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Abstract

Current approaches for segmenting ultra-high-resolution images either slide a window, thereby
discarding global context, or downsample and lose fine detail. We propose a simple yet effective
method that brings explicit multi-scale reasoning to vision transformers, simultaneously
preserving local details and global awareness. Concretely, we process each image in parallel at
a local scale (high-resolution, small crops) and a global scale (low-resolution, large crops), and
aggregate and propagate features between the two branches with a small set of learnable relay
tokens. The design plugs directly into standard transformer backbones (e.g. ViT and Swin)
and adds fewer than 2 % parameters. Extensive experiments on three ultra-high-resolution
segmentation benchmarks, Archaeoscape, URUR, and Gleason, and on the conventional
Cityscapes dataset show consistent gains, with up to 15 % relative mIoU improvement. Code
and pretrained models are available at https://archaeoscape.ai/work/relay-tokens/.

1 Introduction
Most vision benchmarks operate on images of 224×224 pixels. In contrast, domains such as Earth observation
and medical imaging routinely involve scenes spanning hundreds of megapixels—a regime we refer to as
ultra-high resolution (UHR) (Sun et al., 2024; Ji et al., 2023; Guo et al., 2022; Shen et al., 2022; Chen
et al., 2019). Segmenting such images requires both long-range reasoning to place objects within a global
context and fine-grained spatial resolution, as targets of interest may occupy only a few pixels. This dual
requirement makes it necessary to process extremely large images while preserving detailed local information.
The quadratic token–token interactions in standard transformer layers (Dosovitskiy et al., 2021; Liu et al.,
2021; 2022; Oquab et al., 2024) make off-the-shelf ViT-style architectures impractical for ultra-high-resolution
semantic segmentation.

To circumvent this limitation, existing approaches either (i) apply sliding-window inference, which ignores
long-range context, or (ii) downsample the input, which foregoes fine structures (see Fig. 1). Dedicated
multi-scale architectures partly alleviate these issues, but at the cost of bespoke designs and full retrain-
ing (Chen et al., 2019; Wang et al., 2024; Guo et al., 2022; Ji et al., 2023). Recent linear-complexity
transformers (Gupta et al., 2024; Zhu et al., 2024a) can process large images, yet still struggle to reconcile
detail and context.
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(a) Archaeoscape (b) URUR (c) Gleason (d) Cityscapes

Figure 1: Context and Details. Examples of scenes where both the high-resolution details (top-left) and
the low-resolution context (bottom) are necessary to correctly predict the true label maps (top right).

Relay Tokens. We introduce a plug-and-play mechanism that endows any ViT-style backbone with
explicit multi-scale reasoning without altering its structure or discarding pretrained weights. Inspired by the
Perceiver’s latent arrays (Jaegle et al., 2021), we add a handful of learnable relay tokens that are shared
between a local branch (high-resolution, small crops) and a global branch (low-resolution, large crops). During
self-attention, these tokens collect features from one scale and propagate them into the other, effectively
transmitting information across resolutions (Fig. 2). The resulting network increases parameter count by less
than 2% (only 0.0005% when sharing patch embedding across scales) and incurs negligible runtime overhead
compared to processing both local and global windows separately.

Empirical Validation. We evaluate our approach on three UHR segmentation benchmarks: aerial LiDAR
(Archaeoscape), satellite photography (URUR), and histology slides (Gleason), as well as a conventional
vision dataset (Cityscapes). We consider two widely used backbone families, ViT (Dosovitskiy et al., 2021)
and Swin (Liu et al., 2021; 2022), as well as the specialised GLAM architecture (Themyr et al., 2023) and the
linear-complexity Flatten-Swin (Han et al., 2023). Relay tokens consistently improve mIoU, by up to 15 %,
while decreasing peak GPU memory by an order of magnitude relative to full-resolution processing.

Our contributions are:

• A simple, flexible, and drop-in modification of vision transformers that preserves pretrained weights
and adds ≤ 2 % parameters.

• Extensive experiments on UHR and classic vision benchmarks demonstrating substantial accuracy
gains and memory savings compared to other scaling approaches.

2 Related Work

Classical Semantic Segmentation. Fully Convolutional Networks (Long et al., 2015) and U-Nets (Ron-
neberger et al., 2015) pioneered pixel-wise classification with deep neural networks. Subsequent architectures
improved segmentation quality primarily through enhanced receptive fields, leveraging dilated convolu-
tions (Chen et al., 2017a; 2018), pyramid pooling modules (Zhao et al., 2017), and boundary-focused
feature extraction techniques (Ding et al., 2019; Takikawa et al., 2019; Chen et al., 2016). More recently,
Vision Transformers (ViTs) (Dosovitskiy et al., 2021; Jain et al., 2023; Zhang et al., 2023; Kirillov et al.,
2023) have demonstrated superior performance and versatility, shifting the segmentation landscape towards
transformer-based architectures.

Hierarchical Image Representation. Segmenting high-resolution images poses substantial computational
and memory challenges. Common approaches include sliding window techniques, which introduce boundary
artefacts and lose global context, or downsampling preprocessing steps, which blur critical details (Tokunaga
et al., 2019; Ho et al., 2021). To mitigate these limitations, multiple approaches have been proposed to
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integrate local, high-resolution patches with broader low-resolution contexts at various network depths,
ranging from late fusion (Tokunaga et al., 2019; Wang et al., 2024), intermediate bottleneck fusion (Schmitz
et al., 2021), to progressive fusion schemes (Gu et al., 2018; Chen et al., 2019; Ho et al., 2021). Alternatively,
spatial pyramids (Burt & Adelson, 1983; Lazebnik et al., 2006) explicitly generate multi-resolution feature
representations, integrating them either at the final prediction stage (Guo et al., 2022) or incrementally
throughout the network (Zhu et al., 2024b). Coarse-to-fine refinement methods iteratively improve segmenta-
tion predictions through a hierarchy of using increasingly detailed feature resolutions (Cheng et al., 2020;
Shen et al., 2022). Our proposed relay token approach shares conceptual similarities with these hierarchical
methods; however, unlike prior techniques, we retain pretrained transformer backbones unchanged and enable
multi-scale reasoning through a small set of shared tokens.

Efficient Architecture Backbone. Another line of research rely on efficient architectures to directly
handle large-scale inputs without explicit multi-scale fusion. Early solutions leverage the hierarchical
structure inherent to convolutional networks (Chen et al., 2017a). More recent transformer variants reduce
computational complexity with hierarchical window attention (Liu et al., 2021; Xie et al., 2021; Wang et al.,
2021), clustering tokens spatially (Sun et al., 2024), or linear-complexity state-space models (Fu et al., 2024;
Zhu et al., 2024a; Gupta et al., 2024). However, these methods typically require substantial architectural
redesign and training from scratch or discard pretrained model parameters. In contrast, relay tokens require
minimal modifications, retain pretrained weights, and seamlessly enable multi-scale reasoning capabilities
into existing ViT-based architectures with minimal overhead.

Token-Based Cross-Resolution Embeddings. Several works combine multi-resolution information
using latent vectors, referred to as global tokens (Themyr et al., 2023; Zhang et al., 2021) or memory tokens
(Themyr et al., 2022). Unlike our relay tokens, these methods process the full-resolution, full-context image
at every scale, limiting the effective context. Longformer (Zhang et al., 2021) and GLAM (Themyr et al.,
2023) additionally introduce custom multi-resolution blocks on top of Swin (Liu et al., 2021), whereas relay
tokens are a backbone-agnostic drop-in compatible with any ViT-style encoder. Moreover, their global tokens
are local to each transformer block and are discarded afterwards; relay tokens persist throughout the network,
propagating information across stages and input resolutions. FINE (Themyr et al., 2022) also employs
persistent memory tokens and is not tied to a particular backbone, but its code has not been released, and
its evaluation is limited to medical images.

3 Method

We propose a straightforward extension to Vision Transformers for efficient multi-scale image segmentation;
see Fig. 2. Specifically, we segment large images (e.g., 5000×5000) by simultaneously processing two windows:
a small, high-resolution local window (xlocal, e.g. 256 × 256) and a larger, downsampled global window (xglobal,
e.g. 1024 × 1024 downsampled to 256 × 256). These paired windows capture both high-resolution details and
broader context. In Sec. 3.1, we describe the minimal changes required to adapt existing ViT models, and in
Sec. 3.2, we detail our training losses.

3.1 Architecture

We first briefly review standard ViTs and then describe how to add relay tokens.

Background: Vision Transformers. A standard ViT (Dosovitskiy et al., 2021) segments images by
first dividing them into fixed-size patches (typically 16 × 16 pixels). Each patch is then embedded to a
D-dimensional vector by a projector ϕproj, augmented with positional encodings, and processed through B
transformer blocks ϕblock

1 , . . . , ϕblock
B . A segmentation head ϕseg maps the resulting embeddings to pixel-level

predictions. Formally, given the patches plocal of the local window xlocal, the segmentation predictions zlocal

are defined as:

zlocal = ϕseg ◦ ϕblock
B ◦ · · · ◦ ϕblock

1
(

ϕproj(plocal
i ) + pos(plocal

i )
)
, (1)

where pos denotes the positional encoding function.
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Figure 2: ViT with Cross-Resolution Relay Tokens. We simultaneously process a small high-resolution
window xlocal and a larger low-resolution window xglobal with a shared network augmented with relay tokens

. In each of the B consecutive transformer blocks, relay tokens are first added to the patch tokens of the
global window and processed by the transformer. The updated relay tokens are then processed with the
tokens of the local window and passed to the next block. The model applies supervision at each scale using
losses Lglobal and Llocal, while enforcing consistency between resolutions via a cross-resolution loss Lcons. We
denote shared weights with � and independent parameters with �.

Shared Weights. We extend this framework by jointly processing both local (xlocal) and global (xglobal)
windows using the same transformer, with weights shared across all modules except the projection layers. We
first embed the local and global patches plocal and pglobal separately:

f local
0 = ϕproj

local(p
local
i ) + pos (2)

fglobal
0 = ϕproj

global(p
global
j ) + pos , (3)

Relay Tokens. We add R relay tokens f relay
0 ∈

RR×D learned as free parameters of the model. Each
transformer block b = 1, . . . , B sequentially updates
tokens in two steps:[

f relay
b+ 1

2
, fglobal

b+1
]

= ϕblock
b

(
[f relay

b , fglobal
b ]

)
(4)[

f relay
b+1 , f local

b+1
]

= ϕblock
b

(
[f relay

b+ 1
2

, f local
b ]

)
, (5)

where [·, ·] concatenates tokens, and b + 1
2 indicates

the intermediate update of the relay tokens after pro-
cessing the global tokens only. In Eqs. (4) and (5),
the output of ϕblock

b is split such that the first term
corresponds to the R updated relay tokens, and the
second one the image token embeddings. After the
final block, the relay tokens are discarded. We then
apply the same segmentation head to the final local
and global features:

zlocal = ϕseg(f local
B ) (6)

zglobal = ϕseg(fglobal
B ) , (7)

Algorithm 1 shows the code adding relays to a ViT.

Algorithm 1: Vision Transformer With Relay
Tokens. PyTorch code to add relay tokens to a ViT,
here ‘...’ stands for standard ViT code. See Appendix
for more details.
D – embedding dimension R – number of relays

class ViT_with_relays(nn.Module):
def __init__(self, D, R, ...):

...
self.relay = nn.Parameter(torch.randn(R, D))

def forward(self, img_loc, img_glo):
f_loc = patchify_and_project(img_loc)
f_glo = patchify_and_project(img_glo)
f_r = repeat(self.relay, batch_size)

for block in self.blocks:
f_r_glo = block(torch.cat((f_r, f_glo),1))
f_glo, f_r = f_r_glo[:, R:], f_r_glo[:, :R]

f_r_loc = block(torch.cat((f_r, f_loc),1))
f_loc, f_r = f_r_loc[:, R:], f_r_loc[:, :R]

...
return out
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Beyond ViTs. Adding relay tokens to a vanilla ViT requires only a few extra lines of code (see Algorithm 1).
Extending the same principle to hierarchical models like SwinV2 (Liu et al., 2022) or even more complex
approaches such as GLAM (Themyr et al., 2023) is similarly simple: we copy the relay tokens for each
window-attention block, then average their updated values across windows before applying the feed-forward
layer.

3.2 Training

Our training procedure employs three complementary loss terms to encourage precise segmentation at both
local and global scales, while enforcing consistency between them. All supervision leverages ground truth
labels ylocal associated solely with the high-resolution local window.

Local Supervision. We supervise the local prediction zlocal using standard cross-entropy loss:

Llocal = H
(
zlocal, ylocal) , (8)

where H(z, y) =
∑

k yk log(zk).
Global Supervision. We encourage the global-
scale embeddings to focus primarily on context rel-
evant to local-scale segmentation accuracy. We first
crop the global predictions zglobal to the spatial ex-
tent of the local window, denoted as crop(zglobal).
Next, we apply average pooling (avg) to aggregate the
high-resolution local labels ylocal into lower-resolution
distributions. The global loss is:

Lglobal = H
(
crop(zglobal), avg(ylocal)

)
. (9)

zglobal crop(zglobal) zlocal

Figure 3: Predictions at Different Scales.

Consistency Loss. Similarly to SGNet (Wang et al., 2024), we align predictions across scales with a
consistency loss. Specifically, we match the cropped global predictions to the spatially averaged local
predictions:

Lcons = H
(
crop(zglobal), avg(zlocal)

)
. (10)

This term encourages effective cross-resolution communication, which may reduce boundary discontinuities
and enhance the segmentation consistency.

4 Experiments

We first present the datasets and baselines in Sec. 4.1. We then discuss our main experimental results
(Sec. 4.2) and provide an extended analysis (Sec. 4.3), followed by an ablation study (Sec. 4.4).

4.1 Datasets and Baselines

We evaluate our method on four datasets that collectively cover LiDAR archaeology, satellite image analysis,
histopathology, and urban-scene imagery. Performance is measured by mean Intersection-over-Union (mIoU).

Datasets. We evaluate all models on three ultra-high resolution image segmentation datasets and one
computer vision dataset, illustrated in Fig. 4 (see Appendix for additional details):

• Archaeoscape (Perron et al., 2024) is a LiDAR–RGB dataset spanning 888 km2 at 0.5m
ground-sampling distance. It comprises 23 parcels of up to 720 × 106 pixels, densely annotated with
four classes (water features, earthen mounds, temples, background). We report mIoU over the three
foreground classes on the test split.
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Figure 4: Qualitative Results. We visualise a 2048 × 1024 region from each dataset, comparing our
multi-scale approach to the baseline sliding window. We highlight the extents of the global and local images
and mark points of interest with .

• URUR (Ji et al., 2023) contains 3,008 satellite images of 5012 × 5012 pixels with eight land-cover
classes. We follow the standard split (2,157 / 280 / 571 images for train / val / test).

• Gleason (Karimi et al., 2020) features 244 histology micro-array tiles (5120 × 5120 pixels) across
seven slides, labelled as benign or one of three Gleason grades. Official servers are no longer available
to evaluate on the test set and recent works did not disclose their test split (Wang et al., 2024). We
use slide 7 as our test set, train on the remaining slides, and reserve images with a core number
under 15 for validation.

• Cityscapes (Cordts et al., 2016) offers 2,975 training and 500 validation street-view images at
1024 × 2048 resolution with 19-class dense annotations. While not UHR, this dataset provides a
familiar benchmark to evaluate our design in a classic computer vision setting. We train on the
train split and report mIoU on val.

Baselines and Competing Methods. We benchmark our approach against several approaches:

• Sliding Window. We evaluate three backbone ViT models — ViT (Dosovitskiy et al., 2021),
SwinV2 (Liu et al., 2022), and GLAM (Themyr et al., 2023) in a sliding window setting, with and
without relay tokens.

• Scalable Vision Transformers. We evaluate Flatten Swin — Swin configuration of Flatten Trans-
former (Han et al., 2023), which employs linear-attention modules inside a Transformer architecture.
We also evaluate two ViT models able to scale to large windows thanks to their linear-complexity
transformer replacement: xT (Gupta et al., 2024) and Vision Mamba (Zhu et al., 2024a).

• Multi-Scale Approaches. We evaluate three models that also process large images with a dual
sliding window approach: GLNet (Chen et al., 2019), SGNet (Wang et al., 2024), and ISDNet (Gu
et al., 2018). We use the window sizes recommended in the articles.

• Classic Models. We also evaluate classic models such as DeepLabv3 (Chen et al., 2017b), U-Net
(Ronneberger et al., 2015), and PVTv2 (Wang et al., 2022) to provide context in terms of performance.
To reflect the lesser memory usage compared to transformers, we use a larger sliding window size of
512 for CNN-based models.
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Table 1: Quantitative Evaluation. Performance (mIoU) for different scaling strategies on three UHR and
one vision dataset. We report the (+% mIOU) improvement of relay tokens over the sliding-window baseline.
SW – sliding window ↓ – subsampling ⋆ – performance on the test set
MS – multi-scale full – entire input image † – performance on an undisclosed test set

Backbone Scaling strategy Archaeoscape URUR Gleason Cityscapes (val)
up to 30K × 40K 5012 × 5012 5120 × 5120 1024 × 2048

ViT 1 SW: 256 46.5 36.3 33.2 53.0
+ relays (ours) MS: 256 + 1024 ↓ 4 46.7 (+0.2) 40.4 (+4.1) 49.1 (+15.9) 61.0 (+8.0)
SwinV2 2 SW: 256 51.9 41.0 48.1 68.2
+ relays (ours) MS: 256 + 1024 ↓ 4 57.8 (+5.9) 46.4 (+5.4) 55.5 (+7.4) 75.1 (+6.9)
Flatten Swin 3 SW: 256 53.4 43.0 50.7 70.2
+ relays (ours) MS: 256 + 1024 ↓ 4 55.2 (+1.8) 45.8 (+2.8) 57.7 (+7.0) 77.5 (+7.3)
GLAM 4 SW: 256 52.5 43.9 47.7 72.9
+ relays (ours) MS: 256 + 1024 ↓ 4 53.8 (+1.3) 44.5 (+0.6) 54.1 (+6.4) 76.9 (+4.0)
xT 5 SW: 1024 40.6 44.0 46.0 68.6
Vision Mamba 6 SW: 1024 45.9 31.6 22.1 44.8
GLNet 7 MS: 512 + full ↓ - 41.2 - 71.2
SGNet 8 MS: 512 + 1024 - - 61.2 † 70.4
ISDnet 9 MS: full + full ↓ 4 43.6 45.8 60.0 † 76.0 ⋆

DeepLabv3 10 SW: 512 49.7 41.7 46.3 56.6
U-Net 11 SW: 512 49.9 43.1 53.5 67.8
PvTv2 12 SW: 256 52.1 41.2 48.6 66.1
SOTA 52.1 13 46.9 14 87.4 15

1 Dosovitskiy et al. (2021) 2 Liu et al. (2022) 3 Han et al. (2023) 4 Themyr et al. (2023) 5 Gupta et al. (2024) 6 Zhu et al.
(2024a) 7 Chen et al. (2019) 8 Wang et al. (2024) 9 Guo et al. (2022) 10 Chen et al. (2017b) 11 Ronneberger et al. (2015)
12 Wang et al. (2022) 13 Perron et al. (2024) 14 Ji et al. (2023) 15 Erişen (2024)

Notations. We use the downsampling factor notation n↓ k to indicate that an n × n image is downsampled
k times; e.g. 1024↓ 4 represents a 1024 × 1024 image downsampled to 256 × 256. The ‘+’ operator denotes
models combining multiple scales. For example, 256 + 1024↓ 4 refers to a model using a 256 × 256 local
window and a 4× downsampled 1024 × 1024 crop as global image. We refer to the entire input image as ‘full’.

Dataloader. For each training step, we randomly select one pixel as the centre of both local and global
crops. If more than 80% of the local window lies outside the main image, we skip that sample. We pad the
out-of-bounds parts of the local and global windows with the image mean. We apply random scaling in [0.5, 2]
and random rotations in [−90◦, 90◦], each with 0.5 probability. We do not use any test time augmentations.

Implementation Details. All models utilise the S (small) variant of each backbone, initialised from
ImageNet (Ridnik et al., 2021; Russakovsky et al., 2015), and four relay tokens. For all datasets, we train
with the combined loss Llocal + 0.1 Lglobal + 0.1 Lcons using AdamW (Kingma & Ba, 2015; Loshchilov & Hutter,
2019) with an initial learning rate of 10−4, no weight decay, a linear warmup for 5% of training, and a
ReduceLROnPlateau (PyTorch 2.7) schedule based on validation accuracy. For URUR and Gleason with
ViT and SwinV2 backbones, the patch embedding networks of both scales share parameters. In all other
cases, including Cityscapes, Archaeoscape, and experiments with Flatten Swin and GLAM backbones, these
networks are trained independently.
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4.2 Results

We compare relay tokens against standard scaling baselines and recent state-of-the-art (SOTA) models in
terms of precision and efficiency.

Quantitative Analysis. Table 1 demonstrates that relay tokens consistently outperforms the sliding-
window (SW) baseline across all four evaluated datasets and four backbone architectures, achieving substantial
improvements: up to +5.9 on Archaeoscape, +5.4 on URUR, and +15.9 on Gleason, and +8.0 mIoU on
Cityscapes. An exception to this observation is the case of vanilla ViT on Archaeoscape, which have already
been observed to perform poorly (Perron et al., 2024), and relay tokens do not appear to significantly improve
this performance.

Despite being a simple extension of ViT-based architectures, relay tokens match or surpass specialised
multi-scale methods such as ISDNet, GLNet, and SGNet across all UHR datasets. Transformer variants
with linear attention, such as Flatten Swin, already perform competitively but are consistently improved by
the addition of relay tokens. Linear-complexity Mamba models (Vision-Mamba and xT), while capable of
processing full images in a single pass, generally underperform in our setting. CNN-based baselines remain
computationally efficient but lag behind in accuracy.

Comparison to SOTA. Our main objective in this paper is not to chase incremental SOTA improvements
against highly specialised approaches but to demonstrate how a simple, practical strategy can significantly
enhance standard ViT-based architectures. Nevertheless, a SwinV2 backbone equipped with relay tokens
achieves a clear SOTA on Archaeoscape by over 5 points, and trails by only 0.5 mIoU points behind the highly
specialised remote sensing model WSDNet (Ji et al., 2023) on URUR without any structural modifications.
On Gleason, public test servers are no longer available and recent works rely on private splits (Wang et al.,
2024), which complicates fair comparison; evaluated on our clean train/test split, Flatten Swin+relay tokens
outperform all other approaches.

Although Cityscapes uses higher-resolution images than most vision benchmarks, it is not an UHR dataset.
We therefore do not expect relay tokens to reach state-of-the-art performance against highly specialised
architectures such as SerNetFormer (Erişen, 2024), which reports 87.4 mIoU. Instead, our goal is to demonstrate
that relay tokens provide a lightweight, efficient, and easily integrable improvement to standard vision
transformer pipelines. Accordingly, we do not rely on practices commonly used to maximise performance
on Cityscapes (Chen et al., 2018; Tao et al., 2020; Xie et al., 2021), such as pretraining on the 20K coarse
annotations or on Mapillary Vistas (Neuhold et al., 2017), nor do we apply 10-scale test-time augmentation.
Under these conditions, Flatten Swin and GLAM with relay tokens report the highest performance among all
evaluated methods.

Qualitative Analysis. Figure 4 illustrates how relay tokens provide more coherent and contextually aware
predictions across datasets. On Cityscapes, the local-only model mislabels partial objects (e.g., identifying
a cyclist’s torso as a pedestrian), whereas including global context resolves such ambiguities. Likewise, on
Archaeoscape, global windows help identify large water features (blue) and earth structures (yellow). On
URUR, fields (light green) are better delineated against barelands (grey) and woodlands (dark green). For
Gleason, the sliding window approach is not able to consistently classify the cell as malignant (blue), and
predicts either normal tissue (white) or another cancer class (green).

Comparison to Other Scaling Approaches. We benchmark four common alternatives:

• Sliding Window. We independently segment local windows xlocal and stitch predictions, with an
overlap ratio of 50% for Archaeoscape and 0% elsewhere.

• Sliding Window + Registers. We add relay tokens but process only the local window. This
amounts to adding registers (Darcet et al., 2024).

• Downsampling. We process only the global window at a reduced resolution. If the image remains
too large, we slide the global window.

• Decision Fusion. We process local and global windows in parallel, upsample the global prediction
to the local resolution, and average the final logits.
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Table 3: Scaling Baselines. We evaluate several scaling strategies with a SwinV2 backbone. We report the
improvement with respect to the sliding window baseline with a red-to-green colour scale -10 +0 +10 .

Scaling strategy Archaeoscape URUR Gleason Cityscapes (val)
Sliding window SW: 256 51.9 - 41.0 - 48.1 - 68.2 -
Registers SW: 256 53.2 +1.3 41.4 +0.4 47.8 -0.3 68.0 -0.2
Downsampling SW: 1024↓4 47.1 -4.8 45.3 +4.3 55.1 +7.0 61.8 -6.4
Decision fusion MS: 256+1024↓ 4 56.5 +4.6 43.8 +2.8 55.1 +7.0 72.3 +4.1
Relay tokens (ours) MS: 256+1024↓ 4 57.8 +5.9 45.6 +4.6 57.0 +8.9 75.1 +6.9
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Figure 5: Performance vs. Memory. We plot the training GPU memory requirement and performance of
a SwinV2 on Cityscapes for several scaling strategies. Relay tokens offer a better trade-off between memory
and precision. In particular, we can train a SwinV2 model with relay tokens on a GPU with 48GB of RAM
while outperforming models that require 8 80GB GPUs.

Table 3 shows that decision fusion is the strongest baseline, yet relay tokens outperform it by exchanging
multi-scale features at every block rather than only at the output. Registers alone yield small, inconsistent
gains, confirming that performance stems from genuine cross-scale interaction.
Complexity Analysis. Adding relay tokens to an
existing ViT or Swin model introduces only a small
number of additional learnable parameters: the relay
tokens themselves and an additional copy of the projec-
tor. In practice, this results in less than 1.7% additional
parameters for ViTs and 0.7% for Swin variants. Adding
one relay token to a ViT-S adds only 384 parameters
(0.002% of the model) and 96 for SwinV2-S (0.00014%);
the remaining additional parameters come from the
resolution-specific projectors.
In contrast, methods such as ISDNet (Guo et al., 2022)
and GLNet (Chen et al., 2019) substantially increase
their parameter count by using separate backbones for
local and global processing, in addition to other auxil-
iary modules. Tab. 4 compares parameter counts and
GFLOPs of different models.

Table 4: Complexity Analysis. For a 256 px
input, without sharing the patch encoder.

Model #Param. [M] GFLOPs
ViT 23.9 6.6
ViT + relay tokens 24.3 (+1.6%) 13.6 (+106%)
SwinV2 64.7 12.6
SwinV2 + relay tokens 65.1 (+0.9%) 26.0 (+106%)
GLAM 132 (+1.6%) 75.4
GLAM + relay tokens 133 (+0.7%) 152 (+102%)
DeepLabv3 39.6 41.0
xT 166 20.8
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Performance vs. Memory Trade-off. Although process-
ing dual-scale (local and global) windows approximately dou-
bles the memory and computational costs compared to single-
scale sliding-window baselines (see Tabs. 4 and 5), relay tokens
remain significantly more efficient than approaches operating
at high resolution. Figure 5 illustrates this efficiency-accuracy
trade-off for Cityscapes: using relay tokens and a single 48 GB
GPU, we achieve competitive performance to a SwinV2 applied
with a 1024 × 1024 window, which requires eight 80 GB GPUs
to train. Decision Fusion also presents a comparable efficiency
trade-off but still falls short in accuracy.

Table 5: Computational Costs. Training
time and throughput for a 256 px input.

Backbone
Epoch time
(minutes)

Throughput
(full img/s)

Train Train Test
ViT 32 9.3 31.1
ViT + relays 78 4.5 14.5
SwinV2 33 3.1 9.9
SwinV2 + relays 75 1.4 4.7

Test Set Performance for Cityscapes. Due to limited Cityscapes evaluation server submissions, we
test only two SwinV2-based configurations. The sliding-window baseline reaches 69.1% mIoU, while adding
relay tokens improves it substantially to 75.0% (+5.9 points). These test set results closely align with our
validation set outcomes, confirming the robustness of our experimental protocol.

4.3 Analysis

Despite its conceptual simplicity, our approach reveals valuable insights into how context and resolution
interplay in modern segmentation architectures. Below, we investigate several critical aspects.

How Large Should the Context Be? The effectiveness of additional global context varies across datasets.
For instance, Gleason images contain over 25M pixels each, strongly benefiting from extended spatial context.
We represent in Fig. 6 the performance improvements relative to the sliding-window baseline across various
spatial extents and downsampling ratios. We observe diminishing returns beyond a global context of 1024
pixels with a fixed downsampling ratio, especially given that it comes at a high cost due to quadratic growth
of the attention matrix; for this reason, we were not able to to run the experiments with a 4096 ↓ 4 global
window. Conversely, excessively coarse global windows (e.g., downsampling ratios beyond 8× for a fixed
global size) provide limited benefit. This highlights a dataset-dependent trade-off between memory, coverage,
and resolution.

How many Tokens Should One Use? Figure 7 explores the impact of the token count. Performance
gain saturates after 4 relay tokens, a common behaviour for register/global tokens (Zhang et al., 2021, Fig. 3).
Computation grows quadratically at a moderate pace: only +26% from 1 to 32 tokens.

Figure 6: Impact of Global Window Extent.
Performance as a function of the global window
size in pixels at full image resolution. Two vari-
ants are tested: a fixed downsampling ratio (↓ 4)
and a fixed global window size (256 × 256).
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Figure 7: Impact of Relay Count.
We evaluate several configurations for
a SwinV2 model on Archaeoscape.
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Figure 8: Relay Tokens Attention
Maps. We compute the average at-
tention between the relay tokens and
each of the patch tokens of the local
and global windows, averaged for all
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Where Do Relay Tokens Look? In Fig. 8, we visualise the average attention maps of four relay tokens in
the local and global windows; more illustrations can be found in the Appendix. Two notable patterns emerge:

• Radialisation: Each relay token consistently specialises in a particular direction of the image (e.g.,
NE, NW, SE, SW corners). This phenomenon persists across blocks and heads, presumably because
token-wise MLP operations favour consistent specialisation.

• Local–Global Harmonisation: As a given relay token focuses in a corner of the local window, it also
gathers global information in the surrounding area of the global window. This suggests that the
networks processing each window are able to use the relay token to gather and propagate information
in a spatially consistent manner. Moreover, the global attention avoids the centre of the image, where
the local window already contains more fine-grained information.

Which Objects Benefit Most From a Large Context? We measure which object categories gain most
from relay tokens compared to a sliding-window baseline (SW) using the relative IoU error improvement:
(IoUrelay − IoUSW)/(1 − IoUSW).

The classes of Cityscapes with the most gains are medium-scale objects (truck +44%, bus +39%, train
+33%, motorcycle +25%, car +20%) or classes defined by their function rather than appearance (road +39%,
sidewalk +24%). Smaller objects with fine-grained structure (fence +13%, pole +6%, traffic light +9%, and
traffic sign +8%) gain less from coarse global cues. Similar trends appear across datasets: ancient Khmer
reservoirs in Archaeoscape (+16%), greenhouses (+15%) in URUR, and malignant cells (+35%) in Gleason
also notably benefit from the enhanced context.

4.4 Ablations

We evaluate the impact of different design choices on the performance and efficiency of our proposed approach.

Architecture Ablation. We report the impact on performance of several key architectural design choices
in Tab. 6.

• Losses. Removing either the global loss Lglobal or the consistency loss Lcons degrades performance
by approximately 1.0 to 1.9 mIoU points, respectively. Simultaneously omitting both losses leads
to a larger performance drop of 2.5 points, demonstrating their individual yet complementary
contributions.
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Table 6: Impact on Performance. Effect of individual design choices evaluated in two representative
settings: conf. A — ViT on Gleason, and conf. B — SwinV2 on Archaeoscape. Grey denotes unchanged
configuration from the default .

A B A B

Relay Tokens 49.1 57.8 2 relays 49.3 51.2
Sliding Window 33.2 51.9 8 relays 46.3 55.7
no Lcons 47.2 52.1 Token Concatenation 46.8 -
no Lglobal 47.8 50.9 Shared Projectors 49.1 49.6
no Lcons no Lglobal 48.1 48.6 Different Projectors 46.3 57.8

Table 7: Impact on Efficiency. We evaluate on the Cityscapes validation set the performance and efficiency
of different relay-token variants: Fewer Blocks match the baseline compute, and Parallel Relays facilitate
parallelisation.

Model Variant mIOU FLOPs Throughput (img/s)

ViT Full 53.0 6.6 995
ViT + Relay Full 61.0 13.6 465
ViT + Relay Fewer Blocks 55.0 6.8 898
ViT + Relay Parallel Relays 56.4 13.6 488

• Number of Relay Tokens. We vary the number of relay tokens, testing configurations with 2, 4
(default), and 8 tokens. Using only 2 relay tokens yields insufficient improvements over the baseline,
while employing 8 relay tokens is slightly less effective than 4. This finding aligns with observations
on register token parameterisation for segmentation tasks (Darcet et al., 2024, Fig. 8). Similar trends
occur across other datasets, although results might differ for datasets with more intricate multi-scale
interactions.

• Token Concatenation. An alternative multi-scale approach is to concatenate tokens from local
and global windows before processing them through a single network (without relay tokens). While
straightforward for plain ViT architectures, this approach is complex for Swin models due to their
window-based attention mechanism. It also significantly increases the computational footprint
(approximately four times the baseline, twice that of relay tokens). Despite this additional resource
requirement, concatenation performs worse than relay tokens, suggesting that relay tokens are more
effective to capture multi-scale features than full self-attention between patches.

• Shared Projectors. The networks processing the local and global windows share over 99% of their
weights, except the relay token and in some cases, the projectors. Whether or not sharing projectors
is beneficial to the model is very dataset specific: on Gleason using different projectors causes a
loss of -2.8% (ViT) while it improves the performance by +8.2% on Archaeoscape (SwinV2). This
underlines how different datasets can have widely different scale-invariance properties, which can
justify (in the case of Gleason and URUR) a shared processing across scales.

• Adaptive Positional Encoding. Inspired by ScaleMAE (Reed et al., 2023), we explore using
positional encoding whose scale depends on the downscaling factor. Contrary to expectations, this
approach noticeably degraded performance. We hypothesise this is due to incompatibility with
positional encodings learned during the model’s initial pretraining.

Relay Token Variants. By design, introducing relay tokens approximately doubles the number of
transformer blocks and the computational load. To ascertain whether the gains come from additional compute
or from improved cross-scale interaction, we run two targeted experiments in Tab. 7:
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• Fewer Blocks. We keep only the first six out of twelve transformer blocks in both the local and
global branches, thus matching the computational cost of the baseline model (ViT-S with sliding
window). This variant still perform better than the ViT baseline, indicating that relay tokens provide
benefits beyond pure compute scaling. While it underperforms the full model, this variant offers a
strong accuracy–efficiency trade-off in compute-constrained settings.

• Parallel Relay. A limitation of our default design is that global and local windows are processed
sequentially, which reduces parallelism. We therefore consider a parallel relay variant in which global
and local branches are executed concurrently, each with its own copy of the relay tokens. The
updated relay representation is obtained by averaging the tokens produced by both branches. This
design improves parallelization relative to the sequential global–to–local scheme, at the cost of weaker
cross-scale coupling. Specifically, we replace Eqs. (4) and (5) in the paper by:[

f
relay(global)
b+ 1

2
, fglobal

b+1
]

= ϕblock
b

(
[f relay

b , fglobal
b ]

)
(11)[

f
relay(local)
b+ 1

2
, f local

b+1
]

= ϕblock
b

(
[f relay

b , f local
b ]

)
(12)

f relay
b+1 = 0.5(f relay(global)

b+ 1
2

+ f
relay(local)
b+ 1

2
) (13)

This yields only modest throughput gains, suggesting that GPU utilisation is already efficient with
the the original sequential relay. However, the performance improvement relative to the ViT baseline
drops significantly, suggesting that sequential relay feedback is important for delivering effective,
scale-adaptive feedback.

Conclusion

We introduced relay tokens, a lightweight extension of vision transformer models, enabling effective multi-scale
reasoning for large-image segmentation. With minimal additional parameters and straightforward imple-
mentation, relay tokens significantly boost segmentation accuracy across diverse datasets and domains. Our
method offers an efficient, easily deployable alternative to specialised multi-scale or large-scale segmentation
architectures, enabling practitioners to seamlessly integrate multi-scale reasoning capabilities into existing
transformer-based workflows.
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A-1 Implementation

We provide in Algorithm A-1 an extended implementation of a ViT with relay tokens.

Algorithm A-1: ViT with Relay pseudocode.

(a) ViT with Relay. Minimal implementation.

class ViT_relay(nn.Module):
def __init__(self, B, D, P, in_C, out_C, R):

super().__init__()
self.P = P
self.proj = nn.Linear(P * P * in_C, D)
self.blocks = nn.ModuleList(

[Transformer(D) for _ in range(B)])
self.out_head = nn.Linear(D, P * P * out_C)
self.relay = nn.Parameter(torch.randn(R, D))

def forward(self, img_loc, img_glo):
BS = img_loc.size(0) # batch size

p_loc = patchify(img_loc, self.P)
r_glo = patchify(img_glo, self.P)

f_loc = self.proj(p_loc) + pos_enc(P, D, BS)
f_glo = self.proj(r_glo) + pos_enc(P, D, BS)

f_r = repeat(self.relay, BS)

for block in self.blocks:
f_r_glo = block(torch.cat((f_r, f_glo),1))
f_glo, f_r = f_r_glo[:, R:], f_r_glo[:, :R]

f_r_loc = block(torch.cat((f_r, f_loc),1))
f_loc, f_r = f_r_loc[:, R:], f_r_loc[:, :R]

out_patches = self.out_head(f_loc)
out = unpatchify(out_patches, self.P)
return out

(b) ViT with Relay. Auxiliary functions.

import torch
import torch.nn as nn
from einops import rearrange

def patchify(img, patch_size):
# (B, C, H, W)
# -> (B, #patches, patch_size^2 * C)
return rearrange(

img,
'b c (hp p) (wp q) -> b (hp wp) (c p q)',
p=patch_size, q=patch_size

)

def unpatchify(patches, patch_size, H, W):
# (B, #patches, patch_size^2 * out_channels)
# -> (B, out_chan, H, W)
return rearrange(

patches,
'b (hp wp) (oc p q) -> b oc (hp p) (wp q)',
hp=H // patch_size, wp=W // patch_size,
p=patch_size, q=patch_size

)

class TransformerBlock(nn.Module):
def __init__(self, dim):

super().__init__()
self.attn = nn.MultiheadAttention(dim,

num_heads=H, batch_first=True)
self.mlp = nn.Sequential(

nn.Linear(dim, 4 * dim),
nn.ReLU(),
nn.Linear(4 * dim, dim)

)

def forward(self, x):
x = x + self.attn(x, x, x)[0]
x = x + self.mlp(x)
return x

def repeat(reg, batch_size):
# Replicate relay tokens across
#the batch dimension:
return reg[None].expand(batch_size, -1, -1)

17



Published in Transactions on Machine Learning Research (01/2026)

A-2 Additional Analysis

Attention Map In Fig. A-1, we present average attention maps of ViT trained on Cityscapes with 2, 4 and
8 relay tokens. For all configurations, we observe strong coordination between scales: each relay token focuses
on a well-defined part of the local window and the surrounding area of the global window. The radialisation
observed with 4 relay tokens mostly holds with most token attending to a single cardinal direction of the
window. Interestingly, one of the 8 relay tokens attends the centre part of both the local and global window.
This may allow the centre of the local window to benefits from long distance contextual information contain
in the global window.
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Figure A-1: Attention. Attention maps of the relay tokens for a ViT trained on Cityscapes with 2, 4, 8
relay tokens.

Model Size In Tab. A-1, we provide the performance of our approach with different SwinV2 backbone
sizes on the Cityscapes dataset. We observe that our approach with relay token show similar scaling to the
standard SwinV2 model.

FLatten Transformer performance In Tab. A-2 we compare the memory usage and throughput of
the Swin configuration of FLatten Transformer (Han et al., 2023) on Cityscapes (batch size = 64). We
observe that adding relays yields higher performance gains with a lower memory footprint compared to
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Model Tiny Small Base Large
SwinV2 64.9 68.2 68.1 67.0
SwinV2 + relay token 73.5 75.1 75.1 74.1

Table A-1: Impact of model size on performance on Cityscapes.

Model mIoU GPU memory
(GB)

Throughput
(full img/s)

Flatten Swin-S / 256 68.0 26 10.6
Flatten Swin-S / 512 73.5 90 9.5
Flatten Swin-S / 256 + RELAY 75.3 48 4.9

Table A-2: Memory Usage and Throughput of Flatten Swin on Cityscapes.

simply increasing the sliding-window size, consistent with our observations in Fig. 5 of the main paper. While
linear-attention models can scale to larger windows with limited computational overhead and thus remain
faster than relay-based variants, they incur substantially higher memory costs in our experiments.

A-3 Datasets

We provide in Fig. A-2 the colour codes for the classes of our evaluated datasets.

Cityscapes
road sidewalk building wall fence
pole traffic light traffic sign vegetation terrain
sky person rider car truck
bus train motorcycle bicycle ignored

Archaeoscape
Mounds Water Temples Background ignored

URUR
others building farmland greenhouse woodland
bareland water road ignore

Gleason
Benign Type 3 Type 4 Type 5

Figure A-2: Colourmaps. We provide the colour code for the classes of all the dataset evaluated.
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