195
196
197
198

To achieve this, we decompose $W_0 \in \mathbb{R}^{d_1 \times d_2}$ as $W_0 = U\Sigma V^\top$, where $U \in \mathbb{R}^{d_1 \times d_1}$ and $V \in \mathbb{R}^{d_2 \times d_2}$ are orthogonal matrices and $\Sigma \in \mathbb{R}^{d_1 \times d_2}$ is diagonal. Rather than learning a full-rank update, we modulate singular values such that $W = W_0 + \Delta W = U(\Sigma + \Delta\Sigma)V^\top$, with U , V , and Σ frozen and only diagonal increments $\Delta\Sigma$ learned. Using the diagonalization operator $\varphi(\cdot)$, this can be written as $W = U\varphi(s + \Delta s)V^\top$, where s denotes the original singular values and Δs their learnable increments.

199
200
201
202
203
204
205
206
207

This preserves pretrained spectra while enabling efficient, stable adaptation. (A formal justification of the stability of this modulation, based on spectral norm theory, is provided in Appendix A.) Beyond providing stable updates, SVD modulation also offers a geometric advantage for style adaptation. In this formulation, U and V define the semantic subspace of the pretrained model, while Σ determines the scaling along these spectral directions. By modulating only the singular values while keeping U and V fixed, the model adapts through smooth, geometry-preserving deformations in the weight manifold. The style-dependent increments Δs drive this process, effectively rescaling the intrinsic spectral directions according to the current style. This mechanism aligns the model’s representation geometry with style-induced variations, enabling flexible yet stable cross-style adaptation.

208
209
210
211
212
213
214
215

Compared with conventional low-rank updates such as LoRA, SVD modulation constrains the update directions within the pretrained spectral subspace. While LoRA introduces new rank components that may interfere with the pretrained semantics, our method only rescales the principal spectral directions, preserving the semantic geometry while adapting their strength to the target style. This spectral alignment enables style-specific flexibility without disrupting the underlying representational structure. Although LoRA introduces no decomposition stage, SVD modulation only incurs a one-time cost during model initialization for the SVD factorization, after which U , V can be cached and reused. Moreover, the static modulated weights can be merged into the base model for inference, ensuring negligible runtime overhead. In return, the spectral regularity and geometry-preserving adaptation of SVD bring clear advantages in stability and cross-style generalization.

216 We decompose Δs into dynamic and static components:
 217

$$218 \quad \Delta s = \Delta s_{\text{dyn}} + \Delta s_{\text{stat}}. \quad (1)$$

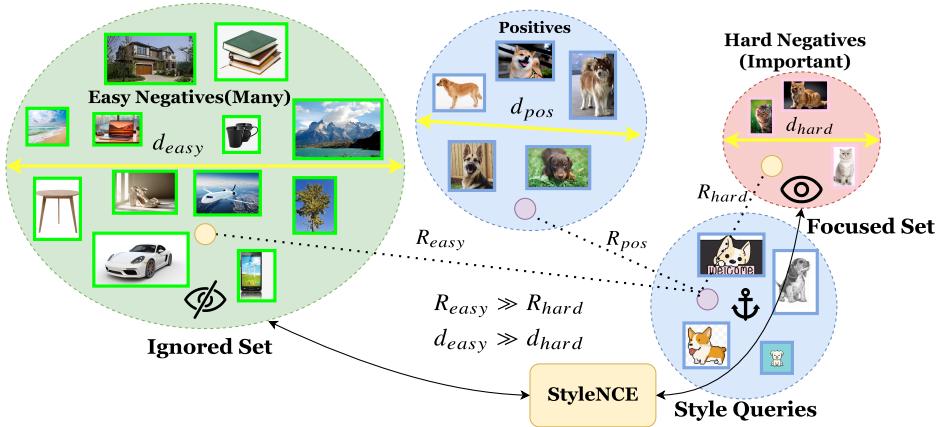
220 The static increment Δs_{stat} is globally shared across styles. Initialized at zero to preserve pre-
 221 trained weights, it evolves during training to capture stable cross-style corrections, ensuring robust-
 222 ness across heterogeneous inputs. **A detailed analysis of this dynamic–static decoupling design is**
 223 **provided in Appendix B.** The dynamic increment Δs_{dyn} is style-dependent and generated by a hyper-
 224 network conditioned on the style embedding $z \in \mathbb{R}^d$ extracted from the [CLS] token of the
 225 *DINOv2* encoder output, applied to attention layers for cross-style flexibility. **Appendix D.3** pro-
 226 vides an ablation study on the choice of style extractors. Specifically, the hypernetwork $\mathcal{H}(z; \phi)$
 227 produces

$$228 \quad \Delta s_{\text{dyn}} = \mathcal{H}(z; \phi) = W_2^{(H)} \sigma(W_1^{(H)} z + b_1^{(H)}) + b_2^{(H)}, \quad (2)$$

230 where ϕ denotes the learnable parameters $W_1^{(H)}, W_2^{(H)}, b_1^{(H)}, b_2^{(H)}$, and $\sigma(\cdot)$ is a nonlinearity
 231 (ReLU/GELU) (Hendrycks & Gimpel, 2023; Nair & Hinton, 2010). **The hypernetwork takes the**
 232 ***d*-dimensional style embedding as input and outputs a vector of dimension $r = \min(d_1, d_2)$, corre-**
 233 **sponding to the number of singular values modulated in each attention projection.** Unless otherwise
 234 **specified, the hidden layer width is set to $2r$.** This decomposition allows Δs_{dyn} to adaptively capture
 235 cross-style discrepancies, providing *local flexibility* (style adaptation), while Δs_{stat} ensures *global*
 236 *robustness* (task consistency).

237 By jointly incorporating **style-dependent** and **style-independent** updates in the spectral domain,
 238 our approach achieves parameter efficiency while balancing adaptability and robustness, providing
 239 a principled new perspective for multi-style image retrieval (Li et al., 2024a; Sain et al., 2023).

241 3.3 STYLENCE: OT-WEIGHTED CONTRASTIVE LOSS



258 **Figure 2: Motivation behind StyleNCE.** In multi-style queries, most negatives lie far from the
 259 query and provide little training signal, whereas hard negatives, though fewer, may be closer to the
 260 query than positives due to style-induced abstraction. StyleNCE focuses on these hard negatives,
 261 preventing gradients from being dominated by easy samples and ensuring effective optimization for
 262 style-diverse retrieval.

264 Cross-style retrieval suffers from inherent distributional gaps, as sketches emphasize contours, art
 265 abstracts geometry, and photos contain complex textures and backgrounds. Standard contrastive
 266 losses (e.g., InfoNCE (Oord et al., 2018; He et al., 2020; Chen et al., 2020)) treat all negatives
 267 equally, failing to distinguish between *easy negatives* (semantically distant, offering little supervi-
 268 sion) and *hard negatives* (semantically similar yet stylistically different, crucial for generalization).
 269 Overemphasis on easy negatives accelerates convergence but weakens out-of-distribution robust-
 ness. We propose to reweight negatives by difficulty, amplifying the contribution of hard negatives.

Building on the insight, we design **StyleNCE**, which explicitly reweights negatives according to their difficulty. Given N multi-style queries $Q = [q_1, \dots, q_N]$ and their ground-truth positives $P = [p_1, \dots, p_N]$, InfoNCE is:

$$\mathcal{L}_{\text{InfoNCE}} = -\frac{1}{N} \sum_{i=1}^N \log \frac{\exp(\text{sim}(q_i, p_i)/\tau)}{\sum_{j=1}^N \exp(\text{sim}(q_i, p_j)/\tau)}, \quad (3)$$

StyleNCE modifies InfoNCE by introducing difficulty-aware negative weighting (Robinson et al., 2020; Jiang et al., 2023):

$$\mathcal{L}_{\text{StyleNCE}} = -\frac{1}{N} \sum_{i=1}^N \log \frac{\exp(\text{sim}(q_i, p_i)/\tau)}{\exp(\text{sim}(q_i, p_i)/\tau) + \gamma \sum_{j \neq i} \omega_{ij} \exp(\text{sim}(q_i, p_j)/\tau)}, \quad (4)$$

where γ balances positives vs. negatives, and ω_{ij} encodes the difficulty of each negative sample.

To compute these difficulty-aware weights, we employ an optimal transport (OT) formulation (Peyré et al., 2019). We define a cost matrix

$$C_{ij} = \begin{cases} \exp((1 - \text{sim}(q_i, p_j))/\lambda), & i \neq j, \\ \infty, & i = j, \end{cases} \quad (5)$$

where $\lambda > 0$ controls emphasis on hard negatives.

We then solve the OT problem

$$\min_{T \in \mathbb{R}^{N \times N}} \langle C, T \rangle, \quad \text{s.t. } T\mathbf{1} = \mathbf{1}, \quad T^\top \mathbf{1} = \mathbf{1}, \quad (6)$$

where the row- and column-wise normalization constraints explicitly ensure

$$\sum_{i=1}^N T_{ij} = 1, \quad \sum_{j=1}^N T_{ij} = 1, \quad \forall i, j \in [1, N]. \quad (7)$$

We set the difficulty-aware weights $\omega_{ij} = T_{ij}$ and solve this efficiently using Sinkhorn (Cuturi, 2013) iterations. These OT-based weights systematically amplify hard negatives while maintaining balanced contributions across the batch, allowing StyleNCE to effectively capture cross-style discrepancies.

3.4 TRAINING AND INFERENCE

As shown in Figure 1, during training, Hystar first feeds the input image into the style-aware module (*DINOv2*) to obtain a style latent vector z . This vector is then passed into the hypernetwork to generate style-specific weight updates for the VLRM attention layers. The updated VLRM encoder processes the input image to produce its embedding. The overall training objective is the proposed StyleNCE loss.

We randomly select a sample from one style in the training style set as the anchor, and use its corresponding ground-truth image as the positive. This encourages the model to learn style-invariant representations while exposing it to diverse style variations.

During inference, embeddings are obtained in the same manner as in training, i.e., by first extracting the style vector z , applying the hypernetwork to adjust the VLRM attention weights, and then encoding the input image.

324

4 EXPERIMENT

325

4.1 EXPERIMENTAL SETTINGS

326 **Implementation Details.** For backbone selection, we primarily use **CLIP (ViT-L/14)** (Radford
 327 et al., 2021) and **BLIP (COCO-pretrained)** (Li et al., 2022b), while additional experiments are
 328 conducted on **ALBEF (COCO-pretrained)** (Li et al., 2021a), (see Appendix E.3) to demonstrate
 329 generality. All trainable models are trained on a single NVIDIA A6000 GPU. For our model, unless
 330 otherwise specified, we use a batch size of 48 and train for 35 epochs. We use a learning rate of
 331 1×10^{-3} for the static modulation branch and 1×10^{-5} for the dynamic hypernetwork to ensure stable
 332 training. An ablation on the width and depth of the hypernetwork is provided in Appendix D.2.
 333 Dynamic style modulation is injected into the 4th, 7th, 10th, and 13th layers of the CLIP and BLIP
 334 ViT backbones. Details on the style injection positions are provided in Appendix D.1. The hyper-
 335 parameters of the StyleNCE loss are fixed as $\gamma = 80$ and $\lambda = 1$. The Sinkhorn algorithm is run
 336 with a sufficiently large number of iterations (50) to ensure convergence. For additional analysis on
 337 the effect of varying these parameters, see Appendix G. All inputs follow the default preprocessing
 338 pipeline of the selected vision-language representation backbone.

339 **Datasets.** To validate the effectiveness of our proposed approach, we conduct systematic experiments
 340 on the **DSR** (Li et al., 2024a) and **DomainNet** (Peng et al., 2019) datasets. Fine-grained
 341 style-level retrieval on DSR serves as our primary benchmark, and we further evaluate on Domain-
 342 Net for zero-shot category retrieval and cross-style classification to assess generalization to unseen
 343 styles.

344 **Baseline Methods.** Baselines include CLIP, BLIP, VPT, LoRA, **(IA)³** (Liu et al., 2022), **Adapt-
 345 Former** (Chen et al., 2022), **SSF** (Lian et al., 2023), FreestyleRet-CLIP, FreestyleRet-BLIP,
 346 as well as recent multimodal models ImageBind (Girdhar et al., 2023) and LanguageBind (Zhu
 347 et al., 2023b). (* represents the prompt-tuning version of the vanilla models.) Following the
 348 FreestyleRet evaluation protocol, we pretrain **VPT**, **LoRA**, **(IA)³**, **AdaptFormer**, **SSF** on DSR,
 349 while FreestyleRet methods are evaluated using their official pretrained weights. The ImageBind
 350 and LanguageBind results are adopted from FreestyleRet and are not included in all subsequent
 351 experiments.

352

4.2 QUANTITATIVE RESULTS

353 **Fine-grained Diverse Style Retrieval (DSR).** We first evaluate our approach on the **DSR** dataset,
 354 which contains fine-grained categories across diverse query styles. As shown in Table 1, baseline
 355 models such as CLIP and BLIP exhibit substantial performance degradation when faced with large
 356 style discrepancies. For instance, CLIP only achieves 47.5% Top-1 on Sketch and 45.0% on Low-
 357 Resolution queries. Parameter-efficient tuning methods like **LoRA**, **VPT**, **(IA)³**, **AdaptFormer** and
 358 **SSF** partially mitigate this issue, improving Top-1 performance to above 70% on Sketch and 80%
 359 on Low-Resolution. Retrieval-oriented methods such as FreestyleRet-CLIP and FreestyleRet-BLIP
 360 achieve stronger results, surpassing 80% Top-1 on Sketch and 90% on Low-Resolution.

361 Our proposed Hystar consistently outperforms all baselines across all styles. For instance, Hystar-
 362 BLIP achieves Top-1 accuracies of 75.6% on Art, 91.0% on Sketch, and 98.8% on Low-Resolution,
 363 yielding absolute improvements of roughly 21–25% over BLIP* in these challenging settings. Not-
 364 ably, it also brings consistent gains on text queries, despite not being explicitly trained for them,
 365 demonstrating robustness to both style variation and language-driven retrieval.

366 Overall, these results highlight that Hystar effectively bridges severe style gaps and sets a new state-
 367 of-the-art on fine-grained diverse style retrieval.

368 **Cross-style Generalization (DomainNet).** We further evaluate our method’s generalization to
 369 unseen styles via zero-shot retrieval on the DomainNet dataset. As shown in Table 2, Hystar achieves
 370 the best zero-shot retrieval performance on the coarse-grained benchmark, surpassing all baselines
 371 across both moderate and highly abstract styles, highlighting its strong cross-style generalization.

372 In contrast, existing approaches exhibit clear limitations in unseen styles. This suggests that the
 373 static methods and the style-specific clustering priors leveraged by FreestyleRet may not general-
 374

Method	Query Style		Art		Sketch		Low-Res		Text	
	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5	Top-1	Top-5
CLIP	58.5	93.7	47.5	77.3	45.0	75.7	66.1	94.7		
CLIP*	58.2	90.4	63.6	93.6	78.8	97.1	72.2	96.4		
BLIP*	51.1	85.3	67.1	90.9	77.2	95.8	74.3	95.3		
LoRA	63.8	96.5	72.8	96.5	79.7	95.1	70.4	97.1		
VPT	66.7	96.5	73.3	97.0	81.4	96.0	69.9	96.1		
(IA) ³	64.3	96.8	71.8	95.7	80.9	96.1	70.1	96.6		
AdaptFormer	65.1	97.0	73.5	96.4	81.1	96.3	69.7	95.8		
SSF	64.7	96.4	73.0	97.0	79.9	95.8	70.1	96.3		
ImageBind	58.2	86.3	50.8	79.4	79.0	96.7	71.0	95.5		
LanguageBind	67.5	92.9	63.6	89.1	78.6	94.5	79.7	98.1		
FreestyleRet-CLIP	71.4	97.8	80.6	97.4	86.4	97.9	69.9	97.0		
FreestyleRet-BLIP	74.5	97.4	81.2	97.1	90.5	98.5	81.6	99.2		
Hystar-CLIP(Ours)	75.2	97.9	90.2	99.3	98.0	99.4	70.9	97.5		
Hystar-BLIP(Ours)	75.6	98.1	91.0	99.8	98.8	99.9	82.0	99.6		

Table 1: **Retrieval performance on the style-diverse QBIR task.** We evaluate Top-1 and Top-5 accuracy(%) on the DSR fine-grained benchmark. The two forms of our Hystar framework, Hystar-CLIP and Hystar-BLIP, outperform in multiple scenarios with different query styles compared with other baselines. Best results are highlighted in **bold**.

Method	Query Style		Clipart		Sketch		Painting		Quickdraw		Infograph	
	Top-1	Top-5	Top-1	Top-5								
CLIP	60.9	77.0	49.1	67.0	59.2	75.2	9.1	15.8	41.2	60.3		
LoRA	63.0	74.8	54.6	66.8	54.8	67.2	13.1	21.9	28.3	40.4		
VPT	71.7	81.6	62.5	73.8	61.7	73.3	14.5	22.6	40.6	54.9		
FreestyleRet	69.5	80.3	60.5	73.5	63.7	75.7	12.2	18.7	43.1	58.7		
Hystar(Ours)	75.7	86.4	65.8	78.1	65.5	78.3	19.0	29.9	43.7	59.3		

Table 2: **Zero-shot retrieval performance on unseen styles.** We evaluate Top-1 and Top-5 accuracy(%) on the DomainNet coarse-grained benchmark. Our proposed Hystar framework demonstrates strong performance in zero-shot category-level retrieval under unseen style conditions. Best results are highlighted in **bold**.

ize consistently to unseen styles, whereas dynamic multi-style adaptation of our method maintains robust performance.

Overall, these findings demonstrate that while static adaptation methods and style-specific priors struggle to generalize, our methods robustly bridge style gaps and establish SOTA performance in zero-shot category-level retrieval.

DomainNet Classification Performance Analysis. To validate the generalizability of our method, we performed zero-shot classification on the DomainNet dataset. Table 3 reports the zero-shot classification performance of various methods on DomainNet across six styles. Although our main focus is multi-style retrieval, this experiment demonstrates the generalization capability of the proposed Hystar model. Hystar consistently achieves the highest accuracy in all styles, outperforming CLIP, LoRA, VPT, and FreestyleRet, particularly in challenging styles such as Sketch (71.2% vs. 64.9%) and Quickdraw (22.9% vs. 14.6%).

Method	Real	Clipart	Sketch	Painting	Quickdraw	Infograph
CLIP	82.4	72.8	64.9	68.1	14.6	53.0
LoRA	62.4	51.7	43.1	42.8	12.8	26.1
VPT	79.9	69.8	61.9	59.2	15.7	46.0
FreestyleRet	84.9	74.1	67.3	68.8	15.9	54.1
Hystar(Ours)	85.7	79.5	71.2	71.0	22.9	54.6

Table 3: **Zero-shot classification performance of different methods on DomainNet across six styles.** Accuracy (%) for each style is reported, with the best results highlighted in **bold**.

These results indicate that the representations learned by Hystar are not only effective for retrieval also transferable to zero-shot classification, highlighting the model’s ability to handle diverse visual styles without additional supervision.

4.3 QUALITATIVE RESULTS

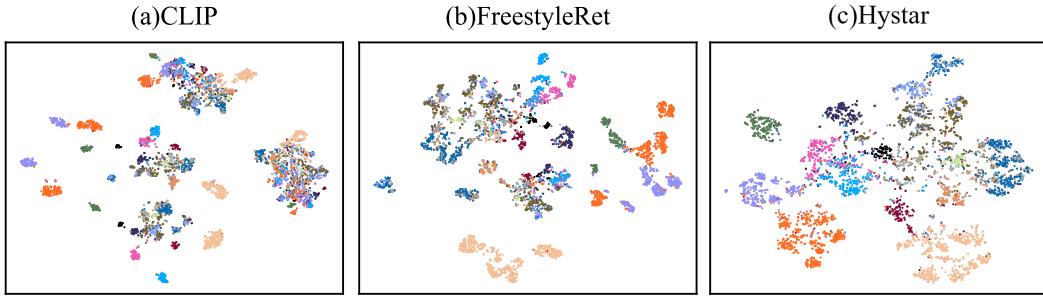


Figure 3: t-SNE visualization of feature embeddings derived by different methods on the DSR dataset. (a)**CLIP**: scattered, overlapping clusters. (b)**FreestyleRet**: more compact but some inter-class entanglement. (c)**Hystar**: clearly separable, compact clusters, showing strong cross-style alignment.

To further investigate how different models capture cross-style semantics, we visualize the learned embeddings on the DSR dataset using t-SNE, as shown in Figure 3. Figure 3(a) illustrates that **CLIP** embeddings form scattered and overlapping clusters, reflecting poor discrimination across styles. Figure 3(b) shows that **FreestyleRet** improves cluster compactness, yet several categories remain entangled, suggesting limited separation. In contrast, Figure 3(c) demonstrates that our proposed **Hystar** produces well-structured and clearly separable clusters, with minimal overlap between different styles. These results indicate that Hystar not only enhances retrieval accuracy quantitatively but also achieves qualitatively superior representation learning by aligning cross-style features into more coherent semantic manifolds.

4.4 ABLATION STUDY

Ablation of the Framework Components. In this section, we perform ablation studies to assess the contributions of the components of Hystar, namely StyleNCE, hypernetwork-driven modulation, and static modulation. As shown in Table 4, the CLIP baseline performs poorly on style-variant queries. Both the Static-only and Hyper-only modulation modules contribute to improved retrieval performance. The Static module provides a globally robust adaptation, effectively aligning representations across different styles in a stable manner; however, it lacks fine-grained flexibility for style-specific adjustments. In contrast, the hypernetwork-based dynamic modulation generates query-specific style adjustments, offering more flexible and personalized adaptation. While this flexibility allows Hyper to capture subtle style variations, it introduces some instability, limiting its standalone improvement.

Method	Art	Sketch	Low-Res	Text
CLIP	58.5	47.5	45.0	66.1
CLIP + Static	65.7	77.0	83.7	69.2
CLIP + Hyper	63.8	70.6	76.3	66.5
CLIP + Hyper + Static	70.2	85.3	94.2	69.7
CLIP + Hyper + Static + StyleNCE	75.2	90.2	98.0	70.9

Table 4: **Ablation study on the DSR benchmark.** Unless otherwise specified, all variants are trained with standard InfoNCE loss. We report top-1 retrieval accuracy (%) across four query styles: Art, Sketch, Low-Resolution, and Text. Best results are highlighted in **bold**.

Method	Parameters(M)	Additional Params (%)	Speed(ms)	Inference Time Increase (%)
CLIP	427	–	68	–
VPT	428	0.2	73	7.4
(IA) ³	427	0.1	71	2.9
AdaptFormer	429	0.5	74	8.8
FreestyleRet	476	11.5	96	41.2
Hystar(Ours)	442	3.5	108	58.8

Table 5: Computation comparison between our Hystar and representative baselines. For fairness, we only compare CLIP-based models; The percentages of additional parameters and inference-time increase are reported with respect to the CLIP baseline.

These ablations show the two modules are complementary: the Static module provides stable global alignment, while the Hyper module adds query-specific flexibility, and their combination yields clear synergistic gains. Incorporating StyleNCE further improves performance by mining hard style-negatives and boosting cross-style discriminability. Overall, static singular-value modulation secures robust cross-style adaptation, dynamic hypernetwork modulation further improves it, and StyleNCE strengthens handling of style diversity and hard cases—together confirming Hystar’s effectiveness for multi-style retrieval under diverse queries.

Computation Comparison. We analyze the computational complexity of our framework compared with other baselines. As shown in Table 5, Hystar achieves competitive efficiency among recent retrieval models. Although it introduces a modest increase in inference latency compared with CLIP, VPT, (IA)³, AdaptFormer, and FreestyleRet, the overall parameter scale remains lightweight and only slightly larger than standard vision–language encoders. This marginal computational overhead mainly stems from the controller-guided hypernetwork module, which dynamically modulates representations for style adaptation. Importantly, the trade-off between adaptability and efficiency is well controlled: Hystar substantially improves robustness to visual–textual style variation while preserving a compact and deployable architecture suitable for real-time retrieval scenarios.

5 CONCLUSION

In this paper, we present Hystar, a dynamic multi-style retrieval framework that combines hypernetwork-driven dynamic modulation with static singular-value calibration, achieving a balance between adaptability and stability in parameter-efficient fine-tuning. To better handle difficult negatives and style discrepancies, we introduce the OT-weighted StyleNCE loss. Extensive experiments on DSR and DomainNet show that Hystar consistently outperforms strong baselines, while ablations confirm the complementary benefits of dynamic and static modulation. Furthermore, retrieval and classification experiments on unseen styles demonstrate that our method improves the performance of VLRLMs under multi-style queries and ensures strong generalization to previously unseen styles. Hystar highlights the effectiveness of dynamic PEFT for style diversity and cross-style generalization, providing a solid foundation for multimodal applications robust to heterogeneous inputs.

540 REPRODUCIBILITY STATEMENT
541

542 We have taken steps in this work to ensure the reproducibility of our results. All datasets used in
543 our experiments are publicly available. Our code and models will be made publicly available. In the
544 main paper and appendices, we provide complete details of all experimental setups, including model
545 architectures, training and evaluation protocols, and hyperparameters. All random seeds are fixed,
546 ensuring that others can replicate our results with the provided code. We believe that the measures
547 we have taken to ensure reproducibility will facilitate straightforward replication and verification of
548 our findings, as well as allow the community to build upon our results in the future.

550 REFERENCES
551

552 Ushasi Chaudhuri, Ruchika Chavan, Biplab Banerjee, Anjan Dutta, and Zeynep Akata. Bda-skertret:
553 Bi-level domain adaptation for zero-shot sbir. *Neurocomputing*, 514:245–255, 2022.

554 Arnav Chavan, Zhuang Liu, Deepak Gupta, Eric Xing, and Zhiqiang Shen. One-for-all: Generalized
555 lora for parameter-efficient fine-tuning. *arXiv preprint arXiv:2306.07967*, 2023.

557 Shoufa Chen, Chongjian Ge, Zhan Tong, Jiangliu Wang, Yibing Song, Jue Wang, and Ping Luo.
558 Adaptformer: Adapting vision transformers for scalable visual recognition, 2022. URL <https://arxiv.org/abs/2205.13535>.

559

560 Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A simple framework for
561 contrastive learning of visual representations. In *International conference on machine learning*,
562 pp. 1597–1607. PMLR, 2020.

563

564 Yunjey Choi, Youngjung Uh, Jaejun Yoo, and Jung-Woo Ha. Stargan v2: Diverse image synthesis
565 for multiple domains. In *Proceedings of the IEEE/CVF conference on computer vision and pattern
566 recognition*, pp. 8188–8197, 2020.

567

568 Marco Cuturi. Sinkhorn distances: Lightspeed computation of optimal transport. *Advances in neural
569 information processing systems*, 26, 2013.

570

571 Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale hi-
572 erarchical image database. In *2009 IEEE conference on computer vision and pattern recognition*,
573 pp. 248–255. Ieee, 2009.

574

575 Hao Dong, Moru Liu, Kaiyang Zhou, Eleni Chatzi, Juho Kannala, Cyrill Stachniss, and Olga Fink.
576 Advances in multimodal adaptation and generalization: From traditional approaches to foundation
577 models. *arXiv preprint arXiv:2501.18592*, 2025.

578

579 Shiyin Dong, Mingrui Zhu, Nannan Wang, and Xinbo Gao. Adapt and align to improve zero-shot
580 sketch-based image retrieval. *arXiv preprint arXiv:2305.05144*, 2023.

581

582 Chendi Ge, Xin Wang, Zeyang Zhang, Hong Chen, Jiapei Fan, Longtao Huang, Hui Xue, and
583 Wenwu Zhu. Dynamic mixture of curriculum lora experts for continual multimodal instruction
584 tuning. *arXiv preprint arXiv:2506.11672*, 2025.

585

586 Rohit Girdhar, Alaaeldin El-Nouby, Zhuang Liu, Mannat Singh, Kalyan Vasudev Alwala, Armand
587 Joulin, and Ishan Misra. Imagebind: One embedding space to bind them all. In *Proceedings of
588 the IEEE/CVF conference on computer vision and pattern recognition*, pp. 15180–15190, 2023.

589

590 Jihao Gu, Shuai Chen, Zelin Wang, Yibo Zhang, and Ping Gong. Sara: singular-value based adaptive
591 low-rank adaption. *arXiv preprint arXiv:2408.03290*, 2024.

592

593 David Ha, Andrew Dai, and Quoc V Le. Hypernetworks. *arXiv preprint arXiv:1609.09106*, 2016.

Raia Hadsell, Sumit Chopra, and Yann LeCun. Dimensionality reduction by learning an invariant
mapping. In *2006 IEEE computer society conference on computer vision and pattern recognition
(CVPR'06)*, volume 2, pp. 1735–1742. IEEE, 2006.

594 Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and Ross Girshick. Momentum contrast for
 595 unsupervised visual representation learning. In *Proceedings of the IEEE/CVF conference on*
 596 *computer vision and pattern recognition*, pp. 9729–9738, 2020.

597

598 Dan Hendrycks and Kevin Gimpel. Gaussian error linear units (gelus), 2023. URL <https://arxiv.org/abs/1606.08415>.

600

601 Edward J Hu, Yelong Shen, Phillip Wallis, Zeyuan Allen-Zhu, Yuanzhi Li, Shean Wang, Lu Wang,
 602 Weizhu Chen, et al. Lora: Low-rank adaptation of large language models. *ICLR*, 1(2):3, 2022.

603

604 Folasade Olubusola Isinkaye, Yetunde O Folajimi, and Bolande Adefowoke Ojokoh. Recommendation
 605 systems: Principles, methods and evaluation. *Egyptian informatics journal*, 16(3):261–273,
 2015.

606

607 Menglin Jia, Luming Tang, Bor-Chun Chen, Claire Cardie, Serge Belongie, Bharath Hariharan, and
 608 Ser-Nam Lim. Visual prompt tuning. In *European conference on computer vision*, pp. 709–727.
 609 Springer, 2022.

610

611 Ruijie Jiang, Prakash Ishwar, and Shuchin Aeron. Hard negative sampling via regularized opti-
 612 mal transport for contrastive representation learning. In *2023 International Joint Conference on*
612 Neural Networks (IJCNN), pp. 1–8. IEEE, 2023.

613

614 Justin Johnson, Ranjay Krishna, Michael Stark, Li-Jia Li, David Shamma, Michael Bernstein, and
 615 Li Fei-Fei. Image retrieval using scene graphs. In *Proceedings of the IEEE conference on com-
 616 puter vision and pattern recognition*, pp. 3668–3678, 2015.

617

618 Tero Karras, Miika Aittala, Janne Hellsten, Samuli Laine, Jaakko Lehtinen, and Timo Aila. Training
 619 generative adversarial networks with limited data. *Advances in neural information processing*
systems, 33:12104–12114, 2020a.

620

621 Tero Karras, Samuli Laine, Miika Aittala, Janne Hellsten, Jaakko Lehtinen, and Timo Aila. Analyz-
 622 ing and improving the image quality of stylegan. In *Proceedings of the IEEE/CVF conference on*
623 computer vision and pattern recognition, pp. 8110–8119, 2020b.

624

625 Ronald Kemker, Marc McClure, Angelina Abitino, Tyler Hayes, and Christopher Kanan. Measuring
 626 catastrophic forgetting in neural networks. In *Proceedings of the AAAI conference on artificial*
626 intelligence, volume 32, 2018.

627

628 Muhammad Uzair Khattak, Hanoona Rasheed, Muhammad Maaz, Salman Khan, and Fahad Shah-
 629 baz Khan. Maple: Multi-modal prompt learning. In *Proceedings of the IEEE/CVF conference on*
630 computer vision and pattern recognition, pp. 19113–19122, 2023.

631

632 Vinay Kumar Verma, Aakansha Mishra, Ashish Mishra, and Piyush Rai. Generative model for zero-
 633 shot sketch-based image retrieval. In *Proceedings of the IEEE/CVF Conference on Computer*
633 Vision and Pattern Recognition Workshops, pp. 0–0, 2019.

634

635 Linda Laurier. Continual learning: Overcoming catastrophic forgetting in neural networks-a survey.
 636 *RN*, 1:1.

637

638 Jianjun Lei, Yuxin Song, Bo Peng, Zhanyu Ma, Ling Shao, and Yi-Zhe Song. Semi-heterogeneous
 639 three-way joint embedding network for sketch-based image retrieval. *IEEE Transactions on Cir-
 640 cuits and Systems for Video Technology*, 30(9):3226–3237, September 2020. ISSN 1558-2205.
 641 doi: 10.1109/tcsvt.2019.2936710. URL <http://dx.doi.org/10.1109/TCSVT.2019.2936710>.

642

643 Hao Li, Xu Li, Belhal Karimi, Jie Chen, and Mingming Sun. Joint learning of object graph and rela-
 644 tion graph for visual question answering. In *2022 IEEE International Conference on Multimedia*
645 and Expo (ICME), pp. 01–06. IEEE, 2022a.

646

647 Hao Li, Jinfa Huang, Peng Jin, Guoli Song, Qi Wu, and Jie Chen. Weakly-supervised 3d spatial
 648 reasoning for text-based visual question answering. *IEEE Transactions on Image Processing*, 32:
 3367–3382, 2023.

648 Hao Li, Yanhao Jia, Peng Jin, Zesen Cheng, Kehan Li, Jialu Sui, Chang Liu, and Li Yuan.
 649 Freestyleret: retrieving images from style-diversified queries. In *European Conference on Com-*
 650 *puter Vision*, pp. 258–274. Springer, 2024a.

651 Jindong Li, Yongguang Li, Yali Fu, Jiahong Liu, Yixin Liu, Menglin Yang, and Irwin King. Clip-
 652 powered domain generalization and domain adaptation: A comprehensive survey. *arXiv preprint*
 653 *arXiv:2504.14280*, 2025.

654 Junnan Li, Ramprasaath Selvaraju, Akhilesh Gotmare, Shafiq Joty, Caiming Xiong, and Steven
 655 Chu Hong Hoi. Align before fuse: Vision and language representation learning with momentum
 656 distillation. In M. Ranzato, A. Beygelzimer, Y. Dauphin, P.S. Liang, and J. Wortman Vaughan
 657 (eds.), *Advances in Neural Information Processing Systems*, volume 34, pp. 9694–9705. Curran
 658 Associates, Inc., 2021a. URL https://proceedings.neurips.cc/paper_files/paper/2021/file/505259756244493872b7709a8a01b536-Paper.pdf.

659 Junnan Li, Dongxu Li, Caiming Xiong, and Steven Hoi. Blip: Bootstrapping language-image pre-
 660 training for unified vision-language understanding and generation. In *International conference on*
 661 *machine learning*, pp. 12888–12900. PMLR, 2022b.

662 Xiaoqing Li, Jiansheng Yang, and Jinwen Ma. Recent developments of content-based image retrieval
 663 (cbir). *Neurocomputing*, 452:675–689, 2021b.

664 Yang Li, Shaobo Han, and Shihao Ji. Vb-lora: Extreme parameter efficient fine-tuning with vector
 665 banks. *Advances in Neural Information Processing Systems*, 37:16724–16751, 2024b.

666 Yi Li and Wenzhao Li. A survey of sketch-based image retrieval. *Machine Vision and Applications*,
 667 29(7):1083–1100, 2018.

668 Yijun Li, Richard Zhang, Jingwan Lu, and Eli Shechtman. Few-shot image generation with elastic
 669 weight consolidation. *arXiv preprint arXiv:2012.02780*, 2020.

670 Dongze Lian, Daquan Zhou, Jiashi Feng, and Xinchao Wang. Scaling shifting your features: A new
 671 baseline for efficient model tuning, 2023. URL <https://arxiv.org/abs/2210.08823>.

672 Vijay Chandra Lingam, Atula Neerkaje, Aditya Vavre, Aneesh Shetty, Gautham Krishna Gudur,
 673 Joydeep Ghosh, Eunsol Choi, Alex Dimakis, Aleksandar Bojchevski, and Sujay Sanghavi. Svft:
 674 Parameter-efficient fine-tuning with singular vectors. *Advances in Neural Information Processing*
 675 *Systems*, 37:41425–41446, 2024.

676 Haokun Liu, Derek Tam, Mohammed Muqeeth, Jay Mohta, Tenghao Huang, Mohit Bansal, and
 677 Colin A Raffel. Few-shot parameter-efficient fine-tuning is better and cheaper than in-context
 678 learning. *Advances in Neural Information Processing Systems*, 35:1950–1965, 2022.

679 Peng Lu, Gao Huang, Hangyu Lin, Wenming Yang, Guodong Guo, and Yanwei Fu. Domain-aware
 680 se network for sketch-based image retrieval with multiplicative euclidean margin softmax. In
 681 *Proceedings of the 29th ACM International Conference on Multimedia*, pp. 3418–3426, 2021.

682 Sangwoo Mo, Minsu Cho, and Jinwoo Shin. Freeze the discriminator: a simple baseline for fine-
 683 tuning gans. *arXiv preprint arXiv:2002.10964*, 2020.

684 Arnab Kumar Mondal, Piyush Tiwary, Parag Singla, and Prathosh AP. Solad: Sampling over latent
 685 adapter for few shot generation. *IEEE Signal Processing Letters*, 2024.

686 Vinod Nair and Geoffrey E Hinton. Rectified linear units improve restricted boltzmann machines. In
 687 *Proceedings of the 27th international conference on machine learning (ICML-10)*, pp. 807–814,
 688 2010.

689 Utkarsh Ojha, Yijun Li, Jingwan Lu, Alexei A Efros, Yong Jae Lee, Eli Shechtman, and Richard
 690 Zhang. Few-shot image generation via cross-domain correspondence. In *Proceedings of the*
 691 *IEEE/CVF conference on computer vision and pattern recognition*, pp. 10743–10752, 2021.

692 Aaron van den Oord, Yazhe Li, and Oriol Vinyals. Representation learning with contrastive predic-
 693 tive coding. *arXiv preprint arXiv:1807.03748*, 2018.

702 Maxime Oquab, Timothée Darcet, Théo Moutakanni, Huy Vo, Marc Szafraniec, Vasil Khalidov,
 703 Pierre Fernandez, Daniel Haziza, Francisco Massa, Alaaeldin El-Nouby, et al. Dinov2: Learning
 704 robust visual features without supervision. *arXiv preprint arXiv:2304.07193*, 2023.

705

706 Kaiyue Pang, Ke Li, Yongxin Yang, Honggang Zhang, Timothy M Hospedales, Tao Xiang, and
 707 Yi-Zhe Song. Generalising fine-grained sketch-based image retrieval. In *Proceedings of the
 708 IEEE/CVF conference on computer vision and pattern recognition*, pp. 677–686, 2019.

709

710 Xingchao Peng, Qinxun Bai, Xide Xia, Zijun Huang, Kate Saenko, and Bo Wang. Moment matching
 711 for multi-source domain adaptation. In *Proceedings of the IEEE/CVF international conference
 712 on computer vision*, pp. 1406–1415, 2019.

713

714 Gabriel Peyré, Marco Cuturi, et al. Computational optimal transport: With applications to data
 715 science. *Foundations and Trends® in Machine Learning*, 11(5-6):355–607, 2019.

716

717 Jielin Qiu, Yi Zhu, Xingjian Shi, Florian Wenzel, Zhiqiang Tang, Ding Zhao, Bo Li, and Mu Li.
 718 Benchmarking robustness of multimodal image-text models under distribution shift. *arXiv
 719 preprint arXiv:2212.08044*, 2022.

720

721 Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal,
 722 Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual
 723 models from natural language supervision. In *International conference on machine learning*, pp.
 724 8748–8763. PMLR, 2021.

725

726 Joshua Robinson, Ching-Yao Chuang, Suvrit Sra, and Stefanie Jegelka. Contrastive learning with
 727 hard negative samples. *arXiv preprint arXiv:2010.04592*, 2020.

728

729 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
 730 resolution image synthesis with latent diffusion models. In *Proceedings of the IEEE/CVF confer-
 731 ence on computer vision and pattern recognition*, pp. 10684–10695, 2022.

732

733 Aneeshan Sain, Ayan Kumar Bhunia, Pinaki Nath Chowdhury, Subhadeep Koley, Tao Xiang, and
 734 Yi-Zhe Song. Clip for all things zero-shot sketch-based image retrieval, fine-grained or not. In
 735 *Proceedings of the IEEE/CVF conference on computer vision and pattern recognition*, pp. 2765–
 736 2775, 2023.

737

738 Karen Simonyan and Andrew Zisserman. Very deep convolutional networks for large-scale image
 739 recognition. *arXiv preprint arXiv:1409.1556*, 2014.

740

741 Yunlong Tang, Yuxuan Wan, Lei Qi, and Xin Geng. Dpstyler: dynamic promptstyler for source-free
 742 domain generalization. *IEEE Transactions on Multimedia*, 2025.

743

744 Bart Thomee and Michael S Lew. Interactive search in image retrieval: a survey. *International
 745 Journal of Multimedia Information Retrieval*, 1(2):71–86, 2012.

746

747 Jindong Wang, Cuiling Lan, Chang Liu, Yidong Ouyang, Tao Qin, Wang Lu, Yiqiang Chen, Wenjun
 748 Zeng, and Philip S Yu. Generalizing to unseen domains: A survey on domain generalization. *IEEE
 749 transactions on knowledge and data engineering*, 35(8):8052–8072, 2022.

750

751 Xiaogang Wang and Xiaoou Tang. Face photo-sketch synthesis and recognition. *IEEE transactions
 752 on pattern analysis and machine intelligence*, 31(11):1955–1967, 2008.

753

754 Yaxing Wang, Chenshen Wu, Luis Herranz, Joost Van de Weijer, Abel Gonzalez-Garcia, and Bog-
 755 dan Raducanu. Transferring gans: generating images from limited data. In *Proceedings of the
 756 European conference on computer vision (ECCV)*, pp. 218–234, 2018.

757

758 Zhipeng Wang, Hao Wang, Jiexi Yan, Aming Wu, and Cheng Deng. Domain-smoothing network
 759 for zero-shot sketch-based image retrieval. *arXiv preprint arXiv:2106.11841*, 2021.

760

761 Zhiwu Wang, Yichen Wu, Renzhen Wang, Haokun Lin, Quanxiang Wang, Qian Zhao, and Deyu
 762 Meng. Singular value fine-tuning for few-shot class-incremental learning. *arXiv preprint
 763 arXiv:2503.10214*, 2025.

756 Jianxiong Xiao, James Hays, Krista A Ehinger, Aude Oliva, and Antonio Torralba. Sun database:
 757 Large-scale scene recognition from abbey to zoo. In *2010 IEEE computer society conference on*
 758 *computer vision and pattern recognition*, pp. 3485–3492. IEEE, 2010.

759

760 Jiayu Xiao, Liang Li, Chaofei Wang, Zheng-Jun Zha, and Qingming Huang. Few shot generative
 761 model adaption via relaxed spatial structural alignment. In *Proceedings of the IEEE/CVF confer-*
 762 *ence on computer vision and pattern recognition*, pp. 11204–11213, 2022.

763

764 Jiexi Yan, Zhihui Yin, Chenghao Xu, Cheng Deng, and Heng Huang. Retrieval across any domains
 765 via large-scale pre-trained model. In *Forty-first International Conference on Machine Learning*,
 766 2024.

767

768 Hantao Yao, Rui Zhang, and Changsheng Xu. Visual-language prompt tuning with knowledge-
 769 guided context optimization. In *Proceedings of the IEEE/CVF conference on computer vision and*
 770 *pattern recognition*, pp. 6757–6767, 2023.

771

772 Hantao Yao, Rui Zhang, and Changsheng Xu. Tcp: Textual-based class-aware prompt tuning for
 773 visual-language model. In *Proceedings of the IEEE/CVF Conference on Computer Vision and*
 774 *Pattern Recognition*, pp. 23438–23448, 2024.

775

776 Xiaoyan Yu, Tongxu Luo, Yifan Wei, Fangyu Lei, Yiming Huang, Hao Peng, and Liehuang Zhu.
 777 Neeko: Leveraging dynamic lora for efficient multi-character role-playing agent. *arXiv preprint*
 778 *arXiv:2402.13717*, 2024.

779

780 Yunqing Zhao, Keshigeyan Chandrasegaran, Milad Abdollahzadeh, and Ngai-Man Man Cheung.
 781 Few-shot image generation via adaptation-aware kernel modulation. *Advances in Neural Infor-*
 782 *mation Processing Systems*, 35:19427–19440, 2022.

783

784 Yunqing Zhao, Chao Du, Milad Abdollahzadeh, Tianyu Pang, Min Lin, Shuicheng Yan, and Ngai-
 785 Man Cheung. Exploring incompatible knowledge transfer in few-shot image generation. In *Pro-*
 786 *ceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition*, pp. 7380–
 787 7391, 2023.

788

789 Kaiyang Zhou, Ziwei Liu, Yu Qiao, Tao Xiang, and Chen Change Loy. Domain generalization:
 790 A survey. *IEEE transactions on pattern analysis and machine intelligence*, 45(4):4396–4415,
 791 2022a.

792

793 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Cocoop: Conditional prompt
 794 learning for vision-language models. *arXiv preprint arXiv:2203.05557*, 2022b.

795

796 Kaiyang Zhou, Jingkang Yang, Chen Change Loy, and Ziwei Liu. Learning to prompt for vision-
 797 language models. *International Journal of Computer Vision*, 130(9):2337–2348, 2022c.

798

799 Beier Zhu, Yulei Niu, Yucheng Han, Yue Wu, and Hanwang Zhang. Prompt-aligned gradient for
 800 prompt tuning. In *Proceedings of the IEEE/CVF international conference on computer vision*, pp.
 801 15659–15669, 2023a.

802

803 Bin Zhu, Bin Lin, Munan Ning, Yang Yan, Jiaxi Cui, HongFa Wang, Yatian Pang, Wenhao Jiang,
 804 Junwu Zhang, Zongwei Li, et al. Languagebind: Extending video-language pretraining to n-
 805 modality by language-based semantic alignment. *arXiv preprint arXiv:2310.01852*, 2023b.

806

807

808

809

APPENDIX

812 Due to the space limitations of the main text, we provide additional results, ablations, and analysis
 813 in this supplementary material. The appendix is organized as follows:

- 815 • **Section A:** Theoretical intuition of singular-value modulation.
- 816 • **Section B:** Analysis for dynamic attention and static MLP design.
- 817 • **Section C:** Cross-modal and cross-style retrieval results.
- 818 • **Section D:** Additional ablation of Hystar.
 - 820 – **Section D.1:** Ablation on injection layers.
 - 821 – **Section D.2:** Ablation on the width and depth of the hypernetwork.
 - 822 – **Section D.3:** Ablation on the style extractor.
- 823 • **Section E:** Broader generalization studies.
 - 824 – **Section E.1:** Generalization evaluation on image classification.
 - 825 – **Section E.2:** Generalization on stylized image generation guidance.
 - 826 – **Section E.3:** Generalization to other vision–language representation models (VL–
 827 RMs).
- 829 **Section F:** Analysis of special styles .
 - 830 – **Section F.1:** Analysis of extremely distinctive styles.
 - 831 – **Section F.2:** Analysis of mixed-style queries.
- 832 • **Section G:** Additional ablation of StyleNCE loss.
 - 833 – **Section G.1:** Effect of positive–negative balance coefficient γ .
 - 834 – **Section G.2:** Sensitivity analysis of hard-negative weight in OT optimization.
 - 835 – **Section G.3:** Comparison of StyleNCE and other loss functions.
- 837 • **Section H:** Retrieval result visualization.
 - 838 – **Section H.1:** Retrieval result visualization on DSR.
 - 839 – **Section H.2:** Retrieval result visualization on DomainNet.

A THEORETICAL INTUITION OF SINGULAR-VALUE MODULATION

843 In this section, we provide a theoretical justification for our design choice of singular-value modula-
 844 tion. In our design, the Hypernetwork predicts low-rank updates by modulating the singular values
 845 of LoRA weight matrices, instead of predicting the full weight increment. Let $W_0 \in \mathbb{R}^{d_1 \times d_2}$ denote
 846 a pretrained weight matrix, and let its singular value decomposition be

$$848 W_0 = U\Sigma V^\top, \quad \Sigma = \text{diag}(s_1, \dots, s_r),$$

849 where $r = \min(d_1, d_2)$. Our Hypernetwork outputs a singular value increment $\Delta\Sigma$, resulting in the
 850 updated weight
 851

$$852 W = U(\Sigma + \Delta\Sigma)V^\top.$$

854 The key insight is that the spectral norm (largest singular value) of the update is directly controlled:

$$855 856 \|W - W_0\|_2 = \|\Delta\Sigma\|_2 = \max_i |\Delta s_i|.$$

857 In other words, by modulating only the singular values, we bound the maximum amplification along
 858 any input direction, avoiding gradient explosion or collapse. Compared with predicting the full ma-
 859 trix increment ΔW , this approach is both computationally efficient (requiring far fewer parameters)
 860 and stable in training.

862 This theoretical intuition motivates our engineering choice: singular-value modulation ensures that
 863 the Hypernetwork can provide style-adaptive updates in a controlled and lightweight manner, which
 864 is crucial for stable multi-style retrieval.

864
865
866
867 **B ANALYSIS FOR DYNAMIC ATTENTION AND STATIC MLP DESIGN**
868
869
870
871

Method	Art	Sketch	Low-Res	Text
Dynamic-All Design	63.7	69.9	74.8	66.3
Reversed Design	64.1	71.2	80.2	69.1
Original Design	75.2	90.2	98.0	70.9

872
873 Table 6: Comparison between the **original** (dynamic-attention and static-MLP) and **reversed**
874 (dynamic-MLP and static-attention) designs of Hystar. The table reports Top-1 accuracy (%) for
875 joint retrieval with different style queries combined with text. The original design achieves higher
876 retrieval accuracy across all style domains, validating the effectiveness of applying dynamic modu-
877 lation to attention layers rather than MLPs. Best results are highlighted in **bold**.878
879 To verify the design rationale of employing dynamic modulation in the attention layers while keep-
880 ing the MLP layers static, we construct a reversed variant of Hystar. In this variant, all attention
881 layers are statically fine-tuned, whereas dynamic modulation is injected into the first linear layer of
882 the MLP blocks at the same layer indices as the original dynamic-attention setup. This design en-
883 sures comparable parameter counts while allowing the second linear layer to be indirectly affected.
884 We also include an additional variant where both the attention and MLP layers are dynamically
885 modulated at the same layer indices as in the original design. However, this setting introduces a
886 larger number of trainable parameters, making it incomparable with the other variants under a fixed
887 parameter budget. Moreover, applying static tuning to all layers would contradict the purpose of our
888 style-conditioned modulation and is therefore not considered.889
890 As shown in Table 6, the original design achieves the highest Top-1 accuracy across all style do-
891 mains, demonstrating that dynamically adapting attention is most effective for cross-style gener-
892 alization. In contrast, the Dynamic-All configuration performs the worst, indicating that applying
893 dynamic modulation to all layers introduces excessive flexibility and leads to unstable training. The
894 reversed design also underperforms, suggesting that dynamic modulation in MLPs cannot effec-
895 tively capture style variations. Conceptually, attention layers govern cross-token relationships that
896 are directly influenced by style cues such as texture and composition, making them well-suited for
897 dynamic modulation. In contrast, MLP layers primarily refine semantic features within tokens;
898 keeping them static preserves semantic stability and prevents overfitting to transient style attributes.
899 These results confirm that our hybrid strategy, which employs dynamic attention for style adaptation
900 and static MLPs for semantic stability, achieves the best balance between adaptability and stability.901
902 **C CROSS-MODAL AND CROSS-STYLE RETRIEVAL RESULTS**
903
904

Model	Art+Text	Sketch+Text	Low-Res+Text	Text
CLIP*	57.8(-14.4)	65.0(-7.2)	84.7(+12.5)	72.2
LoRA	72.2(+1.8)	79.3(+8.9)	84.7(+14.3)	70.4
VPT	70.6(+0.7)	79.0(+9.1)	84.3(+14.4)	69.9
FreestyleRet	76.6(+6.7)	82.5(+12.6)	86.7(+16.8)	69.9
Hystar(Ours)	79.9(+9.0)	91.6(+20.7)	98.2(+27.3)	70.9

905
906 Table 7: **Top-1 accuracy (%) for joint retrieval with different style queries combined with**
907 **text**. Values in parentheses indicate the accuracy gain over text-only queries. Best results are high-
908 lighted in **bold**.909
910 This section presents the quantitative performance of our model on joint style-text retrieval tasks,
911 followed by a breakdown across different query styles. Following the evaluation protocol established
912 in FreestyleRet, we compute the similarity between each query (style or text) and all gallery images,
913 and adopt the maximum similarity as the final retrieval score.914
915 Table 7 reports top-1 accuracy for three joint query modes (Art+Text, Sketch+Text, Low-Res+Text).
916 On Art+Text, our method achieves 79.9%, surpassing FreestyleRet (76.6%), CLIP (57.8%), as well

918 as parameter-efficient tuning baselines such as LoRA (72.2%) and VPT (70.6%). For Sketch+Text,
 919 the advantage becomes more pronounced: our model obtains 91.6%, substantially outperforming
 920 FreestyleRet (82.5%) and CLIP (65.0%). Under the Low-Res+Text setting, our method reaches
 921 98.2%, clearly ahead of FreestyleRet (86.7%) and CLIP (84.7%).

922 Compared to text-only queries, incorporating style queries provides significant performance gains:
 923 +9.0% (Art), +20.7% (Sketch), and +27.3% (Low-Res), all markedly higher than those achieved
 924 by baseline methods. Moreover, relative to style-only queries (Table 1), our joint approach also
 925 yields further improvements (+4.7% on Art, +1.4% on Sketch, and +0.2% on Low-Res). These
 926 results suggest that while the marginal benefit of adding text diminishes when style-only queries are
 927 already strong, the consistent improvements across all settings highlight the complementary nature
 928 of textual and stylistic cues, underscoring the robustness of our multimodal integration strategy.

930 D ADDITIONAL ABLATION OF HYSTAR

931 In this section, we conduct additional ablation studies to better understand the design choices of **Hy-932 star**. We systematically analyze how different architectural and functional components contribute to
 933 performance and efficiency. Specifically, we examine three key aspects: (1) the selection of injection
 934 layers for dynamic modulation, (2) the width and depth configuration of the hypernetwork, and (3)
 935 the choice of style feature extractors used for conditioning. Together, these studies provide deeper
 936 insights into the trade-offs between adaptability, stability, and computational cost in our framework.
 937

938 D.1 ABLATION ON INJECTION LAYERS

939 Table 8 presents an ablation study on the choice of hypernetwork injection layers across three major
 940 query styles (Art, Sketch, and Low-Resolution). The upper block shows results for various
 941 middle-layer injection schemes, which constitute our main design. We observe that selectively
 942 injecting into middle layers (e.g., $\{4, 6, 8, 10, 12\}$ or $\{4, 7, 10, 13\}$) consistently yields the best
 943 trade-off between retrieval accuracy and parameter overhead. Injecting into all intermediate
 944 layers ($\{4, 5, 6, \dots, 12\}$) yields marginal performance improvements but incurs a substantial increase
 945 in parameter cost. Moreover, the overly aggressive style-aware adaptation introduces instability,
 946 leading to performance degradation compared to configurations with fewer injected layers.

947 Injection Layers	948 Art	949 Sketch	950 Low-Res	951 Top-1 Avg	952 Δ Params
<i>Middle-layer injection (main study)</i>					
953 $\{4, 5, 6, \dots, 12\}$	954 69.3	955 76.5	956 84.7	957 76.8	+33.1M
958 $\{4, 6, 8, 10, 12\}$	959 75.4	960 90.1	961 98.6	962 88.0	+18.4M
963 $\{4, 7, 10, 13\}$	964 75.2	965 90.2	966 98.0	967 87.8	+14.7M
968 $\{4, 8, 12\}$	969 71.4	970 88.3	971 96.8	972 85.5	+11.0M
<i>Additional evidence: early / late layers</i>					
973 $\{1\}$	974 60.2	975 72.4	976 76.3	977 69.6	+3.7M
978 $\{16, 19, 22, 24\}$	979 63.1	980 75.4	981 81.7	982 73.4	+14.7M

983 Table 8: **Ablation study on hypernetwork injection layers across three major query styles** (Art,
 984 Sketch, and Low-Resolution). We report Top-1 accuracy (%) for each style, averaged performance,
 985 and parameter overhead (Δ Params). Best results are highlighted in **bold**.

986 The lower block provides additional evidence on early and late layers. Injection into the very
 987 early layer ($\{1\}$) results in poor performance, indicating that low-level features captured in early
 988 layers are less relevant for style-aware retrieval. Similarly, injecting exclusively into late layers
 989 ($\{16, 19, 22, 24\}$) produces only moderate gains, suggesting that later layers are dominated by high-
 990 level semantic features, leaving limited room for style modulation. Overall, this ablation confirms
 991 that the middle layers are the most effective region for hypernetwork injection, balancing accuracy
 992 improvement and parameter efficiency.

972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025	Network Architecture	Art	Sketch	Low-Res	Top-1 Avg	Δ Params
<i>Width Ablation</i>						
	{768 → 1024 → 1024}	70.7	84.3	90.2	81.7	+1.8M
	{768 → 2048 → 1024}	75.2	90.2	98.0	87.8	+3.7M
	{768 → 4096 → 1024}	75.4	90.8	98.6	88.3	+7.3M
<i>Depth Ablation</i>						
	{768 → 1024}	68.6	80.9	88.4	79.3	+0.8M
	{768 → 2048 → 1024}	75.2	90.2	98.0	87.8	+3.7M
	{768 → 2048 → 2048 → 1024}	74.9	90.4	97.6	87.6	+7.9M

Table 9: **Ablation study on hypernetwork layer configurations.** We vary the width and depth of the hypernetwork that predicts dynamic modulation parameters for attention layers. The input dimension (768) corresponds to the feature output of the *DINOv2* encoder, and the target dimension (1024) corresponds to the singular-value dimension of CLIP’s attention weights. All intermediate linear layers are followed by a ReLU activation (omitted in notation for brevity), except for the final projection layer. We evaluate Top-1 accuracy (%) across three major query styles (Art, Sketch, and Low-Resolution), along with the averaged performance and parameter overhead (Δ Params). Best results are highlighted in **bold**.

D.2 ABLATION ON THE WIDTH AND DEPTH OF THE HYPERNETWORK

The results in Table 9 show clear trends regarding the structural design of the hypernetwork. Increasing the hidden width consistently improves accuracy across all query styles, but the gain saturates beyond a moderate expansion. Specifically, moving from 1024 to 2048 hidden units yields a large performance boost, whereas further enlarging to 4096 offers only marginal improvement at the cost of nearly doubling the parameters. This suggests that excessive width leads to over-parameterization with diminishing returns. Regarding depth, extending the hypernetwork beyond two layers does not improve accuracy and can even cause slight degradation, likely due to optimization instability and redundant transformations. Overall, a two-layer configuration with moderate width (2 \times expansion) achieves the best balance between expressivity, stability, and efficiency, and is therefore adopted as our default design.

D.3 ABLATION ON THE STYLE EXTRACTOR

To verify that the performance gain of Hystar does not rely on a specific feature extractor such as *DINOv2*, we evaluate alternative sources for deriving the style vector z . As shown in Table 10, using pretrained visual features (either from *DINOv2*, VGG (Simonyan & Zisserman, 2014) or the CLIP backbone itself) substantially outperforms the static baseline without external style cues. This confirms that explicit style conditioning—rather than the particular choice of extractor—is the key factor driving improvement. Moreover, the gap between *DINOv2* and CLIP-based features is relatively small (83.6 vs. 83.0 Top-1 average), suggesting that the hypernetwork effectively adapts to diverse feature domains and that Hystar’s benefit is not confounded by using another vision encoder. *DINOv2* slightly outperforms CLIP(self), consistent with its stronger representation of texture and spatial statistics, but both yield similar cross-style generalization trends. These results validate that the proposed method’s advantage arises from its adaptive mechanism, not from an unfair reliance on external feature strength.

E BROADER GENERALIZATION STUDIES

In this section, we extend our evaluation beyond retrieval to examine how the proposed hybrid modulation generalizes across diverse tasks and modalities. Specifically, we assess its adaptability in two representative scenarios: (1) image classification under the *base-to-new* transfer setting, and (2) few-shot stylized image generation guided by pretrained generative models. Together, these studies

Extractor	Art	Sketch	Low-Res	Text	Top-1 Avg
Static Only	65.7	77.0	83.7	69.2	73.9
VGG	73.4	88.5	96.9	70.1	82.2
DINOv2	75.2	90.2	98.0	70.9	83.6
CLIP(self)	74.1	90.0	97.5	70.3	83.0

Table 10: **Ablation on style feature extractors for hypernetwork conditioning.** We compare different choices of feature sources used to derive the style vector z in Hystar on the CLIP backbone across four query styles (Art, Sketch, Low-Resolution, and Text). We report Top-1 accuracy (%) for each style and the average.

provide a broader view of Hystar’s generalization capability across discriminative and generative domains.

E.1 GENERALIZATION EVALUATION ON IMAGE CLASSIFICATION

To further assess generalization, we follow the **CoOp** (Zhou et al., 2022c) image-classification protocol and conduct 16-shot *base-to-new* experiments on ImageNet (Deng et al., 2009) and SUN397 (Xiao et al., 2010), where each class provides 16 labeled samples for training. We compare against baselines including **CoOp** (Zhou et al., 2022c), **ProGrad** (Zhu et al., 2023a), **Kg-CoOp** (Yao et al., 2023), **MaPLe** (Khattak et al., 2023), and **TCP** (Yao et al., 2024). As summarized in Table 11, **Hystar** delivers the strongest generalization on *New* and *H* (harmonic mean) splits on ImageNet (New: 70.98, H: 73.93), indicating improved adaptation to unseen categories while maintaining base-domain stability. On SUN397, MaPLe attains the best *New* score (78.70), whereas TCP slightly leads on *H* (80.35); **Hystar** closely follows on both metrics (New: 78.41, H: 80.16), showing competitive cross-domain robustness. Averaged across datasets, **Hystar** achieves the best *New* (74.70) and *H* (77.03), improving over the strongest baselines (e.g., +0.08 on *New* vs. MaPLe and +0.15 on *H* vs. TCP), while accepting a marginal drop on *Base* compared to TCP (79.51 vs. 79.95). These results suggest that the proposed dynamic modulation yields a favorable trade-off between base-domain retention and out-of-domain adaptability—precisely the balance needed for reliable few-shot generalization.

Datasets	Sets	CoOp	ProGrad	KgCoOp	MaPLe	TCP	Hystar(ours)
ImageNet	Base	76.46	77.02	75.83	76.66	77.27	77.13
	New	66.31	66.66	69.96	70.54	69.87	70.98
	H	71.02	71.46	72.78	73.47	73.38	73.93
SUN397	Base	80.85	81.26	80.29	80.82	82.63	81.89
	New	68.34	74.17	76.53	78.70	78.20	78.41
	H	74.07	77.55	78.36	79.75	80.35	80.16
Average	Base	78.66	79.14	78.06	78.74	79.95	79.51
	New	67.33	70.41	73.25	74.62	74.04	74.70
	H	72.56	74.52	75.58	76.62	76.88	77.03

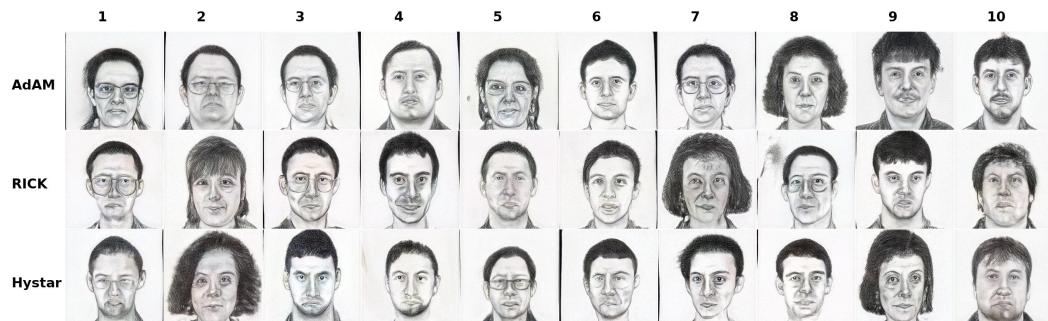
Table 11: Generalization results on 16-shot image classification benchmarks. Each category contains 16 training samples. We evaluate cross-domain generalization from base to new classes on ImageNet and SUN397. Hystar consistently achieves the highest accuracy on *New* and *H* (harmonic mean) splits, demonstrating strong generalization to unseen categories and styles. Best results are highlighted in **bold**.

E.2 GENERALIZATION ON STYLIZED IMAGE GENERATION GUIDANCE

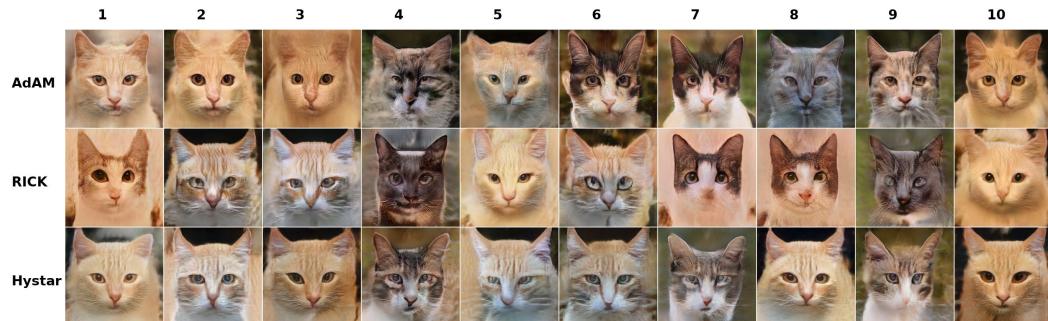
To further verify the generalization ability of our style-adaptive modulation framework, we follow the few-shot image generation protocol proposed in **ADAM** (Zhao et al., 2022) and **RICK** (Zhao et al., 2023), where a generator pretrained on a large-scale source domain is fine-tuned using a few

1080 samples from a stylized target domain. We select two representative targets, **Sketches** (Wang &
 1081 Tang, 2008) and **AFHQ-Cat** (Choi et al., 2020) , and employ StyleGANv2 (Karras et al., 2020b) as
 1082 the backbone. To adapt our Hystar framework to the StyleGAN2 backbone, we employ a selective
 1083 hybrid modulation scheme within the generator. Specifically, we inject *dynamic modulation* into
 1084 only a subset of convolutional layers that are most sensitive to style variation, while applying *static*
 1085 *SVD-based modulation* to the remaining layers to ensure semantic stability and low-rank regulari-
 1086 zation. The dynamic parameters are generated by a lightweight hypernetwork conditioned on the
 1087 latent code w produced by the StyleGAN2 mapping network $f(z)$. This selective design allows Hys-
 1088 tar to efficiently integrate style-dependent adaptation into StyleGAN2 while maintaining the stable
 1089 training behavior of the original architecture.

1090 As shown in Table 12, our method achieves the lowest average FID among all compared baselines (1091 **TGAN** (Wang et al., 2018), **TGAN+ADA** (Karras et al., 2020a), **FreezeD**(Mo et al., 2020), **EWC** (Li
 1092 et al., 2020), **CDC** (Ojha et al., 2021), **RSSA** (Xiao et al., 2022), **SoLAD** (Mondal et al., 2024),
 1093 **AdAM** (Zhao et al., 2022), **RICK** (Zhao et al., 2023)). These results demonstrate that dynamic
 1094 spectral modulation on the discriminator provides sufficient flexibility to capture domain-specific
 1095 stylistic cues, while the static offsets maintain semantic consistency during adaptation. To qualita-
 1096 tively illustrate the benefit of our modulation design, Figure 4 visualizes generated samples from our
 1097 model and selected baselines.
 1098



(a) Sketches



(b) AFHQ-Cat

1123 **Figure 4: Qualitative comparison of stylized image generation .** Each row corresponds to one
 1124 method (from top to bottom: AdAM, RICK , Hystar) .
 1125

1127 E.3 GENERALIZATION TO OTHER VISION-LANGUAGE REPRESENTATION MODELS 1128 (VLRMs)

1130 To assess the generalizability of our hypernetwork-based multi-style retrieval framework beyond
 1131 CLIP and BLIP, we further experiment with the ALBEF backbone. Since ALBEF consists of only
 1132 12 encoder layers, we proportionally select layers 2, 4, and 6 for hypernetwork injection. The results
 1133 are summarized in Table 13. For the StyleNCE loss, we adopt the same hyperparameters as used
 with CLIP, without any backbone-specific tuning.

1134	Method	Sketches	AFHQ-Cat	FID-Avg
1135	TGAN	53.42	64.68	59.05
1136	TGAN+ADA	66.99	80.16	73.58
1137	FreezeD	46.54	63.60	55.07
1138	EWC	64.55	74.61	69.58
1139	CDC	47.62	176.21	111.92
1140	RSSA	69.51	159.54	114.53
1141	SoLAD	37.23	61.35	49.29
1142	AdAM	42.64	58.07	50.36
1143	RICK	35.66	53.27	44.47
1144	Hystar(ours)	34.12	54.68	44.40

1149
1150 **Table 12: Evaluation of generalization on stylized image generation.** We report FID scores (\downarrow) on
1151 two stylized domains, **Sketches** and **AFHQ-Cat**, to assess the ability of each method to generalize
1152 across appearance styles. Best results are highlighted in **bold**.
1153

1154	Method	Art	Sketch	Low-Res	Text	Top-1 Avg
1155	ALBEF	63.7	52.4	39.1	61.7	54.2
1156	Hystar(ours)	71.0	84.5	91.5	64.3	77.8

1158 **Table 13: Multi-style retrieval performance on ALBEF backbone across four query styles** (Art,
1159 Sketch, Low-Resolution, and Text.) We report Top-1 accuracy (%) for each style and the average.
1160 Our hypernetwork injection improves performance consistently, showing generalization beyond the
1161 CLIP backbone and BLIP backbone.
1162

1163 As shown in Table 13, the proposed hypernetwork approach improves retrieval performance across
1164 all four styles, even when applied to ALBEF without any specialized tuning. While the improve-
1165 ments are generally smaller than those observed on CLIP and BLIP (the main experimental back-
1166 bone), this validates the cross-architecture applicability of our method. These results indicate that
1167 the benefits of middle-layer injection and cross-style feature learning are not limited to a single
1168 VLRM, supporting the generality of our approach in multi-style retrieval scenarios.
1169

1171 F ANALYSIS OF SPECIAL STYLES

1173 In this section, we further analyze **Hystar**’s behavior under challenging and unconventional visual
1174 conditions. Specifically, we examine two aspects of style generalization beyond standard artistic
1175 domains: (1) adaptation to *extremely distinctive and unseen* styles that differ drastically from the
1176 training distribution, and (2) responses to *mixed-style queries* that blend multiple stylistic attributes
1177 within a single image. These analyses reveal how Hystar maintains semantic consistency while
1178 flexibly modeling complex or hybrid style variations.
1179

1180 F.1 ANALYSIS OF EXTREMELY DISTINCTIVE STYLES

1182 To evaluate the generalization ability of our model to extremely abstract and unseen styles, we
1183 construct an evaluation benchmark based on the **DomainNet** dataset. We randomly select 1,000
1184 images from the real domain, covering 50 categories with 20 images per category, and use Stable
1185 Diffusion (Rombach et al., 2022) to generate corresponding versions in three extreme artistic styles:
1186 *Surrealist Abstract Art*, *Post-Impressionist Painting*, and *Ink-Wash Painting*. These styles are highly
1187 abstract, visually unconventional, and entirely unseen during training. We employ Stable Diffusion
1188 with the following textual prompts (where $\{\text{object}\}$ is a placeholder, e.g., “cat”):
1189

- Surrealist Abstract Art: A photo of a {object}, surrealist abstract art, dream-like forms, distorted proportions, fluid shapes, high contrast lighting, masterpiece.
- Post-Impressionist Painting: A photo of a {object}, post-impressionist oil painting, visible brush strokes, vibrant color palette, Van Gogh and Cézanne inspired, expressive texture.
- Ink-Wash Painting: A photo of a {object}, traditional Chinese ink-wash painting, minimal color, soft brush ink diffusion, paper texture, serene composition.

For qualitative visualization, we display two representative samples for each style (Figure 5). Under the zero-shot setting, we test the model’s ability to retrieve the correct real-domain images given queries from these extreme styles. All models (except the original CLIP) are pretrained only on the DSR dataset. The quantitative results are reported in Table 14.

As shown in Table 14, all methods experience a noticeable performance drop under these extremely abstract and out-of-distribution styles, confirming the significant domain gap between realistic and artistic representations. Our proposed **Hystar** achieves the highest Top-1 accuracy across all three challenging styles, outperforming the strongest baseline by 3.5% on average. The improvements are especially pronounced on the most abstract *Surrealist Abstract Art* domain, indicating that dynamically modulated attention effectively captures style-specific variations while maintaining semantic consistency. These results highlight Hystar’s superior ability to generalize across visually divergent and previously unseen artistic domains.

Method	Surrealist Abstract Art	Post-Impressionist Painting	Ink-Wash Painting	Top-1 Avg
CLIP	13.7	51.4	33.5	32.9
LoRA	12.4	47.0	29.4	29.6
VPT	16.1	52.6	31.2	33.3
FreestyleRet	22.8	70.2	38.6	43.9
Hystar(ours)	25.3	76.9	40.1	47.4

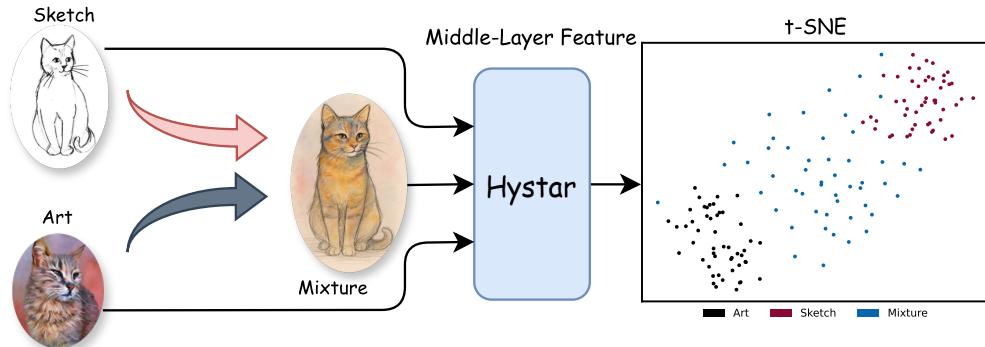
Table 14: **Retrieval performance under extreme styles.** We evaluate multiple methods on three highly distinctive style domains: *Surrealist Abstract Art*, *Post-Impressionist Painting* (Van Gogh-like), and *Ink-Wash Painting*. Results are reported as Top-1 accuracy (%) across the three extreme query types and their average. Best results are highlighted in **bold**. Our method (Hystar) achieves consistent improvements across all style types, demonstrating superior robustness and generalization to extreme and out-of-distribution visual styles.

Figure 5: Examples of images with extreme styles.

F.2 ANALYSIS OF MIXED-STYLE QUERIES

To study how Hystar responds to style mixtures, we use Stable Diffusion to synthesize three sets of images: **Sketch**, **Art**, and their **Mixture**. To control semantic content, we fix the object category

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256



1257 Figure 6: **Style-aware feature distribution learned by Hystar.** Hystar maps images from different styles (Art, Sketch, and their Mixture) into a coherent embedding space. As shown in the t-SNE
1258 plot, the mixed-style samples (blue) form a transitional manifold between Art (black) and Sketch
1259 (red), demonstrating that Hystar’s representations smoothly capture style blending while maintain-
1260 ing semantic alignment.
1261

1262
1263

1264 and generate 50 images per set. The prompts are as follows (where $\{\text{object}\}$ is a placeholder,
1265 e.g., “cat”):
1266

1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278

- **Sketch:** A $\{\text{object}\}$, clean pencil sketch, line art, monochrome, minimal shading, white background, highly detailed, professional illustration.
- **Art:** A $\{\text{object}\}$, oil painting, rich brush strokes, vibrant color palette, canvas texture, dramatic lighting, high detail, masterpiece.
- **Mixture:** A $\{\text{object}\}$, hybrid style combining oil painting and pencil sketch, partially sketched outlines, visible graphite lines with textured brush strokes, mixed-media look, coherent composition, highly detailed.

1279
1280
1281
1282
1283
1284
1285
1286

For each image, we forward it through Hystar and extract the visual representation from a middle Transformer block of CLIP; we then visualize the features by projecting them to 2D with t-SNE. The results (Figure 6) show two compact and separable clusters for **Art** and **Sketch**, while the **Mixture** samples do not collapse into either cluster but instead form a continuous “bridge” between them. The bridge shifts toward the visually dominant component style, indicating that Hystar’s mid-level representation varies smoothly with style strength and mixture ratio while preserving semantic consistency. This behavior suggests that Hystar encodes style in a continuous and interpretable manner and maintains good style separability under stable content representations.

1287
1288
1289

G ADDITIONAL ABLATION OF STYLENCE LOSS

1290
1291
1292
1293
1294
1295

In this section, we investigate the sensitivity of the StyleNCE loss to its key hyperparameters. Specifically, we study (i) the positive–negative balance coefficient γ , which controls the relative weighting between positive and negative pairs, (ii) the hard-negative weight λ in the OT optimization, which regulates the contribution of difficult negatives, and (iii) a comparison between StyleNCE and other loss functions. All analyses are conducted on the DSR dataset across three representative styles: Art, Sketch, and Low-Resolution.

1296
1297G.1 EFFECT OF POSITIVE-NEGATIVE BALANCE COEFFICIENT γ 1298
1299
1300
1301
1302
1303
1304
1305

Figure 7 illustrates the effect of varying $\gamma \in \{1, 10, 30, 50, 80, 120, 200, 500\}$. When γ is too small (e.g., $\gamma = 1$), the contribution of negative samples becomes negligible, causing training to be dominated by positives, which slows convergence and significantly degrades retrieval accuracy. Increasing γ accelerates convergence and improves final performance, with the best results obtained in the range of $\gamma = 80$ to $\gamma = 120$. Further enlarging γ (e.g., $\gamma = 500$) does not provide additional benefits and instead introduces slight instability, leading to performance drops relative to the mid-range values. These findings highlight the importance of maintaining a balanced contribution between positive and negative samples for stable optimization.

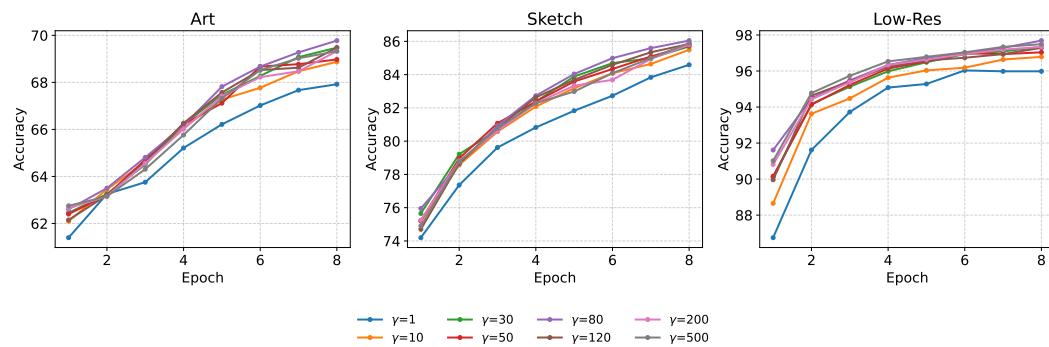
1306
1307
1308
1309
1310
1311
1312
1313
1314
13151316
1317
1318
1319
1320
1321
1322
1323

Figure 7: Effect of the positive-negative balance coefficient γ on DSR retrieval accuracy(%). Results are reported for three styles: Art, Sketch, and Low-Resolution. Small values of γ (e.g., 1) result in slower convergence and lower accuracy, while moderate values ($80 \leq \gamma \leq 120$) achieve the best trade-off between stability and performance.

1324

G.2 SENSITIVITY ANALYSIS OF HARD-NEGATIVE WEIGHT IN OT OPTIMIZATION

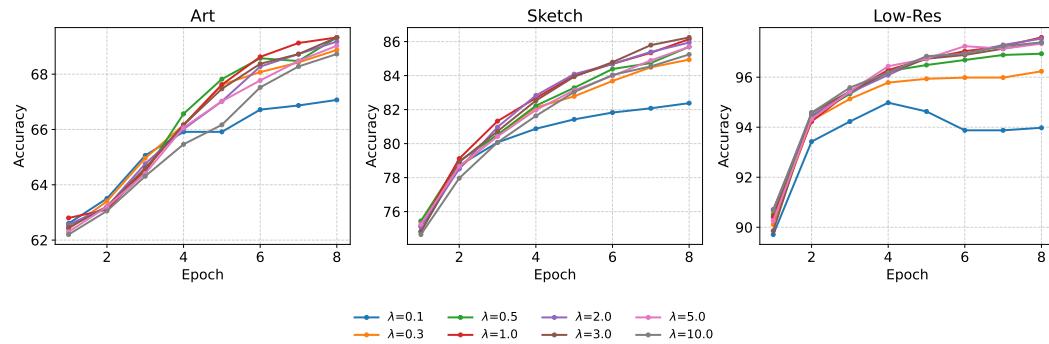
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
13371338
1339
1340
1341
1342

Figure 8: Sensitivity analysis of the hard-negative weight λ in OT optimization on DSR retrieval accuracy(%). Results are reported for Art, Sketch, and Low-Resolution. Moderate values ($1.0 \leq \lambda \leq 3.0$) yield the best performance. Very small values underweight easy negatives, whereas very large values fail to effectively exploit hard negatives, limiting performance.

1343
1344
1345
1346
1347
1348
1349

Figure 8 presents a sensitivity analysis of the hard-negative weighting coefficient $\lambda \in \{0.1, 0.3, 0.5, 1.0, 2.0, 3.0, 5.0, 10.0\}$. We observe that very small values (e.g., $\lambda = 0.1$) place excessive emphasis on hard negatives, causing the model to largely ignore easy negatives, which destabilizes training and reduces performance. Conversely, excessively large values (e.g., $\lambda = 10.0$) underweight hard negatives, resulting in insufficient hard-negative mining and moderate performance degradation. Consistently high retrieval accuracy and stable convergence are observed for intermediate values ($\lambda = 1.0-3.0$). These findings indicate that appropriately balancing the contribution of hard negatives is critical for fully leveraging OT-based optimization.

1350
1351 G.3 COMPARISON OF STYLENCE AND OTHER LOSS FUNCTIONS
1352

Method	Art	Sketch	Low-Res	Top-1 Avg
Triplet loss	65.6	71.9	89.5	75.7
InfoNCE loss	70.2	85.3	94.2	83.2
Circle loss	70.4	88.8	96.1	85.1
Triplet loss + Hard Negative Sampling	69.3	80.2	93.0	80.8
InfoNCE loss + Hard Negative Sampling	72.6	88.4	96.7	85.9
StyleNCE loss(Ours)	75.2	90.2	98.0	87.8

1360
1361 Table 15: **Ablation study of different loss functions on the CLIP backbone.** Results are reported
1362 as Top-1 accuracy (%) across the three major query types used for training (Art, Sketch, and Low-
1363 Resolution) and their average. Best results are highlighted in **bold**.
13641365 From Table 15, we observe that the choice of loss function has a significant impact on retrieval per-
1366 formance. The baseline Triplet loss achieves the lowest accuracy (75.7% on average), indicating its
1367 limited ability to handle cross-style variation. InfoNCE and Circle loss provide clear improvements
1368 (83.2% and 85.1%), thanks to their better optimization of inter-class separation. Incorporating hard
1369 negative sampling further boosts performance for both Triplet and InfoNCE, but the gain is relatively
1370 modest (+5.1 and +2.7 points, respectively), suggesting that negative mining alone cannot fully ad-
1371 dress style discrepancies. In contrast, our proposed StyleNCE achieves the best results across all
1372 three query types, surpassing the best baseline (InfoNCE + hard negatives) by +1.9 points on aver-
1373 age. This demonstrates that StyleNCE not only benefits from hard negative mining but also explicitly
1374 models style-aware feature alignment, leading to consistent gains across diverse query styles.
13751376 H RETRIEVAL RESULT VISUALIZATION
1377

1378 H.1 RETRIEVAL RESULT VISUALIZATION ON DSR

1379 To provide qualitative insights into model behavior, we visualize retrieval examples on the **DSR**
1380 dataset (Figure 9). Typical errors are categorized into three groups: (a) *action errors*, where retrieved
1381 samples contain the correct object but incorrect actions; (b) *object errors*, where retrieved images
1382 contain semantically related but incorrect objects; and (c) *background errors*, where retrievals con-
1383 fuse similar contexts while missing the correct foreground. As shown in Figure 9, baseline methods
1384 frequently suffer from these mistakes, returning visually similar but semantically wrong samples.
1385 In contrast, our proposed **Hystar** consistently retrieves semantically accurate images across differ-
1386 ent styles, demonstrating its ability to align fine-grained semantics under challenging cross-style
1387 conditions better.
13881389 H.2 RETRIEVAL RESULT VISUALIZATION ON DOMAINNET
13901391 We further evaluate retrieval results on the more diverse **DomainNet** dataset, which contains unseen
1392 styles such as Clipart, Sketch, Painting, Quickdraw, and Infograph. Figure 10 11 12 show Top-10
1393 retrieval examples. Baseline methods often fail under large style shifts, retrieving visually close but
1394 semantically irrelevant samples, especially in abstract styles such as Quickdraw and Infograph. In
1395 contrast, our **Hystar** maintains stable cross-style alignment, retrieving semantically correct results
1396 across multiple unseen styles. These results demonstrate the strong generalization ability of Hystar
1397 beyond the training distribution, confirming its robustness under zero-shot cross-style retrieval.
1398
1399
1400
1401
1402
1403

1404

1405

1406

1407

1408

1409

1410

1411

1412

1413

1414

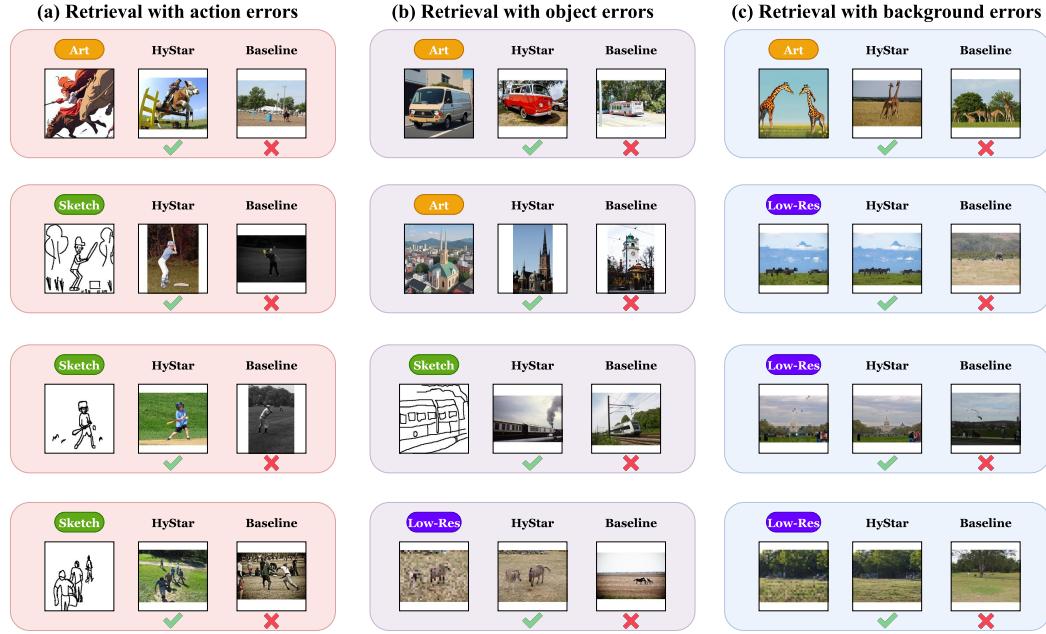
1415

1416

1417

1418

1419



1440

Figure 9: Qualitative retrieval examples on the DSR dataset. We illustrate three common error types made by baseline methods: (a) action errors, (b) object errors, and (c) background errors. Baselines often retrieve visually similar but semantically incorrect results, while our **HyStar** consistently retrieves the correct matches, highlighting its superior fine-grained alignment across multiple styles.

1444

1445

1446

1447

1448

1449

1450

1451

1452

1453

1454

1455

1456

1457

1458

1459

1460

1461

1462

1463

1464

1465

1466

1467

1468

1469

1470

1471

1472

1473

1474

1475

1476

1477

1478

1479

1480

1481

1482

1483

1484

1485

1486

1487

1488

1489

1490

1491

1492

1493

1494

1495

1496

1497

1498

1499

1500

1501

1502

1503

1504

1505

1506

1507

1508

1509

1510

1511

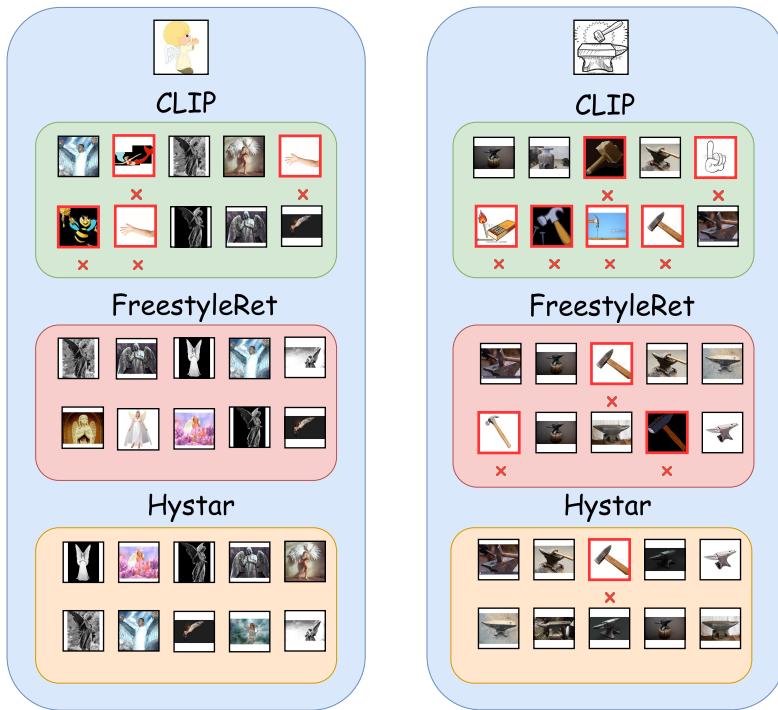
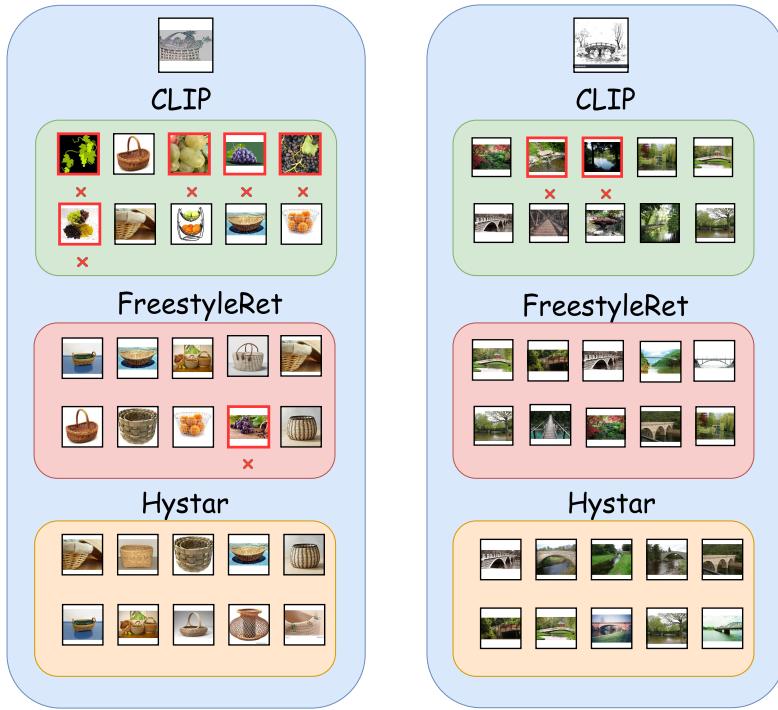
Clipart**Sketch**

Figure 10: Qualitative Top-10 retrieval results on the DomainNet dataset across unseen styles (Clipart, Sketch). In the retrieval results figure, we use the retrieval outputs from the baseline models, CLIP, FreestyleRet, as our baseline comparison.

1512

1513

1514

1515

1516

1517

1518

1519

1520

1521

1522

1523

1524

1525

1526

1527

1528

1529

1530

1531

1532

1533

1534

1535

1536

1537

1538

1539

1540

1541

1542

1543

1544

1545

1546

1547

1548

1549

1550

1551

1552

1553

1554

1555

1556

1557

1558

1559

1560

1561

1562

1563

1564

1565

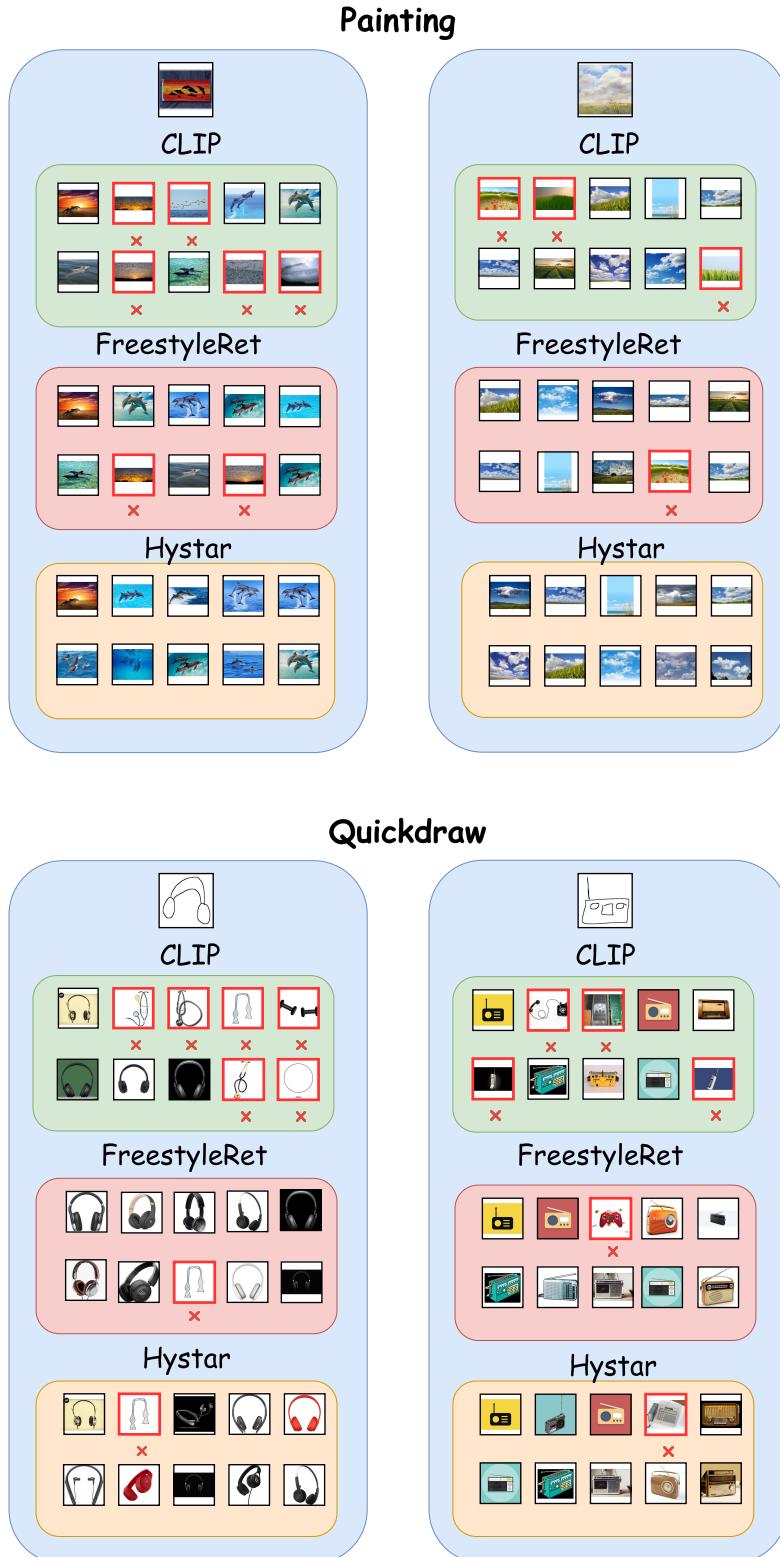


Figure 11: Qualitative Top-10 retrieval results on the DomainNet dataset across unseen styles (Painting, Quickdraw). In the retrieval results figure, we use the retrieval outputs from the baseline models, CLIP, FreestyleRet, as our baseline comparison.

1566

1567

1568

1569

1570

1571

1572

1573

1574

1575

1576

1577

1578

1579

1580

1581

1582

1583

1584

1585

1586

1587

1588

1589

1590

1591

1592

1593

1594

1595

1596

1597

1598

1599

1600

1601

1602

1603

1604

Figure 12: Qualitative Top-10 retrieval results on the DomainNet dataset across unseen styles (Infograph). In the retrieval results figure, we use the retrieval outputs from the baseline models, CLIP, FreestyleRet, as our baseline comparison.

